determine the primary context, rather than sometimes registering the lookup
table on the wrong context.
This exposed a couple of bugs:
* the odr violation check didn't deal properly with mergeable declarations
if the declaration retained by name lookup wasn't in the canonical
definition of the class
* the (broken) RewriteDecl mechanism would emit two name lookup tables for
the same DeclContext into the same module file (one as part of the
rewritten declaration and one as a visible update for the old declaration)
These are both fixed too.
llvm-svn: 244192
useless return value. Switch to using it directly when completing the
redeclaration chain for an anonymous declaration, and reduce the set of
declarations that we load in the process to just those of the right kind.
llvm-svn: 244161
In llvm commit r243581, a reverse range adapter was added which allows
us to change code such as
for (auto I = Fields.rbegin(), E = Fields.rend(); I != E; ++I) {
in to
for (const FieldDecl *I : llvm::reverse(Fields))
This commit changes a few of the places in clang which are eligible to use
this new adapter.
llvm-svn: 243663
chain and fix the cases where it fires.
* Handle the __va_list_tag as a predefined decl. Previously we failed to merge
sometimes it because it's not visible to name lookup. (In passing, remove
redundant __va_list_tag typedefs that we were creating for some ABIs. These
didn't affect the mangling or representation of the type.)
* For Decls derived from Redeclarable that are not in fact redeclarable
(implicit params, function params, ObjC type parameters), remove them from
the list of expected redeclarable decls.
llvm-svn: 243259
the identifier table. This is redundant, since the TU-scope lookups are also
serialized as part of the TU DeclContext, and wasteful in a number of ways. We
still emit the decls for PCH / preamble builds, since for those we want
identical results, not merely semantically equivalent ones.
llvm-svn: 242855
- introduces a new cc1 option -fmodule-format=[raw,obj]
with 'raw' being the default
- supports arbitrary module container formats that libclang is agnostic to
- adds the format to the module hash to avoid collisions
- splits the old PCHContainerOperations into PCHContainerWriter and
a PCHContainerReader.
Thanks to Richard Smith for reviewing this patch!
llvm-svn: 242499
before the first imported declaration.
We don't need to track all formerly-canonical declarations of an entity; it's sufficient to track those ones for which no other formerly-canonical declaration was imported into the same module. We call those ones "key declarations", and use them as our starting points for collecting redeclarations and performing namespace lookups.
llvm-svn: 241999
This patch adds ObjectFilePCHContainerOperations uses the LLVM backend
to put the contents of a PCH into a __clangast section inside a COFF, ELF,
or Mach-O object file container.
This is done to facilitate module debugging by makeing it possible to
store the debug info for the types defined by a module alongside the AST.
rdar://problem/20091852
llvm-svn: 241620
The __kindof type qualifier can be applied to Objective-C object
(pointer) types to indicate id-like behavior, which includes implicit
"downcasting" of __kindof types to subclasses and id-like message-send
behavior. __kindof types provide better type bounds for substitutions
into unspecified generic types, which preserves more type information.
llvm-svn: 241548
Objective-C type arguments can be provided in angle brackets following
an Objective-C interface type. Syntactically, this is the same
position as one would provide protocol qualifiers (e.g.,
id<NSCopying>), so parse both together and let Sema sort out the
ambiguous cases. This applies both when parsing types and when parsing
the superclass of an Objective-C class, which can now be a specialized
type (e.g., NSMutableArray<T> inherits from NSArray<T>).
Check Objective-C type arguments against the type parameters of the
corresponding class. Verify the length of the type argument list and
that each type argument satisfies the corresponding bound.
Specializations of parameterized Objective-C classes are represented
in the type system as distinct types. Both specialized types (e.g.,
NSArray<NSString *> *) and unspecialized types (NSArray *) are
represented, separately.
llvm-svn: 241542
Any extra features from -fmodule-feature are part of the module hash and
need to get validated on load. Also print them with -module-file-info.
llvm-svn: 240433
The patch is generated using this command:
$ tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
work/llvm/tools/clang
To reduce churn, not touching namespaces spanning less than 10 lines.
llvm-svn: 240270
This is a better approach to fixing the undefined behaviour I tried to
fix in r240228. This data doesn't necessarily have suitable alignment
for uint64_t, so use unaligned_uint64_t instead.
This fixes 225 test failures when clang is built with ubsan.
llvm-svn: 240247
We interpret Blob as an array of uint64_t here, but there's no reason
to think that it has suitable alignment. Instead, read the data in in
an alignment-safe way and store it in a std::vector.
This fixes 225 test failures when clang is built with ubsan.
llvm-svn: 240228
A PCHContainerOperations abstract interface provides operations for
creating and unwrapping containers for serialized ASTs (precompiled
headers and clang modules). The default implementation is
RawPCHContainerOperations, which uses a flat file for the output.
The main application for this interface will be an
ObjectFilePCHContainerOperations implementation that uses LLVM to
wrap the module in an ELF/Mach-O/COFF container to store debug info
alongside the AST.
rdar://problem/20091852
llvm-svn: 240225
If the type isn't trivially moveable emplace can skip a potentially
expensive move. It also saves a couple of characters.
Call sites were found with the ASTMatcher + some semi-automated cleanup.
memberCallExpr(
argumentCountIs(1), callee(methodDecl(hasName("push_back"))),
on(hasType(recordDecl(has(namedDecl(hasName("emplace_back")))))),
hasArgument(0, bindTemporaryExpr(
hasType(recordDecl(hasNonTrivialDestructor())),
has(constructExpr()))),
unless(isInTemplateInstantiation()))
No functional change intended.
llvm-svn: 238601
Emit warning when operand to `delete` is allocated with `new[]` or
operand to `delete[]` is allocated with `new`.
rev 2 update:
`getNewExprFromInitListOrExpr` should return `dyn_cast_or_null`
instead of `dyn_cast`, since `E` might be null.
Reviewers: rtrieu, jordan_rose, rsmith
Subscribers: majnemer, cfe-commits
Differential Revision: http://reviews.llvm.org/D4661
llvm-svn: 237608
With this change, enabling -fmodules-local-submodule-visibility results in name
visibility rules being applied to submodules of the current module in addition
to imported modules (that is, names no longer "leak" between submodules of the
same top-level module). This also makes it much safer to textually include a
non-modular library into a module: each submodule that textually includes that
library will get its own "copy" of that library, and so the library becomes
visible no matter which including submodule you import.
llvm-svn: 237473
This reverts commit 742dc9b6c9686ab52860b7da39c3a126d8a97fbc.
This is generating multiple segfaults in our internal builds.
Test case coming up shortly.
llvm-svn: 237391
Emit warning when operand to `delete` is allocated with `new[]` or
operand to `delete[]` is allocated with `new`.
Reviewers: rtrieu, jordan_rose, rsmith
Subscribers: majnemer, cfe-commits
Differential Revision: http://reviews.llvm.org/D4661
llvm-svn: 237368
clang::MacroDefinition now models the currently-defined value of a macro. The
previous MacroDefinition type, which represented a record of a macro definition
directive for a detailed preprocessing record, is now called MacroDefinitionRecord.
llvm-svn: 236400
It has no place there; it's not a property of the Module, and it makes
restoring the visibility set when we leave a submodule more difficult.
llvm-svn: 236300
Modules builds fundamentally have a non-linear macro history. In the interest
of better source fidelity, represent the macro definition information
faithfully: we have a linear macro directive history within each module, and at
any point we have a unique "latest" local macro directive and a collection of
visible imported directives. This also removes the attendent complexity of
attempting to create a correct MacroDirective history (which we got wrong
in the general case).
No functionality change intended.
llvm-svn: 236176
Previously we'd defer this determination until writing the AST, which doesn't
allow us to use this information when building other submodules of the same
module. This change also allows us to use a uniform mechanism for writing
module macro records, independent of whether they are local or imported.
llvm-svn: 235614
This graph will be used to determine the current set of active macros. This is
foundation work for getting macro visibility correct across submodules of the
current module. No functionality change for now.
llvm-svn: 235461
This is substantially simpler, provides better space usage accounting in bcanalyzer,
and gives a more compact representation. No functionality change intended.
llvm-svn: 235420
More fallout from r228234; when looking up an identifier in a PCH that
imports the Cocoa module on Darwin, it was taking 2 to 5 seconds
because we were hammering the MapVector::erase() function, which is
O(n). For now, just clear() the contained SmallVector to get back to
0.25 - 0.5 seconds. This is probably not the long-term fix, because
without modules or without PCH the performance is more like 0.02
seconds.
llvm-svn: 234655
if the merged definition is visible, and perform lookups into all merged copies
of the definition (not just for special members) so that we can complete the
redecl chains for members of the class.
llvm-svn: 233420
Clang was inserting these into a dense map. While it never iterated the
dense map during normal compilation, it did when emitting a module. Fix
this by using a standard MapVector to preserve the order in which we
encounter the late parsed templates.
I suspect this still isn't ideal, as we don't seem to remove things from
this map even when we mark the templates as no longer late parsed. But
I don't know enough about this particular extension to craft a nice,
subtle test case covering this. I've managed to get the stress test to
at least do some late parsing and demonstrate the core problem here.
This patch fixes the test and provides deterministic behavior which is
a strict improvement over the prior state.
I've cleaned up some of the code here as well to be explicit about
inserting when that is what is actually going on.
llvm-svn: 233264
Previously we'd deserialize the list of mem-initializers for a constructor when
we deserialized the declaration of the constructor. That could trigger a
significant amount of unnecessary work (pulling in all base classes
recursively, for a start) and was causing problems for the modules buildbot due
to cyclic deserializations. We now deserialize these on demand.
This creates a certain amount of duplication with the handling of
CXXBaseSpecifiers; I'll look into reducing that next.
llvm-svn: 233052
* Strength reduce a std::function to a function pointer,
* Factor out checking the AST file magic number,
* Add a brief doc comment to readAStFileSignature
Thanks to Chandler for spotting these oddities.
llvm-svn: 233050
for a DeclContext, and fix propagation of exception specifications along
redeclaration chains.
This reverts r232905, r232907, and r232907, which reverted r232793, r232853,
and r232853.
One additional change is present here to resolve issues with LLDB: distinguish
between whether lexical decls missing from the lookup table are local or are
provided by the external AST source, and still look in the external source if
that's where they came from.
llvm-svn: 232928
give an exception specification to a declaration that didn't have an exception
specification in any of our imported modules, emit an update record ourselves.
Without this, code importing the current module would not see an exception
specification that we could see and might have relied on.
llvm-svn: 232870
When we need to build the lookup table for a DeclContext, we used to pull in
all lexical declarations for the context; instead, just build a lookup table
for the local lexical declarations. We previously didn't guarantee that the
imported declarations would be in the returned map, but in some cases we'd
happen to put them all in there regardless. Now we're even lazier about this.
This unnecessary work was papering over some other bugs:
- LookupVisibleDecls would use the DC for name lookups in the TU in C, and
this was not guaranteed to find all imported names (generally, the DC for
the TU in C is not a reliable place to perform lookups). We now use an
identifier-based lookup mechanism for this.
- We didn't actually load in the list of eagerly-deserialized declarations
when importing a module (so external definitions in a module wouldn't be
emitted by users of those modules unless they happened to be deserialized
by the user of the module).
llvm-svn: 232793
consumers of that module.
Previously, such a file would only be available if the module happened to
actually import something from that module.
llvm-svn: 232583
building its redecl chains, make sure we pull in the redeclarations of those
canonical declarations.
It's pretty difficult to reach a situation where we can find more canonical
declarations of an entity while building its redecl chains; I think the
provided testcase (4 modules and 7 declarations) cannot be reduced further.
llvm-svn: 232411
with a subset of the existing target CPU features or mismatched CPU
names.
While we can't check that the CPU name used to build the module will end
up being able to codegen correctly for the translation unit, we actually
check that the imported features are a subset of the existing features.
While here, rewrite the code to use std::set_difference and have it
diagnose all of the differences found.
Test case added which walks the set relationships and ensures we
diagnose all the right cases and accept the others.
No functional change for implicit modules here, just better diagnostics.
llvm-svn: 232248
headers even if they arrived when merging non-system modules.
The idea of this code is that we don't want to warn the user about
macros defined multiple times by their system headers with slightly
different definitions. We should have this behavior if either the
macro comes from a system module, or the definition within the module
comes from a system header. Previously, we would warn on ambiguous
macros being merged when they came from a users modules even though they
only showed up via system headers.
By surviving this we can handle common system header macro differences
like differing 'const' qualification of pointers due to some headers
predating 'const' being valid in C code, even when those systems headers
are pre-built into a system module.
Differential Revision: http://reviews.llvm.org/D8310
llvm-svn: 232149
of extern "C" declarations. This is simpler and vastly more efficient for
modules builds (we no longer need to load *all* extern "C" declarations to
determine if we have a redeclaration).
No functionality change intended.
llvm-svn: 231538
We used to save out and eagerly load a (potentially huge) table of merged
formerly-canonical declarations when we loaded each module. This was extremely
inefficient in the presence of large amounts of merging, and didn't actually
save any merging lookup work, because we still needed to perform name lookup to
check that our merged declaration lists were complete. This also resulted in a
loss of laziness -- even if we only needed an early declaration of an entity, we
would eagerly pull in all declarations that had been merged into it regardless.
We now store the relevant fragments of the table within the declarations
themselves. In detail:
* The first declaration of each entity within a module stores a list of first
declarations from imported modules that are merged into it.
* Loading that declaration pre-loads those other entities, so that they appear
earlier within the redeclaration chain.
* The name lookup tables list the most recent local lookup result, if there
is one, or all directly-imported lookup results if not.
llvm-svn: 231424
dynamic classes in the translation unit and check whether each one's key
function is defined when we got to the end of the TU (and when we got to the
end of each module). This is really terrible for modules performance, since it
causes unnecessary deserialization of every dynamic class in every compilation.
We now use a much simpler (and, in a modules build, vastly more efficient)
system: when we see an out-of-line definition of a virtual function, we check
whether that function was in fact its class's key function. (If so, we need to
emit the vtable.)
llvm-svn: 230830
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
This reapplies r230044 with a fixed configure+make build and updated
dependencies and testcase requirements. Over the last iteration this
version adds
- missing target requirements for testcases that specify an x86 triple,
- a missing clangCodeGen.a dependency to libClang.a in the make build.
rdar://problem/19104245
llvm-svn: 230423
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
rdar://problem/19104245
This reapplies r230044 with a fixed configure+make build and updated
dependencies. Take 3.
llvm-svn: 230305
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
rdar://problem/19104245
This reapplies r230044 with a fixed configure+make build and updated
dependencies. Take 2.
llvm-svn: 230089
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
rdar://problem/19104245
This reapplies r230044 with a fixed configure+make build and updated
dependencies.
llvm-svn: 230067
There are two issues here:
1) It's too late to rebuild at this point, because we won't go through
removeModules and when we try to reload the new .pcm we'll get the old
one instead. We might be able to call removeModules after an OutOfDate
here, but I'm not yet confident that it is always safe to do so.
2) In practice, this check fails spuriously when the umbrella header
appears to change because of a VFS change that means it maps to a
different copy of the same file. Because of this, we just skip the
check for now.
llvm-svn: 230064
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
rdar://problem/19104245
llvm-svn: 230044
the one in the current compiler invocation. If they differ reject the PCH.
This protects against the badness occurring from getting modules loaded from different module caches (see crashes).
rdar://19889860
llvm-svn: 229909
The member gets invalidated as elements are added to the dense set. Directly
access the underlying pointer instead. Not sure how to create a test case for
this :-(. Maybe Richard can help.
llvm-svn: 229673
When mangling the module map path into a .pcm file name, also mangle the
IsSystem bit, which can also depend on the header search paths. For
example, the user may change from -I to -isystem. This can affect
diagnostics in the importing TU.
llvm-svn: 228966
encountered any definition for the class; this happens when the definition is
added by an update record that is not yet loaded. In such a case, eagerly pick
the original parent of the member as the canonical definition of the class
rather than muddling through with the canonical declaration (the latter can
lead to us failing to merge properly later if the canonical definition turns
out to be some other declaration).
llvm-svn: 226977
This just tweaks the fix from r224892 (which handled PCHs) to work with
modules, where we will serialize each method individually and hence the
hasMoreThanOneDecl bit needs to be updated as we add the methods.
llvm-svn: 225659
This fixes PR21587, what r221933 fixed for regular programs is now also
fixed for decls coming from PCH files.
Use another bit from the count/bits uint16_t for storing the "more than one
decl" bit. This reduces the number of bits for the count from 14 to 13.
The selector with the most overloads in Cocoa.h has ~55 overloads, so 13 bits
should still be plenty. Since this changes the meaning of a serialized bit
pattern, also increase clang::serialization::VERSION_MAJOR.
Storing the "more than one decl" state of only the first overload isn't quite
correct, but Sema::AreMultipleMethodsInGlobalPool() currently only looks at
the state of the first overload so it's good enough for now.
llvm-svn: 224892
Remove ObjCMethodList::Count, instead store a "has more than one decl" bit in
the low bit of the ObjCMethodDecl pointer, using a PointerIntPair.
Most of this patch is replacing ".Method" with ".getMethod()".
No intended behavior change.
llvm-svn: 224876
module, use the path from the module map file in preference to the path from
the .pcm file when resolving relative paths in the .pcm file. This allows
diagnostics (and .d output) to give relative paths if the module was found via
a relative path.
llvm-svn: 223577
the root of the module and use paths relative to that directory wherever
possible. This is a step towards allowing explicit modules to be relocated
without being rebuilt, which is important for some kinds of distributed builds,
for good paths in diagnostics, and for appropriate .d output.
This is a recommit of r223443, reverted in r223465; when joining together
imported file paths, we now use the system's separator rather than always
using '/'. This avoids path mismatches between the original module build and
the module user on Windows (at least, in some cases). A more comprehensive
fix will follow.
llvm-svn: 223539
the root of the module and use paths relative to that directory wherever
possible. This is a step towards allowing explicit modules to be relocated
without being rebuilt, which is important for some kinds of distributed builds,
for good paths in diagnostics, and for appropriate .d output.
llvm-svn: 223443
rather than trying to extract this information from the FileEntry after the
fact.
This has a number of beneficial effects. For instance, diagnostic messages for
failed module builds give a path relative to the "module root" rather than an
absolute file path, and the contents of the module includes file is no longer
dependent on what files the including TU happened to inspect prior to
triggering the module build.
llvm-svn: 223095
special member function.
No test yet: the only testcases we have for this issue are extremely complex.
Testcase will be added once I get a reasonable reduction.
llvm-svn: 222506
is enabled. Unlike system headers, we want to be more careful about
modifications to user headers, because it's still easy to edit a header
while you're building.
llvm-svn: 221634
Use the bitmask to store the set of enabled sanitizers instead of a
bitfield. On the negative side, it makes syntax for querying the
set of enabled sanitizers a bit more clunky. On the positive side, we
will be able to use SanitizerKind to eventually implement the
new semantics for -fsanitize-recover= flag, that would allow us
to make some sanitizers recoverable, and some non-recoverable.
No functionality change.
llvm-svn: 221558
explicitly using the resulting .pcm file. Unlike for an implicit module build,
we don't need nor want to require these flags to match between the module
and its users.
llvm-svn: 220780
Since the order of the IDs in the AST file (e.g. DeclIDs, SelectorIDs)
is not stable, it is not safe to load an AST file that depends on
another AST file that has been rebuilt since the importer was built,
even if "nothing changed". We previously used size and modtime to check
this, but I've seen cases where a module rebuilt quickly enough to foil
this check and caused very hard to debug build errors.
To save cycles when we're loading the AST, we just generate a random
nonce value and check that it hasn't changed when we load an imported
module, rather than actually hash the whole file.
This is slightly complicated by the fact that we need to verify the
signature inside addModule, since we might otherwise consider that a
mdoule is "OutOfDate" when really it is the importer that is out of
date. I didn't see any regressions in module load time after this
change.
llvm-svn: 220493
Implicit module builds are not well-suited to a lot of build systems. In
particular, they fare badly in distributed build systems, and they lead to
build artifacts that are not tracked as part of the usual dependency management
process. This change allows explicitly-built module files (which are already
supported through the -emit-module flag) to be explicitly loaded into a build,
allowing build systems to opt to manage module builds and dependencies
themselves.
This is only the first step in supporting such configurations, and it should
be considered experimental and subject to change or removal for now.
llvm-svn: 220359
Now that we no longer add mappings when there are no local entities,
there is no need to always bump the size of the tables that correspond
to ContinuousRangeMaps.
llvm-svn: 220208
This is a better fix for 'duplicate key' problems in module continuous
range maps (vs what I added in r215810) by not adding any mappings at
all when there are no local entities. Now it also covers selectors,
which were not always being bumped because the record SELECTOR_OFFSET is
not always emitted. I'll back out most of r215810 in a future commit,
since it should no longer be needed.
llvm-svn: 220207
Plumb through the full QualType of the TemplateArgument::Declaration, as
it's insufficient to only know whether the type is a reference or
pointer (that was necessary for mangling, but insufficient for debug
info). This shouldn't increase the size of TemplateArgument as
TemplateArgument::Integer is still longer by another 32 bits.
Several bits of code were testing that the reference-ness of the
parameters matched, but this seemed to be insufficient (various other
features of the type could've mismatched and wouldn't've been caught)
and unnecessary, at least insofar as removing those tests didn't cause
anything to fail.
(Richard - perchaps you can hypothesize why any of these checks might
need to test reference-ness of the parameters (& explain why
reference-ness is part of the mangling - I would've figured that for the
reference-ness to be different, a prior template argument would have to
be different). I'd be happy to add them in/beef them up and add test
cases if there's a reason for them)
llvm-svn: 219900
We build a NestedNameSpecifier that records the CXXRecordDecl in which
__super appeared. Name lookup is performed in all base classes of the
recorded CXXRecordDecl. Use of __super is allowed only inside class and
member function scope.
llvm-svn: 218484
1. We were hitting the NextIsPrevious assertion because we were trying
to merge decl chains that were independent of each other because we had
no Sema object to allow them to find existing decls. This is fixed by
delaying loading the "preloaded" decls until Sema is available.
2. We were trying to get identifier info from an annotation token, which
asserts. The fix is to special-case the module annotations in the
preprocessed output printer.
Fixed in a single commit because when you hit 1 you almost invariably
hit 2 as well.
llvm-svn: 217550
The warning warns on TypedefNameDecls -- typedefs and C++11 using aliases --
that are !isReferenced(). Since the isReferenced() bit on TypedefNameDecls
wasn't used for anything before this warning it wasn't always set correctly,
so this patch also adds a few missing MarkAnyDeclReferenced() calls in
various places for TypedefNameDecls.
This is made a bit complicated due to local typedefs possibly being used only
after their local scope has closed. Consider:
template <class T>
void template_fun(T t) {
typename T::Foo s3foo; // YYY
(void)s3foo;
}
void template_fun_user() {
struct Local {
typedef int Foo; // XXX
} p;
template_fun(p);
}
Here the typedef in XXX is only used at end-of-translation unit, when YYY in
template_fun() gets instantiated. To handle this, typedefs that are unused when
their scope exits are added to a set of potentially unused typedefs, and that
set gets checked at end-of-TU. Typedefs that are still unused at that point then
get warned on. There's also serialization code for this set, so that the
warning works with precompiled headers and modules. For modules, the warning
is emitted when the module is built, for precompiled headers each time the
header gets used.
Finally, consider a function using C++14 auto return types to return a local
type defined in a header:
auto f() {
struct S { typedef int a; };
return S();
}
Here, the typedef escapes its local scope and could be used by only some
translation units including the header. To not warn on this, add a
RecursiveASTVisitor that marks all delcs on local types returned from auto
functions as referenced. (Except if it's a function with internal linkage, or
the decls are private and the local type has no friends -- in these cases, it
_is_ safe to warn.)
Several of the included testcases (most of the interesting ones) were provided
by Richard Smith.
(gcc's spelling -Wunused-local-typedefs is supported as an alias for this
warning.)
llvm-svn: 217298
on CXXRecordDecls when merging definitions, and make it pass by not trying to
save and restore this flag across AST serialization/deserialization. For
CXXRecordDecls, we have a separate mechanism to manage this.
llvm-svn: 216633
Only those callers who are dynamically passing ownership should need the
3 argument form. Those accepting the default ("do pass ownership")
should do so explicitly with a unique_ptr now.
llvm-svn: 216614
tables that correspond to ContinuousRangeMaps, since the keys to those
maps need to be unique, or we may map to the wrong offset.
This fixes a crash + malformed AST file seen when loading some modules
that import Cocoa on Darwin, which is a module with no contents except
imports of other modules. Unfortunately I have not been able to find a
reduced test case that reproduces this problem.
Also add an assert that we aren't mapping one key to multiple values
in CRM. We ought to be able to say there are no duplicate keys at all,
but there are a bunch of 0 -> 0 mappings that are showing up, probably
coming from the source location table.
llvm-svn: 215810
definitions (because some other declaration declares a special member that
isn't present in the canonical definition), we need to search *all* of them; we
can't just stop when we find the requested name in any of the definitions,
because that can fail to find things (and in particular, it can fail to find
the member of the canonical declaration and return a bogus ODR failure).
llvm-svn: 215612
redefinitions of that namespace have already been loaded. When writing out the
names in a namespace, if we see a name that is locally declared and had
imported declarations merged on top of it, export the local declaration as the
lookup result, because it will be the most recent declaration of that entity in
the redeclaration chain of an importer of the module.
llvm-svn: 215518
We already verified the primary module map file (either the one that
defines the top-level module, or the one that allows inferring it if it
is an inferred framework module). Now we also verify any other module
map files that define submodules, such as when there is a
module.private.modulemap file.
llvm-svn: 215455