Three MIPS-specific sections `.reginfo`, `.MIPS.options`, and `.MIPS.abiflags`
are used by loader to read their contents and setup environment for running
a program. Loader looks up these data in the corresponding segments:
`PT_MIPS_REGINFO`, `PT_MIPS_OPTIONS`, and `PT_MIPS_ABIFLAGS` respectively.
This patch put these sections to separate segments like we do already
for ARM `SHT_ARM_EXIDX` section.
Differential Revision: http://reviews.llvm.org/D58381
llvm-svn: 354468
Non-GOT non-PLT relocations to non-preemptible ifuncs result in the
creation of a canonical PLT, which now takes the identity of the IFUNC
in the symbol table. This (a) ensures address consistency inside and
outside the module, and (b) fixes a bug where some of these relocations
end up pointing to the resolver.
Fixes (at least) PR40474 and PR40501.
Differential Revision: https://reviews.llvm.org/D57371
llvm-svn: 353981
A follow up to the intial patch that unblocked linking against libgcc.
For lld we don't need to bother tracking which objects have got based small
code model relocations. This is due to the fact that the compilers on
powerpc64 use the .toc section to generate indirections to symbols (rather then
using got relocations) which keeps the got small. This makes overflowing a
small code model got relocation very unlikely.
Differential Revision: https://reviews.llvm.org/D57245
llvm-svn: 353849
Summary:
In ld.bfd/gold, --no-allow-shlib-undefined is the default when linking
an executable. This patch implements a check to error on undefined
symbols in a shared object, if all of its DT_NEEDED entries are seen.
Our approach resembles the one used in gold, achieves a good balance to
be useful but not too smart (ld.bfd traces all DSOs and emulates the
behavior of a dynamic linker to catch more cases).
The error is issued based on the symbol table, different from undefined
reference errors issued for relocations. It is most effective when there
are DSOs that were not linked with -z defs (e.g. when static sanitizers
runtime is used).
gold has a comment that some system libraries on GNU/Linux may have
spurious undefined references and thus system libraries should be
excluded (https://sourceware.org/bugzilla/show_bug.cgi?id=6811). The
story may have changed now but we make --allow-shlib-undefined the
default for now. Its interaction with -shared can be discussed in the
future.
Reviewers: ruiu, grimar, pcc, espindola
Reviewed By: ruiu
Subscribers: joerg, emaste, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D57385
llvm-svn: 352826
Guessing that the slashes used in the scripts SECTION command was causing the
windows related failures in the added test.
Original commit message:
Small code model global variable access on PPC64 has a very limited range of
addressing. The instructions the relocations are used on add an offset in the
range [-0x8000, 0x7FFC] to the toc pointer which points to .got +0x8000, giving
an addressable range of [.got, .got + 0xFFFC]. While user code can be recompiled
with medium and large code models when the binary grows too large for small code
model, there are small code model relocations in the crt files and libgcc.a
which are typically shipped with the distros, and the ABI dictates that linkers
must allow linking of relocatable object files using different code models.
To minimze the chance of relocation overflow, any file that contains a small
code model relocation should have its .toc section placed closer to the .got
then any .toc from a file without small code model relocations.
Differential Revision: https://reviews.llvm.org/D56920
llvm-svn: 352071
Small code model global variable access on PPC64 has a very limited range of
addressing. The instructions the relocations are used on add an offset in the
range [-0x8000, 0x7FFC] to the toc pointer which points to .got +0x8000, giving
an addressable range of [.got, .got + 0xFFFC]. While user code can be recompiled
with medium and large code models when the binary grows too large for small code
model, there are small code model relocations in the crt files and libgcc.a
which are typically shipped with the distros, and the ABI dictates that linkers
must allow linking of relocatable object files using different code models.
To minimze the chance of relocation overflow, any file that contains a small
code model relocation should have its .toc section placed closer to the .got
then any .toc from a file without small code model relocations.
Differential Revision: https://reviews.llvm.org/D56920
llvm-svn: 351978
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
If .rela.iplt does not exist, we used to emit a corrupt symbol table
that contains two symbols, .rela_iplt_{start,end}, pointing to a
nonexisting section.
This patch fixes the issue by setting section index 0 to the symbols
if .rel.iplt section does not exist.
Differential Revision: https://reviews.llvm.org/D56623
llvm-svn: 351218
ARM and AArch64 use TLS variant 1, where the first two words after the
thread pointer are reserved for the TCB, followed by the executable's TLS
segment. Both the thread pointer and the TLS segment are aligned to at
least the TLS segment's alignment.
Android/Bionic historically has not supported ELF TLS, and it has
allocated memory after the thread pointer for several Bionic TLS slots
(currently 9 but soon only 8). At least one of these allocations
(TLS_SLOT_STACK_GUARD == 5) is widespread throughout Android/AArch64
binaries and can't be changed.
To reconcile this disagreement about TLS memory layout, set the minimum
alignment for executable TLS segments to 8 words on ARM/AArch64, which
reserves at least 8 words of memory after the TP (2 for the ABI-specified
TCB and 6 for alignment padding). For simplicity, and because lld doesn't
know when it's targeting Android, increase the alignment regardless of
operating system.
Differential Revision: https://reviews.llvm.org/D53906
llvm-svn: 350681
Summary:
Other large sections (e.g. .rela.dyn .dynstr) may push .note.* off the
first page. They won't be available in core files if RLIMIT_CORE is
limited.
This patch gives priority to alloctable SHT_NOTE sections so that they
are assuredly in the first page and will be available in core files.
They are small and contain important information (e.g. .note.gnu.build-id
identifies the origin of the core, .note.tag stores NT_FREEBSD_ABI_TAG).
Note: gold Output_section_order has a similar rule:
// Loadable read-only note sections come next so that the PT_NOTE
// segment is on the first page of the executable.
ORDER_RO_NOTE,
Reviewers: ruiu, pcc, espindola
Subscribers: emaste, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D55800
llvm-svn: 349524
At least on Linux, if a file size given to FileOutputBuffer is greater
than 2^63, it fails with "Invalid argument" error, which is not a
user-friendly error message. With this patch, lld prints out "output
file too large" instead.
llvm-svn: 348153
There is no need to check that In.DynSymTab != nullptr,
because `includeInDynsym` already checks for `!Config->HasDynSymTab`
and `HasDynSymTab` is the pre-condition for In.DynSymTab creation.
llvm-svn: 348143
The _GLOBAL_OFFSET_TABLE_ is a linker defined symbol that is placed at
some location relative to the .got, .got.plt or .toc section. On some
targets such as Arm the correctness of some code sequences using a
relocation to _GLOBAL_OFFSET_TABLE_ depend on the value of the symbol
being in the linker defined place. Follow the ld.gold example and give
a multiple symbol definition error. The ld.bfd behaviour is to ignore the
definition in the input object and redefine it, which seems like it could
be more surprising.
fixes pr39587
Differential Revision: https://reviews.llvm.org/D54624
llvm-svn: 347854
Now it returns Symbol. This should be NFC that
avoids doing cast at the caller's sides.
Differential revision: https://reviews.llvm.org/D54627
llvm-svn: 347455
On PowerPC64, when a function call offset is too large to encode in a call
instruction the address is stored in a table in the data segment. A thunk is
used to load the branch target address from the table relative to the
TOC-pointer and indirectly branch to the callee. When linking position-dependent
code the addresses are stored directly in the table, for position-independent
code the table is allocated and filled in at load time by the dynamic linker.
For position-independent code the branch targets could have gone in the .got.plt
but using the .branch_lt section for both position dependent and position
independent binaries keeps it consitent and helps keep this PPC64 specific logic
seperated from the target-independent code handling the .got.plt.
Differential Revision: https://reviews.llvm.org/D53408
llvm-svn: 346877
Out::DebugInfo was used only by GdbIndex class to determine if
we need to create a .gdb_index section, but we can do the same
check without it.
Added a test that this patch doesn't change the existing behavior.
llvm-svn: 345058
Summary:
During upgrading of the FreeBSD source tree with lld 7.0.0, I noticed
that it started complaining about `crt1.o` having an "index past the
end of the symbol table".
Such a symbol table looks approximately like this, viewed with `readelf
-s` (note the `Ndx` field being messed up):
```
Symbol table '.symtab' contains 4 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 00000000 0 NOTYPE LOCAL DEFAULT UND
1: 00000000 0 SECTION LOCAL DEFAULT 1
2: 00000000 0 NOTYPE WEAK HIDDEN RSV[0xffff] __rel_iplt_end
3: 00000000 0 NOTYPE WEAK HIDDEN RSV[0xffff] __rel_iplt_start
```
At first, it seemed that recent ifunc relocation work had caused this:
<https://reviews.freebsd.org/rS339351>, but it turned out that it was
due to incorrect processing of the object files by lld, when using `-r`
(a.k.a. --relocatable).
Bisecting showed that rL324421 ("Convert a use of Config->Static") was
the commit where this new behavior began. Simply reverting it solved
the issue, and the `__rel_iplt` symbols had an index of `UND` again.
Looking at Rafael's commit message, I think he simply missed the
possibility of `--relocatable` being in effect, so I have added an
additional check for it.
I also added a simple regression test case.
Reviewers: grimar, ruiu, emaste, espindola
Reviewed By: ruiu
Subscribers: arichardson, krytarowski, llvm-commits
Differential Revision: https://reviews.llvm.org/D53515
llvm-svn: 345002
Summary:
SymbolTable::addAbsolute() was removed in rL344305.
To me this is more readable than the lambda named `Add` and in our
out-of-tree CHERI target we use addAbsolute() in another function.
Reviewers: ruiu, espindola
Reviewed By: ruiu
Subscribers: kristina, emaste, llvm-commits
Differential Revision: https://reviews.llvm.org/D53393
llvm-svn: 344842
Summary: The convenience wrapper in STLExtras is available since rL342102.
Reviewers: ruiu, espindola
Subscribers: emaste, arichardson, mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D52569
llvm-svn: 343146
When we write a struct to a mmap'ed buffer, we usually use
write16/32/64, but we didn't for VersionDefinitionSection, so
we needed to template that class.
llvm-svn: 343024
Previously, if you invoke lld's `main` more than once in the same process,
the second invocation could fail or produce a wrong result due to a stale
pointer values of the previous run.
Differential Revision: https://reviews.llvm.org/D52506
llvm-svn: 343009
Non-member functions are generally preferred over member functions
because it is clear that non-member functions don't depend on an
internal state of an object.
llvm-svn: 342695
Summary:
For --pack-dyn-relocs=android, finalizeSections calls
LinkerScript::assignAddresses and
AndroidPackedRelocationSection::updateAllocSize in a loop,
where assignAddresses lays out the ELF image, then updateAllocSize
determines the size of the Android packed relocation table by encoding it.
Encoding the table requires knowing the values of relocation addends.
To get the addend of a TLS relocation, updateAllocSize can call getSymVA
on a TLS symbol before setPhdrs has initialized Out::TlsPhdr, producing an
error:
<file> has an STT_TLS symbol but doesn't have an SHF_TLS section
Fix the problem by initializing Out::TlsPhdr immediately after the program
headers are created. The segment's p_vaddr field isn't initialized until
setPhdrs, so use FirstSec->Addr, which is what setPhdrs would use.
FirstSec will typically refer to the .tdata or .tbss output section, whose
(tentative) address was computed by assignAddresses.
Android currently avoids this problem because it uses emutls and doesn't
support ELF TLS. This problem doesn't apply to --pack-dyn-relocs=relr
because SHR_RELR only handles relative relocations without explicit addends
or info.
Fixes https://bugs.llvm.org/show_bug.cgi?id=37841.
Reviewers: ruiu, pcc, chh, javed.absar, espindola
Subscribers: emaste, arichardson, llvm-commits, srhines
Differential Revision: https://reviews.llvm.org/D51671
llvm-svn: 342432
With this patch, lld creates a .note.GNU_stack and adds that to an
output file if it is creating a re-linkable object file (i.e. if -r
is given). If we don't do this, and if you use GNU linkers as a final
linker, they create an executable whose stack area is executable,
which is considered pretty bad these days.
Differential Revision: https://reviews.llvm.org/D51400
llvm-svn: 340902
Older Arm architectures do not support the MOVT and MOVW instructions so we
must use an alternative sequence of instructions to transfer control to the
destination.
Assuming at least Armv5 this patch adds support for Thunks that load or add
to the program counter. Note that there are no Armv5 Thumb Thunks as there
is no Thumb branch instruction in Armv5 that supports Thunks. These thunks
will not work for Armv4t (arm7tdmi) as this architecture cannot change state
from using the LDR or ADD instruction.
Differential Revision: https://reviews.llvm.org/D50077
llvm-svn: 340160
It turns out that postThunkContents() is only used for
sorting symbols in .symtab.
Though we can instead move the logic to SymbolTableBaseSection::finalizeContents(),
postpone calling it and then get rid of postThunkContents completely.
Differential revision: https://reviews.llvm.org/D49547
llvm-svn: 339413
Patch by PkmX.
This patch makes lld recognize RISC-V target and implements basic
relocation for RV32/RV64 (and RVC). This should be necessary for static
linking ELF applications.
The ABI documentation for RISC-V can be found at:
https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md.
Note that the documentation is far from complete so we had to figure out
some details from bfd.
The patch should be pretty straightforward. Some highlights:
- A new relocation Expr R_RISCV_PC_INDIRECT is added. This is needed as
the low part of a PC-relative relocation is linked to the corresponding
high part (auipc), see:
https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md#pc-relative-symbol-addresses
- LLVM's MC support for RISC-V is very incomplete (we are working on
this), so tests are given in objectyaml format with the original
assembly included in the comments. Once we have complete support for
RISC-V in MC, we can switch to llvm-as/llvm-objdump.
- We don't support linker relaxation for now as it requires greater
changes to lld that is beyond the scope of this patch. Once this is
accepted we can start to work on adding relaxation to lld.
Differential Revision: https://reviews.llvm.org/D39322
llvm-svn: 339364
Patch by Konstantin Schwarz!
The condition to create a new phdr must also check the usage of "AT>"
linker script command, and create a new PT_LOAD header if a new LMARegion is used.
This fixes PR38307
Differential revision: https://reviews.llvm.org/D50052
llvm-svn: 338679
Summary:
This adds an LLD flag to mark executable LOAD segments execute-only for AArch64 targets.
In AArch64 the expectation is that code is execute-only compatible, so this just adds a linker option to enforce this.
Patch by: ivanlozano (Ivan Lozano)
Reviewers: srhines, echristo, peter.smith, eugenis, javed.absar, espindola, ruiu
Reviewed By: ruiu
Subscribers: dokyungs, emaste, arichardson, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D49456
llvm-svn: 338271
This is a part of ttps://bugs.llvm.org//show_bug.cgi?id=38119
We produce broken ELF header now when the number of output sections is >= SHN_LORESERVE (0xff00).
ELF spec says (http://www.sco.com/developers/gabi/2003-12-17/ch4.eheader.html):
e_shnum:
If the number of sections is greater than or equal to SHN_LORESERVE (0xff00), this member has the value zero
and the actual number of section header table entries is contained in the sh_size field of the section header at index 0.
(Otherwise, the sh_size member of the initial entry contains 0.)
e_shstrndx
If the section name string table section index is greater than or equal to SHN_LORESERVE (0xff00), this member has the
value SHN_XINDEX (0xffff) and the actual index of the section name string table section is contained in the sh_link field of
the section header at index 0. (Otherwise, the sh_link member of the initial entry contains 0.)
We did not set these fields correctly earlier. The patch fixes the issue.
Differential revision: https://reviews.llvm.org/D49371
llvm-svn: 337363
This patch merges createGdbIndex function and GdbIndexSection's
constructor into a single static member function of the class.
This patch also change how we keep CU vectors. Previously, CuVector
and GdbSymbols were parallel arrays, but there's no reason to choose that
design. Now, CuVector is a member of GdbSymbol class.
A lot of members are removed from GdbIndexSection. Previously, it has
members that need to be kept in sync over several phases. I belive the new
design is less error-prone, and the new code is much easier to read
than before.
llvm-svn: 336743
Patch by Matthew Koontz!
Before, direct calls to __wrap_sym would not map to valid PLT entries,
so they would crash at runtime. This change maps such calls to the same
PLT entry as calls to sym that are then wrapped.
Differential Revision: https://reviews.llvm.org/D48502
llvm-svn: 336609
Patch by Rahul Chaudhry!
This change adds experimental support for SHT_RELR sections, proposed
here: https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
Pass '--pack-dyn-relocs=relr' to enable generation of SHT_RELR section
and DT_RELR, DT_RELRSZ, and DT_RELRENT dynamic tags.
Definitions for the new ELF section type and dynamic array tags, as well
as the encoding used in the new section are all under discussion and are
subject to change. Use with caution!
Pass '--use-android-relr-tags' with '--pack-dyn-relocs=relr' to use
SHT_ANDROID_RELR section type instead of SHT_RELR, as well as
DT_ANDROID_RELR* dynamic tags instead of DT_RELR*. The generated
section contents are identical.
'--pack-dyn-relocs=android+relr --use-android-relr-tags' enables both
'--pack-dyn-relocs=android' and '--pack-dyn-relocs=relr': lld will
encode the relative relocations in a SHT_ANDROID_RELR section, and pack
the rest of the dynamic relocations in a SHT_ANDROID_REL(A) section.
Differential Revision: https://reviews.llvm.org/D48247
llvm-svn: 336594
Currently, there are only OutputSection and SymbolAssignment
commands possible at the first level under SECTIONS tag.
So, shouldSkip() contained dead "return true".
Patch simplifies the code.
llvm-svn: 336282
This is PR36768.
Linker script OVERLAYs are described in 4.6.9. Overlay Description of the spec:
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/4/html/Using_ld_the_GNU_Linker/sections.html
They are used to allow output sections which have different LMAs but the same VAs
and used for embedded programming.
Currently, LLD restricts overlapping of sections and that seems to be the most desired
behaviour for defaults. My thoughts about possible approaches for PR36768 are on the bug page,
this patch implements OVERLAY keyword and allows VAs overlapping for sections that within the overlay.
Differential revision: https://reviews.llvm.org/D44780
llvm-svn: 335714
This generalizes the old heuristic placing SHT_DYNSYM SHT_DYNSTR first in the readonly SHF_ALLOC segment.
Reviewers: espindola
Subscribers: emaste, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D48406
llvm-svn: 335674
Summary:
Currently when --no-rosegment is specified or a linker script with SECTIONS command is used,
.rodata (A) .text (AX) are assigned the same rank and .rodata may be placed after .text .
This increases the gap between .text and .bss and can cause pc-relative relocation overflow (e.g. gcc crtbegin.o crtbegin.S have R_X86_64_PC32 relocation from .text to .bss).
This patch makes SingleRoRx affect only segment layout, not section layout. As a consequence, .rodata will be placed before .text regardless of SingleRoRx.
Reviewers: espindola, ruiu, grimar, echristo, javed.absar
Subscribers: emaste, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D48405
llvm-svn: 335627
Almost all entries inside MIPS GOT are referenced by signed 16-bit
index. Zero entry lies approximately in the middle of the GOT. So the
total number of GOT entries cannot exceed ~16384 for 32-bit architecture
and ~8192 for 64-bit architecture. This limitation makes impossible to
link rather large application like for example LLVM+Clang. There are two
workaround for this problem. The first one is using the -mxgot
compiler's flag. It enables using a 32-bit index to access GOT entries.
But each access requires two assembly instructions two load GOT entry
index to a register. Another workaround is multi-GOT. This patch
implements it.
Here is a brief description of multi-GOT for detailed one see the
following link https://dmz-portal.mips.com/wiki/MIPS_Multi_GOT.
If the sum of local, global and tls entries is less than 64K only single
got is enough. Otherwise, multi-got is created. Series of primary and
multiple secondary GOTs have the following layout:
```
- Primary GOT
Header
Local entries
Global entries
Relocation only entries
TLS entries
- Secondary GOT
Local entries
Global entries
TLS entries
...
```
All GOT entries required by relocations from a single input file
entirely belong to either primary or one of secondary GOTs. To reference
GOT entries each GOT has its own _gp value points to the "middle" of the
GOT. In the code this value loaded to the register which is used for GOT
access.
MIPS 32 function's prologue:
```
lui v0,0x0
0: R_MIPS_HI16 _gp_disp
addiu v0,v0,0
4: R_MIPS_LO16 _gp_disp
```
MIPS 64 function's prologue:
```
lui at,0x0
14: R_MIPS_GPREL16 main
```
Dynamic linker does not know anything about secondary GOTs and cannot
use a regular MIPS mechanism for GOT entries initialization. So we have
to use an approach accepted by other architectures and create dynamic
relocations R_MIPS_REL32 to initialize global entries (and local in case
of PIC code) in secondary GOTs. But ironically MIPS dynamic linker
requires GOT entries and correspondingly ordered dynamic symbol table
entries to deal with dynamic relocations. To handle this problem
relocation-only section in the primary GOT contains entries for all
symbols referenced in global parts of secondary GOTs. Although the sum
of local and normal global entries of the primary got should be less
than 64K, the size of the primary got (including relocation-only entries
can be greater than 64K, because parts of the primary got that overflow
the 64K limit are used only by the dynamic linker at dynamic link-time
and not by 16-bit gp-relative addressing at run-time.
The patch affects common LLD code in the following places:
- Added new hidden -mips-got-size flag. This flag required to set low
maximum size of a single GOT to be able to test the implementation using
small test cases.
- Added InputFile argument to the getRelocTargetVA function. The same
symbol referenced by GOT relocation from different input file might be
allocated in different GOT. So result of relocation depends on the file.
- Added new ctor to the DynamicReloc class. This constructor records
settings of dynamic relocation which used to adjust address of 64kb page
lies inside a specific output section.
With the patch LLD is able to link all LLVM+Clang+LLD applications and
libraries for MIPS 32/64 targets.
Differential revision: https://reviews.llvm.org/D31528
llvm-svn: 334390
PPC64 maintains a compiler managed got in the .toc section. When accessing a
global variable through got-indirect access, a .toc entry is created for the
variable. The relocation for the got-indirect access will refer to the .toc
section rather than the symbol that is actually accessed. The .toc entry
contains the address of the global variable. We evaluate the offset from
r2 (which is the TOC base) to the address of the toc entry for the global
variable. Currently, the .toc is not near the .got. This causes errors because
the offset from r2 to the toc section is too large. The linker needs to add
all the .toc input sections to the .got output section, merging the compiler
managed got with the linker got. This ensures that the offsets from the TOC
base to the toc entries are not too large.
This patch puts the .toc section right after the .got section.
Differential Revision: https://reviews.llvm.org/D45833
llvm-svn: 333199
Note that this doesn't do the right thing in the case where there is
a linker script. We probably need to move output section assignment
before ICF to get the correct behaviour here.
Differential Revision: https://reviews.llvm.org/D47241
llvm-svn: 333052
_init_array_start/end are placed at 0 if no ".init_array" presents,
this causes .text relocation against them become more prone to overflow.
This CL sets ".init_array" address to that of ".text" to mitigate the situation.
Review: https://reviews.llvm.org/D46200
llvm-svn: 332688
This CL places .dynsym and .dynstr at the beginning of SHF_ALLOC
sections. We do this to mitigate the possibility that huge .dynsym and
.dynstr sections placed between ro-data and text sections cause
relocation overflow.
Differential Revision: https://reviews.llvm.org/D45788
llvm-svn: 332374
This CL is to mitigate R_X86_64_PC32 relocation overflow problems for huge binaries that has near 4G allocated sections.
By examining those binaries, there're 2 issues contributes to the problem:
1). huge ".dynsym" and ".dynstr" stands in the way between .rodata and .text
2). _init_array_start/end are placed at 0 if no ".init_array" presents, this causes .text relocation against them become more prone to overflow.
This CL addresses 1st problem (the 2nd will be addressed in another CL.) by assigning a smaller sortrank to .dynsym and .dynstr thus they no longer stand in between.
llvm-svn: 332038
A non-alloc note section should not have a PT_NOTE program header.
Found while linking ghc (Haskell compiler) with lld on FreeBSD.
ghc emits a .debug-ghc-link-info note section (as the name suggests, it
contains link information) as a SHT_NOTE section without SHF_ALLOC set.
For this case ld.bfd does not emit a PT_NOTE segment for the
.debug-ghc-link-info section. lld previously emitted a PT_NOTE with
p_vaddr = 0 and FreeBSD's rtld segfaulted when trying to parse a note at
address 0.
llvm.org/pr37361
Differential Revision: https://reviews.llvm.org/D46623
llvm-svn: 331973
Separate output sections for selected text section prefixes to enable TLB optimizations and for readablilty.
Differential Revision: https://reviews.llvm.org/D45841
llvm-svn: 331823
The current support for V1 ABI in LLD is incomplete.
This patch removes V1 ABI support and changes the default behavior to V2 ABI,
issuing an error when using the V1 ABI. It also updates the testcases to V2
and removes any V1 specific tests.
Differential Revision: https://reviews.llvm.org/D46316
llvm-svn: 331529
This is slightly simpler to read IMHO. Now if a symbol has a position
in the file, it is Defined.
The main motivation is that with this a SharedSymbol doesn't need a
section, which reduces the size of SymbolUnion.
With this the peak allocation when linking chromium goes from 568.1 to
564.2 MB.
llvm-svn: 330966
It turns out we should not use the std::sort anymore.
r327219 added a new wrapper llvm::sort (D39245).
When EXPENSIVE_CHECKS is defined, it shuffles the
input container and that helps to find non-deterministic
ordering.
Patch changes code to use llvm::sort and std::stable_sort
instead of std::sort
Differential revision: https://reviews.llvm.org/D45969
llvm-svn: 330702
We had a single symbol using -1 with a synthetic section. It is
simpler to just update its value.
This is not a big will by itself, but will allow having a simple
getOffset for InputSeciton.
llvm-svn: 330340
Currently LLD sets OutSecOff in addSection for input sections.
That is a fake offset (just a rude approximation to remember the order),
used for sorting SHF_LINK_ORDER sections
(see resolveShfLinkOrder, compareByFilePosition).
There are 2 problems with such approach:
1. We currently change and reuse Size field as a value assigned. Changing size is
not good because leads to bugs. Currently, SIZEOF(.bss) for empty .bss returns 2
because we add two empty synthetic sections and increase size twice by 1.
(See PR37011: https://bugs.llvm.org/show_bug.cgi?id=37011)
2. Such approach simply does not work when --symbol-ordering-file is involved,
because processing of the ordering file might break the initial section order.
This fixes PR37011.
Differential revision: https://reviews.llvm.org/D45368
llvm-svn: 329560
This is for PR36716 and
this enables emitting STT_FILE symbols.
Output size affect is minor:
lld binary size changes from 52,883,408 to 52,949,400
clang binary size changes from 83,136,456 to 83,219,600
Differential revision: https://reviews.llvm.org/D45261
llvm-svn: 329557
Currently there are a few odd things about the warning about symbols
that cannot be ordered. This patch fixes:
* When there is an undefined symbol that resolves to a shared file, we
were printing the location of the undefined reference.
* If there are multiple comdats, we were reporting them all.
llvm-svn: 329371