The latest version of the MTE spec added a system
register 'GMID_EL1'. It contains the block size used
by the LDGM and STGM instructions and is read only.
The specification can be found here:
https://developer.arm.com/docs/ddi0596/c
llvm-svn: 357392
Allow the clamp modifier on vop3 int arithmetic instructions in assembly
and disassembly.
This involved adding a clamp operand to the affected instructions in MIR
and MC, and thus having to fix up several places in codegen and MIR
tests.
Differential Revision: https://reviews.llvm.org/D59267
Change-Id: Ic7775105f02a985b668fa658a0cd7837846a534e
llvm-svn: 356399
This commit allows v_cndmask_b32_e64 with abs, neg source
modifiers on src0, src1 to be assembled and disassembled.
This does appear to be allowed, even though they are floating point
modifiers and the operand type is b32.
To do this, I added src0_modifiers and src1_modifiers to the
MachineInstr, which involved fixing up several places in codegen and mir
tests.
Differential Revision: https://reviews.llvm.org/D59191
Change-Id: I69bf4a8c73ebc65744f6110bb8fc4e937d79fbea
llvm-svn: 356398
On ARC ISA, general format of load instruction is this:
LD<zz><.x><.aa><.di> a, [b,c]
And general format of store is this:
ST<zz><.aa><.di> c, [b,s9]
Where:
<zz> is data size field and can be one of
<empty> (bits 00) - Word (32-bit), default behavior
B (bits 01) - Byte
H (bits 10) - Half-word (16-bit)
<.x> is data extend mode:
<empty> (bit 0) - If size is not Word(32-bit), then data is zero extended
X (bit 1) - If size is not Word(32-bit), then data is sign extended
<.aa> is address write-back mode:
<empty> (bits 00) - no write-back
.AW (bits 01) - Preincrement, base register updated pre memory transaction
.AB (bits 10) - Postincrement, base register updated post memory transaction
<.di> is cache bypass mode:
<empty> (bit 0) - Cached memory access, default mode
.DI (bit 1) - Non-cached data memory access
This patch adds these load/store instruction variants to the ARC backend.
Patch By Denis Antrushin! <denis@synopsys.com>
Differential Revision: https://reviews.llvm.org/D58980
llvm-svn: 356200
More or less all the instructions defined in the v8.2a full-fp16
extension are defined as UNPREDICTABLE if you put them in an IT block
(Thumb) or use with any condition other than AL (ARM). LLVM didn't
know that, and was happy to conditionalise them.
In order to force these instructions to count as not predicable, I had
to make a small Tablegen change. The code generation back end mostly
decides if an instruction was predicable by looking for something it
can identify as a predicate operand; there's an isPredicable bit flag
that overrides that check in the positive direction, but nothing that
overrides it in the negative direction.
(I considered the alternative approach of actually removing the
predicate operand from those instructions, but thought that it would
be more painful overall for instructions differing only in data type
to have different shapes of operand list. This way, the only code that
has to notice the difference is the if-converter.)
So I've added an isUnpredicable bit alongside isPredicable, and set
that bit on the right subset of FP16 instructions, and also on the
VSEL, VMAXNM/VMINNM and VRINT[ANPM] families which should be
unpredicable for all data types.
I've included a couple of representative regression tests, both of
which previously caused an fp16 instruction to be conditionalised in
ARM state and (with -arm-no-restrict-it) to be put in an IT block in
Thumb.
Reviewers: SjoerdMeijer, t.p.northover, efriedma
Reviewed By: efriedma
Subscribers: jdoerfert, javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57823
llvm-svn: 354768
r353131 caused failures in v128.const test for clang-ppc64be-linux-lnt
and clang-s390x-linux bots. This temporarily disables that line until
it is fixed.
llvm-svn: 353234
Summary:
There are a few instructions that all map to the same opcode, so
when disassembling, we have to pick one. That was just the first one
before (the except_ref variant in the case of "call"), now it is the
one marked as IsCanonical in tablegen, or failing that, the shortest
name (which is typically the "canonical" one).
Also introduced a canonical "end" instruction for this purpose.
Reviewers: dschuff, tlively
Subscribers: sbc100, jgravelle-google, aheejin, llvm-commits, sunfish
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57713
llvm-svn: 353131
All of these instructions consume one encoded register and the other register is %st. They either write the result to %st or the encoded register. Previously we printed both arguments when the encoded register was written. And we printed one argument when the result was written to %st. For the stack popping forms the encoded register is always the destination and we didn't print both operands. This was inconsistent with gcc and objdump and just makes the output assembly code harder to read.
This patch changes things to always print both operands making us consistent with gcc and objdump. The parser should still be able to handle the single register forms just as it did before. This also matches the GNU assembler behavior.
llvm-svn: 353061
Looking into gcc and objdump behavior more this was overly aggressive. If the register is encoded in the instruction we should print %st(0), if its implicit we should print %st.
I'll be making a more directed change in a future patch.
llvm-svn: 353013
Summary:
When calculating clobbers for MS style inline assembly we fail if the asm clobbers stack top because we print st(0) and try to pass it through the gcc register name check. This was found with when I attempted to make a emms/femms clobber all ST registers. If you use emms/femms in MS inline asm we would try to use st(0) as the clobber name but clang would think that wasn't a valid clobber name.
This also matches what objdump disassembly prints. It's also what is printed by gcc -S.
Reviewers: RKSimon, rnk, efriedma, spatel, andreadb, lebedev.ri
Reviewed By: rnk
Subscribers: eraman, gbedwell, lebedev.ri, llvm-commits
Differential Revision: https://reviews.llvm.org/D57621
llvm-svn: 352985
* Teach AsmParser to recognize @rn in distination operand as 0(rn).
* Do not allow Disassembler decoding instructions that have size more
than a number of input bytes.
* Fix UB in MSP430MCCodeEmitter.
Patch by Kristina Bessonova!
Differential Revision: https://reviews.llvm.org/D56547
llvm-svn: 350903
Follow up patch of rL350385, for adding predres
command line option. This patch renames the
feature as to keep it aligned with the option
passed by/to clang
Differential Revision: https://reviews.llvm.org/D56484
llvm-svn: 350702
Summary:
The previously introduced new operand type for br_table didn't have
a disassembler implementation, causing an assert.
Reviewers: dschuff, aheejin
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D56227
llvm-svn: 350366
Summary:
Instead of asserting on certain kinds of malformed instructions, it
now still print, but instead adds an annotation indicating the
problem, and/or indicates invalid_type etc.
We're using the InstPrinter from many contexts that can't always
guarantee values are within range (e.g. the disassembler), where having
output is more valueable than asserting.
Reviewers: dschuff, aheejin
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D56223
llvm-svn: 350365
SB (Speculative Barrier) is only mandatory from 8.5
onwards but is optional from Armv8.0-A. This patch adds a command
line option to enable SB, as it was previously only possible to
enable by selecting -march=armv8.5-a.
This patch also renames FeatureSpecRestrict to FeatureSB.
Reviewed By: olista01, LukeCheeseman
Differential Revision: https://reviews.llvm.org/D55990
llvm-svn: 350299
Summary:
This was previously ignored and an incorrect value generated.
Also fixed Disassembler's handling of block_type.
Reviewers: dschuff, aheejin
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D56092
llvm-svn: 350270
SB (Speculative Barrier) is only mandatory from 8.5
onwards but is optional from Armv8.0-A. This patch adds a command
line option to enable SB, as it was previously only possible to
enable by selecting -march=armv8.5-a.
This patch also moves to FeatureSB the old FeatureSpecRestrict.
Reviewers: pbarrio, olista01, t.p.northover, LukeCheeseman
Differential Revision: https://reviews.llvm.org/D55921
llvm-svn: 350126
Summary: The Sparc V9 membar instruction can enforce different types of
memory orderings depending on the value in its immediate field. In the
architectural manual the type is selected by combining different assembler
tags into a mask. This patch adds support for these tags.
Reviewers: jyknight, venkatra, brad
Reviewed By: jyknight
Subscribers: fedor.sergeev, jrtc27, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D53491
llvm-svn: 349048
Summary:
SSBS (Speculative Store Bypass Safe) is only mandatory from 8.5
onwards but is optional from Armv8.0-A. This patch adds a command
line option to enable SSBS, as it was previously only possible to
enable by selecting -march=armv8.5-a.
Similar patch upstream in GNU binutils:
https://sourceware.org/ml/binutils/2018-09/msg00274.html
Reviewers: olista01, samparker, aemerson
Reviewed By: samparker
Subscribers: javed.absar, kristof.beyls, kristina, llvm-commits
Differential Revision: https://reviews.llvm.org/D54629
llvm-svn: 348137
The test for [0x00 0x00] failed due to the introduction of c.unimp.
This particular test is unnecessary now that c.unimp was defined (and is
tested in test/MC/RISCV/rv32c-valid.s).
llvm-svn: 348117
Reapply r346374 with the fixes for modules build.
Original summary:
This change implements assembler parser, code emitter, ELF object writer
and disassembler for the MSP430 ISA. Also, more instruction forms are added
to the target description.
Patch by Michael Skvortsov!
llvm-svn: 346948
Summary:
This change implements assembler parser, code emitter, ELF object writer
and disassembler for the MSP430 ISA. Also, more instruction forms are added
to the target description.
Reviewers: asl
Reviewed By: asl
Subscribers: pftbest, krisb, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D53661
llvm-svn: 346374
Summary:
Instruction with 0 in fence field being disassembled as fence , iorw.
Printing "unknown" to match GAS behavior.
This bug was uncovered by a LLVM MC Disassembler Protocol Buffer Fuzzer
for the RISC-V assembly language.
Reviewers: asb
Subscribers: rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, mgrang, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, jfb, PkmX, jocewei, asb
Differential Revision: https://reviews.llvm.org/D51828
llvm-svn: 344309
The 0x63 opcodes in 64-bit mode have a fixed source size of 32-bits, but the destination size is controlled by REX.W and the 0x66 opsize prefix. This instruction is normally used with a REX.W prefix which provides desired behavior. The other encodings are interpretted as valid by the processor, but aren't useful.
This patch makes us recognize them for the disassembler to match objdump.
llvm-svn: 343614
This adds new instructions to manipluate tagged pointers, and to load
and store the tags associated with memory.
Patch by Pablo Barrio, David Spickett and Oliver Stannard!
Differential revision: https://reviews.llvm.org/D52490
llvm-svn: 343572
This adds new system registers introduced by the Memory Tagging
extension.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52488
llvm-svn: 343571
The Memory Tagging Extension adds system instructions for data cache
maintenance, implemented as new operands to the DC instruction.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52487
llvm-svn: 343570
This adds two new barrier instructions which can be used to restrict
speculative execution of load instructions.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52484
llvm-svn: 343300
This adds two new barrier instructions which can be used to restrict
speculative execution of load instructions.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52483
llvm-svn: 343229
This adds new instructions used by the Branch Target Identification
feature. When this is enabled, these are the only instructions which can
be targeted by indirect branch instructions.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52485
llvm-svn: 343225
This adds some new system registers which can be used to restrict
certain types of speculative execution.
Patch by Pablo Barrio and David Spickett!
Differential revision: https://reviews.llvm.org/D52482
llvm-svn: 343218
This adds two new system registers, used to generate random numbers.
This is an optional extension to v8.5-A, and will be controlled by the
"+rng" modifier of the -march= and -mcpu= options.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52481
llvm-svn: 343217
This adds a new variant of the DC system instruction for persistent
memory.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52480
llvm-svn: 343216
This adds new system instructions which act as barriers to speculative
execution based on earlier execution within a particular execution
context.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52479
llvm-svn: 343214
This is a new barrier which limits speculative execution of the
instructions following it.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52477
llvm-svn: 343213
This is a new barrier which limits speculative execution of the
instructions following it.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52476
llvm-svn: 343211
These are some new variants of the "Floating-point Round to Integral"
family of instructions, which round to the nearest floating-point value
which fits in a 32- or 64-bit integer.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52475
llvm-svn: 343209
These new instructions manipluate the NZCV bits, to convert between the
regular Arm floating-point comare format and an alternative format.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52473
llvm-svn: 343187
Summary:
The illegal instruction 0x00 0x00 is being wrongly decoded as
c.addi4spn with 0 immediate.
The invalid instruction 0x01 0x61 is being wrongly decoded as
c.addi16sp with 0 immediate.
This bug was uncovered by a LLVM MC Disassembler Protocol Buffer Fuzzer
for the RISC-V assembly language.
Reviewers: asb
Reviewed By: asb
Subscribers: rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, mgrang, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, asb
Differential Revision: https://reviews.llvm.org/D51815
llvm-svn: 342159
Summary:
Since the shuffle mask is not exposed as an operand in the native ISel
DAG, create a new WebAssembly ISD node exposing the mask. The mask is
lowered as sixteen immediate byte indices no matter what type the
original vector shuffle was operating on.
This CL depends on D51656
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D51659
llvm-svn: 341718
Summary:
RISCVDisassembler should check number of bytes available before reading them.
Crash noticed when enabling -DLLVM_USE_SANITIZER=Address.
This bug was uncovered by a LLVM MC Disassembler Protocol Buffer Fuzzer for the RISC-V assembly language.
Reviewers: asb
Reviewed By: asb
Subscribers: rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, mgrang, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, asb
Differential Revision: https://reviews.llvm.org/D51708
llvm-svn: 341686
Summary:
Instruction printer shouldn't crash with assertions due to incorrect input data. llvm_unreachable is not intended for runtime error handling.
Reviewers: petecoup
Reviewed By: petecoup
Differential Revision: https://reviews.llvm.org/D51728
llvm-svn: 341581
Summary:
Now uses the StackBased bit from the tablegen defs to identify
stack instructions (and ignore register based or non-wasm instructions).
Also changed how we store operands, since we now have up to 16 of them
per instruction. To not cause static data bloat, these are compressed
into a tiny table.
+ a few other cleanups.
Tested:
- MCTest
- llvm-lit -v `find test -name WebAssembly`
Reviewers: dschuff, jgravelle-google, sunfish, tlively
Subscribers: sbc100, aheejin, llvm-commits
Differential Revision: https://reviews.llvm.org/D51320
llvm-svn: 341081
Summary:
Made it convert from register to stack based instructions, and removed the registers.
Fixes to related code that was expecting register based instructions.
Added the correct testing flag to all tests, depending on what the
format they were expecting so far.
Translated one test to stack format as example: reg-stackify-stack.ll
tested:
llvm-lit -v `find test -name WebAssembly`
unittests/MC/*
Reviewers: dschuff, sunfish
Subscribers: sbc100, jgravelle-google, eraman, aheejin, llvm-commits, jfb
Differential Revision: https://reviews.llvm.org/D51241
llvm-svn: 340750
Summary:
This CL implements v128.const for each vector type. New operand types
are added to ensure the vector contents can be serialized without LEB
encoding. Tests are added for instruction selection, encoding,
assembly and disassembly.
Reviewers: aheejin, dschuff, aardappel
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D50873
llvm-svn: 340336
Add +fp16fml feature for new FP16 instructions, which are a
mandatory part of FP16 from v8.4-A and an optional part of FP16
from v8.2-A. It doesn't seem to be possible to model this in
LLVM, but the relationship between the options is handled by
the related clang patch.
In keeping with what I think is the usual practice, the fp16fml
extension is accepted regardless of base architecture version.
Builds on/replaces Sjoerd Meijer's patch to add these instructions at
https://reviews.llvm.org/D49839.
Differential Revision: https://reviews.llvm.org/D50228
llvm-svn: 340013
The behavior in 64-bit mode is different between Intel and AMD CPUs. Intel ignores the 0x66 prefix. AMD does not. objump doesn't ignore the 0x66 prefix. Since LLVM aims to match objdump behavior, we should do the same.
While I was trying to fix this I had change brtarget16/32 to use ENCODING_IW/ID instead of ENCODING_Iv to get the 0x66+REX.W case to act sort of sanely. It's still wrong, but that's a problem for another day.
The change in encoding exposed the fact that 16-bit mode disassembly of relative jumps was creating JMP_4 with a 2 byte immediate. It should have been JMP_2. From just printing you can't tell the difference, but if you dumped the encoding it wouldn't have matched what we started with.
While fixing that, it exposed that jo/jno opcodes were missing from the switch that this patch deleted and there were no test cases for them.
Fixes PR38537.
llvm-svn: 339622
Summary:
Moved Explicit Locals pass to last.
Made that pass obligatory.
Made it convert from register to stack based instructions, and removed the registers.
Fixes to related code that was expecting register based instructions.
Added the correct testing flag to all tests, depending on what the
format they were expecting so far.
Translated one test to stack format as example: reg-stackify-stack.ll
tested:
llvm-lit -v `find test -name WebAssembly`
unittests/MC/*
Reviewers: dschuff, sunfish
Subscribers: jfb, llvm-commits, aheejin, eraman, jgravelle-google, sbc100
Differential Revision: https://reviews.llvm.org/D50568
llvm-svn: 339474
Summary:
Moved Explicit Locals pass to last.
Made that pass obligatory.
Made it convert from register to stack based instructions, and removed the registers.
Fixes to related code that was expecting register based instructions.
Added the correct testing flag to all tests, depending on what the
format they were expecting so far.
Translated one test to stack format as example: reg-stackify-stack.ll
tested:
llvm-lit -v `find test -name WebAssembly`
unittests/MC/*
Reviewers: dschuff, sunfish
Subscribers: sbc100, jgravelle-google, eraman, aheejin, llvm-commits
Differential Revision: https://reviews.llvm.org/D49160
llvm-svn: 338164
This adds MC support for the crypto instructions that were made optional
extensions in Armv8.2-A (AArch64 only).
Differential Revision: https://reviews.llvm.org/D49370
llvm-svn: 338010
This is the lead-up to having SPE codegen. Add the rest of the
instructions, along with MC tests.
Differential Revision: https://reviews.llvm.org/D44829
llvm-svn: 337346
Summary:
If LOCK prefix is not the first prefix in an instruction, LLVM
disassembler silently drops the prefix.
The fix is to select a proper instruction with a builtin LOCK prefix if
one exists.
Reviewers: craig.topper
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49001
llvm-svn: 336400
This adds the following system registers:
- RAS registers,
- MPAM registers,
- Activitiy monitor registers,
- Trace Extension registers,
- Timing insensitivity of data processing instructions,
- Enhanced Support for Nested Virtualization.
Differential Revision: https://reviews.llvm.org/D48871
llvm-svn: 336193
The %eiz/%riz are dummy registers that force the encoder to emit a SIB byte when it normally wouldn't. By emitting them in the disassembly output we ensure that assembling the disassembler output would also produce a SIB byte.
This should match the behavior of objdump from binutils.
llvm-svn: 335768
When the condition code for an IT instruction is "AL" we get strange "15"
predicates on subsequent instructions. These are dealt with for most
instructions by treating them as "ARMCC::AL", but VFP takes a different path
which didn't have this code.
llvm-svn: 335594
Summary:
One for register based, much like the existing definitions,
and one for stack based (suffix _S).
This allows us to use registers in most of LLVM (which works better),
and stack based in MC (which results in a simpler and more readable
assembler / disassembler).
Tried to keep this change as small as possible while passing tests,
follow-up commit will:
- Add reg->stack conversion in MI.
- Fix asm/disasm in MC to be stack based.
- Fix emitter to be stack based.
tests passing:
llvm-lit -v `find test -name WebAssembly`
test/CodeGen/WebAssembly
test/MC/WebAssembly
test/MC/Disassembler/WebAssembly
test/DebugInfo/WebAssembly
test/CodeGen/MIR/WebAssembly
test/tools/llvm-objdump/WebAssembly
Reviewers: dschuff, sbc100, jgravelle-google, sunfish
Subscribers: aheejin, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D48183
llvm-svn: 334985
These encodings correspond to the cases in the normal encoding scheme where there is no index and our modrm reading code initially decodes it as such. The VSIB handling code tried to compensate for this, but failed to add the base needed to make later code do the right thing.
Fixes PR37712.
llvm-svn: 334121
A 5-bit value can occur when EVEX.X is 0 due to it being used to extend modrm.rm to encode XMM16-31. But if modrm.rm instead encodes a GPR, the Intel documentation says EVEX.X should be ignored so just mask it to 4 bits once we know its a GPR.
llvm-svn: 333725
EVEX.X is used to extended modrm.rm when the instruction encodes a XMM/YMM/ZMM register. But we aren't properly ignoring it when it encodes a GPR and we end up printing whatever registers exist in X86 register enum after the GPRs.
llvm-svn: 333724
This was an accidental side effect of EVEX.X being used to encode XMM16-XMM31 using modrm.rm with modrm.mod==0x3.
I think there are still more bugs related to this.
llvm-svn: 333722