This needs different handling if the source is known to be a valid
condition or not. Handle turning it into shifts or a select during
regbankselect.
llvm-svn: 364186
This matters for byval uses outside of the entry block, which appear
as copies.
Previously, the only folding done was during selection, which could
not see the underlying frame index. For any uses outside the entry
block, the frame index was materialized in the entry block relative to
the global scratch wave offset.
This may produce worse code in cases where the offset ends up not
fitting in the MUBUF offset field. A better heuristic would be helpfu
for extreme frames.
llvm-svn: 364185
This adds the family of loads and stores with names like VLD20.8 and
VST42.32, which load and store parts of multiple q-registers in such a
way that executing both VLD20 and VLD21, or all four of VLD40..VLD43,
will distribute 2 or 4 vectors' worth of memory data across the lanes
of the same number of registers but in a transposed order.
In addition to the Tablegen descriptions of the instructions
themselves, this patch also adds encode and decode support for the
QQPR and QQQQPR register classes (representing the range of loaded or
stored vector registers), and tweaks to the parsing system for lists
of vector registers to make it return the right format in this case
(since, unlike NEON, MVE regards q-registers as primitive, and not
just an alias for two d-registers).
llvm-svn: 364172
Ideally we'd be able to represent this truncate as a any_extend to
v16i32 and a truncate, but SelectionDAG doens't know how to not
fold those together.
We have isel patterns to use a vpmovzxwd+vpdmovdb for the truncate,
but we aren't able to simultaneously fold the load and the store
from the isel pattern. By pulling the truncate into the store we
can successfully hide it from the DAG combiner. Then we can isel
pattern match the truncstore and load+any_extend separately.
llvm-svn: 364163
Rename masked_load/masked_store to masked_ld/masked_st to discourage
their direct use. We need to check truncating/extending and
compressing/expanding before using them. This revealed that
our scalar masked load/store patterns were misusing these.
With those out of the way, renamed masked_load_unaligned and
masked_store_unaligned to remove the "_unaligned". We didn't
check the alignment anyway so the name was somewhat misleading.
Make the aligned versions inherit from masked_load/store instead
from a separate identical version. Merge the 3 different alignments
PatFrags into a single version that uses the VT from the SDNode to
determine the size that the alignment needs to match.
llvm-svn: 364150
After r248261, the indentation switches, inside a namespace definition,
between indenting and not indenting one level in for that namespace; the
abomination occurs in the middle of a class definition. Fix that.
llvm-svn: 364133
This is useful for allowing code to efficiently take an address
that can be later mapped onto debug info. Currently the hwasan
pass achieves this by taking the address of the current function:
http://llvm-cs.pcc.me.uk/lib/Transforms/Instrumentation/HWAddressSanitizer.cpp#921
but this costs two instructions (plus a GOT entry in PIC code) per function
with stack variables. This will allow the cost to be reduced to a single
instruction.
Differential Revision: https://reviews.llvm.org/D63471
llvm-svn: 364126
To help produce better diagnostics for stack use-after-return, we'd like
to be able to determine the addresses of each HWASANified function's local
variables given a small amount of information recorded on entry to the
function. Currently we require all HWASANified functions to use frame pointers
and record (PC, FP) on function entry. This works better than recording SP
because FP cannot change during the function, unlike SP which can change
e.g. due to dynamic alloca.
However, most variables currently end up using SP-relative locations in their
debug info. This prevents us from recomputing the address of most variables
because the distance between SP and FP isn't recorded in the debug info. To
address this, make the AArch64 backend prefer FP-relative debug locations
when producing debug info for HWASANified functions.
Differential Revision: https://reviews.llvm.org/D63300
llvm-svn: 364117
On Windows ARM64, intrinsic __debugbreak is compiled into brk #0xF000 which is
mapped to llvm.debugtrap in Clang. Instruction brk #F000 is the defined break
point instruction on ARM64 which is recognized by Windows debugger and
exception handling code, so llvm.debugtrap should map to it instead of
redirecting to llvm.trap (brk #1) as the default implementation.
Differential Revision: https://reviews.llvm.org/D63635
llvm-svn: 364115
128/256 bit scalar_to_vectors are canonicalized to (insert_subvector undef, (scalar_to_vector), 0). We have isel patterns that try to match this pattern being used by a vzmovl to use a 128-bit instruction and a subreg_to_reg.
This patch detects the insert_subvector undef portion of this and pulls it through the vzmovl, creating a narrower vzmovl and an insert_subvector allzeroes. We can then match the insertsubvector into a subreg_to_reg operation by itself. Then we can fall back on existing (vzmovl (scalar_to_vector)) patterns.
Note, while the scalar_to_vector case is the motivating case I didn't restrict to just that case. I'm also wondering about shrinking any 256/512 vzmovl to an extract_subvector+vzmovl+insert_subvector(allzeros) but I fear that would have bad implications to shuffle combining.
I also think there is more canonicalization we can do with vzmovl with loads or scalar_to_vector with loads to create vzload.
Differential Revision: https://reviews.llvm.org/D63512
llvm-svn: 364095
This should be unreachable, but bugs can make it reachable. This
adds a debug print so we can see the bad node in the output when
the llvm_unreachable triggers.
llvm-svn: 364091
With this we can now fully code generate jump tables, which is important for code size.
Differential Revision: https://reviews.llvm.org/D63223
llvm-svn: 364086
We already use vmovq for v2i64/v2f64 vzmovl. But we were using a
blendpd+xorpd for v4i64/v4f64/v8i64/v8f64 under opt speed. Or
movsd+xorpd under optsize.
I think the blend with 0 or movss/d is only needed for
vXi32 where we don't have an instruction that can move 32
bits from one xmm to another while zeroing upper bits.
movq is no worse than blendpd on any known CPUs.
llvm-svn: 364079
We sometimes get poor code size because constants of types < 32b are legalized
as 32 bit G_CONSTANTs with a truncate to fit. This works but means that the
localizer can no longer sink them (although it's possible to extend it to do so).
On AArch64 however s8 and s16 constants can be selected in the same way as s32
constants, with a mov pseudo into a W register. If we make s8 and s16 constants
legal then we can avoid unnecessary truncates, they can be CSE'd, and the
localizer can sink them as normal.
There is a caveat: if the user of a smaller constant has to widen the sources,
we end up with an anyext of the smaller typed G_CONSTANT. This can cause
regressions because of the additional extend and missed pattern matching. To
remedy this, there's a new artifact combiner to generate the wider G_CONSTANT
if it's legal for the target.
Differential Revision: https://reviews.llvm.org/D63587
llvm-svn: 364075
Summary:
LLVM Allows Targets to provide information that guides optimisations
made to LLVM IR. This is done with callbacks on a TargetTransformInfo object.
This patch adds a TargetTransformInfo class for RISC-V. This will allow us to
implement RISC-V specific callbacks as they become necessary.
This commit also adds the getIntImmCost callbacks, and tests them with a simple
constant hoisting test. Our immediate costs are on the conservative side, for
the moment, but we prevent hoisting in most circumstances anyway.
Previous review was on D63007
Reviewers: asb, luismarques
Reviewed By: asb
Subscribers: ributzka, MaskRay, llvm-commits, Jim, benna, psnobl, jocewei, PkmX, rkruppe, the_o, brucehoult, MartinMosbeck, rogfer01, edward-jones, zzheng, jrtc27, shiva0217, kito-cheng, niosHD, sabuasal, apazos, simoncook, johnrusso, rbar, hiraditya, mgorny
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63433
llvm-svn: 364046
These instructions let you load half a vector register at once from
two general-purpose registers, or vice versa.
The assembly syntax for these instructions mentions the vector
register name twice. For the move _into_ a vector register, the MC
operand list also has to mention the register name twice (once as the
output, and once as an input to represent where the unchanged half of
the output register comes from). So we can conveniently assign one of
the two asm operands to be the output $Qd, and the other $QdSrc, which
avoids confusing the auto-generated AsmMatcher too much. For the move
_from_ a vector register, there's no way to get round the fact that
both instances of that register name have to be inputs, so we need a
custom AsmMatchConverter to avoid generating two separate output MC
operands. (And even that wouldn't have worked if it hadn't been for
D60695.)
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62679
llvm-svn: 364041
This adds the `MVE_qDest_rSrc` superclass and all its instances, plus
a few other instructions that also take a scalar input register or two.
I've also belatedly added custom diagnostic messages to the operand
classes for odd- and even-numbered GPRs, which required matching
changes in two of the existing MVE assembly test files.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62678
llvm-svn: 364040
The sat add/sub tests still have unnecessary extract_subvector((vandnps ymm, ymm), 0) uses that should be split to (vandnps (extract_subvector(ymm, 0), extract_subvector(ymm, 0)), but its getting better.
llvm-svn: 364038
Summary:
This adds the `MVE_qDest_qSrc` superclass and all instructions that
inherit from it. It's not the complete class of _everything_ with a
q-register as both destination and source; it's a subset of them that
all have similar encodings (but it would have been hopelessly unwieldy
to call it anything like MVE_111x11100).
This category includes add/sub with carry; long multiplies; halving
multiplies; multiply and accumulate, and some more complex
instructions.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62677
llvm-svn: 364037
Summary:
These take a pair of vector register to compare, and a comparison type
(written in the form of an Arm condition suffix); they output a vector
of booleans in the VPR register, where predication can conveniently
use them.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62676
llvm-svn: 364027
Every called function could possibly need this to calculate the
absolute address of stack objectst, and this avoids inserting a copy
around every call site in the kernel. It's also somewhat cleaner to
keep this in a callee saved SGPR.
llvm-svn: 363990
Teach RegisterBankInfo to use the correct register class, and tell the
legalizer it's legal. Everything else just works.
The one thing that's slightly weird about this compared to SelectionDAG
isel is that legalization can't distinguish between i64 and <1 x i64>,
so we might end up with more NEON instructions than the user expects.
Differential Revision: https://reviews.llvm.org/D63585
llvm-svn: 363989
Summary:
BLSI sets the C flag is the input is not zero. So if its followed
by a TEST of the input where only the Z flag is consumed, we can
replace it with the opposite check of the C flag.
We should be able to do the same for BLSMSK and BLSR, but the
naive test case for those is being optimized to a subo by
CodeGenPrepare.
Reviewers: spatel, RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63589
llvm-svn: 363957
The attribute can specify elimination for leaf or non-leaf, so it
should always be considered. I copied this bug from AArch64, which
probably should also be fixed.
llvm-svn: 363949
This includes integer arithmetic of various kinds (add/sub/multiply,
saturating and not), and the immediate forms of VMOV and VMVN that
load an immediate into all lanes of a vector.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62674
llvm-svn: 363936
The caller of this is looking for comparisons of the input
to these instructions with 0. But the memory instructions
input is an addess not a value input in a register.
llvm-svn: 363907
Introducing VCC defs during SIFixSGPRCopies is generally
problematic. Avoid it by starting with the VOP3 form with the general
condition register. This is the easiest to fix instance, but doesn't
solve any specific problems I'm looking at.
llvm-svn: 363904
The ARMDisassembler changes allow changing between ARM and Thumb mode
based on the MCSubtargetInfo, rather than the Target, which simplifies
the other changes a bit.
I'm not really happy with adding more target-specific logic to
tools/llvm-objdump/, but there isn't any easy way around it: the logic
in question specifically applies to disassembling an object file, and
that code simply isn't located in lib/Target, at least at the moment.
Differential Revision: https://reviews.llvm.org/D60927
llvm-svn: 363903
This is incomplete, and ideally these would all be removed, but it's
better to localize them to the subtarget first with comments about
what they're for.
llvm-svn: 363902
The def instruction for the vreg may not match, because it may be
folding through a reg_sequence. The assert was overly conservative and
not necessary. It's not actually important if DefMI really defined the
register, because the fold that will be done cares about the def of
the value that will be folded.
For some reason copies aren't making it through the reg_sequence,
although they should.
llvm-svn: 363876
Turns out that we can save an instruction by folding the right shift into
the compare.
Differential Revision: https://reviews.llvm.org/D63568
llvm-svn: 363874
This reapplies r363678, using the correct chain for the CopyToReg for
v0. glueCopyToM0 counterintuitively changes the operands of the
original node.
llvm-svn: 363870
This is an exception to the rule that we should prefer xmm ops to ymm ops.
As shown in PR42305:
https://bugs.llvm.org/show_bug.cgi?id=42305
...the store folding opportunity with vextractf128 may result in better
perf by reducing the instruction count.
Differential Revision: https://reviews.llvm.org/D63517
llvm-svn: 363853
We already do this for ZERO_EXTEND/ZERO_EXTEND_VECTOR_INREG - this just extends the pattern matcher to recognize cases where we don't need the zeros in the extension.
llvm-svn: 363841
This includes all the obvious bitwise operations (AND, OR, BIC, ORN,
MVN) in register-to-register forms, and the immediate forms of
AND/OR/BIC/ORN; byte-order reverse instructions; and the VMOVs that
access a single lane of a vector.
Some of those VMOVs (specifically, the ones that access a 32-bit lane)
share an encoding with existing instructions that were disassembled as
accessing half of a d-register (e.g. `vmov.32 r0, d1[0]`), but in
8.1-M they're now written as accessing a quarter of a q-register (e.g.
`vmov.32 r0, q0[2]`). The older syntax is still accepted by the
assembler.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62673
llvm-svn: 363838
Vector load/store instructions support an optional alignment field
that the compiler can use to provide known alignment info to the
hardware. If the field is used (and the information is correct),
the hardware may be able (on some models) to perform faster memory
accesses than otherwise.
This patch adds support for alignment hints in the assembler and
disassembler, and fills in known alignment during codegen.
llvm-svn: 363806
This patch allows immediates (and CSR alias immediates) which start with
a tilde token or an exclaim (!) token to be parsed as intended.
Differential Revision: https://reviews.llvm.org/D57320
llvm-svn: 363783
Since the parser attempts to parse an operand as a register with
parentheses before parsing it as an immediate, immediates in
parentheses should not be parsed by parseRegister. However in the case
where the immediate does not start with an identifier, the LParen is not
unlexed and so the RParen causes an unexpected token error.
This patch adds the missing UnLex, and modifies the existing UnLex to
not use a buffered token, as it should always be unlexing an LParen.
Differential Revision: https://reviews.llvm.org/D57319
llvm-svn: 363782
Summary:
llvm.x86.sse.stmxcsr only writes to memory.
llvm.x86.sse.ldmxcsr only reads from memory, and might generate an FPE.
Reviewers: craig.topper, RKSimon
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62896
llvm-svn: 363773
This patch adds lowering for global TLS addresses for the TLS models of
InitialExec, GlobalDynamic, LocalExec and LocalDynamic.
LocalExec support required using a 4-operand add instruction, which uses
the fourth operand to express a relocation on the symbol. The necessary
fixup is emitted when the instruction is emitted.
Differential Revision: https://reviews.llvm.org/D55305
llvm-svn: 363771
This allows targets to make more decisions about reserved registers
after isel. For example, now it should be certain there are calls or
stack objects in the frame or not, which could have been introduced by
legalization.
Patch by Matthias Braun
llvm-svn: 363757
Summary:
Converting the result *.{all,any}_true to a bool at the source level
generates LLVM IR that compares the result to 0. This check is
redundant since these instructions already return either 0 or 1 and
therefore conform to the BooleanContents setting for WebAssembly. This
CL adds patterns to detect and remove such redundant operations on the
result of Boolean reductions.
Reviewers: dschuff, aheejin
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63529
llvm-svn: 363756
Summary:
When identifing instructions that can be folded into a MOVCC instruction,
checking for a predicate operand is not enough, also need to check for
thumb2 function, with restrict-IT, is the machine instruction eligible for
ARMv8 IT or not.
Notes in ARMv8-A Architecture Reference Manual, section "Partial deprecation of IT"
https://usermanual.wiki/Pdf/ARM20Architecture20Reference20ManualARMv8.1667877052.pdf
"ARMv8-A deprecates some uses of the T32 IT instruction. All uses of IT that apply to
instructions other than a single subsequent 16-bit instruction from a restricted set
are deprecated, as are explicit references to the PC within that single 16-bit
instruction. This permits the non-deprecated forms of IT and subsequent instructions
to be treated as a single 32-bit conditional instruction."
Reviewers: efriedma, lebedev.ri, t.p.northover, jmolloy, aemerson, compnerd, stoklund, ostannard
Reviewed By: ostannard
Subscribers: ostannard, javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63474
llvm-svn: 363739
Summary:
DAGCombine will normally turn a `(shl (add x, c1), c2)` into `(add (shl x, c2), c1 << c2)`, where `c1` and `c2` are constants. This can be prevented by a callback in TargetLowering.
On RISC-V, materialising the constant `c1 << c2` can be more expensive than materialising `c1`, because materialising the former may take more instructions, and may use a register, where materialising the latter would not.
This patch implements the hook in RISCVTargetLowering to prevent this transform, in the cases where:
- `c1` fits into the immediate field in an `addi` instruction.
- `c1` takes fewer instructions to materialise than `c1 << c2`.
In future, DAGCombine could do the check to see whether `c1` fits into an add immediate, which might simplify more targets hooks than just RISC-V.
Reviewers: asb, luismarques, efriedma
Reviewed By: asb
Subscribers: xbolva00, lebedev.ri, craig.topper, lewis-revill, Jim, hiraditya, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, kito-cheng, shiva0217, jrtc27, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62857
llvm-svn: 363736
FP_ROUND defaults to Legal for all MVT types and nothing changes
the v4f32 entry way from this default. If we needed this line
we'd also need one for v8f32 with AVX512 which we don't have.
llvm-svn: 363719
Add `IsGP64bit` and `IsPTR64bit` to the list of `UnsupportedFeatures`
of the P5600 scheduling definitions. Also mark some MIPS 64-bit
instructions by PTR_64 and GPR_64 predicates. This reduces number
of "No schedule information for" and "lacks information for" errors
in case of marking this scheduler model as complete.
This patch is one of a series of patches. The goal is to make P5600
scheduler model complete and turn on the `CompleteModel` flag.
Differential Revision: https://reviews.llvm.org/D63237
llvm-svn: 363702
Set the hasNoSchedulingInfo flag for the`MipsAsmPseudoInst`. These
pseudo-instructions are never used by codegen. This flag allows to
reduce number of "No schedule information for" and "lacks information
for" errors in case of marking a scheduler model as complete.
This patch is one of a series of patches. The goal is to make P5600
scheduler model complete and turn on the `CompleteModel` flag.
Differential Revision: https://reviews.llvm.org/D63236
llvm-svn: 363701
This includes saturating and non-saturating shifts, both with
immediate shift count and with the shift counts given by another
vector register; VSHLC (in which the bits shifted out of each active
vector lane are shifted in to the next active lane); and also VMOVL,
which is enough like an immediate shift that it didn't fit too badly
in this category.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62672
llvm-svn: 363696
Summary:
These form a small family of their own, to go with the floating-point
VMINNM/VMAXNM instructions added in a previous commit.
They introduce the first of many special cases in the mnemonic
recognition code, because VMIN with the E suffix used by the VPT
predication system needs to avoid being interpreted as the nonexistent
instruction 'VMI' with an ordinary 'NE' condition suffix.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62671
llvm-svn: 363695
Part of fixing the X86 regression noted in D63281 - I've split this into X86 and generic parts - the generic commit will be coming shortly and will fix the vector-reduce-mul-widen.ll regression introduced here.
llvm-svn: 363693
Summary:
Their names began with a mishmash of `MVE_`, `t2` and no prefix at
all. Now they all start with `MVE_`, which seems like a reasonable
choice on the grounds that (a) NEON is the thing they're most at risk
of being confused with, and (b) MVE implies Thumb-2, so a prefix
indicating MVE is strictly more specific than one indicating Thumb-2.
Reviewers: ostannard, SjoerdMeijer, dmgreen
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63492
llvm-svn: 363690
This patch adds support for generating calls through the procedure
linkage table where required for a given ExternalSymbol or GlobalAddress
callee.
Differential Revision: https://reviews.llvm.org/D55304
llvm-svn: 363686
Invert the name and return value to better reflect the imprecise
nature.
Force passing in the DefMI, since it's known in the 2 users and could
possibly fail for an arbitrary vreg.
Allow specifying a specific user instruction. Scan through use
instructions, instead of use operands. Add scan thresholds instead of
searching infinitely.
Stop using a set to track seen uses. I didn't understand this usage,
or why it would not check the last use. I don't think the use list has
any particular order.
llvm-svn: 363675
Some more refactoring, like registering the IT Block pass, less cryptic
variable names, and some simplification of loops.
Differential Revision: https://reviews.llvm.org/D63419
llvm-svn: 363666
First step toward addressing the vector-reduce-mul-widen.ll regression in D63281 - we should replace ANY_EXTEND/ANY_EXTEND_VECTOR_INREG in X86ISelDAGToDAG to avoid having to add duplicate patterns when treating any extensions as legal.
In future patches this will also allow us to keep any extension nodes around a lot longer in the DAG, which should mean that we can keep better track of undef elements that otherwise become zeros that we think we have to keep......
Differential Revision: https://reviews.llvm.org/D63326
llvm-svn: 363655
The isel patterns for these use a bitcast and load/store, but
DAG combine should have canonicalized those away.
For the purposes of the memory folding table these opcodes can be
replaced by the MOVSSrm_alt/MOVSDrm_alt and MOVSSmr/MOVSDmr opcodes.
llvm-svn: 363644
Rename the old versions that use FR32/FR64 to MOVSSrm_alt/MOVSDrm_alt.
Use the new versions in patterns that previously used a COPY_TO_REGCLASS
to VR128. These patterns expect the upper bits to be zero. The
current set up appears to work, but I'm not sure we should be
enforcing upper bits being zero through a COPY_TO_REGCLASS.
I wanted to flip the arrangement and use a COPY_TO_REGCLASS to
FR32/FR64 for the patterns that need an f32/f64 result, but that
complicated fastisel and globalisel.
I've been doing some experiments with reducing some isel patterns
and ended up in a situation where I had a
(SUBREG_TO_REG (COPY_TO_RECLASS (VMOVSSrm), VR128)) and our
post-isel peephole was unable to avoid using an instruction for
the SUBREG_TO_REG due to the COPY_TO_REGCLASS. Having a VR128
instruction removes the COPY_TO_REGCLASS that was breaking this.
llvm-svn: 363643
Inter-block localization is the same as what currently happens, except now it
only runs on the entry block because that's where the problematic constants with
long live ranges come from.
The second phase is a new intra-block localization phase which attempts to
re-sink the already localized instructions further right before one of the
multiple uses.
One additional change is to also localize G_GLOBAL_VALUE as they're constants
too. However, on some targets like arm64 it takes multiple instructions to
materialize the value, so some additional heuristics with a TTI hook have been
introduced attempt to prevent code size regressions when localizing these.
Overall, these changes improve CTMark code size on arm64 by 1.2%.
Full code size results:
Program baseline new diff
------------------------------------------------------------------------------
test-suite...-typeset/consumer-typeset.test 1249984 1217216 -2.6%
test-suite...:: CTMark/ClamAV/clamscan.test 1264928 1232152 -2.6%
test-suite :: CTMark/SPASS/SPASS.test 1394092 1361316 -2.4%
test-suite...Mark/mafft/pairlocalalign.test 731320 714928 -2.2%
test-suite :: CTMark/lencod/lencod.test 1340592 1324200 -1.2%
test-suite :: CTMark/kimwitu++/kc.test 3853512 3820420 -0.9%
test-suite :: CTMark/Bullet/bullet.test 3406036 3389652 -0.5%
test-suite...ark/tramp3d-v4/tramp3d-v4.test 8017000 8016992 -0.0%
test-suite...TMark/7zip/7zip-benchmark.test 2856588 2856588 0.0%
test-suite...:: CTMark/sqlite3/sqlite3.test 765704 765704 0.0%
Geomean difference -1.2%
Differential Revision: https://reviews.llvm.org/D63303
llvm-svn: 363632
This is part of the approved D63204 pending parent revision.
This small change is in fact a part of the VOP2b legalization which
does not technically belong to wave32 support, so extracted
separately.
llvm-svn: 363625
AMDGPUPropagateAttributes will not work on function bitcatsts,
so move AMDGPUFixFunctionBitcasts before it.
Differential Revision: https://reviews.llvm.org/D63455
llvm-svn: 363614
Summary:
The purpose of the padding is to guard against stale code being
fetched into the instruction cache by the lowest level prefetching.
We're generating relocatable ELF here, and so the padding should
arguably be added by the linker. This is in fact what Mesa does.
This also fixes multi-part shaders for Mesa.
Change-Id: I6bfede58f20e9f337762ccf39ef9e0e263e69e82
Reviewers: arsenm, rampitec, t-tye
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63427
llvm-svn: 363602
Basically porting over the behaviour in AArch64ISelLowering to GISel. See
emitComparison for reference.
When we have something like this:
```
lhs = G_SUB 0, y
...
G_ICMP lhs, rhs
```
We can fold away the G_SUB and produce a cmn instead, given that we produce
the same value in NZCV.
Add a test showing that the transformation works, and also showing that we
don't perform the transformation when it's unsafe.
Also factor out the CSet emission into emitCSetForICMP.
Differential Revision: https://reviews.llvm.org/D63163
llvm-svn: 363596
We don't know if its safe to unfold if we're in 32-bit mode.
This is simlar to what was done to some load opcodes in r363523.
I think its pretty unlikely we will try to unfold these anyway so
I don't think this is testable.
llvm-svn: 363595
If a XMM non-temporal store has less than natural alignment, scalarize the vector - with SSE4A we can stay on the vector and use MOVNTSD(f64), else we must move to GPRs and use MOVNTI(i32/i64).
llvm-svn: 363592
The pass works in two modes:
Mode 1: Just set attributes starting from kernels. This can work at
the very beginning of opt and llc pipeline, but cannot clone functions
because it must be a function pass.
Mode 2: Actually clone functions for new attributes. This can only work
after all function passes in the opt pipeline because it has to be a
module pass.
Differential Revision: https://reviews.llvm.org/D63208
llvm-svn: 363586
If a YMM/ZMM non-temporal store has less than natural alignment, split the vector - either they will be satisfactorily aligned or will continue to be split until they are XMMs - at which point the legalizer will scalarize it.
llvm-svn: 363582
When considering a loop containing nontemporal stores or loads for
vectorization, suppress the vectorization if the corresponding
vectorized store or load with the aligment of the original scaler
memory op is not supported with the nontemporal hint on the target.
This adds two new functions:
bool isLegalNTStore(Type *DataType, unsigned Alignment) const;
bool isLegalNTLoad(Type *DataType, unsigned Alignment) const;
to TTI, leaving the target independent default implementation as
returning true, but with overriding implementations for X86 that
check the legality based on available Subtarget features.
This fixes https://llvm.org/PR40759
Differential Revision: https://reviews.llvm.org/D61764
llvm-svn: 363581
I keep using the wrong instruction when manually writing tests. This
really needs to check the number of operands, but I don't see an easy
way to do that right now.
llvm-svn: 363579
This is currently only used for ymm->xmm splitting but we shouldn't hardcode the offsets/alignment.
This is necessary for an upcoming patch to split under-aligned non-temporal vector loads.
llvm-svn: 363570
For loads, pre-SSE41 we can't perform NT loads at all, and after that we can only perform vector aligned loads, so if the alignment is less than for a xmm we'll just end up using the regular unaligned vector loads anyway.
First step towards fixing PR42026 - the next step for stores will be to use SSE4A movntsd where possible and to avoid the stack spill on SSE2 targets.
Differential Revision: https://reviews.llvm.org/D63246
llvm-svn: 363564
The HardwareLoops pass finds exit blocks with a scevable exit count.
If the target specifies to update the loop counter in a register,
through a phi, we need to ensure that the exit block is a latch so
that we can insert the phi with the correct value for the incoming
edge.
Differential Revision: https://reviews.llvm.org/D63336
llvm-svn: 363556
Some GEPs were not being split, presumably because that split would just be
undone by the DAGCombiner. Not performing those splits can prevent important
optimizations, such as preventing the element indices / member offsets from
being (partially) folded into load/store instruction immediates. This patch:
- Makes the splits also occur in the cases where the base address and the GEP
are in the same BB.
- Ensures that the DAGCombiner doesn't reassociate them back again.
Differential Revision: https://reviews.llvm.org/D60294
llvm-svn: 363544
This patch changes MIR stack-id from an integer to an enum,
and adds printing/parsing support for this in MIR files. The default
stack-id '0' is now renamed to 'default'.
This should make MIR tests that have stack objects with different stack-ids
more descriptive. It also clarifies code operating on StackID.
Reviewers: arsenm, thegameg, qcolombet
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D60137
llvm-svn: 363533
Create the ARMBasicBlockUtils class for tracking and querying basic
blocks sizes so we can use them when generating low-overhead loops.
Differential Revision: https://reviews.llvm.org/D63265
llvm-svn: 363530
Summary:
SPE passes doubles the same as soft-float, in register pairs as i32
types. This is all handled by the target-independent layer. However,
this is not optimal when splitting or reforming the doubles, as it
pushes to the stack and loads from, on either side.
For instance, to pass a double argument to a function, assuming the
double value is in r5, the sequence currently looks like this:
evstdd 5, X(1)
lwz 3, X(1)
lwz 4, X+4(1)
Likewise, to form a double into r5 from args in r3 and r4:
stw 3, X(1)
stw 4, X+4(1)
evldd 5, X(1)
This optimizes the fence to use SPE instructions. Now, to pass a double
to a function:
mr 4, 5
evmergehi 3, 5, 5
And to form a double into r5 from args in r3 and r4:
evmergelo 5, 3, 4
This is comparable to the way that gcc generates the double splits.
This also fixes a bug with expanding builtins to libcalls, where the
LowerCallTo() code path was generating intermediate illegal type nodes.
Reviewers: nemanjai, hfinkel, joerg
Subscribers: kbarton, jfb, jsji, llvm-commits
Differential Revision: https://reviews.llvm.org/D54583
llvm-svn: 363526
It would not be safe to unfold the memory form the register form
without checking that we are compiling for 64-bit mode.
This probaby isn't a real functional issue since we are unlikely
to unfold any of these instructions since they don't have any
tied registers, aren't commutable, and don't have any inputs
other than the address.
llvm-svn: 363523
Summary:
Instead of encoding a high-word of 0 using a fake TargetGlobalAddress,
just use a literal target constant. This simplifies some subsequent changes.
The generated assembly is now more explicit about the kind of relocation
that is to be used.
Change-Id: I066835202d23b5941fa7a358eb4b89e9b71ab6f8
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61491
llvm-svn: 363516
This is similar logic/motivation to the select splitting in D62969.
In D63233, the pattern changes so that we no longer have an extract_subvector of vselect,
but the operands of the select are still being concatenated.
The closest case is represented in either the first or last test diffs here - we have an
extra instruction, but we converted 3-4 ymm instructions into 4-5 xmm instructions.
I think that's the right trade-off for most AVX1 targets.
In the example based on PR37428:
https://bugs.llvm.org/show_bug.cgi?id=37428
...this makes the loop about 30% faster (tested on Haswell by compiling with -mavx).
Differential Revision: https://reviews.llvm.org/D63364
llvm-svn: 363508
Summary:
If the nested loop is an innermost loop, prefer to a 32-byte alignment, so that
we can decrease cache misses and branch-prediction misses. Actual alignment of
the loop will depend on the hotness check and other logic in alignBlocks.
The old code will only align hot loop to 32 bytes when the LoopSize larger than
16 bytes and smaller than 32 bytes, this patch will align the innermost hot loop
to 32 bytes not only for the hot loop whose size is 16~32 bytes.
Reviewed By: steven.zhang, jsji
Differential Revision: https://reviews.llvm.org/D61228
llvm-svn: 363495
Currently you get extra waits, because waits are inserted for the
register dependencies of the call, and the function prolog waits on
everything.
Currently waits are still inserted on returns. It may make sense to
not do this, and wait in the caller instead.
llvm-svn: 363465
The way SelectionDAG treats memory operands is very frustrating, and
by default drops them unless a property is set on the pattern. There
is no pattern for manually selected instructions, so this requires
manually setting them.
llvm-svn: 363455
I recently discovered a bug on the x86 platform: The fp80 type was not handled well by x86 for constrained floating point nodes, as their regular counterparts are replaced by extending loads and truncating stores during the preprocess phase. Normally, platforms don't have this issue, as they don't typically attempt to perform such legalizations during instruction selection preprocessing. Before this change, strict_fp nodes survived until they were mutated to normal nodes, which happened shortly after preprocessing on other platforms. This modification lowers these nodes at the same phase while properly utilizing the chain.5
Submitted by: Drew Wock <drew.wock@sas.com>
Reviewed by: Craig Topper, Kevin P. Neal
Approved by: Craig Topper
Differential Revision: https://reviews.llvm.org/D63271
llvm-svn: 363417
Earlier commit has added AMDGPUOperand::isBoolReg(). Turns out
gcc issues warning about unused function since D63204 is not
yet submitted.
Added NFC part of D63204 to have a use of that function and
mute the warning.
llvm-svn: 363416
Avoid producing illegal register bank copies for reg_sequence and
phi. The default implementation assumes it is possible to pick any
operand's bank and use that for the result, introducing a copy for
operands with a different bank. This does not check for illegal
copies. It is not legal to introduce a VGPR->SGPR copy, so any VGPR
operand requires the result to be a VGPR.
The changes in getInstrMappingImpl aren't strictly necessary, since
AMDGPU now just bypasses this for reg_sequence/phi. This could be
replaced with an assert in case other targets run into this. It is
currently responsible for producing the error for unsatisfiable
copies, but this will be better served with a verifier check.
For phis, for now assume any undetermined operands must be
VGPRs. Eventually, this needs to be able to defer mapping these
operations. This also does not yet have a way to check for whether the
block is in a divergent region.
llvm-svn: 363410
This is the family of vector instructions that combine all the lanes
in their input vector(s), and output a value in one or two GPRs.
Differential Revision: https://reviews.llvm.org/D62670
llvm-svn: 363403
Initial commit of a new pass to create vector predication blocks, called VPT
blocks, that are supported by the Armv8.1-M MVE architecture.
This is a first naive implementation. I.e., for 2 consecutive predicated
instructions I1 and I2, for example, it will generate 2 VPT blocks:
VPST
I1
VPST
I2
A more optimal implementation would obviously put instructions in the same VPT
block when they are predicated on the same condition and when it is allowed to
do this:
VPTT
I1
I2
We will address this optimisation with follow up patches when the groundwork is
in. Creating VPT Blocks is very similar to IT Blocks, which is the reason I
added this to Thumb2ITBlocks.cpp. This allows reuse of the def use analysis
that we need for the more optimal implementation.
VPT blocks cannot be nested in IT blocks, and vice versa, and so these 2 passes
cannot interact with each other. Instructions allowed in VPT blocks must
be MVE instructions that are marked as VPT compatible.
Differential Revision: https://reviews.llvm.org/D63247
llvm-svn: 363370
Merging the two bits shrinks the context table from 16384 bytes to 8192 bytes.
Remove the ATTRIBUTE_BITS macro and just create an enum directly. Then fix the ATTR_max define to be 8192 to reflect the table size so we stop hardcoding it separately.
llvm-svn: 363330
Previously it copied over MachineMemOperands verbatim which caused MOV32rm to have store flags set, and MOV32mr to have load flags set. This fixes some assertions being thrown with EXPENSIVE_CHECKS on.
Committed on behalf of @luke (Luke Lau)
Differential Revision: https://reviews.llvm.org/D62726
llvm-svn: 363268
This commit prepares the way to start adding the main collection of
MVE instructions, which operate on the 128-bit vector registers.
The most obvious thing that's needed, and the simplest, is to add the
MQPR register class, which is like the existing QPR except that it has
fewer registers in it.
The more complicated part: MVE defines a system of vector predication,
in which instructions operating on 128-bit vector registers can be
constrained to operate on only a subset of the lanes, using a system
of prefix instructions similar to the existing Thumb IT, in that you
have one prefix instruction which designates up to 4 following
instructions as subject to predication, and within that sequence, the
predicate can be inverted by means of T/E suffixes ('Then' / 'Else').
To support instructions of this type, we've added two new Tablegen
classes `vpred_n` and `vpred_r` for standard clusters of MC operands
to add to a predicated instruction. Both include a flag indicating how
the instruction is predicated at all (options are T, E and 'not
predicated'), and an input register field for the register controlling
the set of active lanes. They differ from each other in that `vpred_r`
also includes an input operand for the previous value of the output
register, for instructions that leave inactive lanes unchanged.
`vpred_n` lacks that extra operand; it will be used for instructions
that don't preserve inactive lanes in their output register (either
because inactive lanes are zeroed, as the MVE load instructions do, or
because the output register isn't a vector at all).
This commit also adds the family of prefix instructions themselves
(VPT / VPST), and all the machinery needed to work with them in
assembly and disassembly (e.g. generating the 't' and 'e' mnemonic
suffixes on disassembled instructions within a predicated block)
I've added a couple of demo instructions that derive from the new
Tablegen base classes and use those two operand clusters. The bulk of
the vector instructions will come in followup commits small enough to
be manageable. (One exception is that I've added the full version of
`isMnemonicVPTPredicable` in the AsmParser, because it seemed
pointless to carefully split it up.)
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62669
llvm-svn: 363258
During assembly, the mask operand to an IT instruction (storing the
sequence of T/E for 'Then' and 'Else') is parsed out of the mnemonic
into a representation that encodes 'Then' and 'Else' in the same way
regardless of the condition code. At some point during encoding it has
to be converted into the instruction encoding used in the
architecture, in which the mask encodes a sequence of replacement
low-order bits for the condition code, so that which bit value means
'then' and which 'else' depends on whether the original condition code
had its low bit set.
Previously, that transformation was done by processInstruction(), half
way through assembly. So an MCOperand storing an IT mask would
sometimes store it in one format, and sometimes in the other,
depending on where in the assembly pipeline you were. You can see this
in diagnostics from `llvm-mc -debug -triple=thumbv8a -show-inst`, for
example: if you give it an instruction such as `itete eq`, you'd see
an `<MCOperand Imm:5>` in a diagnostic become `<MCOperand Imm:11>` in
the final output.
Having the same data structure store values with time-dependent
semantics is confusing already, and it will get more confusing when we
introduce the MVE VPT instruction which reuses the Then/Else bitmask
idea in a different context. So I'm refactoring: now, all `ARMOperand`
and `MCOperand` representations of an IT mask work exactly the same
way, namely, 0 means 'Then' and 1 means 'Else', regardless of what
original predicate is being referred to. The architectural encoding of
IT that depends on the original condition is now constructed at the
point when we turn the `MCOperand` into the final instruction bit
pattern, and decoded similarly in the disassembler.
The previous condition-independent parse-time format used 0 for Else
and 1 for Then. I've taken the opportunity to flip the sense of it
while I'm changing all of this anyway, because it seems to me more
natural to use 0 for 'leave the starting condition unchanged' and 1
for 'invert it', as if those bits were an XOR mask.
Reviewers: ostannard
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63219
llvm-svn: 363244
TTI should report that it's not profitable to generate a hardware loop
if it, or one of its child loops, has already been converted.
Differential Revision: https://reviews.llvm.org/D63212
llvm-svn: 363234
Summary:
- Remove redundant initializations from pass constructors that were
already being initialized by LLVMInitializeX86Target().
- Add initialization function for the FPS pass.
Reviewers: craig.topper
Reviewed By: craig.topper
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63218
llvm-svn: 363221
Add support for s.d instruction for Mips1 which expands into two swc1
instructions.
Patch by Mirko Brkusanin.
Differential Revision: https://reviews.llvm.org/D63199
llvm-svn: 363184
As discussed on D62910, we need to check whether particular types of memory access are allowed, not just their alignment/address-space.
This NFC patch adds a MachineMemOperand::Flags argument to allowsMemoryAccess and allowsMisalignedMemoryAccesses, and wires up calls to pass the relevant flags to them.
If people are happy with this approach I can then update X86TargetLowering::allowsMisalignedMemoryAccesses to handle misaligned NT load/stores.
Differential Revision: https://reviews.llvm.org/D63075
llvm-svn: 363179
Without this fix clang 3.6 complains with:
../lib/Target/ARM/ARMAsmPrinter.cpp:1473:18: error: variable 'BranchTarget' is used uninitialized whenever 'if' condition is false [-Werror,-Wsometimes-uninitialized]
} else if (MI->getOperand(1).isSymbol()) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~~
../lib/Target/ARM/ARMAsmPrinter.cpp:1479:22: note: uninitialized use occurs here
MCInst.addExpr(BranchTarget);
^~~~~~~~~~~~
../lib/Target/ARM/ARMAsmPrinter.cpp:1473:14: note: remove the 'if' if its condition is always true
} else if (MI->getOperand(1).isSymbol()) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
../lib/Target/ARM/ARMAsmPrinter.cpp:1465:33: note: initialize the variable 'BranchTarget' to silence this warning
const MCExpr *BranchTarget;
^
= nullptr
1 error generated.
Discussed here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20190610/661417.html
llvm-svn: 363166
Implement the backend target hook to drive the HardwareLoops pass.
The low-overhead branch extension for Arm M-class cores is flexible
enough that we don't have to ensure correctness at this point, except
checking that the loop counter variable can be stored in LR - a
32-bit register. For it to be profitable, we want to avoid loops that
contain function calls, or any other instruction that alters the PC.
This implementation uses TargetLoweringInfo, to query type and
operation actions, looks at intrinsic calls and also performs some
manual checks for remainder/division and FP operations.
I think this should be a good base to start and extra details can be
filled out later.
Differential Revision: https://reviews.llvm.org/D62907
llvm-svn: 363149
Noticed in D63075 - there was a allowsMisalignedMemoryAccesses call to check for unaligned loads and a check for aligned legal type loads - which is exactly what allowsMemoryAccess does.
llvm-svn: 363141
Noticed in D63075 - there was a allowsMisalignedMemoryAccesses call to check for unaligned loads and a check for aligned legal type loads - which is exactly what allowsMemoryAccess does.
llvm-svn: 363137
Extern global merging is good for code-size. There's definitely potential for
performance too, but there's one regression in a benchmark that needs
investigating, so that's why we enable it only when we optimise for size for
now.
Patch by Ramakota Reddy and Sjoerd Meijer.
Differential Revision: https://reviews.llvm.org/D61947
llvm-svn: 363130
The non-masked versions are already in there. I'm having some
trouble coming up with a way to test this right now. Most load
folding should happen during isel so I'm not sure how to get
peephole pass to do it.
llvm-svn: 363125
In order to generate correct debug frame information, it needs to
generate CFI information in prologue and epilog.
Differential Revision: https://reviews.llvm.org/D61773
llvm-svn: 363120
Implement necessary target hooks to enable MachinePipeliner for P9 only.
The pass is off by default, can be enabled with -ppc-enable-pipeliner for P9.
Differential Revision: https://reviews.llvm.org/D62164
llvm-svn: 363085
This patch allows lowering of PIC addresses by using PC-relative
addressing for DSO-local symbols and accessing the address through the
global offset table for non-DSO-local symbols.
Differential Revision: https://reviews.llvm.org/D55303
llvm-svn: 363058
This validates and lowers arguments to inline asm nodes which have the
constraints I, J & K, with the following semantics (equivalent to GCC):
I: Any 12-bit signed immediate.
J: Immediate integer zero only.
K: Any 5-bit unsigned immediate.
Differential Revision: https://reviews.llvm.org/D54093
llvm-svn: 363054
This introduces a new decoding table for MVE instructions, and starts
by adding the family of scalar shift instructions that are part of the
MVE architecture extension: saturating shifts within a single GPR, and
long shifts across a pair of GPRs (both saturating and normal).
Some of these shift instructions have only 3-bit register fields in
the encoding, with the low bit fixed. So they can only address an odd
or even numbered GPR (depending on the operand), and therefore I add
two new register classes, GPREven and GPROdd.
Differential Revision: https://reviews.llvm.org/D62668
Change-Id: Iad95d5f83d26aef70c674027a184a6b1e0098d33
llvm-svn: 363051
As suggested by @arsenm on D63075 - this adds a TargetLowering::allowsMemoryAccess wrapper that takes a Load/Store node's MachineMemOperand to handle the AddressSpace/Alignment arguments and will also implicitly handle the MachineMemOperand::Flags change in D63075.
llvm-svn: 363048
The variable `OffsetMask` is currently only used in an assertion, so
if assertions are compiled out and -Werror is enabled, it becomes a
build failure.
llvm-svn: 363043
This adds support for the new family of conditional selection /
increment / negation instructions; the low-overhead branch
instructions (e.g. BF, WLS, DLS); the CLRM instruction to zero a whole
list of registers at once; the new VMRS/VMSR and VLDR/VSTR
instructions to get data in and out of 8.1-M system registers,
particularly including the new VPR register used by MVE vector
predication.
To support this, we also add a register name 'zr' (used by the CSEL
family to force one of the inputs to the constant 0), and operand
types for lists of registers that are also allowed to include APSR or
VPR (used by CLRM). The VLDR/VSTR instructions also need a new
addressing mode.
The low-overhead branch instructions exist in their own separate
architecture extension, which we treat as enabled by default, but you
can say -mattr=-lob or equivalent to turn it off.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Reviewed By: samparker
Subscribers: miyuki, javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62667
llvm-svn: 363039
This reverts r362990 (git commit 374571301d)
This was causing linker warnings on Darwin:
ld: warning: direct access in function 'llvm::initializeEvexToVexInstPassPass(llvm::PassRegistry&)'
from file '../../lib/libLLVMX86CodeGen.a(X86EvexToVex.cpp.o)' to global weak symbol
'void std::__1::__call_once_proxy<std::__1::tuple<void* (&)(llvm::PassRegistry&),
std::__1::reference_wrapper<llvm::PassRegistry>&&> >(void*)' from file '../../lib/libLLVMCore.a(Verifier.cpp.o)'
means the weak symbol cannot be overridden at runtime. This was likely caused by different translation
units being compiled with different visibility settings.
llvm-svn: 363028
Summary:
For builds with LLVM_BUILD_LLVM_DYLIB=ON and BUILD_SHARED_LIBS=OFF
this change makes all symbols in the target specific libraries hidden
by default.
A new macro called LLVM_EXTERNAL_VISIBILITY has been added to mark symbols in these
libraries public, which is mainly needed for the definitions of the
LLVMInitialize* functions.
This patch reduces the number of public symbols in libLLVM.so by about
25%. This should improve load times for the dynamic library and also
make abi checker tools, like abidiff require less memory when analyzing
libLLVM.so
One side-effect of this change is that for builds with
LLVM_BUILD_LLVM_DYLIB=ON and LLVM_LINK_LLVM_DYLIB=ON some unittests that
access symbols that are no longer public will need to be statically linked.
Before and after public symbol counts (using gcc 8.2.1, ld.bfd 2.31.1):
nm before/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
36221
nm after/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
26278
Reviewers: chandlerc, beanz, mgorny, rnk, hans
Reviewed By: rnk, hans
Subscribers: Jim, hiraditya, michaelplatings, chapuni, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, mgrang, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, kristina, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D54439
llvm-svn: 362990
This was found during HTM cleanup.
Adding a test for builtin_ttest would expose following issue.
*** Bad machine code: Illegal physical register for instruction ***
- function: test10
- basic block: %bb.0 entry (0xf0e57497b58)
- instruction: %5:crrc0 = TABORTWCI 0, $zero, 0
- operand 2: $zero
$zero is not a GPRC register.
LLVM ERROR: Found 1 machine code errors.
Differential Revision: https://reviews.llvm.org/D63079
llvm-svn: 362974
These caused a build failure because I managed not to notice they
depended on a later unpushed commit in my current stack. Sorry about
that.
llvm-svn: 362956
This should have been part of r362953, but I had a finger-trouble
incident and committed the old rather than new version of the patch.
Sorry.
llvm-svn: 362955
This adds support for the new family of conditional selection /
increment / negation instructions; the low-overhead branch
instructions (e.g. BF, WLS, DLS); the CLRM instruction to zero a whole
list of registers at once; the new VMRS/VMSR and VLDR/VSTR
instructions to get data in and out of 8.1-M system registers,
particularly including the new VPR register used by MVE vector
predication.
To support this, we also add a register name 'zr' (used by the CSEL
family to force one of the inputs to the constant 0), and operand
types for lists of registers that are also allowed to include APSR or
VPR (used by CLRM). The VLDR/VSTR instructions also need some new
addressing modes.
The low-overhead branch instructions exist in their own separate
architecture extension, which we treat as enabled by default, but you
can say -mattr=-lob or equivalent to turn it off.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Reviewed By: samparker
Subscribers: miyuki, javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62667
llvm-svn: 362953
Arm v8.1-M supports the VMOV instructions that move a half-precision
value to and from a GPR, but not if the GPR is SP or PC.
To fix this, I've changed those instructions to use the rGPR register
class instead of GPR. rGPR always excludes PC, and it excludes SP
except in the presence of the HasV8Ops target feature (i.e. Arm v8-A).
So the effect is that VMOV.F16 to and from PC is now illegal
everywhere, but VMOV.F16 to and from SP is illegal only on non-v8-A
cores (which I believe is all as it should be).
Reviewers: dmgreen, samparker, SjoerdMeijer, ostannard
Reviewed By: ostannard
Subscribers: ostannard, javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60704
llvm-svn: 362942
This option allows loops with small max trip counts to be fully unrolled. This
can help with code like the remainder loops from manually unrolled loops like
those that appear in the cmsis dsp library. We would apparently previously
runtime unroll them with the default unroll count (4).
Differential Revision: https://reviews.llvm.org/D63064
llvm-svn: 362928
Summary:
Our default behavior is to use sign_extend for signed comparisons and zero_extend for everything else. But for equality we have the freedom to use either extension. If we can prove the input has been truncated from something with enough sign bits, we can use sign_extend instead and let DAG combine optimize it out. A similar rule is used by type legalization in LegalizeIntegerTypes.
This gets rid of the movzx in PR42189. The immediate will still take 4 bytes instead of the 2 bytes plus 0x66 prefix a cmp di, 32767 would get, but it avoids a length changing prefix.
Reviewers: RKSimon, spatel, xbolva00
Reviewed By: xbolva00
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63032
llvm-svn: 362920
Summary:
We can only use the memory form of cvtss2sd under optsize due to a partial register update. So previously we were emitting 2 instructions for extload when optimizing for speed. Also due to a late optimization in preprocessiseldag we had to handle (fpextend (loadf32)) under optsize.
This patch forces extload to expand so that it will always be in the (fpextend (loadf32)) form during isel. And when optimizing for speed we can just let each of those pieces select an instruction independently.
Reviewers: spatel, RKSimon
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62710
llvm-svn: 362919
Previously we did the equivalent operation in isel patterns with
COPY_TO_REGCLASS operations to transition. By inserting
scalar_to_vetors and extract_vector_elts before isel we can
allow each piece to be selected individually and accomplish the
same final result.
I ideally we'd use vector operations earlier in lowering/combine,
but that looks to be more difficult.
The scalar-fp-to-i64.ll changes are because we have a pattern for
using movlpd for store+extract_vector_elt. While an f64 store
uses movsd. The encoding sizes are the same.
llvm-svn: 362914
Types such as float and i64's do not have legal loads in Thumb1, but will still
be loaded with a LDR (or potentially multiple LDR's). As such we can treat the
cost of addressing mode calculations the same as an i32 and get some optimisation
benefits.
Differential Revision: https://reviews.llvm.org/D62968
llvm-svn: 362874
Now with MVE being added, we can add the vector addressing mode costs for it.
These are generally imm7 multiplied by the size of the type being loaded /
stored.
Differential Revision: https://reviews.llvm.org/D62967
llvm-svn: 362873
The fp16 version of VLDR takes a imm8 multiplied by 2. This updates the costs
to account for those, and adds extra testing. It is dependant upon hasFPRegs16
as this is what the load/store instructions require.
Differential Revision: https://reviews.llvm.org/D62966
llvm-svn: 362872
We are starting to add an entirely separate vector architecture to the ARM
backend. To do that we need at least some separation between the existing NEON
and the new MVE code. This patch just goes through the Neon patterns and
ensures that they are predicated on HasNEON, giving MVE a stable place to start
from.
No tests yet as this is largely an NFC, and we don't have the other target that
will treat any of these intructions as legal.
Differential Revision: https://reviews.llvm.org/D62945
llvm-svn: 362870
This patch aims to reduce spilling and register moves by using the 3-address
versions of instructions per default instead of the 2-address equivalent
ones. It seems that both spilling and register moves are improved noticeably
generally.
Regalloc hints are passed to increase conversions to 2-address instructions
which are done in SystemZShortenInst.cpp (after regalloc).
Since the SystemZ reg/mem instructions are 2-address (dst and lhs regs are
the same), foldMemoryOperandImpl() can no longer trivially fold a spilled
source register since the reg/reg instruction is now 3-address. In order to
remedy this, new 3-address pseudo memory instructions are used to perform the
folding only when the dst and lhs virtual registers are known to be allocated
to the same physreg. In order to not let MachineCopyPropagation run and
change registers on these transformed instructions (making it 3-address), a
new target pass called SystemZPostRewrite.cpp is run just after
VirtRegRewriter, that immediately lowers the pseudo to a target instruction.
If it would have been possibe to insert a COPY instruction and change a
register operand (convert to 2-address) in foldMemoryOperandImpl() while
trusting that the caller (e.g. InlineSpiller) would update/repair the
involved LiveIntervals, the solution involving pseudo instructions would not
have been needed. This is perhaps a potential improvement (see Phabricator
post).
Common code changes:
* A new hook TargetPassConfig::addPostRewrite() is utilized to be able to run a
target pass immediately before MachineCopyPropagation.
* VirtRegMap is passed as an argument to foldMemoryOperand().
Review: Ulrich Weigand, Quentin Colombet
https://reviews.llvm.org/D60888
llvm-svn: 362868
This is a potentially large perf win for AVX1 targets because of the way we
auto-vectorize to 256-bit but then expect the backend to legalize/optimize
for the half-implemented AVX1 ISA.
On the motivating example from PR37428 (even though this patch doesn't solve
the vector shift issue):
https://bugs.llvm.org/show_bug.cgi?id=37428
...there's a 16% speedup when compiling with "-mavx" (perf tested on Haswell)
because we eliminate the remaining 256-bit vblendv ops.
I added comments on a couple of tests that require further work. If we have
256-bit logic ops separating the vselect and extract, we should probably narrow
everything to 128-bit, but that requires a larger pattern match.
Differential Revision: https://reviews.llvm.org/D62969
llvm-svn: 362797
Summary:
This allows some integer bitwise operations to instead be performed by
hardware fp instructions. This is correct because the RISC-V spec
requires the F and D extensions to use the IEEE-754 standard
representation, and fp register loads and stores to be bit-preserving.
This is tested against the soft-float ABI, but with hardware float
extensions enabled, so that the tests also ensure the optimisation also
fires in this case.
Reviewers: asb, luismarques
Reviewed By: asb
Subscribers: hiraditya, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, kito-cheng, shiva0217, jrtc27, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62900
llvm-svn: 362790
Summary:
This patch fixes a bug in the assembler that permitted a type suffix on
predicate registers when not expected. For instance, the following was
previously valid:
faddv h0, p0.q, z1.h
This bug was present in all SVE instructions containing predicates with
no type suffix and no predication form qualifier, i.e. /z or /m. The
latter instructions are already caught with an appropiate error message
by the assembler, e.g.:
.text
<stdin>:1:13: error: not expecting size suffix
cmpne p1.s, p0.b/z, z2.s, 0
^
A similar issue for SVE vector registers was fixed in:
https://reviews.llvm.org/D59636
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D62942
llvm-svn: 362780
Patch which introduces a target-independent framework for generating
hardware loops at the IR level. Most of the code has been taken from
PowerPC CTRLoops and PowerPC has been ported over to use this generic
pass. The target dependent parts have been moved into
TargetTransformInfo, via isHardwareLoopProfitable, with
HardwareLoopInfo introduced to transfer information from the backend.
Three generic intrinsics have been introduced:
- void @llvm.set_loop_iterations
Takes as a single operand, the number of iterations to be executed.
- i1 @llvm.loop_decrement(anyint)
Takes the maximum number of elements processed in an iteration of
the loop body and subtracts this from the total count. Returns
false when the loop should exit.
- anyint @llvm.loop_decrement_reg(anyint, anyint)
Takes the number of elements remaining to be processed as well as
the maximum numbe of elements processed in an iteration of the loop
body. Returns the updated number of elements remaining.
llvm-svn: 362774
In r356860, the legalization logic for BSWAP was modified to ISD::ROTL,
rather than the old ISD::{SHL, SRL, OR} nodes.
This works fine on AVR for 8-bit rotations, but 16-bit rotations are
currently unimplemented - they always trigger an assertion error in the
AVRExpandPseudoInsts pass ("RORW unimplemented").
This patch instructions the legalizer to expand 16-bit rotations into
the previous SHL, SRL, OR pattern it did previously.
This fixes the 'issue-cannot-select-bswap.ll' test. Interestingly, this
test failure seems flaky - it passes successfully on the avr-build-01
buildbot, but fails locally on my Arch Linux install.
llvm-svn: 362773
Use the PPC vector min/max instructions for computing the corresponding
operation as these should be faster than the compare/select sequences
we currently emit.
Differential revision: https://reviews.llvm.org/D47332
llvm-svn: 362759
SIInsertSkips really doesn't understand the control flow, and makes
very stupid assumptions about the block layout. This was able to get
away with not skipping return blocks, since usually after
structurization there is only one placed at the end of the
function. Tail duplication can break this assumption.
llvm-svn: 362754
"Divergence driven ISel. Assign register class for cross block values
according to the divergence."
that discovered the design flaw leading to several issues that
required to be solved before.
This change reverts AMDGPU specific changes and keeps common part
unaffected.
llvm-svn: 362749
This primarily affects add/fadd/mul/fmul/and/or/xor/pmuludq/pmuldq/max/min/fmaxc/fminc/pmaddwd/pavg.
We already commuted the unmasked and zero masked versions.
I've added 512-bit stack folding tests for most of the instructions
affected. I've tested needing commuting and not commuting across
unmasked, merged masked, and zero masked. The 128/256 bit instructions
should behave similarly.
llvm-svn: 362746
Summary:
(1) Function descriptor on AIX
On AIX, a called routine may have 2 distinct symbols associated with it:
* A function descriptor (Name)
* A function entry point (.Name)
The descriptor structure on AIX is the same as those in the ELF V1 ABI:
* The address of the entry point of the function.
* The TOC base address for the function.
* The environment pointer.
The descriptor symbol uses the same name as the source level function in C.
The function entry point is analogous to the symbol we would generate for a
function in a non-descriptor-based ABI, except that it is renamed by
prepending a ".".
Which symbol gets referenced depends on the context:
* Taking the address of the function references the descriptor symbol.
* Calling the function references the entry point symbol.
(2) Speaking of implementation on AIX, for direct function call target, we
create proper MCSymbol SDNode(e.g . ".foo") while constructing SDAG to
replace original TargetGlobalAddress SDNode. Then down the path, we can
take advantage of this MCSymbol.
Patch by: Xiangling_L
Reviewed by: sfertile, hubert.reinterpretcast, jasonliu, syzaara
Differential Revision: https://reviews.llvm.org/D62532
llvm-svn: 362735
Summary:
This patch implements SDAG call lowering on AIX for functions
which only have parameters that could fit into GPRs.
Reviewers: hubert.reinterpretcast, syzaara
Differential Revision: https://reviews.llvm.org/D62823
llvm-svn: 362708
This patch is a follow up for D62018 to add lrint/llrint
support for float16.
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D62863
llvm-svn: 362700