Commit Graph

14 Commits

Author SHA1 Message Date
Peter Collingbourne 7108df964a hwasan: Remove the old frame descriptor mechanism.
Differential Revision: https://reviews.llvm.org/D63470

llvm-svn: 364665
2019-06-28 17:53:26 +00:00
Leonard Chan 0cdd3b1d81 [NewPM] Port HWASan and Kernel HWASan
Port hardware assisted address sanitizer to new PM following the same guidelines as msan and tsan.

Changes:
- Separate HWAddressSanitizer into a pass class and a sanitizer class.
- Create new PM wrapper pass for the sanitizer class.
- Use the getOrINsert pattern for some module level initialization declarations.
- Also enable kernel-kwasan in new PM
- Update llvm tests and add clang test.

Differential Revision: https://reviews.llvm.org/D61709

llvm-svn: 360707
2019-05-14 21:17:21 +00:00
Peter Collingbourne 73078ecd38 hwasan: Move memory access checks into small outlined functions on aarch64.
Each hwasan check requires emitting a small piece of code like this:
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html#memory-accesses

The problem with this is that these code blocks typically bloat code
size significantly.

An obvious solution is to outline these blocks of code. In fact, this
has already been implemented under the -hwasan-instrument-with-calls
flag. However, as currently implemented this has a number of problems:
- The functions use the same calling convention as regular C functions.
  This means that the backend must spill all temporary registers as
  required by the platform's C calling convention, even though the
  check only needs two registers on the hot path.
- The functions take the address to be checked in a fixed register,
  which increases register pressure.
Both of these factors can diminish the code size effect and increase
the performance hit of -hwasan-instrument-with-calls.

The solution that this patch implements is to involve the aarch64
backend in outlining the checks. An intrinsic and pseudo-instruction
are created to represent a hwasan check. The pseudo-instruction
is register allocated like any other instruction, and we allow the
register allocator to select almost any register for the address to
check. A particular combination of (register selection, type of check)
triggers the creation in the backend of a function to handle the check
for specifically that pair. The resulting functions are deduplicated by
the linker. The pseudo-instruction (really the function) is specified
to preserve all registers except for the registers that the AAPCS
specifies may be clobbered by a call.

To measure the code size and performance effect of this change, I
took a number of measurements using Chromium for Android on aarch64,
comparing a browser with inlined checks (the baseline) against a
browser with outlined checks.

Code size: Size of .text decreases from 243897420 to 171619972 bytes,
or a 30% decrease.

Performance: Using Chromium's blink_perf.layout microbenchmarks I
measured a median performance regression of 6.24%.

The fact that a perf/size tradeoff is evident here suggests that
we might want to make the new behaviour conditional on -Os/-Oz.
But for now I've enabled it unconditionally, my reasoning being that
hwasan users typically expect a relatively large perf hit, and ~6%
isn't really adding much. We may want to revisit this decision in
the future, though.

I also tried experimenting with varying the number of registers
selectable by the hwasan check pseudo-instruction (which would result
in fewer variants being created), on the hypothesis that creating
fewer variants of the function would expose another perf/size tradeoff
by reducing icache pressure from the check functions at the cost of
register pressure. Although I did observe a code size increase with
fewer registers, I did not observe a strong correlation between the
number of registers and the performance of the resulting browser on the
microbenchmarks, so I conclude that we might as well use ~all registers
to get the maximum code size improvement. My results are below:

Regs | .text size | Perf hit
-----+------------+---------
~all | 171619972  | 6.24%
  16 | 171765192  | 7.03%
   8 | 172917788  | 5.82%
   4 | 177054016  | 6.89%

Differential Revision: https://reviews.llvm.org/D56954

llvm-svn: 351920
2019-01-23 02:20:10 +00:00
Peter Collingbourne d3a3e4b46d hwasan: Move ctor into a comdat.
Differential Revision: https://reviews.llvm.org/D55733

llvm-svn: 349413
2018-12-17 22:56:34 +00:00
Kostya Serebryany af95597c3c [hwasan] add stack frame descriptions.
Summary:
At compile-time, create an array of {PC,HumanReadableStackFrameDescription}
for every function that has an instrumented frame, and pass this array
to the run-time at the module-init time.
Similar to how we handle pc-table in SanitizerCoverage.
The run-time is dummy, will add the actual logic in later commits.

Reviewers: morehouse, eugenis

Reviewed By: eugenis

Subscribers: srhines, llvm-commits, kubamracek

Differential Revision: https://reviews.llvm.org/D53227

llvm-svn: 344985
2018-10-23 00:50:40 +00:00
Evgeniy Stepanov 090f0f9504 [hwasan] Record and display stack history in stack-based reports.
Summary:
Display a list of recent stack frames (not a stack trace!) when
tag-mismatch is detected on a stack address.

The implementation uses alignment tricks to get both the address of
the history buffer, and the base address of the shadow with a single
8-byte load. See the comment in hwasan_thread_list.h for more
details.

Developed in collaboration with Kostya Serebryany.

Reviewers: kcc

Subscribers: srhines, kubamracek, mgorny, hiraditya, jfb, llvm-commits

Differential Revision: https://reviews.llvm.org/D52249

llvm-svn: 342923
2018-09-24 23:03:34 +00:00
Evgeniy Stepanov 20c4999e8b Revert "[hwasan] Record and display stack history in stack-based reports."
This reverts commit r342921: test failures on clang-cmake-arm* bots.

llvm-svn: 342922
2018-09-24 22:50:32 +00:00
Evgeniy Stepanov 9043e17edd [hwasan] Record and display stack history in stack-based reports.
Summary:
Display a list of recent stack frames (not a stack trace!) when
tag-mismatch is detected on a stack address.

The implementation uses alignment tricks to get both the address of
the history buffer, and the base address of the shadow with a single
8-byte load. See the comment in hwasan_thread_list.h for more
details.

Developed in collaboration with Kostya Serebryany.

Reviewers: kcc

Subscribers: srhines, kubamracek, mgorny, hiraditya, jfb, llvm-commits

Differential Revision: https://reviews.llvm.org/D52249

llvm-svn: 342921
2018-09-24 21:38:42 +00:00
Alex Shlyapnikov 99cf54baa6 [HWASan] Introduce non-zero based and dynamic shadow memory (LLVM).
Summary:
Support the dynamic shadow memory offset (the default case for user
space now) and static non-zero shadow memory offset
(-hwasan-mapping-offset option). Keeping the the latter case around
for functionality and performance comparison tests (and mostly for
-hwasan-mapping-offset=0 case).

The implementation is stripped down ASan one, picking only the relevant
parts in the following assumptions: shadow scale is fixed, the shadow
memory is dynamic, it is accessed via ifunc global, shadow memory address
rematerialization is suppressed.

Keep zero-based shadow memory for kernel (-hwasan-kernel option) and
calls instreumented case (-hwasan-instrument-with-calls option), which
essentially means that the generated code is not changed in these cases.

Reviewers: eugenis

Subscribers: srhines, llvm-commits

Differential Revision: https://reviews.llvm.org/D45840

llvm-svn: 330475
2018-04-20 20:04:04 +00:00
Evgeniy Stepanov 43271b1803 [hwasan] Fix inline instrumentation.
This patch changes hwasan inline instrumentation:

Fixes address untagging for shadow address calculation (use 0xFF instead of 0x00 for the top byte).
Emits brk instruction instead of hlt for the kernel and user space.
Use 0x900 instead of 0x100 for brk immediate (0x100 - 0x800 are unavailable in the kernel).
Fixes and adds appropriate tests.

Patch by Andrey Konovalov.

Differential Revision: https://reviews.llvm.org/D43135

llvm-svn: 325711
2018-02-21 19:52:23 +00:00
Evgeniy Stepanov c07e0bd533 [hwasan] Rename sized load/store callbacks to be consistent with ASan.
Summary: __hwasan_load is now __hwasan_loadN.

Reviewers: kcc

Subscribers: hiraditya, llvm-commits

Differential Revision: https://reviews.llvm.org/D42138

llvm-svn: 322601
2018-01-16 23:15:08 +00:00
Evgeniy Stepanov 3fd1b1a764 [hwasan] Implement -fsanitize-recover=hwaddress.
Summary: Very similar to AddressSanitizer, with the exception of the error type encoding.

Reviewers: kcc, alekseyshl

Subscribers: cfe-commits, kubamracek, llvm-commits, hiraditya

Differential Revision: https://reviews.llvm.org/D41417

llvm-svn: 321203
2017-12-20 19:05:44 +00:00
Evgeniy Stepanov ecb48e523e [hwasan] Inline instrumentation & fixed shadow.
Summary: This brings CPU overhead on bzip2 down from 5.5x to 2x.

Reviewers: kcc, alekseyshl

Subscribers: kubamracek, hiraditya, llvm-commits

Differential Revision: https://reviews.llvm.org/D41137

llvm-svn: 320538
2017-12-13 01:16:34 +00:00
Evgeniy Stepanov c667c1f47a Hardware-assisted AddressSanitizer (llvm part).
Summary:
This is LLVM instrumentation for the new HWASan tool. It is basically
a stripped down copy of ASan at this point, w/o stack or global
support. Instrumenation adds a global constructor + runtime callbacks
for every load and store.

HWASan comes with its own IR attribute.

A brief design document can be found in
clang/docs/HardwareAssistedAddressSanitizerDesign.rst (submitted earlier).

Reviewers: kcc, pcc, alekseyshl

Subscribers: srhines, mehdi_amini, mgorny, javed.absar, eraman, llvm-commits, hiraditya

Differential Revision: https://reviews.llvm.org/D40932

llvm-svn: 320217
2017-12-09 00:21:41 +00:00