Summary:
Broadcast code generation emitted instructions in pre-header, while the instruction they are dependent on in the vector loop body.
This resulted in an IL verification error ---- value used before defined.
Reviewers: rengolin, fhahn, hfinkel
Reviewed By: rengolin, fhahn
Subscribers: dcaballe, Ka-Ka, llvm-commits
Differential Revision: https://reviews.llvm.org/D46302
llvm-svn: 331799
Inspired by r331508, I did a grep and found these.
Mostly just change from dyn_cast to cast. Some cases also showed a dyn_cast result being converted to bool, so those I changed to isa.
llvm-svn: 331577
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
Summary:
This is a fix for PR23997.
The loop vectorizer is not preserving the inbounds property of GEPs that it creates.
This is inhibiting some optimizations. This patch preserves the inbounds property in
the case where a load/store is being fed by an inbounds GEP.
Reviewers: mkuper, javed.absar, hsaito
Reviewed By: hsaito
Subscribers: dcaballe, hsaito, llvm-commits
Differential Revision: https://reviews.llvm.org/D46191
llvm-svn: 331269
This patch updates some code responsible the skip debug info to use
BasicBlock::instructionsWithoutDebug. I think this makes things
slightly simpler and more direct.
Reviewers: mkuper, rengolin, dcaballe, aprantl, vsk
Reviewed By: rengolin
Differential Revision: https://reviews.llvm.org/D46254
llvm-svn: 331174
Summary:
This is a follow up to D45420 (included here since it is still under review and this change is dependent on that) and D45072 (committed).
Actual change for this patch is LoopVectorize* and cmakefile. All others are all from D45420.
LoopVectorizationLegality is an analysis and thus really belongs to Analysis tree. It is modular enough and it is reusable enough ---- we can further improve those aspects once uses outside of LV picks up.
Hopefully, this will make it easier for people familiar with vectorization theory, but not necessarily LV itself to contribute, by lowering the volume of code they should deal with. We probably should start adding some code in LV to check its own capability (i.e., vectorization is legal but LV is not ready to handle it) and then bail out.
Reviewers: rengolin, fhahn, hfinkel, mkuper, aemerson, mssimpso, dcaballe, sguggill
Reviewed By: rengolin, dcaballe
Subscribers: egarcia, rogfer01, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D45552
llvm-svn: 331139
Patch #2 from VPlan Outer Loop Vectorization Patch Series #1
(RFC: http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html).
This patch introduces the basic infrastructure to detect, legality check
and process outer loops annotated with hints for explicit vectorization.
All these changes are protected under the feature flag
-enable-vplan-native-path. This should make this patch NFC for the existing
inner loop vectorizer.
Reviewers: hfinkel, mkuper, rengolin, fhahn, aemerson, mssimpso.
Differential Revision: https://reviews.llvm.org/D42447
llvm-svn: 330739
The memory location an invariant load is using can never be clobbered by
any store, so it's safe to move the load ahead of the store.
Differential Revision: https://reviews.llvm.org/D46011
llvm-svn: 330725
When we skip bitcasts while looking for GEP in LoadSoreVectorizer
we should also verify that the type is sized otherwise we assert
Differential Revision: https://reviews.llvm.org/D45709
llvm-svn: 330221
We use getExtractWithExtendCost to calculate the cost of extractelement and
s|zext together when computing the extract cost after vectorization, but we
calculate the cost of extractelement and s|zext separately when computing the
scalar cost which is larger than it should be.
Differential Revision: https://reviews.llvm.org/D45469
llvm-svn: 330143
The function getMinimumVF(ElemWidth) will return the minimum VF for
a vector with elements of size ElemWidth bits. This value will only
apply to targets for which TTI::shouldMaximizeVectorBandwidth returns
true. The value of 0 indicates that there is no minimum VF.
Differential Revision: https://reviews.llvm.org/D45271
llvm-svn: 330062
Summary:
Another clean up, following D43208.
Interleaved memory access analysis/optimization has nothing to do with vectorization legality. It doesn't really belong there. On the other hand, cost model certainly has to know about it.
In principle, vectorization should proceed like Legality ==> Optimization ==> CostModel ==> CodeGen, and this change just does that,
by moving the interleaved access analysis/decision out of Legal, and run it just before CostModel object is created.
After this, I can move LoopVectorizationLegality and Hints/Requirements classes into it's own header file, making it shareable within Transform tree. I have the patch already but I don't want to mix with this change. Eventual goal is to move to Analysis tree, but I first need to move RecurrenceDescriptor/InductionDescriptor from Transform/Util/LoopUtil.* to Analysis.
Reviewers: rengolin, hfinkel, mkuper, dcaballe, sguggill, fhahn, aemerson
Reviewed By: rengolin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45072
llvm-svn: 329645
Summary:
If the load/extractelement/extractvalue instructions are not originally
consecutive, the SLP vectorizer is unable to vectorize them. Patch
allows reordering of such instructions.
Patch does not support reordering of the repeated instruction, this must
be handled in the separate patch.
Reviewers: RKSimon, spatel, hfinkel, mkuper, Ayal, ashahid
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43776
llvm-svn: 329085
The primary issue here is that using NDEBUG alone isn't enough to guard
debug printing -- instead the DEBUG() macro needs to be used so that the
specific pass debug logging check is employed. Without this, every
asserts-enabled build was printing out information when it hit this.
I also fixed another place where we had multiple statements in a DEBUG
macro to use {}s to be a bit cleaner. And I fixed a place that used
errs() rather than dbgs().
llvm-svn: 329082
The primary issue here is that using NDEBUG alone isn't enough to guard
debug printing -- instead the DEBUG() macro needs to be used so that the
specific pass debug logging check is employed. Without this, every
asserts-enabled build was printing out information when it hit this.
I also fixed another place where we had multiple statements in a DEBUG
macro to use {}s to be a bit cleaner. And I fixed a place that used
`errs()` rather than `dbgs()`.
llvm-svn: 329046
We use two approaches for determining the minimum bitwidth.
* Demanded bits
* Value tracking
If demanded bits doesn't result in a narrower type, we then try value tracking.
We need this if we want to root SLP trees with the indices of getelementptr
instructions since all the bits of the indices are demanded.
But there is a missing piece though. We need to be able to distinguish "demanded
and shrinkable" from "demanded and not shrinkable". For example, the bits of %i
in
%i = sext i32 %e1 to i64
%gep = getelementptr inbounds i64, i64* %p, i64 %i
are demanded, but we can shrink %i's type to i32 because it won't change the
result of the getelementptr. On the other hand, in
%tmp15 = sext i32 %tmp14 to i64
%tmp16 = insertvalue { i64, i64 } undef, i64 %tmp15, 0
it doesn't make sense to shrink %tmp15 and we can skip the value tracking.
Ideas are from Matthew Simpson!
Differential Revision: https://reviews.llvm.org/D44868
llvm-svn: 329035
Summary:
If the load/extractelement/extractvalue instructions are not originally
consecutive, the SLP vectorizer is unable to vectorize them. Patch
allows reordering of such instructions.
Reviewers: RKSimon, spatel, hfinkel, mkuper, Ayal, ashahid
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43776
llvm-svn: 328980
When building the SLP tree, we look for reuse among the vectorized tree
entries. However, each gather sequence is represented by a unique tree entry,
even though the sequence may be identical to another one. This means, for
example, that a gather sequence with two uses will be counted twice when
computing the cost of the tree. We should only count the cost of the definition
of a gather sequence rather than its uses. During code generation, the
redundant gather sequences are emitted, but we optimize them away with CSE. So
it looks like this problem just affects the cost model.
Differential Revision: https://reviews.llvm.org/D44742
llvm-svn: 328316
Remove #include of Transforms/Scalar.h from Transform/Utils to fix layering.
Transforms depends on Transforms/Utils, not the other way around. So
remove the header and the "createStripGCRelocatesPass" function
declaration (& definition) that is unused and motivated this dependency.
Move Transforms/Utils/Local.h into Analysis because it's used by
Analysis/MemoryBuiltins.cpp.
llvm-svn: 328165
Summary:
It turned out to be error-prone to expect the callers to handle that - better to
leave the decision to this routine and make the required data to be explicitly
passed to the function.
This handles the case that was missed in the r322473 and fixes the assert
mentioned in PR36524.
Reviewers: dorit, mssimpso, Ayal, dcaballe
Reviewed By: dcaballe
Subscribers: Ka-Ka, hiraditya, dneilson, hsaito, llvm-commits
Differential Revision: https://reviews.llvm.org/D43812
llvm-svn: 327960
Summary:
This variable is largely going unused; aside from reporting number of instructions for in DEBUG builds.
The only use of NumInstructions is in debug output to represent the LoopSize. That value can be can be misleading as it also includes metadata instructions (e.g., DBG_VALUE) which have no real impact. If we do choose to keep this around, we probably should guard it by a DEBUG macro, as it's not used in production builds.
Reviewers: majnemer, congh, rengolin
Reviewed By: rengolin
Subscribers: llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D44495
llvm-svn: 327589
There are six separate instances of getPointerOperand() utility.
LoopVectorize.cpp has one of them,
and I don't want to create a 7th one while I'm trying to move
LoopVectorizationLegality into a separate file
(eventual objective is to move it to Analysis tree).
See http://lists.llvm.org/pipermail/llvm-dev/2018-February/120999.html
for llvm-dev discussions
Closes D43323.
Patch by Hideki Saito <hideki.saito@intel.com>.
llvm-svn: 327173
Fixes PR36311.
See more detailed analysis in
https://bugs.llvm.org/show_bug.cgi?id=36311.
isUniform() information is recomputed after LV started transforming the
underlying IR and that triggered an assert in SCEV.
From vectorizer's architectural perspective, such information, while
still useful in vector code gen, should not be recomputed after the
start of transforming the LLVM IR. Instead, we should collect and cache
such information during the analysis phase of LV and use the cached info
during code gen.
From the symptom perspective, this assert as it stands right now is not
very useful. Legality already rejected loops that would trigger the
assert. As such, commenting out the assert is NFC from vectorizer's
functionality perspective. On top of that, just above the assertion, we
check for unit-strided load/store or
gather scatter. Addresses can't be uniform below that check.
From vectorization theory point of view, we don't have to reject all
cases of stores to uniform addresses. Eventually, we should support
safe/profitable cases.
This patch resolves the issue by removing the useless assertion that is
invoking LAA's isUniform() that requires up-to-date DomTree ---- once
vector code gen starts modifying CFG, we don't have an up-to-date
DomTree.
Patch by Hideki Saito <hideki.saito@intel.com>.
llvm-svn: 327109
Summary: GCN ISA supports instructions that can read 16 consecutive dwords from memory through the scalar data cache;
loadstoreVectorizer should take advantage of the wider vector length and pack 16/8 elements of dwords/quadwords.
Author: FarhanaAleen
Reviewed By: rampitec
Subscribers: llvm-commits, AMDGPU
Differential Revision: https://reviews.llvm.org/D44179
llvm-svn: 326910
The LoadStoreVectorizer thought that <1 x T> and T were the same types
when merging stores, leading to a crash later.
Patch by Erik Hogeman.
Differential Revision: https://reviews.llvm.org/D44014
llvm-svn: 326884
This patch adds support for detecting outer loops with irreducible control
flow in LV. Current detection uses SCCs and only works for innermost loops.
This patch adds a utility function that works on any CFG, given its RPO
traversal and its LoopInfoBase. This function is a generalization
of isIrreducibleCFG from lib/CodeGen/ShrinkWrap.cpp. The code in
lib/CodeGen/ShrinkWrap.cpp is also updated to use the new generic utility
function.
Patch by Diego Caballero <diego.caballero@intel.com>
Differential Revision: https://reviews.llvm.org/D40874
llvm-svn: 326568
Removes verifyDomTree, using assert(verify()) everywhere instead, and
changes verify a little to always run IsSameAsFreshTree first in order
to print good output when we find errors. Also adds verifyAnalysis for
PostDomTrees, which will allow checking of PostDomTrees it the same way
we check DomTrees and MachineDomTrees.
Differential Revision: https://reviews.llvm.org/D41298
llvm-svn: 326315
All SIMD architectures can emulate masked load/store/gather/scatter
through element-wise condition check, scalar load/store, and
insert/extract. Therefore, bailing out of vectorization as legality
failure, when they return false, is incorrect. We should proceed to cost
model and determine profitability.
This patch is to address the vectorizer's architectural limitation
described above. As such, I tried to keep the cost model and
vectorize/don't-vectorize behavior nearly unchanged. Cost model tuning
should be done separately.
Please see
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120164.html for
RFC and the discussions.
Closes D43208.
Patch by: Hideki Saito <hideki.saito@intel.com>
llvm-svn: 326079
Summary:
Reversed loads are handled as gathering. But we can just reshuffle
these values. Patch adds support for vectorization of reversed loads.
Reviewers: RKSimon, spatel, mkuper, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43022
llvm-svn: 325134
Making a width of GEP Index, which is used for address calculation, to be one of the pointer properties in the Data Layout.
p[address space]:size:memory_size:alignment:pref_alignment:index_size_in_bits.
The index size parameter is optional, if not specified, it is equal to the pointer size.
Till now, the InstCombiner normalized GEPs and extended the Index operand to the pointer width.
It works fine if you can convert pointer to integer for address calculation and all registered targets do this.
But some ISAs have very restricted instruction set for the pointer calculation. During discussions were desided to retrieve information for GEP index from the Data Layout.
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120416.html
I added an interface to the Data Layout and I changed the InstCombiner and some other passes to take the Index width into account.
This change does not affect any in-tree target. I added tests to cover data layouts with explicitly specified index size.
Differential Revision: https://reviews.llvm.org/D42123
llvm-svn: 325102
Summary:
For better vectorization result we should take into consideration the
cost of the user insertelement instructions when we try to
vectorize sequences that build the whole vector. I.e. if we have the
following scalar code:
```
<Scalar code>
insertelement <ScalarCode>, ...
```
we should consider the cost of the last `insertelement ` instructions as
the cost of the scalar code.
Reviewers: RKSimon, spatel, hfinkel, mkuper
Subscribers: javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D42657
llvm-svn: 324893
Summary:
If -pass-remarks=loop-vectorize, atomic ops will be seen by
analyzeInterleaving(), even though canVectorizeMemory() == false. This
is because we are requesting extra analysis instead of bailing out.
In such a case, we end up with a Group in both Load- and StoreGroups,
and then we'll try to access freed memory when traversing LoadGroups after having had released the Group when iterating over StoreGroups.
The fix is to include mayWriteToMemory() when validating that two
instructions are the same kind of memory operation.
Reviewers: mssimpso, davidxl
Reviewed By: davidxl
Subscribers: hsaito, fhahn, llvm-commits
Differential Revision: https://reviews.llvm.org/D43064
llvm-svn: 324786
Summary:
Loops with inequality comparers, such as:
// unsigned bound
for (unsigned i = 1; i < bound; ++i) {...}
have getSmallConstantMaxTripCount report a large maximum static
trip count - in this case, 0xffff fffe. However, profiling info
may show that the trip count is much smaller, and thus
counter-recommend vectorization.
This change:
- flips loop-vectorize-with-block-frequency on by default.
- validates profiled loop frequency data supports vectorization,
when static info appears to not counter-recommend it. Absence
of profile data means we rely on static data, just as we've
done so far.
Reviewers: twoh, mkuper, davidxl, tejohnson, Ayal
Reviewed By: davidxl
Subscribers: bkramer, llvm-commits
Differential Revision: https://reviews.llvm.org/D42946
llvm-svn: 324543
The type-shrinking logic in reduction detection, although narrow in scope, is
also rather ad-hoc, which has led to bugs (e.g., PR35734). This patch modifies
the approach to rely on the demanded bits and value tracking analyses, if
available. We currently perform type-shrinking separately for reductions and
other instructions in the loop. Long-term, we should probably think about
computing minimal bit widths in a more complete way for the loops we want to
vectorize.
PR35734
Differential Revision: https://reviews.llvm.org/D42309
llvm-svn: 324195
Summary:
If the same value is going to be vectorized several times in the same
tree entry, this entry is considered to be a gather entry and cost of
this gather is counter as cost of InsertElementInstrs for each gathered
value. But we can consider these elements as ShuffleInstr with
SK_PermuteSingle shuffle kind.
Reviewers: spatel, RKSimon, mkuper, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38697
llvm-svn: 323662
Summary:
If the same value is going to be vectorized several times in the same
tree entry, this entry is considered to be a gather entry and cost of
this gather is counter as cost of InsertElementInstrs for each gathered
value. But we can consider these elements as ShuffleInstr with
SK_PermuteSingle shuffle kind.
Reviewers: spatel, RKSimon, mkuper, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38697
llvm-svn: 323530
Summary:
If the same value is going to be vectorized several times in the same
tree entry, this entry is considered to be a gather entry and cost of
this gather is counter as cost of InsertElementInstrs for each gathered
value. But we can consider these elements as ShuffleInstr with
SK_PermuteSingle shuffle kind.
Reviewers: spatel, RKSimon, mkuper, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38697
llvm-svn: 323441
Summary:
If the same value is going to be vectorized several times in the same
tree entry, this entry is considered to be a gather entry and cost of
this gather is counter as cost of InsertElementInstrs for each gathered
value. But we can consider these elements as ShuffleInstr with
SK_PermuteSingle shuffle kind.
Reviewers: spatel, RKSimon, mkuper, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38697
llvm-svn: 323430
Summary:
If the same value is going to be vectorized several times in the same
tree entry, this entry is considered to be a gather entry and cost of
this gather is counter as cost of InsertElementInstrs for each gathered
value. But we can consider these elements as ShuffleInstr with
SK_PermuteSingle shuffle kind.
Reviewers: spatel, RKSimon, mkuper, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38697
llvm-svn: 323348
Summary:
If the same value is going to be vectorized several times in the same
tree entry, this entry is considered to be a gather entry and cost of
this gather is counter as cost of InsertElementInstrs for each gathered
value. But we can consider these elements as ShuffleInstr with
SK_PermuteSingle shuffle kind.
Reviewers: spatel, RKSimon, mkuper, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38697
llvm-svn: 323246
Summary:
If the vectorized tree has truncate to minimum required bit width and
the vector type of the cast operation after the truncation is the same
as the vector type of the cast operands, count cost of the vector cast
operation as 0, because this cast will be later removed.
Also, if the vectorization tree root operations are integer cast operations, do not consider them as candidates for truncation. It will just create extra number of the same vector/scalar operations, which will be removed by instcombiner.
Reviewers: RKSimon, spatel, mkuper, hfinkel, mssimpso
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41948
llvm-svn: 322946
Summary: Sometimes vectorization of insertelement instructions with extractelement operands may produce an extra shuffle operation, if these operands are in the reverse order. Patch tries to improve this situation by the reordering of the operands to remove this extra shuffle operation.
Reviewers: mkuper, hfinkel, RKSimon, spatel
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D33954
llvm-svn: 322579
Summary:
This method is supposed to be called for IVs that have casts in their use-def
chains that are completely ignored after vectorization under PSE. However, for
truncates of such IVs the same InductionDescriptor is used during
creation/widening of both original IV based on PHINode and new IV based on
TruncInst.
This leads to unintended second call to recordVectorLoopValueForInductionCast
with a VectorLoopVal set to the newly created IV for a trunc and causes an
assert due to attempt to store new information for already existing entry in the
map. This is wrong and should not be done.
Fixes PR35773.
Reviewers: dorit, Ayal, mssimpso
Reviewed By: dorit
Subscribers: RKSimon, dim, dcaballe, hsaito, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D41913
llvm-svn: 322473
Summary:
Fixes the bug with incorrect handling of InsertValue|InsertElement
instrucions in SLP vectorizer. Currently, we may use incorrect
ExtractElement instructions as the operands of the original
InsertValue|InsertElement instructions.
Reviewers: mkuper, hfinkel, RKSimon, spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41767
llvm-svn: 321994
Summary:
If the vectorized value is marked as extra reduction argument, its users
are not considered as external users. Patch fixes this.
Reviewers: mkuper, hfinkel, RKSimon, spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41786
llvm-svn: 321993
The approach was never discussed, I wasn't able to reproduce this
non-determinism, and the original author went AWOL.
After a discussion on the ML, Philip suggested to revert this.
llvm-svn: 321974
Another small step forward to move VPlan stuff outside of LoopVectorize.cpp.
VPlanBuilder.h is renamed to LoopVectorizationPlanner.h
LoopVectorizationPlanner class is moved from LoopVectorize.cpp to
LoopVectorizationPlanner.h LoopVectorizationCostModel::VectorizationFactor
class is moved to LoopVectorizationPlanner.h (used by the planner class) ---
this needs further streamlining work in later patches and thus all I did was
take it out of the CostModel class and moved to the header file. The callback
function had to stay inside LoopVectorize.cpp since it calls an
InnerLoopVectorizer member function declared in it. Next Steps: Make
InnerLoopVectorizer, LoopVectorizationCostModel, and other classes more modular
and more aligned with VPlan direction, in small increments.
Previous step was: r320900 (https://reviews.llvm.org/D41045)
Patch by Hideki Saito, thanks!
Differential Revision: https://reviews.llvm.org/D41420
llvm-svn: 321962
canVectorize is only checking if the loop has a normalized pre-header if DoExtraAnalysis is true.
This doesn't make sense to me because reporting analysis information shouldn't alter legality
checks. This is probably the result of a last minute minor change before committing (?).
Patch by Diego Caballero.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D40973
llvm-svn: 321172
Changes to the original scalar loop during LV code gen cause the return value
of Legal->isConsecutivePtr() to be inconsistent with the return value during
legal/cost phases (further analysis and information of the bug is in D39346).
This patch is an alternative fix to PR34965 following the CM_Widen approach
proposed by Ayal and Gil in D39346. It extends InstWidening enum with
CM_Widen_Reverse to properly record the widening decision for consecutive
reverse memory accesses and, consequently, get rid of the
Legal->isConsetuviePtr() call in LV code gen. I think this is a simpler/cleaner
solution to PR34965 than the one in D39346.
Fixes PR34965.
Patch by Diego Caballero, thanks!
Differential Revision: https://reviews.llvm.org/D40742
llvm-svn: 320913
This is a small step forward to move VPlan stuff to where it should belong (i.e., VPlan.*):
1. VP*Recipe classes in LoopVectorize.cpp are moved to VPlan.h.
2. Many of VP*Recipe::print() and execute() definitions are still left in
LoopVectorize.cpp since they refer to things declared in LoopVectorize.cpp. To
be moved to VPlan.cpp at a later time.
3. InterleaveGroup class is moved from anonymous namespace to llvm namespace.
Referencing it in anonymous namespace from VPlan.h ended up in warning.
Patch by Hideki Saito, thanks!
Differential Revision: https://reviews.llvm.org/D41045
llvm-svn: 320900
In SLPVectorizer, the vector build instructions (insertvalue for aggregate type) is passed to BoUpSLP.buildTree, it is treated as UserIgnoreList, so later in cost estimation, the cost of these instructions are not counted.
For aggregate value, later usage are more likely to be done in scalar registers, either used as individual scalars or used as a whole for function call or return value. Ignore scalar extraction instructions may cause too aggressive vectorization for aggregate values, and slow down performance. So for vectorization of aggregate value, the scalar extraction instructions are required in cost estimation.
Differential Revision: https://reviews.llvm.org/D41139
llvm-svn: 320736
D30041 extended SCEVPredicateRewriter to improve handling of Phi nodes whose
update chain involves casts; PSCEV can now build an AddRecurrence for some
forms of such phi nodes, under the proper runtime overflow test. This means
that we can identify such phi nodes as an induction, and the loop-vectorizer
can now vectorize such inductions, however inefficiently. The vectorizer
doesn't know that it can ignore the casts, and so it vectorizes them.
This patch records the casts in the InductionDescriptor, so that they could
be marked to be ignored for cost calculation (we use VecValuesToIgnore for
that) and ignored for vectorization/widening/scalarization (i.e. treated as
TriviallyDead).
In addition to marking all these casts to be ignored, we also need to make
sure that each cast is mapped to the right vector value in the vector loop body
(be it a widened, vectorized, or scalarized induction). So whenever an
induction phi is mapped to a vector value (during vectorization/widening/
scalarization), we also map the respective cast instruction (if exists) to that
vector value. (If the phi-update sequence of an induction involves more than one
cast, then the above mapping to vector value is relevant only for the last cast
of the sequence as we allow only the "last cast" to be used outside the
induction update chain itself).
This is the last step in addressing PR30654.
llvm-svn: 320672
Summary:
This patch tries to vectorize loads of consecutive memory accesses, accessed
in non-consecutive or jumbled way. An earlier attempt was made with patch D26905
which was reverted back due to some basic issue with representing the 'use mask' of
jumbled accesses.
This patch fixes the mask representation by recording the 'use mask' in the usertree entry.
Change-Id: I9fe7f5045f065d84c126fa307ef6ebe0787296df
Reviewers: mkuper, loladiro, Ayal, zvi, danielcdh
Reviewed By: Ayal
Subscribers: mgrang, dcaballe, hans, mzolotukhin
Differential Revision: https://reviews.llvm.org/D36130
llvm-svn: 320548
VecValuesToIgnore holds values that will not appear in the vectorized loop.
We should therefore ignore their cost when VF > 1.
Differential Revision: https://reviews.llvm.org/D40883
llvm-svn: 320463
As a new access is generated spanning across multiple fields, we need to
propagate alias info from all the fields to form the most generic alias info.
rdar://35602528
Differential Revision: https://reviews.llvm.org/D40617
llvm-svn: 319979
It causes builds to fail with "Instruction does not dominate all uses" (PR35497).
> Patch tries to improve vectorization of the following code:
>
> void add1(int * __restrict dst, const int * __restrict src) {
> *dst++ = *src++;
> *dst++ = *src++ + 1;
> *dst++ = *src++ + 2;
> *dst++ = *src++ + 3;
> }
> Allows to vectorize even if the very first operation is not a binary add, but just a load.
>
> Fixed issues related to previous commit.
>
> Reviewers: spatel, mzolotukhin, mkuper, hfinkel, RKSimon, filcab, ABataev
>
> Reviewed By: ABataev, RKSimon
>
> Subscribers: llvm-commits, RKSimon
>
> Differential Revision: https://reviews.llvm.org/D28907
llvm-svn: 319550
Patch tries to improve vectorization of the following code:
void add1(int * __restrict dst, const int * __restrict src) {
*dst++ = *src++;
*dst++ = *src++ + 1;
*dst++ = *src++ + 2;
*dst++ = *src++ + 3;
}
Allows to vectorize even if the very first operation is not a binary add, but just a load.
Fixed issues related to previous commit.
Reviewers: spatel, mzolotukhin, mkuper, hfinkel, RKSimon, filcab, ABataev
Reviewed By: ABataev, RKSimon
Subscribers: llvm-commits, RKSimon
Differential Revision: https://reviews.llvm.org/D28907
llvm-svn: 319531
Summary:
First step in adding MemorySSA as dependency for loop pass manager.
Adding the dependency under a flag.
New pass manager: MSSA pointer in LoopStandardAnalysisResults can be null.
Legacy and new pass manager: Use cl::opt EnableMSSALoopDependency. Disabled by default.
Reviewers: sanjoy, davide, gberry
Subscribers: mehdi_amini, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D40274
llvm-svn: 318772
properlyDominates() shouldn't be used as sort key. It causes different output between stdlibc++ and libc++.
Instead, I introduced RPOT. In most cases, it works for CSE.
llvm-svn: 318743
This patch adds a new abstraction layer to VPlan and leverages it to model the planned
instructions that manipulate masks (AND, OR, NOT), introduced during predication.
The new VPValue and VPUser classes model how data flows into, through and out
of a VPlan, forming the vertices of a planned Def-Use graph. The new
VPInstruction class is a generic single-instruction Recipe that models a
planned instruction along with its opcode, operands and users. See
VectorizationPlan.rst for more details.
Differential Revision: https://reviews.llvm.org/D38676
llvm-svn: 318645
Summary:
Added more remarks to SLP pass, in particular "missed" optimization remarks.
Also proposed several tests for new functionality.
Patch by Vladimir Miloserdov!
For reference you may look at: https://reviews.llvm.org/rL302811
Reviewers: anemet, fhahn
Reviewed By: anemet
Subscribers: javed.absar, lattner, petecoup, yakush, llvm-commits
Differential Revision: https://reviews.llvm.org/D38367
llvm-svn: 318307
It crashes building sqlite; see reply on the llvm-commits thread.
> [SLPVectorizer] Failure to beneficially vectorize 'copyable' elements in integer binary ops.
>
> Patch tries to improve vectorization of the following code:
>
> void add1(int * __restrict dst, const int * __restrict src) {
> *dst++ = *src++;
> *dst++ = *src++ + 1;
> *dst++ = *src++ + 2;
> *dst++ = *src++ + 3;
> }
> Allows to vectorize even if the very first operation is not a binary add, but just a load.
>
> Fixed issues related to previous commit.
>
> Reviewers: spatel, mzolotukhin, mkuper, hfinkel, RKSimon, filcab, ABataev
>
> Reviewed By: ABataev, RKSimon
>
> Subscribers: llvm-commits, RKSimon
>
> Differential Revision: https://reviews.llvm.org/D28907
llvm-svn: 318239
Patch tries to improve vectorization of the following code:
void add1(int * __restrict dst, const int * __restrict src) {
*dst++ = *src++;
*dst++ = *src++ + 1;
*dst++ = *src++ + 2;
*dst++ = *src++ + 3;
}
Allows to vectorize even if the very first operation is not a binary add, but just a load.
Fixed issues related to previous commit.
Reviewers: spatel, mzolotukhin, mkuper, hfinkel, RKSimon, filcab, ABataev
Reviewed By: ABataev, RKSimon
Subscribers: llvm-commits, RKSimon
Differential Revision: https://reviews.llvm.org/D28907
llvm-svn: 318193
This patch is part of D38676.
The patch introduces two new Recipes to handle instructions whose vectorization
involves masking. These Recipes take VPlan-level masks in D38676, but still rely
on ILV's existing createEdgeMask(), createBlockInMask() in this patch.
VPBlendRecipe handles intra-loop phi nodes, which are vectorized as a sequence
of SELECTs. Its execute() code is refactored out of ILV::widenPHIInstruction(),
which now handles only loop-header phi nodes.
VPWidenMemoryInstructionRecipe handles load/store which are to be widened
(but are not part of an Interleave Group). In this patch it simply calls
ILV::vectorizeMemoryInstruction on execute().
Differential Revision: https://reviews.llvm.org/D39068
llvm-svn: 318149
Summary:
The analysis of the store sequence goes in straight order - from the
first store to the last. Bu the best opportunity for vectorization will
happen if we're going to use reverse order - from last store to the
first. It may be best because usually users have some initialization
part + further processing and this first initialization may confuse
SLP vectorizer.
Reviewers: RKSimon, hfinkel, mkuper, spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39606
llvm-svn: 317821
This patch implements Chandler's idea [0] for supporting languages that
require support for infinite loops with side effects, such as Rust, providing
part of a solution to bug 965 [1].
Specifically, it adds an `llvm.sideeffect()` intrinsic, which has no actual
effect, but which appears to optimization passes to have obscure side effects,
such that they don't optimize away loops containing it. It also teaches
several optimization passes to ignore this intrinsic, so that it doesn't
significantly impact optimization in most cases.
As discussed on llvm-dev [2], this patch is the first of two major parts.
The second part, to change LLVM's semantics to have defined behavior
on infinite loops by default, with a function attribute for opting into
potential-undefined-behavior, will be implemented and posted for review in
a separate patch.
[0] http://lists.llvm.org/pipermail/llvm-dev/2015-July/088103.html
[1] https://bugs.llvm.org/show_bug.cgi?id=965
[2] http://lists.llvm.org/pipermail/llvm-dev/2017-October/118632.html
Differential Revision: https://reviews.llvm.org/D38336
llvm-svn: 317729
Patch tries to improve vectorization of the following code:
void add1(int * __restrict dst, const int * __restrict src) {
*dst++ = *src++;
*dst++ = *src++ + 1;
*dst++ = *src++ + 2;
*dst++ = *src++ + 3;
}
Allows to vectorize even if the very first operation is not a binary add, but just a load.
Fixed PR34619 and other issues related to previous commit.
Reviewers: spatel, mzolotukhin, mkuper, hfinkel, RKSimon, filcab, ABataev
Reviewed By: ABataev, RKSimon
Subscribers: llvm-commits, RKSimon
Differential Revision: https://reviews.llvm.org/D28907
llvm-svn: 317618
As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107104.html
and again more recently:
http://lists.llvm.org/pipermail/llvm-dev/2017-October/118118.html
...this is a step in cleaning up our fast-math-flags implementation in IR to better match
the capabilities of both clang's user-visible flags and the backend's flags for SDNode.
As proposed in the above threads, we're replacing the 'UnsafeAlgebra' bit (which had the
'umbrella' meaning that all flags are set) with a new bit that only applies to algebraic
reassociation - 'AllowReassoc'.
We're also adding a bit to allow approximations for library functions called 'ApproxFunc'
(this was initially proposed as 'libm' or similar).
...and we're out of bits. 7 bits ought to be enough for anyone, right? :) FWIW, I did
look at getting this out of SubclassOptionalData via SubclassData (spacious 16-bits),
but that's apparently already used for other purposes. Also, I don't think we can just
add a field to FPMathOperator because Operator is not intended to be instantiated.
We'll defer movement of FMF to another day.
We keep the 'fast' keyword. I thought about removing that, but seeing IR like this:
%f.fast = fadd reassoc nnan ninf nsz arcp contract afn float %op1, %op2
...made me think we want to keep the shortcut synonym.
Finally, this change is binary incompatible with existing IR as seen in the
compatibility tests. This statement:
"Newer releases can ignore features from older releases, but they cannot miscompile
them. For example, if nsw is ever replaced with something else, dropping it would be
a valid way to upgrade the IR."
( http://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility )
...provides the flexibility we want to make this change without requiring a new IR
version. Ie, we're not loosening the FP strictness of existing IR. At worst, we will
fail to optimize some previously 'fast' code because it's no longer recognized as
'fast'. This should get fixed as we audit/squash all of the uses of 'isFast()'.
Note: an inter-dependent clang commit to use the new API name should closely follow
commit.
Differential Revision: https://reviews.llvm.org/D39304
llvm-svn: 317488
Summary: There are certain requirements for debug location of debug intrinsics, e.g. the scope of the DILocalVariable should be the same as the scope of its debug location. As a result, we should not add discriminator encoding for debug intrinsics.
Reviewers: dblaikie, aprantl
Reviewed By: aprantl
Subscribers: JDevlieghere, aprantl, bjope, sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D39343
llvm-svn: 316703
Summary:
We no longer add vectors of pointers as candidates for
load/store vectorization. It does not seem to work anyway,
but without this patch we can end up in asserts when trying
to create casts between an integer type and the pointer of
vectors type.
The test case I've added used to assert like this when trying to
cast between i64 and <2 x i16*>:
opt: ../lib/IR/Instructions.cpp:2565: Assertion `castIsValid(op, S, Ty) && "Invalid cast!"' failed.
#0 PrintStackTraceSignalHandler(void*)
#1 SignalHandler(int)
#2 __restore_rt
#3 __GI_raise
#4 __GI_abort
#5 __GI___assert_fail
#6 llvm::CastInst::Create(llvm::Instruction::CastOps, llvm::Value*, llvm::Type*, llvm::Twine const&, llvm::Instruction*)
#7 llvm::IRBuilder<llvm::ConstantFolder, llvm::IRBuilderDefaultInserter>::CreateBitOrPointerCast(llvm::Value*, llvm::Type*, llvm::Twine const&)
#8 Vectorizer::vectorizeStoreChain(llvm::ArrayRef<llvm::Instruction*>, llvm::SmallPtrSet<llvm::Instruction*, 16u>*)
Reviewers: arsenm
Reviewed By: arsenm
Subscribers: nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D39296
llvm-svn: 316665
Summary:
The code comments indicate that no effort has been spent on
handling load/stores when the size isn't a multiple of the
byte size correctly. However, the code only avoided types
smaller than 8 bits. So for example a load of an i28 could
still be considered as a candidate for vectorization.
This patch adjusts the code to behave according to the code
comment.
The test case used to hit the following assert when
trying to use "cast" an i32 to i28 using CreateBitOrPointerCast:
opt: ../lib/IR/Instructions.cpp:2565: Assertion `castIsValid(op, S, Ty) && "Invalid cast!"' failed.
#0 PrintStackTraceSignalHandler(void*)
#1 SignalHandler(int)
#2 __restore_rt
#3 __GI_raise
#4 __GI_abort
#5 __GI___assert_fail
#6 llvm::CastInst::Create(llvm::Instruction::CastOps, llvm::Value*, llvm::Type*, llvm::Twine const&, llvm::Instruction*)
#7 llvm::IRBuilder<llvm::ConstantFolder, llvm::IRBuilderDefaultInserter>::CreateBitOrPointerCast(llvm::Value*, llvm::Type*, llvm::Twine const&)
#8 (anonymous namespace)::Vectorizer::vectorizeLoadChain(llvm::ArrayRef<llvm::Instruction*>, llvm::SmallPtrSet<llvm::Instruction*, 16u>*)
Reviewers: arsenm
Reviewed By: arsenm
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39295
llvm-svn: 316663
parameterized emit() calls
Summary: This is not functional change to adopt new emit() API added in r313691.
Reviewed By: anemet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38285
llvm-svn: 315476
When ignoring a load that participates in an interleaved group, make sure to
move a cast that needs to sink after it.
Testcase derived from reproducer of PR34743.
Differential Revision: https://reviews.llvm.org/D38338
llvm-svn: 314986
Instead of trying to keep LastWidenRecipe updated after creating each recipe,
have tryToWiden() retrieve the last recipe of the current VPBasicBlock and check
if it's a VPWidenRecipe when attempting to extend its range. This ensures that
such extensions, optimized to maintain the original instruction order, do so
only when the instructions are to maintain their relative order. The latter does
not always hold, e.g., when a cast needs to sink to unravel first order
recurrence (r306884).
Testcase derived from reproducer of PR34711.
Differential Revision: https://reviews.llvm.org/D38339
llvm-svn: 314981
All the buildbots are red, e.g.
http://lab.llvm.org:8011/builders/clang-cmake-aarch64-lld/builds/2436/
> Summary:
> This patch tries to vectorize loads of consecutive memory accesses, accessed
> in non-consecutive or jumbled way. An earlier attempt was made with patch D26905
> which was reverted back due to some basic issue with representing the 'use mask' of
> jumbled accesses.
>
> This patch fixes the mask representation by recording the 'use mask' in the usertree entry.
>
> Change-Id: I9fe7f5045f065d84c126fa307ef6ebe0787296df
>
> Reviewers: mkuper, loladiro, Ayal, zvi, danielcdh
>
> Reviewed By: Ayal
>
> Subscribers: hans, mzolotukhin
>
> Differential Revision: https://reviews.llvm.org/D36130
llvm-svn: 314824
Summary:
This patch tries to vectorize loads of consecutive memory accesses, accessed
in non-consecutive or jumbled way. An earlier attempt was made with patch D26905
which was reverted back due to some basic issue with representing the 'use mask' of
jumbled accesses.
This patch fixes the mask representation by recording the 'use mask' in the usertree entry.
Change-Id: I9fe7f5045f065d84c126fa307ef6ebe0787296df
Reviewers: mkuper, loladiro, Ayal, zvi, danielcdh
Reviewed By: Ayal
Subscribers: hans, mzolotukhin
Differential Revision: https://reviews.llvm.org/D36130
llvm-svn: 314806
When type shrinking reductions, we should insert the truncations and extends at
the end of the loop latch block. Previously, these instructions were inserted
at the end of the loop header block. The difference is only a problem for loops
with predicated instructions (e.g., conditional stores and instructions that
may divide by zero). For these instructions, we create new basic blocks inside
the vectorized loop, which cause the loop header and latch to no longer be the
same block. This should fix PR34687.
Reference: https://bugs.llvm.org/show_bug.cgi?id=34687
llvm-svn: 314542
Summary:
And now that we no longer have to explicitly free() the Loop instances, we can
(with more ease) use the destructor of LoopBase to do what LoopBase::clear() was
doing.
Reviewers: chandlerc
Subscribers: mehdi_amini, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D38201
llvm-svn: 314375
reductions.
If both operands of the newly created SelectInst are Undefs the
resulting operation is also Undef, not SelectInst. It may cause crashes
when trying to propagate IR flags because function expects exactly
SelectInst instruction, nothing else.
llvm-svn: 314323
This broke the buildbots, e.g.
http://bb.pgr.jp/builders/test-llvm-i686-linux-RA/builds/391
> Summary:
> This patch tries to vectorize loads of consecutive memory accesses, accessed
> in non-consecutive or jumbled way. An earlier attempt was made with patch D26905
> which was reverted back due to some basic issue with representing the 'use mask'
> jumbled accesses.
>
> This patch fixes the mask representation by recording the 'use mask' in the usertree entry.
>
> Change-Id: I9fe7f5045f065d84c126fa307ef6ebe0787296df
>
> Subscribers: mzolotukhin
>
> Reviewed By: ayal
>
> Differential Revision: https://reviews.llvm.org/D36130
>
> Review comments updated accordingly
>
> Change-Id: I22ab0a8a9bac9d49d74baa81a08e1e486f5e75f0
>
> Added a TODO for sortLoadAccesses API
>
> Change-Id: I3c679bf1865422d1b45e17ea28f1992bca660b58
>
> Modified the TODO for sortLoadAccesses API
>
> Change-Id: Ie64a66cb5f9e2a7610438abb0e750c6e090f9565
>
> Review comment update for using OpdNum to insert the mask in respective location
>
> Change-Id: I016d0c1b29874e979efc0205bbf078991f92edce
>
> Fixes '-Wsign-compare warning' in LoopAccessAnalysis.cpp and code rebase
>
> Change-Id: I64b2ea5e68c1d7b6a028f5ef8251c5a97333f89b
llvm-svn: 313781
Summary:
This patch tries to vectorize loads of consecutive memory accesses, accessed
in non-consecutive or jumbled way. An earlier attempt was made with patch D26905
which was reverted back due to some basic issue with representing the 'use mask'
jumbled accesses.
This patch fixes the mask representation by recording the 'use mask' in the usertree entry.
Change-Id: I9fe7f5045f065d84c126fa307ef6ebe0787296df
Subscribers: mzolotukhin
Reviewed By: ayal
Differential Revision: https://reviews.llvm.org/D36130
Review comments updated accordingly
Change-Id: I22ab0a8a9bac9d49d74baa81a08e1e486f5e75f0
Added a TODO for sortLoadAccesses API
Change-Id: I3c679bf1865422d1b45e17ea28f1992bca660b58
Modified the TODO for sortLoadAccesses API
Change-Id: Ie64a66cb5f9e2a7610438abb0e750c6e090f9565
Review comment update for using OpdNum to insert the mask in respective location
Change-Id: I016d0c1b29874e979efc0205bbf078991f92edce
Fixes '-Wsign-compare warning' in LoopAccessAnalysis.cpp and code rebase
Change-Id: I64b2ea5e68c1d7b6a028f5ef8251c5a97333f89b
llvm-svn: 313771
Summary:
This patch tries to vectorize loads of consecutive memory accesses, accessed
in non-consecutive or jumbled way. An earlier attempt was made with patch D26905
which was reverted back due to some basic issue with representing the 'use mask' of
jumbled accesses.
This patch fixes the mask representation by recording the 'use mask' in the usertree entry.
Change-Id: I9fe7f5045f065d84c126fa307ef6ebe0787296df
Reviewers: mkuper, loladiro, Ayal, zvi, danielcdh
Reviewed By: Ayal
Subscribers: mzolotukhin
Differential Revision: https://reviews.llvm.org/D36130
Commit after rebase for patch D36130
Change-Id: I8add1c265455669ef288d880f870a9522c8c08ab
llvm-svn: 313736
In the lambda we are now returning the remark by value so we need to preserve
its type in the insertion operator. This requires making the insertion
operator generic.
I've also converted a few cases to use the new API. It seems to work pretty
well. See the LoopUnroller for a slightly more interesting case.
llvm-svn: 313691
CostModel.
The original patch added support for horizontal min/max reductions to
the SLP vectorizer.
This patch causes LLVM to miscompile fairly simple signed min
reductions. I have attached a test progrom to http://llvm.org/PR34635
that shows the behavior change after this patch. We found this in a test
for the open source Eigen library, but also in other code.
Unfortunately, the revert is moderately challenging. It required
reverting:
r313042: [SLP] Test with multiple uses of conditional op and wrong parent.
r312853: [SLP] Fix buildbots, NFC.
r312793: [SLP] Fix the warning about paths not returning the value, NFC.
r312791: [SLP] Support for horizontal min/max reduction.
And even then, I had to completely skip reverting the changes to TTI and
CostModel because r312832 rewrote so much of this code. Plus, the cost
modeling changes aren implicated in the miscompile, so they should be
fine and will just not be used until this gets re-introduced.
llvm-svn: 313409
It enables OptimizationRemarkEmitter::allowExtraAnalysis and MachineOptimizationRemarkEmitter::allowExtraAnalysis to return true not only for -fsave-optimization-record but when specific remarks are requested with
command line options.
The diagnostic handler used to be callback now this patch adds a class
DiagnosticHandler. It has virtual method to provide custom diagnostic handler
and methods to control which particular remarks are enabled.
However LLVM-C API users can still provide callback function for diagnostic handler.
llvm-svn: 313390
It enables OptimizationRemarkEmitter::allowExtraAnalysis and MachineOptimizationRemarkEmitter::allowExtraAnalysis to return true not only for -fsave-optimization-record but when specific remarks are requested with
command line options.
The diagnostic handler used to be callback now this patch adds a class
DiagnosticHandler. It has virtual method to provide custom diagnostic handler
and methods to control which particular remarks are enabled.
However LLVM-C API users can still provide callback function for diagnostic handler.
llvm-svn: 313382
Patch tries to improve vectorization of the following code:
void add1(int * __restrict dst, const int * __restrict src) {
*dst++ = *src++;
*dst++ = *src++ + 1;
*dst++ = *src++ + 2;
*dst++ = *src++ + 3;
}
Allows to vectorize even if the very first operation is not a binary add, but just a load.
Reviewers: spatel, mzolotukhin, mkuper, hfinkel, RKSimon, filcab, ABataev, davide
Subscribers: llvm-commits, RKSimon
Differential Revision: https://reviews.llvm.org/D28907
llvm-svn: 313348
This patch fixes pr34283, which exposed that the computation of
maximum legal width for vectorization was wrong, because it relied
on MaxInterleaveFactor to obtain the maximum stride used in the loop,
however not all strided accesses in the loop have an interleave-group
associated with them.
Instead of recording the maximum stride in the loop, which can be over
conservative (e.g. if the access with the maximum stride is not involved
in the dependence limitation), this patch tracks the actual maximum legal
width imposed by accesses that are involved in dependencies.
Differential Revision: https://reviews.llvm.org/D37507
llvm-svn: 313237
These are changes to reduce redundant computations when calculating a
feasible vectorization factor:
1. early return when target has no vector registers
2. don't compute register usage for the default VF.
Suggested during review for D37702.
llvm-svn: 313176
When converting a PHI into a series of 'select' instructions to combine the
incoming values together according their edge masks, initialize the first
value to the incoming value In0 of the first predecessor, instead of
generating a redundant assignment 'select(Cond[0], In0, In0)'. The latter
fails when the Cond[0] mask is null, representing a full mask, which can
happen only when there's a single incoming value.
No functional changes intended nor expected other than surviving null Cond[0]'s.
This fix follows D35725, which introduced using null to represent full masks.
Differential Revision: https://reviews.llvm.org/D37619
llvm-svn: 313119
Summary:
When the MaxVectorSize > ConstantTripCount, we should just clamp the
vectorization factor to be the ConstantTripCount.
This vectorizes loops where the TinyTripCountThreshold >= TripCount < MaxVF.
Earlier we were finding the maximum vector width, which could be greater than
the trip count itself. The Loop vectorizer does all the work for generating a
vectorizable loop, but in the end we would always choose the scalar loop (since
the VF > trip count). This allows us to choose the VF keeping in mind the trip
count if available.
This is a fix on top of rL312472.
Reviewers: Ayal, zvi, hfinkel, dneilson
Reviewed by: Ayal
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37702
llvm-svn: 313046
SLP vectorizer supports horizontal reductions for Add/FAdd binary
operations. Patch adds support for horizontal min/max reductions.
Function getReductionCost() is split to getArithmeticReductionCost() for
binary operation reductions and getMinMaxReductionCost() for min/max
reductions.
Patch fixes PR26956.
Differential revision: https://reviews.llvm.org/D27846
llvm-svn: 312791
Summary:
Improve how MaxVF is computed while taking into account that MaxVF should not be larger than the loop's trip count.
Other than saving on compile-time by pruning the possible MaxVF candidates, this patch fixes pr34438 which exposed the following flow:
1. Short trip count identified -> Don't bail out, set OptForSize:=True to avoid tail-loop and runtime checks.
2. Compute MaxVF returned 16 on a target supporting AVX512.
3. OptForSize -> choose VF:=MaxVF.
4. Bail out because TripCount = 8, VF = 16, TripCount % VF !=0 means we need a tail loop.
With this patch step 2. will choose MaxVF=8 based on TripCount.
Reviewers: Ayal, dorit, mkuper, hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, llvm-commits
Differential Revision: https://reviews.llvm.org/D37425
llvm-svn: 312472
Summary:
LoopVectorizer is creating casts between vec<ptr> and vec<float> types
on ARM when compiling OpenCV. Since, tIs is illegal to directly cast a
floating point type to a pointer type even if the types have same size
causing a crash. Fix the crash using a two-step casting by bitcasting
to integer and integer to pointer/float.
Fixes PR33804.
Reviewers: mkuper, Ayal, dlj, rengolin, srhines
Reviewed By: rengolin
Subscribers: aemerson, kristof.beyls, mkazantsev, Meinersbur, rengolin, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D35498
llvm-svn: 312331
As suggested in D37121, here's a wrapper for removeFromParent() + insertAfter(),
but implemented using moveBefore() for symmetry/efficiency.
Differential Revision: https://reviews.llvm.org/D37239
llvm-svn: 312001
Original commit r311077 of D32871 was reverted in r311304 due to failures
reported in PR34248.
This recommit fixes PR34248 by restricting the packing of predicated scalars
into vectors only when vectorizing, avoiding doing so when unrolling w/o
vectorizing. Added a test derived from the reproducer of PR34248.
llvm-svn: 311849
Added a separate metadata to indicate when the loop
has already been vectorized instead of setting width and count to 1.
Patch written by Divya Shanmughan and Aditya Kumar
Differential Revision: https://reviews.llvm.org/D36220
llvm-svn: 311281
VPlan is an ongoing effort to refactor and extend the Loop Vectorizer. This
patch introduces the VPlan model into LV and uses it to represent the vectorized
code and drive the generation of vectorized IR.
In this patch VPlan models the vectorized loop body: the vectorized control-flow
is represented using VPlan's Hierarchical CFG, with predication refactored from
being a post-vectorization-step into a vectorization planning step modeling
if-then VPRegionBlocks, and generating code inline with non-predicated code. The
vectorized code within each VPBasicBlock is represented as a sequence of
Recipes, each responsible for modelling and generating a sequence of IR
instructions. To keep the size of this commit manageable the Recipes in this
patch are coarse-grained and capture large chunks of LV's code-generation logic.
The constructed VPlans are dumped in dot format under -debug.
This commit retains current vectorizer output, except for minor instruction
reorderings; see associated modifications to lit tests.
For further details on the VPlan model see docs/Proposals/VectorizationPlan.rst
and its references.
Authors: Gil Rapaport and Ayal Zaks
Differential Revision: https://reviews.llvm.org/D32871
llvm-svn: 311077
Two minor savings: avoid copying the SinkAfter map and avoid moving a cast if it
is not needed.
Differential Revision: https://reviews.llvm.org/D36408
llvm-svn: 310910
This change let us schedule a bundle with different opcodes in it, for example : [ load, add, add, add ]
Reviewers: mkuper, RKSimon, ABataev, mzolotukhin, spatel, filcab
Subscribers: llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D36518
llvm-svn: 310847
Summary:
When vectorizing fcmps we can trip on incorrect cast assertion when setting the
FastMathFlags after generating the vectorized FCmp.
This can happen if the FCmp can be folded to true or false directly. The fix
here is to set the FastMathFlag using the FastMathFlagBuilder *before* creating
the FCmp Instruction. This is what's done by other optimizations such as
InstCombine.
Added a test case which trips on cast assertion without this patch.
Reviewers: Ayal, mssimpso, mkuper, gilr
Reviewed by: Ayal, mssimpso
Subscribers: llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D36244
llvm-svn: 310389
Patch tries to improve two-pass vectorization analysis, existing in SLP vectorizer. What it does:
1. Defines key nodes, that are the vectorization roots. Previously vectorization started if StoreInst or ReturnInst is found. For now, the vectorization started for all Instructions with no users and void types (Terminators, StoreInst) + CallInsts.
2. CmpInsts, InsertElementInsts and InsertValueInsts are stored in the
array. This array is processed only after the vectorization of the
first-after-these instructions key node is finished. Vectorization goes
in reverse order to try to vectorize as much code as possible.
Reviewers: mzolotukhin, Ayal, mkuper, gilr, hfinkel, RKSimon
Subscribers: ashahid, anemet, RKSimon, mssimpso, llvm-commits
Differential Revision: https://reviews.llvm.org/D29826
llvm-svn: 310260
Summary:
Patch tries to improve two-pass vectorization analysis, existing in SLP vectorizer. What it does:
1. Defines key nodes, that are the vectorization roots. Previously vectorization started if StoreInst or ReturnInst is found. For now, the vectorization started for all Instructions with no users and void types (Terminators, StoreInst) + CallInsts.
2. CmpInsts, InsertElementInsts and InsertValueInsts are stored in the array. This array is processed only after the vectorization of the first-after-these instructions key node is finished. Vectorization goes in reverse order to try to vectorize as much code as possible.
Reviewers: mzolotukhin, Ayal, mkuper, gilr, hfinkel, RKSimon
Subscribers: ashahid, anemet, RKSimon, mssimpso, llvm-commits
Differential Revision: https://reviews.llvm.org/D29826
llvm-svn: 310255
Summary:
Currently most of the time vectors of extractelement instructions are
treated as scalars that must be gathered into vectors. But in some
cases, like when we have extractelement instructions from single vector
with different constant indeces or from 2 vectors of the same size, we
can treat this operations as shuffle of a single vector or blending of 2
vectors.
```
define <2 x i8> @g(<2 x i8> %x, <2 x i8> %y) {
%x0 = extractelement <2 x i8> %x, i32 0
%y1 = extractelement <2 x i8> %y, i32 1
%x0x0 = mul i8 %x0, %x0
%y1y1 = mul i8 %y1, %y1
%ins1 = insertelement <2 x i8> undef, i8 %x0x0, i32 0
%ins2 = insertelement <2 x i8> %ins1, i8 %y1y1, i32 1
ret <2 x i8> %ins2
}
```
can be converted to something like
```
define <2 x i8> @g(<2 x i8> %x, <2 x i8> %y) {
%1 = shufflevector <2 x i8> %x, <2 x i8> %y, <2 x i32> <i32 0, i32 3>
%2 = mul <2 x i8> %1, %1
ret <2 x i8> %2
}
```
Currently this type of conversion is considered as high cost
transformation.
Reviewers: mzolotukhin, delena, mkuper, hfinkel, RKSimon
Subscribers: ashahid, RKSimon, spatel, llvm-commits
Differential Revision: https://reviews.llvm.org/D30200
llvm-svn: 309812
The Loop Vectorizer generates redundant operations when manipulating masks:
AND with true, OR with false, compare equal to true. Instead of relying on
a subsequent pass to clean them up, this patch avoids generating them.
Use null (no-mask) to represent all-one full masks, instead of a constant
all-one vector, following the convention of masked gathers and scatters.
Preparing for a follow-up VPlan patch in which these mask manipulating
operations are modeled using recipes.
Differential Revision: https://reviews.llvm.org/D35725
llvm-svn: 309558
Summary:
After some changes in SLP vectorizer we missed some additional checks to
limit the instructions for vectorization. We should not perform analysis
of the instructions if the parent of instruction is not the same as the
parent of the first instruction in the tree or it was analyzed already.
Subscribers: mzolotukhin
Differential Revision: https://reviews.llvm.org/D34881
llvm-svn: 309425
Generate a single test to decide if there are enough iterations to jump to the
vectorized loop, or else go to the scalar remainder loop. This test compares the
Scalar Trip Count: if STC < VF * UF go to the scalar loop. If
requiresScalarEpilogue() holds, at-least one iteration must remain scalar; the
rest can be used to form vector iterations. So in this case the test checks
instead if (STC - 1) < VF * UF by comparing STC <= VF * UF, and going to the
scalar loop if so. Otherwise the vector loop is entered for at-least one vector
iteration.
This test covers the case where incrementing the backedge-taken count will
overflow leading to an incorrect trip count of zero. In this (rare) case we will
also avoid the vector loop and jump to the scalar loop.
This patch simplifies the existing tests and effectively removes the basic-block
originally named "min.iters.checked", leaving the single test in block
"vector.ph".
Original observation and initial patch by Evgeny Stupachenko.
Differential Revision: https://reviews.llvm.org/D34150
llvm-svn: 308421
Summary:
vectorizer-maximize-bandwidth is generally useful in terms of performance. I've tested the impact of changing this to default on speccpu benchmarks on sandybridge machines. The result shows non-negative impact:
spec/2006/fp/C++/444.namd 26.84 -0.31%
spec/2006/fp/C++/447.dealII 46.19 +0.89%
spec/2006/fp/C++/450.soplex 42.92 -0.44%
spec/2006/fp/C++/453.povray 38.57 -2.25%
spec/2006/fp/C/433.milc 24.54 -0.76%
spec/2006/fp/C/470.lbm 41.08 +0.26%
spec/2006/fp/C/482.sphinx3 47.58 -0.99%
spec/2006/int/C++/471.omnetpp 22.06 +1.87%
spec/2006/int/C++/473.astar 22.65 -0.12%
spec/2006/int/C++/483.xalancbmk 33.69 +4.97%
spec/2006/int/C/400.perlbench 33.43 +1.70%
spec/2006/int/C/401.bzip2 23.02 -0.19%
spec/2006/int/C/403.gcc 32.57 -0.43%
spec/2006/int/C/429.mcf 40.35 +0.27%
spec/2006/int/C/445.gobmk 26.96 +0.06%
spec/2006/int/C/456.hmmer 24.4 +0.19%
spec/2006/int/C/458.sjeng 27.91 -0.08%
spec/2006/int/C/462.libquantum 57.47 -0.20%
spec/2006/int/C/464.h264ref 46.52 +1.35%
geometric mean +0.29%
The regression on 453.povray seems real, but is due to secondary effects as all hot functions are bit-identical with and without the flag.
I started this patch to consult upstream opinions on this. It will be greatly appreciated if the community can help test the performance impact of this change on other architectures so that we can decided if this should be target-dependent.
Reviewers: hfinkel, mkuper, davidxl, chandlerc
Reviewed By: chandlerc
Subscribers: rengolin, sanjoy, javed.absar, bjope, dorit, magabari, RKSimon, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D33341
llvm-svn: 306933
Check if a single cast is preventing handling a first-order-recurrence Phi,
because the scheduling constraints it imposes on the first-order-recurrence
shuffle are infeasible; but they can be made feasible by moving the cast
downwards. Record such casts and move them when vectorizing the loop.
Differential Revision: https://reviews.llvm.org/D33058
llvm-svn: 306884
It may be detrimental to vectorize loops with very small trip count, as various
costs of the vectorized loop body as well as enclosing overheads including
runtime tests and scalar iterations may outweigh the gains of vectorizing. The
current cost model measures the cost of the vectorized loop body only, expecting
it will amortize other costs, and loops with known or expected very small trip
counts are not vectorized at all. This patch allows loops with very small trip
counts to be vectorized, but under OptForSize constraints, which ensure the cost
of the loop body is dominant, having no runtime guards nor scalar iterations.
Patch inspired by D32451.
Differential Revision: https://reviews.llvm.org/D34373
llvm-svn: 306803
It served us well, helped kick-start much of the vectorization efforts
in LLVM, etc. Its time has come and past. Back in 2014:
http://lists.llvm.org/pipermail/llvm-dev/2014-November/079091.html
Time to actually let go and move forward. =]
I've updated the release notes both about the removal and the
deprecation of the corresponding C API.
llvm-svn: 306797
r306381 caused PR33613, by reversing the order in which insertelements were
generated per unroll part. This patch fixes PR33613 by retraining this order,
placing each set of insertelements per part immediately after the last scalar
being packed for this part. Includes a test case derived from PR33613.
Reference: https://bugs.llvm.org/show_bug.cgi?id=33613
Differential Revision: https://reviews.llvm.org/D34760
llvm-svn: 306575
Undoing revert 306338 after fixed bug: add metadata to the load instead of the
reverse shuffle added to it, retaining the original ValueMap implementation.
llvm-svn: 306381
Summary:
vectorizer-maximize-bandwidth is generally useful in terms of performance. I've tested the impact of changing this to default on speccpu benchmarks on sandybridge machines. The result shows non-negative impact:
spec/2006/fp/C++/444.namd 26.84 -0.31%
spec/2006/fp/C++/447.dealII 46.19 +0.89%
spec/2006/fp/C++/450.soplex 42.92 -0.44%
spec/2006/fp/C++/453.povray 38.57 -2.25%
spec/2006/fp/C/433.milc 24.54 -0.76%
spec/2006/fp/C/470.lbm 41.08 +0.26%
spec/2006/fp/C/482.sphinx3 47.58 -0.99%
spec/2006/int/C++/471.omnetpp 22.06 +1.87%
spec/2006/int/C++/473.astar 22.65 -0.12%
spec/2006/int/C++/483.xalancbmk 33.69 +4.97%
spec/2006/int/C/400.perlbench 33.43 +1.70%
spec/2006/int/C/401.bzip2 23.02 -0.19%
spec/2006/int/C/403.gcc 32.57 -0.43%
spec/2006/int/C/429.mcf 40.35 +0.27%
spec/2006/int/C/445.gobmk 26.96 +0.06%
spec/2006/int/C/456.hmmer 24.4 +0.19%
spec/2006/int/C/458.sjeng 27.91 -0.08%
spec/2006/int/C/462.libquantum 57.47 -0.20%
spec/2006/int/C/464.h264ref 46.52 +1.35%
geometric mean +0.29%
The regression on 453.povray seems real, but is due to secondary effects as all hot functions are bit-identical with and without the flag.
I started this patch to consult upstream opinions on this. It will be greatly appreciated if the community can help test the performance impact of this change on other architectures so that we can decided if this should be target-dependent.
Reviewers: hfinkel, mkuper, davidxl, chandlerc
Reviewed By: chandlerc
Subscribers: rengolin, sanjoy, javed.absar, bjope, dorit, magabari, RKSimon, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D33341
llvm-svn: 306336
Instead of providing access to the internal MapStorage holding all Values
associated with a given Key, used for setting or resetting them all together,
ValueMap keeps its MapStorage internal; its new interface allows getting,
setting or resetting a single Value, per part or per part-and-lane.
Follows the discussion in https://reviews.llvm.org/D32871.
Differential Revision: https://reviews.llvm.org/D34473
llvm-svn: 306331
Summary:
vectorizer-maximize-bandwidth is generally useful in terms of performance. I've tested the impact of changing this to default on speccpu benchmarks on sandybridge machines. The result shows non-negative impact:
spec/2006/fp/C++/444.namd 26.84 -0.31%
spec/2006/fp/C++/447.dealII 46.19 +0.89%
spec/2006/fp/C++/450.soplex 42.92 -0.44%
spec/2006/fp/C++/453.povray 38.57 -2.25%
spec/2006/fp/C/433.milc 24.54 -0.76%
spec/2006/fp/C/470.lbm 41.08 +0.26%
spec/2006/fp/C/482.sphinx3 47.58 -0.99%
spec/2006/int/C++/471.omnetpp 22.06 +1.87%
spec/2006/int/C++/473.astar 22.65 -0.12%
spec/2006/int/C++/483.xalancbmk 33.69 +4.97%
spec/2006/int/C/400.perlbench 33.43 +1.70%
spec/2006/int/C/401.bzip2 23.02 -0.19%
spec/2006/int/C/403.gcc 32.57 -0.43%
spec/2006/int/C/429.mcf 40.35 +0.27%
spec/2006/int/C/445.gobmk 26.96 +0.06%
spec/2006/int/C/456.hmmer 24.4 +0.19%
spec/2006/int/C/458.sjeng 27.91 -0.08%
spec/2006/int/C/462.libquantum 57.47 -0.20%
spec/2006/int/C/464.h264ref 46.52 +1.35%
geometric mean +0.29%
The regression on 453.povray seems real, but is due to secondary effects as all hot functions are bit-identical with and without the flag.
I started this patch to consult upstream opinions on this. It will be greatly appreciated if the community can help test the performance impact of this change on other architectures so that we can decided if this should be target-dependent.
Reviewers: hfinkel, mkuper, davidxl, chandlerc
Reviewed By: chandlerc
Subscribers: rengolin, sanjoy, javed.absar, bjope, dorit, magabari, RKSimon, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D33341
llvm-svn: 305960
Summary:
Existing heuristic uses the ratio between the function entry
frequency and the loop invocation frequency to find cold loops. However,
even if the loop executes frequently, if it has a small trip count per
each invocation, vectorization is not beneficial. On the other hand,
even if the loop invocation frequency is much smaller than the function
invocation frequency, if the trip count is high it is still beneficial
to vectorize the loop.
This patch uses estimated trip count computed from the profile metadata
as a primary metric to determine coldness of the loop. If the estimated
trip count cannot be computed, it falls back to the original heuristics.
Reviewers: Ayal, mssimpso, mkuper, danielcdh, wmi, tejohnson
Reviewed By: tejohnson
Subscribers: tejohnson, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D32451
llvm-svn: 305729
If we're shrinking a binary operation, it may be the case that the new
operations wraps where the old didn't. If this happens, the behavior
should be well-defined. So, we can't always carry wrapping flags with us
when we shrink operations.
If we do, we get incorrect optimizations in cases like:
void foo(const unsigned char *from, unsigned char *to, int n) {
for (int i = 0; i < n; i++)
to[i] = from[i] - 128;
}
which gets optimized to:
void foo(const unsigned char *from, unsigned char *to, int n) {
for (int i = 0; i < n; i++)
to[i] = from[i] | 128;
}
Because:
- InstCombine turned `sub i32 %from.i, 128` into
`add nuw nsw i32 %from.i, 128`.
- LoopVectorize vectorized the add to be `add nuw nsw <16 x i8>` with a
vector full of `i8 128`s
- InstCombine took advantage of the fact that the newly-shrunken add
"couldn't wrap", and changed the `add` to an `or`.
InstCombine seems happy to figure out whether we can add nuw/nsw on its
own, so I just decided to drop the flags. There are already a number of
places in LoopVectorize where we rely on InstCombine to clean up.
llvm-svn: 305053
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
Following the request made in https://reviews.llvm.org/D32871,
scalarizeInstruction() which is no longer overridden by InnerLoopUnroller is
hereby made non-virtual in InnerLoopVectorizer.
Should have been part of r297580 originally.
llvm-svn: 304685
Fixed some comments, added an additional description of the algorithms,
improved readability of the code.
Differential revision: https://reviews.llvm.org/D33320
llvm-svn: 304616
Summary:
Fixed some comments, added an additional description of the algorithms,
improved readability of the code.
Reviewers: anemet
Subscribers: llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D33320
llvm-svn: 304593
r303763 caused build failures in some out-of-tree tests due to an assertion in
TTI. The original patch updated cost estimates for induction variable update
instructions marked for scalarization. However, it didn't consider that the
incoming value of an induction variable phi node could be a cast instruction.
This caused queries for cast instruction costs with a mix of vector and scalar
types. This patch includes a fix for cast instructions and the test case from
PR33193.
The fix was suggested by Jonas Paulsson <paulsson@linux.vnet.ibm.com>.
Reference: https://bugs.llvm.org/show_bug.cgi?id=33193
Original Differential Revision: https://reviews.llvm.org/D33457
llvm-svn: 304235
For non-uniform instructions marked for scalarization, we should update
`VectorTy` when computing instruction costs to reflect the scalar type. In
addition to determining instruction costs, this type is also used to signal
that all instructions in the loop will be scalarized. This currently affects
memory instructions and non-pointer induction variables and their updates. (We
also mark GEPs scalar after vectorization, but their cost is computed together
with memory instructions.) For scalarized induction updates, this patch also
scales the scalar cost by the vectorization factor, corresponding to each
induction step.
llvm-svn: 303763
The loop vectorizer usually vectorizes any instruction it can and then
extracts the elements for a scalarized use. On SystemZ, all elements
containing addresses must be extracted into address registers (GRs). Since
this extraction is not free, it is better to have the address in a suitable
register to begin with. By forcing address arithmetic instructions and loads
of addresses to be scalar after vectorization, two benefits result:
* No need to extract the register
* LSR optimizations trigger (LSR isn't handling vector addresses currently)
Benchmarking show improvements on SystemZ with this new behaviour.
Any other target could try this by returning false in the new hook
prefersVectorizedAddressing().
Review: Renato Golin, Elena Demikhovsky, Ulrich Weigand
https://reviews.llvm.org/D32422
llvm-svn: 303744
The default behavior of -Rpass-analysis=loop-vectorizer is to report only the
first reason encountered for not vectorizing, if one is found, at which time the
vectorizer aborts its handling of the loop. This patch allows multiple reasons
for not vectorizing to be identified and reported, at the potential expense of
additional compile-time, under allowExtraAnalysis which can currently be turned
on by Clang's -fsave-optimization-record and opt's -pass-remarks-missed.
Removed from LoopVectorizationLegality::canVectorize() the redundant checking
and reporting if we CantComputeNumberOfIterations, as LAI::canAnalyzeLoop() also
does that. This redundancy is caught by a lit test once multiple reasons are
reported.
Patch initially developed by Dror Barak.
Differential Revision: https://reviews.llvm.org/D33396
llvm-svn: 303613
Summary:
Implements PR889
Removing the virtual table pointer from Value saves 1% of RSS when doing
LTO of llc on Linux. The impact on time was positive, but too noisy to
conclusively say that performance improved. Here is a link to the
spreadsheet with the original data:
https://docs.google.com/spreadsheets/d/1F4FHir0qYnV0MEp2sYYp_BuvnJgWlWPhWOwZ6LbW7W4/edit?usp=sharing
This change makes it invalid to directly delete a Value, User, or
Instruction pointer. Instead, such code can be rewritten to a null check
and a call Value::deleteValue(). Value objects tend to have their
lifetimes managed through iplist, so for the most part, this isn't a big
deal. However, there are some places where LLVM deletes values, and
those places had to be migrated to deleteValue. I have also created
llvm::unique_value, which has a custom deleter, so it can be used in
place of std::unique_ptr<Value>.
I had to add the "DerivedUser" Deleter escape hatch for MemorySSA, which
derives from User outside of lib/IR. Code in IR cannot include MemorySSA
headers or call the MemoryAccess object destructors without introducing
a circular dependency, so we need some level of indirection.
Unfortunately, no class derived from User may have any virtual methods,
because adding a virtual method would break User::getHungOffOperands(),
which assumes that it can find the use list immediately prior to the
User object. I've added a static_assert to the appropriate OperandTraits
templates to help people avoid this trap.
Reviewers: chandlerc, mehdi_amini, pete, dberlin, george.burgess.iv
Reviewed By: chandlerc
Subscribers: krytarowski, eraman, george.burgess.iv, mzolotukhin, Prazek, nlewycky, hans, inglorion, pcc, tejohnson, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D31261
llvm-svn: 303362
ARM Neon has native support for half-sized vector registers (64 bits). This
is beneficial for example for 2D and 3D graphics. This patch adds the option
to lower MinVecRegSize from 128 via a TTI in the SLP Vectorizer.
*** Performance Analysis
This change was motivated by some internal benchmarks but it is also
beneficial on SPEC and the LLVM testsuite.
The results are with -O3 and PGO. A negative percentage is an improvement.
The testsuite was run with a sample size of 4.
** SPEC
* CFP2006/482.sphinx3 -3.34%
A pretty hot loop is SLP vectorized resulting in nice instruction reduction.
This used to be a +22% regression before rL299482.
* CFP2000/177.mesa -3.34%
* CINT2000/256.bzip2 +6.97%
My current plan is to extend the fix in rL299482 to i16 which brings the
regression down to +2.5%. There are also other problems with the codegen in
this loop so there is further room for improvement.
** LLVM testsuite
* SingleSource/Benchmarks/Misc/ReedSolomon -10.75%
There are multiple small SLP vectorizations outside the hot code. It's a bit
surprising that it adds up to 10%. Some of this may be code-layout noise.
* MultiSource/Benchmarks/VersaBench/beamformer/beamformer -8.40%
The opt-viewer screenshot can be seen at F3218284. We start at a colder store
but the tree leads us into the hottest loop.
* MultiSource/Applications/lambda-0.1.3/lambda -2.68%
* MultiSource/Benchmarks/Bullet/bullet -2.18%
This is using 3D vectors.
* SingleSource/Benchmarks/Shootout-C++/Shootout-C++-lists +6.67%
Noise, binary is unchanged.
* MultiSource/Benchmarks/Ptrdist/anagram/anagram +4.90%
There is an additional SLP in the cold code. The test runs for ~1sec and
prints out over 2000 lines. This is most likely noise.
* MultiSource/Applications/aha/aha +1.63%
* MultiSource/Applications/JM/lencod/lencod +1.41%
* SingleSource/Benchmarks/Misc/richards_benchmark +1.15%
Differential Revision: https://reviews.llvm.org/D31965
llvm-svn: 303116
This patch adds min/max population count, leading/trailing zero/one bit counting methods.
The min methods return answers based on bits that are known without considering unknown bits. The max methods give answers taking into account the largest count that unknown bits could give.
Differential Revision: https://reviews.llvm.org/D32931
llvm-svn: 302925
The approach I followed was to emit the remark after getTreeCost concludes
that SLP is profitable. I initially tried emitting them after the
vectorizeRootInstruction calls in vectorizeChainsInBlock but I vaguely
remember missing a few cases for example in HorizontalReduction::tryToReduce.
ORE is placed in BoUpSLP so that it's available from everywhere (notably
HorizontalReduction::tryToReduce).
We use the first instruction in the root bundle as the locator for the remark.
In order to get a sense how far the tree is spanning I've include the size of
the tree in the remark. This is not perfect of course but it gives you at
least a rough idea about the tree. Then you can follow up with -view-slp-tree
to really see the actual tree.
llvm-svn: 302811
Introduce LoopVectorizationPlanner.executePlan(), replacing ILV.vectorize() and
refactoring ILV.vectorizeLoop(). Method collectDeadInstructions() is moved from
ILV to LVP. These changes facilitate building VPlans and using them to generate
code, following https://reviews.llvm.org/D28975 and its tentative breakdown.
Method ILV.createEmptyLoop() is renamed ILV.createVectorizedLoopSkeleton() to
improve clarity; it's contents remain intact.
Differential Revision: https://reviews.llvm.org/D32200
llvm-svn: 302790
The AArch64 instruction set has a few "widening" instructions (e.g., uaddl,
saddl, uaddw, etc.) that take one or more doubleword operands and produce
quadword results. The operands are automatically sign- or zero-extended as
appropriate. However, in LLVM IR, these extends are explicit. This patch
updates TTI to consider these widening instructions as single operations whose
cost is attached to the arithmetic instruction. It marks extends that are part
of a widening operation "free" and applies a sub-target specified overhead
(zero by default) to the arithmetic instructions.
Differential Revision: https://reviews.llvm.org/D32706
llvm-svn: 302582
Summary:
In first order recurrence vectorization, when the previous value is a phi node, we need to
set the insertion point to the first non-phi node.
We can have the previous value being a phi node, due to the generation of new
IVs as part of trunc optimization [1].
[1] https://reviews.llvm.org/rL294967
Reviewers: mssimpso, mkuper
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D32969
llvm-svn: 302532
- This change allows targets to opt-in to using them instead of the log2
shufflevector algorithm.
- The SLP and Loop vectorizers have the common code to do shuffle reductions
factored out into LoopUtils, and now have a unified interface for generating
reductions regardless of the preference of the target. LoopUtils now uses TTI
to determine what kind of reductions the target wants to handle.
- For CodeGen, basic legalization support is added.
Differential Revision: https://reviews.llvm.org/D30086
llvm-svn: 302514
This patch introduces a new KnownBits struct that wraps the two APInt used by computeKnownBits. This allows us to treat them as more of a unit.
Initially I've just altered the signatures of computeKnownBits and InstCombine's simplifyDemandedBits to pass a KnownBits reference instead of two separate APInt references. I'll do similar to the SelectionDAG version of computeKnownBits/simplifyDemandedBits as a separate patch.
I've added a constructor that allows initializing both APInts to the same bit width with a starting value of 0. This reduces the repeated pattern of initializing both APInts. Once place default constructed the APInts so I added a default constructor for those cases.
Going forward I would like to add more methods that will work on the pairs. For example trunc, zext, and sext occur on both APInts together in several places. We should probably add a clear method that can be used to clear both pieces. Maybe a method to check for conflicting information. A method to return (Zero|One) so we don't write it out everywhere. Maybe a method for (Zero|One).isAllOnesValue() to determine if all bits are known. I'm sure there are many other methods we can come up with.
Differential Revision: https://reviews.llvm.org/D32376
llvm-svn: 301432
Commits were:
"Use WeakVH instead of WeakTrackingVH in AliasSetTracker's UnkownInsts"
"Add a new WeakVH value handle; NFC"
"Rename WeakVH to WeakTrackingVH; NFC"
The changes assumed pointers are 8 byte aligned on all architectures.
llvm-svn: 301429
Summary:
I plan to use WeakVH to mean "nulls itself out on deletion, but does
not track RAUW" in a subsequent commit.
Reviewers: dblaikie, davide
Reviewed By: davide
Subscribers: arsenm, mehdi_amini, mcrosier, mzolotukhin, jfb, llvm-commits, nhaehnle
Differential Revision: https://reviews.llvm.org/D32266
llvm-svn: 301424
This patch uses various APInt methods to reduce temporary APInt creation.
This should be all of the unrelated cleanups that got buried in D32376(creating a KnownBits struct) as well as some pointed out by Simon during the review of that. Plus a few improvements to use counting instead of masking.
I've left out any places where we do something like (KnownZero & KnownOne) != 0 as I plan to add a helper method to KnownBits to ask that question and didn't want to thrash that code an additional time.
Differential Revision: https://reviews.llvm.org/D32495
llvm-svn: 301338
This patch is part of D28975's breakdown.
Genreating the control-flow to guard predicated instructions modified to
only use SplitBlockAndInsertIfThen() for producing the if-then construct.
Differential Revision: https://reviews.llvm.org/D32224
llvm-svn: 301293
Phi nodes in non-header blocks are converted to select instructions after
if-conversion. This patch updates the cost model to account for the selects.
Differential Revision: https://reviews.llvm.org/D31906
llvm-svn: 300980
In tryToVectorizeList, under a very limited circumstance (when entered
from tryToVectorizePair), the values may be reordered (swapped) and the
SLP tree is built with the new order. This extends that to the case when
starting from phis in vectorizeChainsInBlock when there are exactly two
phis. The textual order of phi nodes shouldn't really matter. Without
this change, the loop body in the accompnaying test case is fully vectorized
when we swap the orde of the phis but not with this order. While this
doesn't solve the phi-ordering problem in a general way (for more than 2
phis), this is simple fix that piggybacks on an existing mechanism and
is useful in cases like multiplying two complex numbers.
Differential revision: https://reviews.llvm.org/D32065
llvm-svn: 300574
This patch is part of D28975's breakdown.
Add caching for block masks similar to the cache already used for edge masks,
replacing generation per user with reusing the first generated value which
dominates all uses.
Differential Revision: https://reviews.llvm.org/D32054
llvm-svn: 300557
This patch is part of D28975's breakdown - no change in output intended.
LV's code currently assumes the vectorized loop is a single basic block up
until predicateInstructions() is called. This patch removes two manifestations
of this assumption (loop phi incoming values, dominator tree update) by
replacing the use of vectorLoopBody with the vectorized loop's latch/header.
Differential Revision: https://reviews.llvm.org/D32040
llvm-svn: 300310
Summary:
In first order recurrences where phi's are used outside the loop,
we should generate an additional vector.extract of the second last element from
the vectorized phi update.
This is because we require the phi itself (which is the value at the second last
iteration of the vector loop) and not the phi's update within the loop.
Also fix the code gen when we just unroll, but don't vectorize.
Fixes PR32396.
Reviewers: mssimpso, mkuper, anemet
Subscribers: llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D31979
llvm-svn: 300238
Refactoring InnerLoopVectorizer's vectorizeBlockInLoop() to provide
vectorizeInstruction(). Aligning DeadInstructions with its only user.
Facilitates driving the transformation by VPlan - follows
https://reviews.llvm.org/D28975 and its tentative breakdown.
Differential Revision: https://reviews.llvm.org/D31997
llvm-svn: 300183
In getEntryCost(), make the scalar type for a compare instruction that of the
operands, not i1. This is needed in order to call getCmpSelInstrCost() for a
compare in a sensible way, the same way as the LoopVectorizer does.
New test: test/Transforms/SLPVectorizer/SystemZ/SLP-cmp-cost-query.ll
Review: Matthew Simpson
https://reviews.llvm.org/D31601
llvm-svn: 300061
The cost for a branch after vectorization is very different depending on if
the vectorizer will if-convert the block (branch is eliminated), or if
scalarized and predicated blocks will be produced (branch duplicated before
each block). There is also the case of remaining scalar branches, such as the
back-edge branch.
This patch handles these cases differently with TTI based cost estimates.
Review: Matthew Simpson
https://reviews.llvm.org/D31175
llvm-svn: 300058
Since SystemZ supports vector element load/store instructions, there is no
need for extracts/inserts if a vector load/store gets scalarized.
This patch lets Target specify that it supports such instructions by means of
a new TTI hook that defaults to false.
The use for this is in the LoopVectorizer getScalarizationOverhead() method,
which will with this patch produce a smaller sum for a vector load/store on
SystemZ.
New test: test/Transforms/LoopVectorize/SystemZ/load-store-scalarization-cost.ll
Review: Adam Nemet
https://reviews.llvm.org/D30680
llvm-svn: 300056
getArithmeticInstrCost(), getShuffleCost(), getCastInstrCost(),
getCmpSelInstrCost(), getVectorInstrCost(), getMemoryOpCost(),
getInterleavedMemoryOpCost() implemented.
Interleaved access vectorization enabled.
BasicTTIImpl::getCastInstrCost() improved to check for legal extending loads,
in which case the cost of the z/sext instruction becomes 0.
Review: Ulrich Weigand, Renato Golin.
https://reviews.llvm.org/D29631
llvm-svn: 300052
In the vectorization of first order recurrence, we vectorize such
that the last element in the vector will be the one extracted to pass into the
scalar remainder loop. However, this is not true when there is a phi (other
than the primary induction variable) is used outside the loop.
In such a case, we need the value from the second last iteration (i.e.
the phi value), not the last iteration (which would be the phi update).
I've added a test case for this. Also see PR32396.
A follow up patch would generate the correct code gen for such cases,
and turn this vectorization on.
Differential Revision: https://reviews.llvm.org/D31910
Reviewers: mssimpso
llvm-svn: 299985
This patch reapplies r298620. The original patch was reverted because of two
issues. First, the patch exposed a bug in InstCombine that caused the Chromium
builds to fail (PR32414). This issue was fixed in r299017. Second, the patch
introduced a bug in the vectorizer's scalars analysis that caused test suite
builds to fail on SystemZ. The scalars analysis was too aggressive and marked a
memory instruction scalar, even though it was going to be vectorized. This
issue has been fixed in the current patch and several new test cases for the
scalars analysis have been added.
llvm-svn: 299770
The vectorizer tries to replace truncations of induction variables with new
induction variables having the smaller type. After r295063, this optimization
was applied to all integer induction variables, including non-primary ones.
When optimizing the truncation of a non-primary induction variable, we still
need to transform the new induction so that it has the correct start value.
This should fix PR32419.
Reference: https://bugs.llvm.org/show_bug.cgi?id=32419
llvm-svn: 298882
Reason: breaks linking Chromium with LLD + ThinLTO (a pass crashes)
LLVM bug: https://bugs.llvm.org//show_bug.cgi?id=32413
Original change description:
[LV] Vectorize GEPs
This patch adds support for vectorizing GEPs. Previously, we only generated
vector GEPs on-demand when creating gather or scatter operations. All GEPs from
the original loop were scalarized by default, and if a pointer was to be stored
to memory, we would have to build up the pointer vector with insertelement
instructions.
With this patch, we will vectorize all GEPs that haven't already been marked
for scalarization.
The patch refines collectLoopScalars to more exactly identify the scalar GEPs.
The function now more closely resembles collectLoopUniforms. And the patch
moves vector GEP creation out of vectorizeMemoryInstruction and into the main
vectorization loop. The vector GEPs needed for gather and scatter operations
will have already been generated before vectoring the memory accesses.
Original Differential Revision: https://reviews.llvm.org/D30710
llvm-svn: 298735
This patch adds support for vectorizing GEPs. Previously, we only generated
vector GEPs on-demand when creating gather or scatter operations. All GEPs from
the original loop were scalarized by default, and if a pointer was to be stored
to memory, we would have to build up the pointer vector with insertelement
instructions.
With this patch, we will vectorize all GEPs that haven't already been marked
for scalarization.
The patch refines collectLoopScalars to more exactly identify the scalar GEPs.
The function now more closely resembles collectLoopUniforms. And the patch
moves vector GEP creation out of vectorizeMemoryInstruction and into the main
vectorization loop. The vector GEPs needed for gather and scatter operations
will have already been generated before vectoring the memory accesses.
Differential Revision: https://reviews.llvm.org/D30710
llvm-svn: 298620
The code for generating scalar base pointers in vectorizeMemoryInstruction is
not needed. We currently scalarize all GEPs and maintain the scalarized values
in VectorLoopValueMap. The GEP cloning in this unneeded code is the same as
that in scalarizeInstruction. The test cases that changed as a result of this
patch changed because we were able to reuse the scalarized GEP that we
previously generated instead of cloning a new one.
Differential Revision: https://reviews.llvm.org/D30587
llvm-svn: 298615