Minor drive by fix to cleanup latency computation. Calling
getOperandLatency with a deliberately incorrect operand index does not
give you the latency you want.
llvm-svn: 158959
This patch will optimize the following cases:
sub r1, r3 | sub r1, imm
cmp r3, r1 or cmp r1, r3 | cmp r1, imm
bge L1
TO
subs r1, r3
bge L1 or ble L1
If the branch instruction can use flag from "sub", then we can replace
"sub" with "subs" and eliminate the "cmp" instruction.
rdar: 10734411
llvm-svn: 156599
This patch will optimize the following cases:
sub r1, r3 | sub r1, imm
cmp r3, r1 or cmp r1, r3 | cmp r1, imm
bge L1
TO
subs r1, r3
bge L1 or ble L1
If the branch instruction can use flag from "sub", then we can replace
"sub" with "subs" and eliminate the "cmp" instruction.
rdar: 10734411
llvm-svn: 156550
A MOVCCr instruction can be commuted by inverting the condition. This
can help reduce register pressure and remove unnecessary copies in some
cases.
<rdar://problem/11182914>
llvm-svn: 154033
ARM recently gained DPair, DTriple, and DQuad register classes.
Update copyPhysReg() to handle copies in these register classes.
No test case, it is difficult to make the register allocator emit the
odd copies reliably. The missing DPair copy caused a failure on
partialsums in the nightly test suite.
<rdar://problem/11147997>
llvm-svn: 153686
The arm_neon intrinsics can create virtual registers from the DPair
register class which allows both even-odd and odd-even D-register pairs.
This fixes PR12389.
llvm-svn: 153603
produces a 32-bit immediate which is consumed by the use. It tries to
fold the immediate by breaking it into two parts and fold them into the
immmediate fields of two uses. e.g
movw r2, #40885
movt r3, #46540
add r0, r0, r3
=>
add.w r0, r0, #3019898880
add.w r0, r0, #30146560
;
However, this transformation is incorrect if the user produces a flag. e.g.
movw r2, #40885
movt r3, #46540
adds r0, r0, r3
=>
add.w r0, r0, #3019898880
adds.w r0, r0, #30146560
Note the adds.w may not set the carry flag even if the original sequence
would.
rdar://11116189
llvm-svn: 153484
When an instruction only writes sub-registers, it is still necessary to
add an <imp-def> operand for the super-register. When reloading into a
virtual register, rewriting will add the operand, but when loading
directly into a virtual register, the <imp-def> operand is still
necessary.
llvm-svn: 152095
With the new composite physical registers to represent arbitrary pairs
of DPR registers, we don't need the pseudo-registers anymore. Get rid of
a bunch of them that use DPR register pairs and just use the real
instructions directly instead.
llvm-svn: 152045
MachineOperands that define part of a virtual register must have an
<undef> flag if they are not intended as read-modify-write operands.
The old trick of adding an <imp-def> operand doesn't work any longer.
Fixes PR12177.
llvm-svn: 152008
Without this hook, functions w/ a completely empty body (including no
epilogue) will cause an MCEmitter assertion failure.
For example,
define internal fastcc void @empty_function() {
unreachable
}
rdar://10947471
llvm-svn: 151673
Now that canRealignStack() understands frozen reserved registers, it is
safe to use it for aligned spill instructions.
It will only return true if the registers reserved at the beginning of
register allocation allow for dynamic stack realignment.
<rdar://problem/10625436>
llvm-svn: 147579
This patch caused a miscompilation of oggenc because a frame pointer was
suddenly needed halfway through register allocation.
<rdar://problem/10625436>
llvm-svn: 147487
Use the spill slot alignment as well as the local variable alignment to
determine when the stack needs to be realigned. This works now that the
ARM target can always realign the stack by using a base pointer.
Still respect the ARMBaseRegisterInfo::canRealignStack() function
vetoing a realigned stack. Don't use aligned spill code in that case.
llvm-svn: 146997
r0 = mov #0
r0 = moveq #1
Then the second instruction has an implicit data dependency on the first
instruction. Sadly I have yet to come up with a small test case that
demonstrate the post-ra scheduler taking advantage of this.
llvm-svn: 146583
to finalize MI bundles (i.e. add BUNDLE instruction and computing register def
and use lists of the BUNDLE instruction) and a pass to unpack bundles.
- Teach more of MachineBasic and MachineInstr methods to be bundle aware.
- Switch Thumb2 IT block to MI bundles and delete the hazard recognizer hack to
prevent IT blocks from being broken apart.
llvm-svn: 146542
Refactor the instructions into fixed writeback and register-stride
writeback variants to simplify the offset operand (no more optional
register operand using reg0). This is a simpler representation and allows
the assembly parser to more easily handle these instructions.
Add tests for the instruction variants now supported.
llvm-svn: 146278
generator to it. For non-bundle instructions, these behave exactly the same
as the MC layer API.
For properties like mayLoad / mayStore, look into the bundle and if any of the
bundled instructions has the property it would return true.
For properties like isPredicable, only return true if *all* of the bundled
instructions have the property.
For properties like canFoldAsLoad, isCompare, conservatively return false for
bundles.
llvm-svn: 146026
1. Added opcode BUNDLE
2. Taught MachineInstr class to deal with bundled MIs
3. Changed MachineBasicBlock iterator to skip over bundled MIs; added an iterator to walk all the MIs
4. Taught MachineBasicBlock methods about bundled MIs
llvm-svn: 145975
This pseudo-instruction contains a .align directive in its expansion, so
the total size may vary by 2 bytes.
It is too difficult to accurately keep track of this alignment
directive, just use the worst-case size instead.
llvm-svn: 145971
This will widen 32-bit register vmov instructions to 64-bit when
possible. The 64-bit vmovd instructions can then be translated to NEON
vorr instructions by the execution dependency fix pass.
The copies are only widened if they are marked as clobbering the whole
D-register.
llvm-svn: 144734
Split am6offset into fixed and register offset variants so the instruction
encodings are explicit rather than relying an a magic reg0 marker.
Needed to being able to parse these.
llvm-svn: 142853
Clean up the patterns, fix comments, and avoid confusing both tools
and coders. Note that the special adds/subs SelectionDAG nodes no
longer have the dummy cc_out operand.
llvm-svn: 142397
When widening a copy, we are reading a larger register that may not be
live. Use an <undef> flag to tell the register scavenger and machine
code verifier that we know the value isn't defined.
We now widen:
%S6<def> = COPY %S4<kill>, %D3<imp-def>
into:
%D3<def> = VMOVD %D2<undef>, pred:14, pred:%noreg, %S4<imp-use,kill>
This also keeps the <kill> flag on %S4 so we don't inadvertently kill a
live value in %S5.
Finally, ensure that ARMBaseInstrInfo::setExecutionDomain() preserves
the <undef> flag when converting VMOVD to VORR.
llvm-svn: 141746
The VMOVS widening needs to look at the implicit COPY operands. Trying
to dig out the COPY instruction from an iterator in copyPhysReg() is the
wrong approach.
The expandPostRAPseudo() hook gets to look at COPY instructions before
they are converted to copyPhysReg() calls.
llvm-svn: 141619
This is still a hack until we can teach tblgen to generate the
optional CPSR operand rather than an implicit CPSR def. But the
strangeness is now limited to the selection DAG. ADD/SUB MI's no
longer have implicit CPSR defs, nor do we allow flag setting variants
of these opcodes in machine code. There are several corner cases to
consider, and getting one wrong would previously lead to nasty
miscompilation. It's not the first time I've debugged one, so this
time I added enough verification to ensure it won't happen again.
llvm-svn: 140228
It appears that our use of the imp-use and imp-def flags with
sub-registers is not yet robust enough to support this.
The failing test case is complicated, I am working on a reduction.
<rdar://problem/10044201>
llvm-svn: 138861
There is no non-writeback store multiple instruction in Thumb1, so
don't define one. As a result load multiple is the only instantiation of
the multiclass, so refactor that away entirely.
llvm-svn: 138338
This pleases the register scavenger and brings
test/CodeGen/ARM/2011-08-12-vmovqqqq-pseudo.ll a little closer to
working with -verify-machineinstrs.
llvm-svn: 138164
On Cortex-A8, we use the NEON v2f32 instructions for f32 arithmetic. For
better latency, we also send D-register copies down the NEON pipeline by
translating them to vorr instructions.
This patch promotes even S-register copies to D-register copies when
possible so they can also go down the NEON pipeline. Example:
vldr.32 s0, LCPI0_0
loop:
vorr d1, d0, d0
loop2:
...
vadd.f32 d1, d1, d16
The vorr instruction looked like this after regalloc:
%S2<def> = COPY %S0, %D1<imp-def>
Copies involving odd S-registers, and copies that don't define the full
D-register are left alone.
llvm-svn: 137182
The tSpill and tRestore instructions are just copies of the tSTRspi and
tLDRspi instructions, respectively. Just use those directly instead.
llvm-svn: 134092
sink them into MC layer.
- Added MCInstrInfo, which captures the tablegen generated static data. Chang
TargetInstrInfo so it's based off MCInstrInfo.
llvm-svn: 134021
is, it assumes addresses are 64-bit aligned (which should be the more common
case). If the alignment is found not to be aligned, then getOperandLatency()
would adjust the operand latency computation by one to compensate for it.
rdar://9294833
llvm-svn: 129742
entries being compared may not be ARMConstantPoolValue. Without checking
whether they are ARMConstantPoolValue first, and if the stars and moons
are aligned properly, the equality test may return true (when the first few
words of two Constants' values happen to be identical) and very bad things can
happen.
rdar://9125354
llvm-svn: 128203
int tries = INT_MAX;
while (tries > 0) {
tries--;
}
The check should be:
subs r4, #1
cmp r4, #0
bgt LBB0_1
The subs can set the overflow V bit when r4 is INT_MAX+1 (which loop
canonicalization apparently does in this case). cmp #0 would have cleared
it while not changing the N and Z bits. Since BGT is dependent on the V
bit, i.e. (N == V) && !Z, it is not safe to eliminate the cmp #0.
rdar://9172742
llvm-svn: 128179
1. Fixed ARM pc adjustment.
2. Fixed dynamic-no-pic codegen
3. CSE of pc-relative load of global addresses.
It's now enabled by default for Darwin.
llvm-svn: 123991
flags. They are still not enable in this revision.
Added TargetInstrInfo::isZeroCost() to fix a fundamental problem with
the scheduler's model of operand latency in the selection DAG.
Generalized unit tests to work with sched-cycles.
llvm-svn: 123969
value, the "add pc" must be CSE'ed at the same time. We could follow the same
approach as T2 by adding pseudo instructions that combine the ldr + "add pc".
But the better approach is to use movw + movt (which I will enable soon), so
I'll leave this as a TODO.
llvm-svn: 123949
TargetInstrInfo:
Change produceSameValue() to take MachineRegisterInfo as an optional argument.
When in SSA form, targets can use it to make more aggressive equality analysis.
Machine LICM:
1. Eliminate isLoadFromConstantMemory, use MI.isInvariantLoad instead.
2. Fix a bug which prevent CSE of instructions which are not re-materializable.
3. Use improved form of produceSameValue.
ARM:
1. Teach ARM produceSameValue to look pass some PIC labels.
2. Look for operands from different loads of different constant pool entries
which have same values.
3. Re-implement PIC GA materialization using movw + movt. Combine the pair with
a "add pc" or "ldr [pc]" to form pseudo instructions. This makes it possible
to re-materialize the instruction, allow machine LICM to hoist the set of
instructions out of the loop and make it possible to CSE them. It's a bit
hacky, but it significantly improve code quality.
4. Some minor bug fixes as well.
With the fixes, using movw + movt to materialize GAs significantly outperform the
load from constantpool method. 186.crafty and 255.vortex improved > 20%, 254.gap
and 176.gcc ~10%.
llvm-svn: 123905
movw r0, :lower16:(L_foo$non_lazy_ptr-(LPC0_0+4))
movt r0, :upper16:(L_foo$non_lazy_ptr-(LPC0_0+4))
LPC0_0:
add r0, pc, r0
It's not yet enabled by default as some tests are failing. I suspect bugs in
down stream tools.
llvm-svn: 123619
DAG scheduling during isel. Most new functionality is currently
guarded by -enable-sched-cycles and -enable-sched-hazard.
Added InstrItineraryData::IssueWidth field, currently derived from
ARM itineraries, but could be initialized differently on other targets.
Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is
active, and if so how many cycles of state it holds.
Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry
into the scheduler's available queue.
ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to
get information about it's SUnits, provides RecedeCycle for bottom-up
scheduling, correctly computes scoreboard depth, tracks IssueCount, and
considers potential stall cycles when checking for hazards.
ScheduleDAGRRList now models machine cycles and hazards (under
flags). It tracks MinAvailableCycle, drives the hazard recognizer and
priority queue's ready filter, manages a new PendingQueue, properly
accounts for stall cycles, etc.
llvm-svn: 122541