Port hardware assisted address sanitizer to new PM following the same guidelines as msan and tsan.
Changes:
- Separate HWAddressSanitizer into a pass class and a sanitizer class.
- Create new PM wrapper pass for the sanitizer class.
- Use the getOrINsert pattern for some module level initialization declarations.
- Also enable kernel-kwasan in new PM
- Update llvm tests and add clang test.
Differential Revision: https://reviews.llvm.org/D61709
llvm-svn: 360707
Each hwasan check requires emitting a small piece of code like this:
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html#memory-accesses
The problem with this is that these code blocks typically bloat code
size significantly.
An obvious solution is to outline these blocks of code. In fact, this
has already been implemented under the -hwasan-instrument-with-calls
flag. However, as currently implemented this has a number of problems:
- The functions use the same calling convention as regular C functions.
This means that the backend must spill all temporary registers as
required by the platform's C calling convention, even though the
check only needs two registers on the hot path.
- The functions take the address to be checked in a fixed register,
which increases register pressure.
Both of these factors can diminish the code size effect and increase
the performance hit of -hwasan-instrument-with-calls.
The solution that this patch implements is to involve the aarch64
backend in outlining the checks. An intrinsic and pseudo-instruction
are created to represent a hwasan check. The pseudo-instruction
is register allocated like any other instruction, and we allow the
register allocator to select almost any register for the address to
check. A particular combination of (register selection, type of check)
triggers the creation in the backend of a function to handle the check
for specifically that pair. The resulting functions are deduplicated by
the linker. The pseudo-instruction (really the function) is specified
to preserve all registers except for the registers that the AAPCS
specifies may be clobbered by a call.
To measure the code size and performance effect of this change, I
took a number of measurements using Chromium for Android on aarch64,
comparing a browser with inlined checks (the baseline) against a
browser with outlined checks.
Code size: Size of .text decreases from 243897420 to 171619972 bytes,
or a 30% decrease.
Performance: Using Chromium's blink_perf.layout microbenchmarks I
measured a median performance regression of 6.24%.
The fact that a perf/size tradeoff is evident here suggests that
we might want to make the new behaviour conditional on -Os/-Oz.
But for now I've enabled it unconditionally, my reasoning being that
hwasan users typically expect a relatively large perf hit, and ~6%
isn't really adding much. We may want to revisit this decision in
the future, though.
I also tried experimenting with varying the number of registers
selectable by the hwasan check pseudo-instruction (which would result
in fewer variants being created), on the hypothesis that creating
fewer variants of the function would expose another perf/size tradeoff
by reducing icache pressure from the check functions at the cost of
register pressure. Although I did observe a code size increase with
fewer registers, I did not observe a strong correlation between the
number of registers and the performance of the resulting browser on the
microbenchmarks, so I conclude that we might as well use ~all registers
to get the maximum code size improvement. My results are below:
Regs | .text size | Perf hit
-----+------------+---------
~all | 171619972 | 6.24%
16 | 171765192 | 7.03%
8 | 172917788 | 5.82%
4 | 177054016 | 6.89%
Differential Revision: https://reviews.llvm.org/D56954
llvm-svn: 351920
Summary:
At compile-time, create an array of {PC,HumanReadableStackFrameDescription}
for every function that has an instrumented frame, and pass this array
to the run-time at the module-init time.
Similar to how we handle pc-table in SanitizerCoverage.
The run-time is dummy, will add the actual logic in later commits.
Reviewers: morehouse, eugenis
Reviewed By: eugenis
Subscribers: srhines, llvm-commits, kubamracek
Differential Revision: https://reviews.llvm.org/D53227
llvm-svn: 344985
Summary:
Display a list of recent stack frames (not a stack trace!) when
tag-mismatch is detected on a stack address.
The implementation uses alignment tricks to get both the address of
the history buffer, and the base address of the shadow with a single
8-byte load. See the comment in hwasan_thread_list.h for more
details.
Developed in collaboration with Kostya Serebryany.
Reviewers: kcc
Subscribers: srhines, kubamracek, mgorny, hiraditya, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D52249
llvm-svn: 342923
Summary:
Display a list of recent stack frames (not a stack trace!) when
tag-mismatch is detected on a stack address.
The implementation uses alignment tricks to get both the address of
the history buffer, and the base address of the shadow with a single
8-byte load. See the comment in hwasan_thread_list.h for more
details.
Developed in collaboration with Kostya Serebryany.
Reviewers: kcc
Subscribers: srhines, kubamracek, mgorny, hiraditya, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D52249
llvm-svn: 342921
Summary:
Support the dynamic shadow memory offset (the default case for user
space now) and static non-zero shadow memory offset
(-hwasan-mapping-offset option). Keeping the the latter case around
for functionality and performance comparison tests (and mostly for
-hwasan-mapping-offset=0 case).
The implementation is stripped down ASan one, picking only the relevant
parts in the following assumptions: shadow scale is fixed, the shadow
memory is dynamic, it is accessed via ifunc global, shadow memory address
rematerialization is suppressed.
Keep zero-based shadow memory for kernel (-hwasan-kernel option) and
calls instreumented case (-hwasan-instrument-with-calls option), which
essentially means that the generated code is not changed in these cases.
Reviewers: eugenis
Subscribers: srhines, llvm-commits
Differential Revision: https://reviews.llvm.org/D45840
llvm-svn: 330475
This patch changes hwasan inline instrumentation:
Fixes address untagging for shadow address calculation (use 0xFF instead of 0x00 for the top byte).
Emits brk instruction instead of hlt for the kernel and user space.
Use 0x900 instead of 0x100 for brk immediate (0x100 - 0x800 are unavailable in the kernel).
Fixes and adds appropriate tests.
Patch by Andrey Konovalov.
Differential Revision: https://reviews.llvm.org/D43135
llvm-svn: 325711
Summary: Very similar to AddressSanitizer, with the exception of the error type encoding.
Reviewers: kcc, alekseyshl
Subscribers: cfe-commits, kubamracek, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D41417
llvm-svn: 321203
Summary: This brings CPU overhead on bzip2 down from 5.5x to 2x.
Reviewers: kcc, alekseyshl
Subscribers: kubamracek, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D41137
llvm-svn: 320538
Summary:
This is LLVM instrumentation for the new HWASan tool. It is basically
a stripped down copy of ASan at this point, w/o stack or global
support. Instrumenation adds a global constructor + runtime callbacks
for every load and store.
HWASan comes with its own IR attribute.
A brief design document can be found in
clang/docs/HardwareAssistedAddressSanitizerDesign.rst (submitted earlier).
Reviewers: kcc, pcc, alekseyshl
Subscribers: srhines, mehdi_amini, mgorny, javed.absar, eraman, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D40932
llvm-svn: 320217