Some includes are not required and forward declarations can be used
instead. This also exposed a few places that were not directly including
required files.
Most of the includes in LoopUtils.h are not required in the header and
they can be replaced by forward declarations.
Unfortunately includes of TargetTransformInfo.h and IVDescriptors.h pull
in a bunch of additional things, but there is no easy way to get rid of
them at the moment I think.
bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
This is the widen shuffle elements enhancement to D76727.
It builds on the analysis and simplifications in
D77881 and rG6a7e958a423e.
The phase ordering tests show that we can simplify inverse
shuffles across a binop in both directions (widen/narrow or
narrow/widen) now.
There's another potential transform visible in some of the
remaining TODOs - move a bitcasted operand of a shuffle
after the shuffle.
Differential Revision: https://reviews.llvm.org/D78371
This makes it easier to extend the merge options in the future and also
reduces the risk of accidentally setting a wrong option.
Reviewers: efriedma, nikic, reames, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D78368
First-order recurrences require special treatment when they are live-out;
such treatment is provided by fixFirstOrderRecurrence(), so they should be
included in AllowedExit set.
(Should probably have been included originally in D16197.)
Fixes PR45526: AllowedExit set is used by prepareToFoldTailByMasking() to
check whether the treatment for live-outs also holds when folding the tail,
which is not (yet) the case for first-order recurrences.
Differential Revision: https://reviews.llvm.org/D78210
When running IPSCCP on a module with many small functions, memory
usage is dominated by PredicateInfo, which is a huge structure
(partially due to some unfortunate nested SmallVector use). However,
most of it is actually only temporary state needed to build
predicate info, and does not need to be retained after initial
construction.
This patch factors out the predicate building logic and state
into a separate PrediceInfoBuilder, with the extra bonus that
it does not need to live in the header anymore.
Differential Revision: https://reviews.llvm.org/D78326
We previously clamped the trailing zero count to 31 bits. And
then clamped the final alignment to MaximumAlignment which is
1 << 29.
This patch simplifies this to just clamp the trailing zero to
29 using MaxAlignmentExponent.
I was looking into changing this function to use Align/MaybeAlign
and noticed this.
Differential Revision: https://reviews.llvm.org/D78418
Cost-modeling decisions are tied to the compute interleave groups
(widening decisions, scalar and uniform values). When invalidating the
interleave groups, those decisions also need to be invalidated.
Otherwise there is a mis-match during VPlan construction.
VPWidenMemoryRecipes created initially are left around w/o converting them
into VPInterleave recipes. Such a conversion indeed should not take place,
and these gather/scatter recipes may in fact be right. The crux is leaving around
obsolete CM_Interleave (and dependent) markings of instructions along with
their costs, instead of recalculating decisions, costs, and recipes.
Alternatively to forcing a complete recompute later on, we could try
to selectively invalidate the decisions connected to the interleave
groups. But we would likely need to run the uniform/scalar value
detection parts again anyways and the extra complexity is probably not
worth it.
Fixes PR45572.
Reviewers: gilr, rengolin, Ayal, hsaito
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D78298
There are also some adjustments to use MaybeAlign in here due
to CallBase::getParamAlignment() being deprecated. It would
be a little cleaner if getOrEnforceKnownAlignment was migrated
to Align/MaybeAlign.
Differential Revision: https://reviews.llvm.org/D78345
There are also some adjustments to use MaybeAlign in here due
to CallBase::getParamAlignment() being deprecated. It would
be cleaner if getOrEnforceKnownAlignment was migrated
to Align/MaybeAlign.
Differential Revision: https://reviews.llvm.org/D78345
Users of ValueLatticeElement currently have to ensure constant ranges
are not extended indefinitely. For example, in SCCP, mergeIn goes to
overdefined if a constantrange value is repeatedly merged with larger
constantranges. This is a simple form of widening.
In some cases, this leads to an unnecessary loss of information and
things can be improved by allowing a small number of extensions in the
hope that a fixed point is reached after a small number of steps.
To make better decisions about widening, it is helpful to keep track of
the number of range extensions. That state is tied directly to a
concrete ValueLatticeElement and some unused bits in the class can be
used. The current patch preserves the existing behavior by default:
CheckWiden defaults to false and if CheckWiden is true, a single change
to the range is allowed.
Follow-up patches will slightly increase the threshold for widening.
Reviewers: efriedma, davide, mssimpso
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D78145
Removing CallSite left us with a bunch of explicit casts from
Instruction to CallBase. This moves the casts earlier so that
function arguments and data structure types are CallBase so
we don't have to cast when we use them.
Differential Revision: https://reviews.llvm.org/D78246
CallSite will likely be removed soon, but AbstractCallSite serves a different purpose and won't be going away.
This patch switches it to internally store a CallBase* instead of a
CallSite. The only interface changes are the removal of the getCallSite
method and getCallBackUses now takes a CallBase&. These methods had only
a few callers that were easy enough to update without needing a
compatibility shim.
In the future once the other CallSites are gone, the CallSite.h
header should be renamed to AbstractCallSite.h
Differential Revision: https://reviews.llvm.org/D78322
Summary:
Changes the type of the @__typeid_.*_unique_member imports we generate
for unique return value optimization from i8 to [0 x i8]. This
prevents assuming that these imports do not alias, such as when
two unique return values occur in the same vtable.
Fixes PR45393.
Reviewers: tejohnson, pcc
Reviewed By: pcc
Subscribers: aganea, hiraditya, rnk, george.burgess.iv, dblaikie, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77421
The Float2IntPass got a class member called Roots, but Roots
was also passed around to member function as a reference. This
patch simply remove those references.
Since we use the fact that some uses are droppable in the Attributor we
need to handle them explicitly when we replace uses. As an example, an
assumed dead value can have live droppable users. In those we cannot
replace the value simply by an undef. Instead, we either drop the uses
(via `dropDroppableUses`) or keep them as they are. In this patch we do
both, depending on the situation. For values that are dead but not
necessarily removed we keep droppable uses around because they contain
information we might be able to use later. For values that are removed
we drop droppable uses explicitly to avoid replacement with undef.
The handling of the `returned` attribute in D75815 did miss the case
where the argument is (bit)casted to a different type. This is
explicitly allowed by the language reference and exposed by the
Attributor.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D77977
The check if globals were accessed was not always working because two
bits are set for NO_GLOBAL_MEM. The new check works also if only on kind
of globals (internal/external) is accessed.
Running the verifier is expensive so we want to avoid it even in runs
that enable assertions. As we move closer to enabling the Attributor
this code will be executed by some buildbots but not cause overhead for
most people.
Before, we eagerly analyzed all the functions to collect information
about them, e.g. what instructions may read/write memory. This had
multiple drawbacks:
- In CGSCC-mode we can end up looking at a callee which is not in the
SCC but for which we need an initialized cache.
- We end up looking at functions that we deem dead and never need to
analyze in the first place.
- We have a implicit dependence which is easy to break.
This patch moves the function analysis into the information cache and
makes it lazy. There is no real functional change expected except due to
the first reason above.
The CallGraphUpdater allows to directly alter call site information and
we should do so. This might appease the windows buildbot that crashes
during the SCC traversal.
I uploaded the old version accidentally instead of the one with these
minor adjustments requested by the reviewers.
Differential Revision: https://reviews.llvm.org/D77855
Now Reassociate Pass invalidates the analysis results of AAManager and BasicAA,
but it saves GlobalsAA, although it seems that it should preserve them, since
it affects only Unary and Binary operators.
Author: kpolushin (Kirill)
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D77137
Summary:
We can and should remove deleted nodes from their respective SCCs. We
did not do this before and this was a potential problem even though I
couldn't locally trigger an issue. Since the `DeleteNode` would assert
if the node was not in the SCC, we know we only remove nodes from their
SCC and only once (when run on all the Attributor tests).
Reviewers: lebedev.ri, hfinkel, fhahn, probinson, wristow, loladiro, sstefan1, uenoku
Subscribers: hiraditya, bollu, uenoku, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77855
Summary:
While it is uncommon that the ExternalCallingNode needs to be updated,
it can happen. It is uncommon because most functions listed as callees
have external linkage, modifying them is usually not allowed. That said,
there are also internal functions that have, or better had, their
"address taken" at construction time. We conservatively assume various
uses cause the address "to be taken". Furthermore, the user might have
become dead at some point. As a consequence, transformations, e.g., the
Attributor, might be able to replace a function that is listed
as callee of the ExternalCallingNode.
Since there is no function corresponding to the ExternalCallingNode, we
did just remove the node from the callee list if we replaced it (so
far). Now it would be preferable to replace it if needed and remove it
otherwise. However, removing the node has implications on the CGSCC
iteration. Locally, that caused some other nodes to be never visited
but it is for sure possible other (bad) side effects can occur. As it
seems conservatively safe to keep the new node in the callee list we
will do that for now.
Reviewers: lebedev.ri, hfinkel, fhahn, probinson, wristow, loladiro, sstefan1, uenoku
Subscribers: hiraditya, bollu, uenoku, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77854
Summary:
The old code did eliminate references from and to functions that were
about to be deleted only just before we deleted them. This can cause
references from other functions that are supposed to be deleted to still
exist, depending on the order. If the functions form a strongly
connected component the problem manifests regardless of the order in
which we try to actually delete the functions.
This patch introduces a two step deletion. First we remove all
references and then we delete the function. Note that this only affects
the old call graph. There should not be any functional changes if no old
style call graph was given.
To test this we delete two strongly connected functions instead of one
in an existing test.
Reviewers: hfinkel
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77975