Clean up the __has_attribute implementation without modifying its behavior.
Replaces the tablegen-driven AttrSpellings.inc, which lived in the lexing layer with AttrHasAttributeImpl.inc, which lives in the basic layer. Updates the preprocessor to call through to this new functionality which can take additional information into account (such as scopes and syntaxes).
Expose the ability for parts of the compiler to ask whether an attribute is supported for a given spelling (including scope), syntax, triple and language options.
llvm-svn: 205181
Replaces the tablegen-driven AttrSpellings.inc, which lived in the lexing layer with AttrHasAttributeImpl.inc, which lives in the basic layer. Updates the preprocessor to call through to this new functionality which can take additional information into account (such as scopes and syntaxes).
Expose the ability for parts of the compiler to ask whether an attribute is supported for a given spelling (including scope), syntax, triple and language options.
llvm-svn: 204952
This name, while more verbose, plays more nicely with tools that use
file extensions to determine file types. The existing spelling
'module.map' will continue to work, but the new spelling will take
precedence.
In frameworks, this new filename will only go in a new 'Modules'
sub-directory.
Similarly, add a module.private.modulemap corresponding to
module_private.map.
llvm-svn: 204261
When building an AST file, we don't want to output HeaderFileInfo
structures for files that are not actually used as headers in the
current context. This can lead to assuming that unrelated files have
include counts of 0, defeating multiple-include prevention.
This is accomplished by adding an IsValid bit to the HFI.
llvm-svn: 203813
When enabled, always validate the system headers when loading a module.
The end result of this is that when these headers change, we will notice
and rebuild the module.
llvm-svn: 203630
The pp-trace clang tool was using it successfully. We can still delete
the callbacks in Frontend/PrintPreprocessedOutput.cpp because they were
effectively dead.
llvm-svn: 201825
gcc never expands macros in pragmas and MSVC always expands macros
before processing pragmas. Clang usually allows macro expansion, except
in a handful of pragmas, most of which are handled by the lexer.
Also remove PPCallbacks for pragmas that are currently handled in the
parser. Without a Parser, such as with clang -E, these callbacks would
never be called.
Fixes PR18576.
llvm-svn: 201821
continue header lookup using the framework include as filename.
This allows us to conveniently treat
#import "Foo.h"
as an implicit module import if we can resolve "Foo/Foo.h" as such.
rdar://16042979
llvm-svn: 201419
These features are new in VS 2013 and are necessary in order to layout
std::ostream correctly. Currently we have an ABI incompatibility when
self-hosting with the 2013 stdlib in our convertible_fwd_ostream wrapper
in gtest.
This change adds another implicit attribute, MSVtorDispAttr, because
implicit attributes are currently the best way to make sure the
information stays on class templates through instantiation.
Reviewers: majnemer
Differential Revision: http://llvm-reviews.chandlerc.com/D2746
llvm-svn: 201274
the build
When Clang loads the module, it verifies the user source files that the module
was built from. If any file was changed, the module is rebuilt. There are two
problems with this:
1. correctness: we don't verify system files (there are too many of them, and
stat'ing all of them would take a lot of time);
2. performance: the same module file is verified again and again during a
single build.
This change allows the build system to optimize source file verification. The
idea is based on the fact that while the project is being built, the source
files don't change. This allows us to verify the module only once during a
single build session. The build system passes a flag,
-fbuild-session-timestamp=, to inform Clang of the time when the build started.
The build system also requests to enable this feature by passing
-fmodules-validate-once-per-build-session. If these flags are not passed, the
behavior is not changed. When Clang verifies the module the first time, it
writes out a timestamp file. Then, when Clang loads the module the second
time, it finds a timestamp file, so it can compare the verification timestamp
of the module with the time when the build started. If the verification
timestamp is too old, the module is verified again, and the timestamp file is
updated.
llvm-svn: 201224
When a function-like macro definition ends with one of the macro's
parameters, and the argument is empty, any whitespace before the
parameter name in the macro definition needs to be preserved. Promoting
the existing NextTokGetsSpace to a preserved bit-field and checking it
at the end of the macro expansion allows it to be moved to the first
token following the macro expansion result.
Patch by Harald van Dijk!
llvm-svn: 200786
This matches up the underlying type against the actual storage type 'unsigned
short' and lets us get rid of some casts while we're at it.
Effort is made to keep this building in pre-C++11 but as with other features
Token will be less efficiently packed in in legacy configurations.
llvm-svn: 198607
If a header file belonging to a certain module is not found on the
filesystem, that header gets marked as unavailable. Now, the layering
warning (-fmodules-decluse) should still warn about headers of this
module being wrongfully included. Currently, headers belonging to those
modules are just treated as not belonging to modules at all which means
they can be included freely from everywhere.
To implement this (somewhat) cleanly, I have moved most of the layering
checks into the ModuleMap. This will also help with showing FixIts
later.
llvm-svn: 197805
Instead, mark the module as unavailable so that clang errors as soon as
someone tries to build this module.
This works towards the long-term goal of not stat'ing the header files at all
while reading the module map and instead read them only when the module is
being built (there is a corresponding FIXME in parseHeaderDecl()). However, it
seems non-trivial to get there and this unblock us and moves us into the right
direction.
Also changed the implementation to reuse the same DiagnosticsEngine.
llvm-svn: 197485
Instead, mark the module as unavailable so that clang errors as soon as
someone tries to build this module.
A better long-term strategy might be to not stat the header files at all
while reading the module map and instead read them only when the module
is being built (there is a corresponding FIXME in parseHeaderDecl()).
However, it seems non-trivial to get there and this would be a temporary
solution to unblock us.
Also changed the implementation to reuse the same DiagnosticsEngine as
otherwise warnings can't be enabled or disabled with command-line flags.
llvm-svn: 197388
Includes might always pull in arbitrary header or data files outside of
modules. Among others, this includes builtin includes, which do not have
a module (story) yet.
Also cleanup implementation of ModuleMap::findModuleForHeader() to be
non-recursive.
llvm-svn: 197034
module. Use the marker to diagnose cases where we try to transition between
submodules when not at the top level (most likely because a closing brace was
missing at the end of a header file, but is also possible if submodule headers
attempt to do something fundamentally non-modular, like our .def files).
llvm-svn: 195543
substitution failure, allow a flag to be set on the Diagnostic object,
to mark it as 'causes substitution failure'.
Refactor Diagnostic.td and the tablegen to use an enum for SFINAE behavior
rather than a bunch of flags.
llvm-svn: 194444
The preprocessor currently recognizes module declarations to load a
module based on seeing the 'import' keyword followed by an
identifier. This sequence is fairly unlikely in C (one would need a
type named 'import'), but is more common in Objective-C (where a
variable named 'import' can cause problems). Since import declarations
currently require a leading '@', recognize that in the preprocessor as
well. Fixes <rdar://problem/15084587>.
llvm-svn: 194225
This allows using virtual file mappings on the original SourceManager to
map in virtual module.map files. Without this patch, the ModuleMap
search will find a module.map file (as the FileEntry exists in the
FileManager), but will be unable to get the content from the
SourceManager (as ModuleMap previously created its own SourceManager).
Two problems needed to be fixed which this patch exposed:
1. Storing the inferred module map
When writing out a module, the ASTWriter stores the names of the files
in the main source manager; when loading the AST again, the ASTReader
errs out if such a file is found missing, unless it is overridden.
Previously CompilerInstance's compileModule method would store the
inferred module map to a temporary file; the problem with this approach
is that now that the module map is handled by the main source manager,
the ASTWriter stores the name of the temporary module map as source to
the compilation; later, when the module is loaded, the temporary file
has already been deleted, which leads to a compilation error. This patch
changes the inferred module map to instead inject a virtual file into
the source manager. This both saves some disk IO, and works with how the
ASTWriter/ASTReader handle overridden source files.
2. Changing test input in test/Modules/Inputs/*
Now that the module map file is handled by the main source manager, the
VerifyDiagnosticConsumer will not ignore diagnostics created while
parsing the module map file. The module test test/Modules/renamed.m uses
-I test/Modules/Inputs and triggers recursive loading of all module maps
in test/Modules/Inputs, some of which had conflicting names, thus
leading errors while parsing the module maps. Those diagnostics already
occur on trunk, but before this patch they would not break the test, as
they were ignored by the VerifyDiagnosticConsumer. This patch thus
changes the module maps that have been recently introduced which broke
the invariant of compatible modules maps in test/Modules/Inputs.
llvm-svn: 193314
This patch changes two things:
a) Allow a header to be part of multiple modules. The reasoning is that
in existing codebases that have a module-like build system, the same
headers might be used in several build targets. Simple reasons might be
that they defined different classes that are declared in the same
header. Supporting a header as a part of multiple modules will make the
transistion easier for those cases. A later step in clang can then
determine whether the two modules are actually compatible and can be
merged and error out appropriately. The later check is similar to what
needs to be done for template specializations anyway.
b) Allow modules to be stored in a directory tree separate from the
headers they describe.
Review: http://llvm-reviews.chandlerc.com/D1951
llvm-svn: 193151
With this option, arbitrarily named module map files can be specified
to be loaded as required for headers in the respective (sub)directories.
This, together with the extern module declaration allows for specifying
module maps in a modular fashion without the need for files called
"module.map".
Among other things, this allows a directory to contain two modules that
are completely independent of one another.
Review: http://llvm-reviews.chandlerc.com/D1697.
llvm-svn: 191284
Review: http://llvm-reviews.chandlerc.com/D1546.
I have picked up this patch form Lawrence
(http://llvm-reviews.chandlerc.com/D1063) and did a few changes.
From the original change description (updated as appropriate):
This patch adds a check that ensures that modules only use modules they
have so declared. To this end, it adds a statement on intended module
use to the module.map grammar:
use module-id
A module can then only use headers from other modules if it 'uses' them.
This enforcement is off by default, but may be turned on with the new
option -fmodules-decluse.
When enforcing the module semantics, we also need to consider a source
file part of a module. This is achieved with a compiler option
-fmodule-name=<module-id>.
The compiler at present only applies restrictions to the module directly
being built.
llvm-svn: 191283
Before this patch, Lex() would recurse whenever the current lexer changed (e.g.
upon entry into a macro). This patch turns the recursion into a loop: the
various lex routines now don't return a token when the current lexer changes,
and at the top level Preprocessor::Lex() now loops until it finds a token.
Normally, the recursion wouldn't end up being very deep, but the recursion depth
can explode in edge cases like a bunch of consecutive macros which expand to
nothing (like in the testcase test/Preprocessor/macro_expand_empty.c in this
patch).
<rdar://problem/14569770>
llvm-svn: 190980
Summary:
This fixes PR17145 and avoids unknown pragma warnings.
This change does not attempt to map MSVC warning numbers to clang
warning flags. Perhaps in the future we will implement a mapping for
some common subset of Microsoft warnings, but for now we don't.
Reviewers: rsmith
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1652
llvm-svn: 190726
This allows clang to parse the type_traits header in Visual Studio 2012,
which is included widely in practice.
This is a rework of r163022 by João Matos. The original patch broke
preprocessing of gtest headers, which this patch addresses.
Patch by Will Wilson!
llvm-svn: 184968
properly. This warning checks that the #ifndef and #define directives at
the beginning of a header refer to the same macro name. Includes a fix-it
hint to correct the header guard.
llvm-svn: 183867
Summary:
There's Lexer::getBufferStart(), and we need getBufferEnd() to access
the whole input buffer in clang::format::reformat. We don't want to
rely on the fact that the Lexer::BufferEnd always points to '\0', as there can
be embedded '\0's as well.
Reviewers: jordan_rose
Reviewed By: jordan_rose
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D916
llvm-svn: 183236
*that* easy...
Try a bit harder to disambiguate. This is mostly straightforward, but for
=-style initializers, we actually need to know where an expression ends:
[foo = bar baz]
is a message send, whereas
[foo = bar + baz]
is a lambda-introducer. Handle this by parsing the expression eagerly, and
replacing it with an annotation token. By chance, we use the *exact same*
parsing rules in both cases (except that we need to assume we're inside a
message send for the parse, to turn off various forms of inapplicable
error recovery).
llvm-svn: 182432
The most common (non-buggy) case are where such objects are used as
return expressions in bool-returning functions or as boolean function
arguments. In those cases I've used (& added if necessary) a named
function to provide the equivalent (or sometimes negative, depending on
convenient wording) test.
DiagnosticBuilder kept its implicit conversion operator owing to the
prevalent use of it in return statements.
One bug was found in ExprConstant.cpp involving a comparison of two
PointerUnions (PointerUnion did not previously have an operator==, so
instead both operands were converted to bool & then compared). A test
is included in test/SemaCXX/constant-expression-cxx1y.cpp for the fix
(adding operator== to PointerUnion in LLVM).
llvm-svn: 181869
After r180934 we may initiate module map parsing for modules not related to the module what we are building,
make sure we ignore the header file info of headers from such modules.
First part of rdar://13840148
llvm-svn: 181489
Summary:
No functionality change. The existing tests for this pragma only verify
that we can preprocess it.
Reviewers: rsmith
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D751
llvm-svn: 181246
Previously, we would clone the current diagnostic consumer to produce
a new diagnostic consumer to use when building a module. The problem
here is that we end up losing diagnostics for important diagnostic
consumers, such as serialized diagnostics (where we'd end up with two
diagnostic consumers writing the same output file). With forwarding,
the diagnostics from all of the different modules being built get
forwarded to the one serialized-diagnostic consumer and are emitted in
a sane way.
Fixes <rdar://problem/13663996>.
llvm-svn: 181067
Syntactically means the function macro parameter names do not need to use the same
identifiers in order for the definitions to be considered identical.
Syntactic equivalence is a microsoft extension for macro redefinitions and we'll also
use this kind of comparison to check for ambiguous macros coming from modules.
rdar://13562254
llvm-svn: 178671
the system macro uses a not identical definition compared to a macro from the clang headers.
For example (these come from different modules):
\#define LONG_MAX __LONG_MAX__ (clang's limits.h)
\#define LONG_MAX 0x7fffffffffffffffL (system's limits.h)
in which case don't mark them ambiguous to avoid the "ambiguous macro expansion" warning.
llvm-svn: 178109
For each macro directive (define, undefine, visibility) have a separate object that gets chained
to the macro directive history. This has several benefits:
-No need to mutate a MacroDirective when there is a undefine/visibility directive. Stuff like
PPMutationListener become unnecessary.
-No need to keep extra source locations for the undef/visibility locations for the define directive object
(which is the majority of the directives)
-Much easier to hide/unhide a section in the macro directive history.
-Easier to track the effects of the directives across different submodules.
llvm-svn: 178037
-Serialize the macro directives history into its own section
-Get rid of the macro updates section
-When de/serializing an identifier from a module, associate only one macro per
submodule that defined+exported it.
llvm-svn: 177761
* Clarify what MacroInfo::isBuiltinMacro means, as it really means something
more like "isMagicalMacro" or "requiresProcessingBeforeExpansion" -- the
macros defined in "<built-in>" are not considered built-in by this function;
* Escape __LINE__ as \__LINE__ in Doxygen comments so that the underscores
don't get replaced by *bold* output;
* Turn comments in MacroInfo.cpp into non-Doxygen comments, so that they
don't result in duplicated/badly formatted Doxygen output;
* Clean up a bunch of \brief formatting, and add a \file comment for
MacroInfo.h.
llvm-svn: 177581
In a module-enabled Cocoa PCH file, we spend a lot of time stat'ing the headers
in order to associate the FileEntries with their modules and support implicit
module import.
Use a more lazy scheme by enhancing HeaderInfoTable to store extra info about
the module that a header belongs to, and associate it with its module only when
there is a request for loading the header info for a particular file.
Part of rdar://13391765
llvm-svn: 176976
its index in the preprocessed entities vector.
This is because the order of the entities in the vector can change in some (uncommon) cases.
llvm-svn: 175907
for the data specific to a macro definition (e.g. what the tokens are), and
MacroDirective class which encapsulates the changes to the "macro namespace"
(e.g. the location where the macro name became active, the location where it was undefined, etc.)
(A MacroDirective always points to a MacroInfo object.)
Usually a macro definition (MacroInfo) is where a macro name becomes active (MacroDirective) but
splitting the concepts allows us to better model the effect of modules to the macro namespace
(also as a bonus it allows better modeling of push_macro/pop_macro #pragmas).
Modules can have their own macro history, separate from the local (current translation unit)
macro history; MacroDirectives will be used to model the macro history (changes to macro namespace).
For example, if "@import A;" imports macro FOO, there will be a new local MacroDirective created
to indicate that "FOO" became active at the import location. Module "A" itself will contain another
MacroDirective in its macro history (at the point of the definition of FOO) and both MacroDirectives
will point to the same MacroInfo object.
Introducing the separation of macro concepts is the first part towards better modeling of module macros.
llvm-svn: 175585
The use of this flag enables a modules optimization where a given set
of macros can be labeled as "ignored" by the modules
system. Definitions of those macros will be completely ignored when
building the module hash and will be stripped when actually building
modules. The overall effect is that this flag can be used to
drastically reduce the number of
Eventually, we'll want modules to tell us what set of macros they
respond to (the "configuration macros"), and anything not in that set
will be excluded. However, that requires a lot of per-module
information that must be accurate, whereas this option can be used
more readily.
Fixes the rest of <rdar://problem/13165109>.
llvm-svn: 174560
People use the C preprocessor for things other than C files. Some of them
have Unicode characters. We shouldn't warn about Unicode characters
appearing outside of identifiers in this case.
There's not currently a way for the preprocessor to tell if it's in -E mode,
so I added a new flag, derived from the PreprocessorOutputOptions. This is
only used by the Unicode warnings for now, but could conceivably be used by
other warnings or even behavioral differences later.
<rdar://problem/13107323>
llvm-svn: 173881
- The only group where it makes sense for the "ExternC" bit is System, so this
simplifies having to have the extra isCXXAware (or ImplicitExternC, depending
on what code you talk to) bit caried around.
llvm-svn: 173859
This is a missing piece for C99 conformance.
This patch handles UCNs by adding a '\\' case to LexTokenInternal and
LexIdentifier -- if we see a backslash, we tentatively try to read in a UCN.
If the UCN is not syntactically well-formed, we fall back to the old
treatment: a backslash followed by an identifier beginning with 'u' (or 'U').
Because the spelling of an identifier with UCNs still has the UCN in it, we
need to convert that to UTF-8 in Preprocessor::LookUpIdentifierInfo.
Of course, valid code that does *not* use UCNs will see only a very minimal
performance hit (checks after each identifier for non-ASCII characters,
checks when converting raw_identifiers to identifiers that they do not
contain UCNs, and checks when getting the spelling of an identifier that it
does not contain a UCN).
This patch also adds basic support for actual UTF-8 in the source. This is
treated almost exactly the same as UCNs except that we consider stray
Unicode characters to be mistakes and offer a fixit to remove them.
llvm-svn: 173369
Makes sure that a deserialized macro is only added to the preprocessor macro definitions only once.
Unfortunately I couldn't get a reduced test case.
rdar://13016031
llvm-svn: 172843
Previously we would serialize the macro redefinitions as a list, part of
the identifier, and try to chain them together across modules individually
without having the info that they were already chained at definition time.
Change this by serializing the macro redefinition chain and then try
to synthesize the chain parts across modules. This allows us to correctly
pinpoint when 2 different definitions are ambiguous because they came from
unrelated modules.
Fixes bogus "ambiguous expansion of macro" warning when a macro in a PCH
is redefined without undef'ing it first.
rdar://13016031
llvm-svn: 172620
which a particular declaration resides. Use this information to
customize the "definition of 'blah' must be imported from another
module" diagnostic with the module the user actually has to
import. Additionally, recover by importing that module, so we don't
complain about other names in that module.
Still TODO: coming up with decent Fix-Its for these cases, and expand
this recovery approach for other name lookup failures.
llvm-svn: 172290
directive as a macro expansion.
This is more of a "macro reference" than a macro expansion but it's close enough
for libclang's purposes. If it causes issues we can revisit and introduce a new
kind of cursor.
llvm-svn: 169666
PreprocessingRecord and into its own class, PPConditionalDirectiveRecord.
Decoupling allows a client to use the functionality of PPConditionalDirectiveRecord
without needing a PreprocessingRecord.
llvm-svn: 169229
building module 'Foo' imported from..." notes (the same we we provide
"In file included from..." notes) in the diagnostic, so that we know
how this module got included in the first place. This is part of
<rdar://problem/12696425>.
llvm-svn: 169021
import of that module elsewhere, don't try to build the module again:
it won't work, and the experience is quite dreadful. We track this
information somewhat globally, shared among all of the related
CompilerInvocations used to build modules on-the-fly, so that a
particular Clang instance will only try to build a given module once.
Fixes <rdar://problem/12552849>.
llvm-svn: 168961
common LexStringLiteral function. In doing so, some consistency problems have
been ironed out (e.g. where the first token in the string literal was lexed
with macro expansion, but subsequent ones were not) and also an erroneous
diagnostic has been corrected.
LexStringLiteral is complemented by a FinishLexStringLiteral function which
can be used in the situation where the first token of the string literal has
already been lexed.
llvm-svn: 168266
the related comma pasting extension.
In certain cases, we used to get two diagnostics for what is essentially one
extension. This change suppresses the first diagnostic in certain cases
where we know we're going to print the second diagnostic. The
diagnostic is redundant, and it can't be suppressed in the definition
of the macro because it points at the use of the macro, so we want to
avoid printing it if possible.
The implementation works by detecting constructs which look like comma
pasting at the time of the definition of the macro; this information
is then used when the macro is used. (We can't actually detect
whether we're using the comma pasting extension until the macro is
actually used, but we can detecting constructs which will be comma
pasting if the varargs argument is elided.)
<rdar://problem/12292192>
llvm-svn: 167907
allowing a module map to be placed one level above the '.framework'
directories to specify that all .frameworks within that directory can
be inferred as framework modules. One can also specifically exclude
frameworks known not to work.
This makes explicit (and more restricted) behavior modules have had
"forever", where *any* .framework was assumed to be able to be built
as a module. That's not necessarily true, so we white-list directories
(with exclusions) when those directories have been audited.
llvm-svn: 167482
The stat cache became essentially useless ever since we started
validating all file entries in the PCH.
But the motivating reason for removing it now is that it also affected
correctness in this situation:
-You have a header without include guards (using "#pragma once" or #import)
-When creating the PCH:
-The same header is referenced in an #include with different filename cases.
-In the PCH, of course, we record only one file entry for the header file
-But we cache in the PCH file the stat info for both filename cases
-Then the source files are updated and the header file is updated in a way that
its size and modification time are the same but its inode changes
-When using the PCH:
-We validate the headers, we check that header file and we create a file entry with its current inode
-There's another #include with a filename with different case than the previously created file entry
-In order to get its stat info we go through the cached stat info of the PCH and we receive the old inode
-because of the different inodes, we think they are different files so we go ahead and include its contents.
Removing the stat cache will potentially break clients that are attempting to use the stat cache
as a way of avoiding having the actual input files available. If that use case is important, patches are welcome
to bring it back in a way that will actually work correctly (i.e., emit a PCH that is self-contained, coping with
literal strings, line/column computations, etc.).
This fixes rdar://5502805
llvm-svn: 167172
description. Previously, one could emulate this behavior by placing
the header in an always-unavailable submodule, but Argyrios guilted me
into expressing this idea properly.
llvm-svn: 165921
macro history.
When deserializing macro history, we arrange history such that the
macros that have definitions (that haven't been #undef'd) and are
visible come at the beginning of the list, which is what the
preprocessor and other clients of Preprocessor::getMacroInfo()
expect. If additional macro definitions become visible later, they'll
be moved toward the front of the list. Note that it's possible to have
ambiguities, but we don't diagnose them yet.
There is a partially-implemented design decision here that, if a
particular identifier has been defined or #undef'd within the
translation unit, that definition (or #undef) hides any macro
definitions that come from imported modules. There's still a little
work to do to ensure that the right #undef'ing happens.
Additionally, we'll need to scope the update records for #undefs, so
they only kick in when the submodule containing that update record
becomes visible.
llvm-svn: 165682
MacroInfo*. Instead of simply dumping an offset into the current file,
give each macro definition a proper ID with all of the standard
modules-remapping facilities. Additionally, when a macro is modified
in a subsequent AST file (e.g., #undef'ing a macro loaded from another
module or from a precompiled header), provide a macro update record
rather than rewriting the entire macro definition. This gives us
greater consistency with the way we handle declarations, and ties
together macro definitions much more cleanly.
Note that we're still not actually deserializing macro history (we
never were), but it's far easy to do properly now.
llvm-svn: 165560
Summary:
When issuing a diagnostic message for the -Wimplicit-fallthrough diagnostics, always try to find the latest macro, defined at the point of fallthrough, which is immediately expanded to "[[clang::fallthrough]]", and use it's name instead of the actual sequence.
Known issues:
* uses PP.getSpelling() to compare macro definition with a string (anyone can suggest a convenient way to fill a token array, or maybe lex it in runtime?);
* this can be generalized and used in other similar cases, any ideas where it should reside then?
Reviewers: doug.gregor, rsmith
Reviewed By: rsmith
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D50
llvm-svn: 164858
have PPCallbacks::InclusionDirective pass the character range for the filename quotes or brackets.
rdar://11113134 & http://llvm.org/PR13880
llvm-svn: 164743
Summary: Passes all tests (+ the new one with code completion), but needs a thorough review in part related to modules.
Reviewers: doug.gregor
Reviewed By: alexfh
CC: cfe-commits, rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D41
llvm-svn: 164610
specific module (__building_module(modulename)) and to get the name of
the current module as an identifier (__MODULE__).
Used to help headers behave differently when they're being included as
part of building a module. Oh, the irony.
llvm-svn: 164605
within its own argument list. The original definition is used for the immediate
expansion, but the new definition is used for any subsequent occurences within
the argument list or after the expansion.
llvm-svn: 162906
Summary:
The problem was with the following sequence:
#pragma push_macro("long")
#undef long
#pragma pop_macro("long")
in case when "long" didn't represent a macro.
Fixed crash and removed code duplication for #undef/pop_macro case. Added regression tests.
Reviewers: doug.gregor, klimek
Reviewed By: doug.gregor
CC: cfe-commits, chapuni
Differential Revision: http://llvm-reviews.chandlerc.com/D31
llvm-svn: 162845
Summary:
Summary: Keep history of macro definitions and #undefs with corresponding source locations, so that we can later find out all macros active in a specified source location. We don't save the history in PCH (no need currently). Memory overhead is about sizeof(void*)*3*<number of macro definitions and #undefs>+<in-memory size of all #undef'd macros>
I've run a test on a file composed of 109 .h files from boost 1.49 on x86-64 linux.
Stats before this patch:
*** Preprocessor Stats:
73222 directives found:
19171 #define.
4345 #undef.
#include/#include_next/#import:
5233 source files entered.
27 max include stack depth
19210 #if/#ifndef/#ifdef.
2384 #else/#elif.
6891 #endif.
408 #pragma.
14466 #if/#ifndef#ifdef regions skipped
80023/451669/1270 obj/fn/builtin macros expanded, 85724 on the fast path.
127145 token paste (##) operations performed, 11008 on the fast path.
Preprocessor Memory: 5874615B total
BumpPtr: 4399104
Macro Expanded Tokens: 417768
Predefines Buffer: 8135
Macros: 1048576
#pragma push_macro Info: 0
Poison Reasons: 1024
Comment Handlers: 8
Stats with this patch:
...
Preprocessor Memory: 7541687B total
BumpPtr: 6066176
Macro Expanded Tokens: 417768
Predefines Buffer: 8135
Macros: 1048576
#pragma push_macro Info: 0
Poison Reasons: 1024
Comment Handlers: 8
In my test increase in memory usage is about 1.7Mb, which is ~28% of initial preprocessor's memory usage and about 0.8% of clang's total VMM allocation.
As for CPU overhead, it should only be noticeable when iterating over all macros, and should mostly consist of couple extra dereferences and one comparison per macro + skipping of #undef'd macros. It's less trivial to measure, though, as the preprocessor consumes a very small fraction of compilation time.
Reviewers: doug.gregor, klimek, rsmith, djasper
Reviewed By: doug.gregor
CC: cfe-commits, chandlerc
Differential Revision: http://llvm-reviews.chandlerc.com/D28
llvm-svn: 162810
nested names as id-expressions, using the annot_primary_expr annotation, where
possible. This removes some redundant lookups, and also allows us to
typo-correct within tentative parsing, and to carry on disambiguating past an
identifier which we can determine will fail lookup as both a type and as a
non-type, allowing us to disambiguate more declarations (and thus offer
improved error recovery for such cases).
This also introduces to the parser the notion of a tentatively-declared name,
which is an identifier which we *might* have seen a declaration for in a
tentative parse (but only if we end up disambiguating the tokens as a
declaration). This is necessary to correctly disambiguate cases where a
variable is used within its own initializer.
llvm-svn: 162159
* Primarily fixed \param commands with names not matching any actual
parameters of the documented functions. In many cases this consists
just of fixing up the parameter name in the \param to match the code,
in some it means deleting obsolete documentation and occasionally it
means documenting the parameter that has replaced the older one that
was documented, which sometimes means some simple reverse-engineering
of the docs from the implementation;
* Fixed \param ParamName [out] to the correct format with [out] before
the parameter name;
* Fixed some \brief summaries.
llvm-svn: 158980
* Added \file documentation for PPCallbacks.h;
* Added/formated \brief summaries;
* Deleted documentation for parameters that no longer exist;
* Used \param more systematically for documentation of parameters;
* Escaped # characters in Doxygen comments.
llvm-svn: 158978
* Escaped # and < characters in Doxygen comments as needed;
* Fixed up some \brief summaries;
* Marked up some parameter references with \p;
* Added \code...\endcode around code examples;
* Used \returns a little more.
llvm-svn: 158966
* Retain comments in the AST
* Serialize/deserialize comments
* Find comments attached to a certain Decl
* Expose raw comment text and SourceRange via libclang
llvm-svn: 158771
* Escaped # characters in Doxygen comments as needed;
* Added/reformatted \brief docs;
* Used a \file comment to document the file (MultipleIncludeOpt.h).
llvm-svn: 158635
* Escaped the # of #define in Doxygen comments;
* Formatting: Annotated __VA_ARGS__ with \c;
* Converted docs to use \brief to provide summaries;
* Fixed a typo: disbles -> disables.
llvm-svn: 158553
This reduces the number of warnings generated by Doxygen by about 100
(roughly 10%). Issues addressed:
(1) Primarily, backslash-escaped "@foo" and "#bah" in Doxygen comments
when they're not supposed to be Doxygen commands or links, and
similarly for "<baz>" when it's not intended as as HTML tag;
(2) Changed some \t commands (which don't exist) to \c ("to refer to a
word of code", as the Doxygen manual says);
(3) \precondition becomes \pre;
(4) When touching comments, deleted a couple of spurious spaces in them;
(5) Changed some \n and \r to \\n and \\r;
(6) Fixed one tiny typo: #pragms -> #pragma.
This patch touches documentation/comments only.
llvm-svn: 158422
override whether headers are system headers by checking for prefixes of the
header name specified in the #include directive.
This allows warnings to be disabled for third-party code which is found in
specific subdirectories of include paths.
llvm-svn: 158418
The preprocessor's handling of diagnostic push/pops is stateful, so
encountering pragmas during a re-parse causes problems. HTMLRewrite
already filters out normal # directives including #pragma, so it's
clear it's not expected to be interpreting pragmas in this mode.
This fix adds a flag to Preprocessor to explicitly disable pragmas.
The "right" fix might be to separate pragma lexing from pragma
parsing so that we can throw away pragmas like we do preprocessor
directives, but right now it's important to get the fix in.
Note that this has nothing to do with the "hack" of re-using the
input preprocessor in HTMLRewrite. Even if we someday copy the
preprocessor instead of re-using it, the copy would (and should) include
the diagnostic level tables and have the same problems.
llvm-svn: 158214
This was a problem for people who write 'return(result);'
Also fix ARCMT's corresponding code, though there's no test case for this
because implicit casts like this are rejected by the migrator for being
ambiguous, and explicit casts have no problem.
<rdar://problem/11577346>
llvm-svn: 158130
- Developers of system frameworks need a way for their framework to be treated as a "system framework" during development. Otherwise, they are unable to properly test how their framework behaves when installed because of the semantic changes (in warning behavior) applied to system frameworks.
llvm-svn: 154105
If we are pre-expanding a macro argument don't actually "activate"
the pragma at that point, activate the pragma whenever we encounter
it again in the token stream.
This ensures that we will activate it in the correct location
or that we will ignore it if it never enters the token stream, e.g:
\#define EMPTY(x)
\#define INACTIVE(x) EMPTY(x)
INACTIVE(_Pragma("clang diagnostic ignored \"-Wconversion\""))
This also fixes the crash in rdar://11168596.
llvm-svn: 153959
"#include MACRO(STUFF)".
-As an inclusion position for the included file, use the file location of the file where it
was included but *after* the macro expansions. We want the macro expansions to be considered
as before-in-translation-unit for everything in the included file.
-In the preprocessing record take into account that only inclusion directives can be encountered
as "out-of-order" (by comparing the start of the range which for inclusions is the hash location)
and use binary search if there is an extreme number of macro expansions in the include directive.
Fixes rdar://11111779
llvm-svn: 153527
Enable incremental parsing by the Preprocessor,
where more code can be provided after an EOF.
It mainly prevents the tearing down of the topmost lexer.
To be used like this:
PP.enableIncrementalProcessing();
while (getMoreSource()) {
while (Parser.ParseTopLevelDecl(ADecl)) {...}
}
PP.enableIncrementalProcessing(false);
llvm-svn: 152914
- The theory here is that we have these functions sprinkled in all over the
place. This should allow the optimizer to at least realize it can still do
load CSE across these calls.
- I blindly marked all instances as such, even though the optimizer can infer
this attribute in some instances (some of the inline ones) as that was easier
and also, when given the choice between thinking and not thinking, I prefer
the latter.
You might think this is mere frivolity, but actually this is good for a .7 -
1.1% speedup on 403.gcc/combine.c, JSC/Interpreter.cpp,
OGF/NSBezierPath-OAExtensions.m.
llvm-svn: 152426
grammar requires a string-literal and not a user-defined-string-literal. The
two constructs are still represented by the same TokenKind, in order to prevent
a combinatorial explosion of different kinds of token. A flag on Token tracks
whether a ud-suffix is present, in order to prevent clients from needing to look
at the token's spelling.
llvm-svn: 152098
Introduce PreprocessingRecord::rangeIntersectsConditionalDirective() which returns
true if a given range intersects with a conditional directive block.
llvm-svn: 152018
-Add location parameter for the directives callbacks
-Skip callbacks if the directive is inside a skipped range.
-Make sure the directive callbacks are invoked in source order.
llvm-svn: 152017
Fixes PR10606.
I'm not sure if this is the best way to go about it, but
I locally enabled this code path without the msext conditional,
and all tests pass, except for test/Preprocessor/cxx_oper_keyword.cpp
which explicitly checks that operator keywords can't be redefined.
I also parsed chromium/win with a clang with and without this patch.
It introduced no new errors, but removes 43 existing errors.
llvm-svn: 151768
This seems to negatively affect compile time onsome ObjC tests
(which use a lot of partial diagnostics I assume). I have to come
up with a way to keep them inline without including Diagnostic.h
everywhere. Now adding a new diagnostic requires a full rebuild
of e.g. the static analyzer which doesn't even use those diagnostics.
This reverts commit 6496bd10dc3a6d5e3266348f08b6e35f8184bc99.
This reverts commit 7af19b817ba964ac560b50c1ed6183235f699789.
This reverts commit fdd15602a42bbe26185978ef1e17019f6d969aa7.
This reverts commit 00bd44d5677783527d7517c1ffe45e4d75a0f56f.
This reverts commit ef9b60ffed980864a8db26ad30344be429e58ff5.
llvm-svn: 150006