This patch also introduces AnalysisOrderChecker which is intended for testing
of callback call correctness.
Differential Revision: https://reviews.llvm.org/D23804
llvm-svn: 280367
This reverts commit r279003 as it breaks some of our buildbots (e.g.
clang-cmake-aarch64-quick, clang-x86_64-linux-selfhost-modules).
The error is in OpenMP/teams_distribute_simd_ast_print.cpp:
clang: /home/buildslave/buildslave/clang-cmake-aarch64-quick/llvm/include/llvm/ADT/DenseMap.h:527:
bool llvm::DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT>::LookupBucketFor(const LookupKeyT&, const BucketT*&) const
[with LookupKeyT = clang::Stmt*; DerivedT = llvm::DenseMap<clang::Stmt*, long unsigned int>;
KeyT = clang::Stmt*; ValueT = long unsigned int;
KeyInfoT = llvm::DenseMapInfo<clang::Stmt*>;
BucketT = llvm::detail::DenseMapPair<clang::Stmt*, long unsigned int>]:
Assertion `!KeyInfoT::isEqual(Val, EmptyKey) && !KeyInfoT::isEqual(Val, TombstoneKey) &&
"Empty/Tombstone value shouldn't be inserted into map!"' failed.
llvm-svn: 279045
This patch is to implement sema and parsing for 'teams distribute simd’ pragma.
This patch is originated by Carlo Bertolli.
Differential Revision: https://reviews.llvm.org/D23528
llvm-svn: 279003
Remove some FIXMEs in the surrounding code,
which have been addressed long time ago
by introducing checker-specific tags.
Differential Revision: https://reviews.llvm.org/D22622
llvm-svn: 276557
This patch adds a new AST node: ObjCAvailabilityCheckExpr, and teaches the
Parser and Sema to generate it. This node represents an availability check of
the form:
@available(macos 10.10, *);
Which will eventually compile to a runtime check of the host's OS version. This
is the first patch of the feature I proposed here:
http://lists.llvm.org/pipermail/cfe-dev/2016-July/049851.html
Differential Revision: https://reviews.llvm.org/D22171
llvm-svn: 275654
This patch is to implement sema and parsing for 'target parallel for simd' pragma.
Differential Revision: http://reviews.llvm.org/D22096
llvm-svn: 275365
This proposed patch adds crude handling of atomics to the static analyzer.
Rather than ignore AtomicExprs, as we now do, this patch causes the analyzer
to escape the arguments. This is imprecise -- and we should model the
expressions fully in the future -- but it is less wrong than ignoring their
effects altogether.
This is rdar://problem/25353187
Differential Revision: http://reviews.llvm.org/D21667
llvm-svn: 274816
Summary: This patch is an implementation of sema and parsing for the OpenMP composite pragma 'distribute simd'.
Differential Revision: http://reviews.llvm.org/D22007
llvm-svn: 274604
Summary: This patch is an implementation of sema and parsing for the OpenMP composite pragma 'distribute parallel for simd'.
Differential Revision: http://reviews.llvm.org/D21977
llvm-svn: 274530
Replace inheriting constructors implementation with new approach, voted into
C++ last year as a DR against C++11.
Instead of synthesizing a set of derived class constructors for each inherited
base class constructor, we make the constructors of the base class visible to
constructor lookup in the derived class, using the normal rules for
using-declarations.
For constructors, UsingShadowDecl now has a ConstructorUsingShadowDecl derived
class that tracks the requisite additional information. We create shadow
constructors (not found by name lookup) in the derived class to model the
actual initialization, and have a new expression node,
CXXInheritedCtorInitExpr, to model the initialization of a base class from such
a constructor. (This initialization is special because it performs real perfect
forwarding of arguments.)
In cases where argument forwarding is not possible (for inalloca calls,
variadic calls, and calls with callee parameter cleanup), the shadow inheriting
constructor is not emitted and instead we directly emit the initialization code
into the caller of the inherited constructor.
Note that this new model is not perfectly compatible with the old model in some
corner cases. In particular:
* if B inherits a private constructor from A, and C uses that constructor to
construct a B, then we previously required that A befriends B and B
befriends C, but the new rules require A to befriend C directly, and
* if a derived class has its own constructors (and so its implicit default
constructor is suppressed), it may still inherit a default constructor from
a base class
llvm-svn: 274049
[OpenMP] Initial implementation of parse and sema for composite pragma 'distribute parallel for'
This patch is an initial implementation for #distribute parallel for.
The main differences that affect other pragmas are:
The implementation of 'distribute parallel for' requires blocking of the associated loop, where blocks are "distributed" to different teams and iterations within each block are scheduled to parallel threads within each team. To implement blocking, sema creates two additional worksharing directive fields that are used to pass the team assigned block lower and upper bounds through the outlined function resulting from 'parallel'. In this way, scheduling for 'for' to threads can use those bounds.
As a consequence of blocking, the stride of 'distribute' is not 1 but it is equal to the blocking size. This is returned by the runtime and sema prepares a DistIncrExpr variable to hold that value.
As a consequence of blocking, the global upper bound (EnsureUpperBound) expression of the 'for' is not the original loop upper bound (e.g. in for(i = 0 ; i < N; i++) this is 'N') but it is the team-assigned block upper bound. Sema creates a new expression holding the calculation of the actual upper bound for 'for' as UB = min(UB, PrevUB), where UB is the loop upper bound, and PrevUB is the team-assigned block upper bound.
llvm-svn: 273884
http://reviews.llvm.org/D21564
This patch is an initial implementation for #distribute parallel for.
The main differences that affect other pragmas are:
The implementation of 'distribute parallel for' requires blocking of the associated loop, where blocks are "distributed" to different teams and iterations within each block are scheduled to parallel threads within each team. To implement blocking, sema creates two additional worksharing directive fields that are used to pass the team assigned block lower and upper bounds through the outlined function resulting from 'parallel'. In this way, scheduling for 'for' to threads can use those bounds.
As a consequence of blocking, the stride of 'distribute' is not 1 but it is equal to the blocking size. This is returned by the runtime and sema prepares a DistIncrExpr variable to hold that value.
As a consequence of blocking, the global upper bound (EnsureUpperBound) expression of the 'for' is not the original loop upper bound (e.g. in for(i = 0 ; i < N; i++) this is 'N') but it is the team-assigned block upper bound. Sema creates a new expression holding the calculation of the actual upper bound for 'for' as UB = min(UB, PrevUB), where UB is the loop upper bound, and PrevUB is the team-assigned block upper bound.
llvm-svn: 273705
classes.
MSVC actively uses unqualified lookup in dependent bases, lookup at the
instantiation point (non-dependent names may be resolved on things
declared later) etc. and all this stuff is the main cause of
incompatibility between clang and MSVC.
Clang tries to emulate MSVC behavior but it may fail in many cases.
clang could store lexed tokens for member functions definitions within
ClassTemplateDecl for later parsing during template instantiation.
It will allow resolving many possible issues with lookup in dependent
base classes and removing many already existing MSVC-specific
hacks/workarounds from the clang code.
llvm-svn: 272774
Summary:
This patch is to add parsing and sema support for `target update` directive. Support for the `to` and `from` clauses will be added by a different patch. This patch also adds support for other clauses that are already implemented upstream and apply to `target update`, e.g. `device` and `if`.
This patch is based on the original post by Kelvin Li.
Reviewers: hfinkel, carlo.bertolli, kkwli0, arpith-jacob, ABataev
Subscribers: caomhin, cfe-commits
Differential Revision: http://reviews.llvm.org/D15944
llvm-svn: 270878
Add a checker callback that is called when the analyzer starts analyzing a
function either at the top level or when inlined. This will be used by a
follow-on patch making the DeallocChecker path sensitive.
Differential Revision: http://reviews.llvm.org/D17418
llvm-svn: 261293
Summary:
This patch adds parsing + sema for the target parallel for directive along with testcases.
Reviewers: ABataev
Differential Revision: http://reviews.llvm.org/D16759
llvm-svn: 259654
Summary:
This patch adds parsing + sema for the target parallel directive and its clauses along with testcases.
Reviewers: ABataev
Differential Revision: http://reviews.llvm.org/D16553
Rebased to current trunk and updated test cases.
llvm-svn: 258832
When the analyzer evaluates a CXXConstructExpr, it looks ahead in the CFG for
the current block to detect what region the object should be constructed into.
If the constructor was directly constructed into a local variable or field
region then there is no need to explicitly bind the constructed value to
the local or field when analyzing the DeclStmt or CXXCtorInitializer that
called the constructor.
Unfortunately, there were situations in which the CXXConstructExpr was
constructed into a temporary region but when evaluating the corresponding
DeclStmt or CXXCtorInitializer the analyzer assumed the object was constructed
into the local or field. This led to spurious warnings about uninitialized
values (PR25777).
To avoid these false positives, this commit factors out the logic for
determining when a CXXConstructExpr will be directly constructed into existing
storage, adds the inverse logic to detect when the corresponding later bind can
be safely skipped, and adds assertions to make sure these two checks are in
sync.
rdar://problem/21947725
llvm-svn: 255859
MSVC supports 'property' attribute and allows to apply it to the declaration of an empty array in a class or structure definition.
For example:
```
__declspec(property(get=GetX, put=PutX)) int x[];
```
The above statement indicates that x[] can be used with one or more array indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b), and p->x[a][b] = i will be turned into p->PutX(a, b, i);
Differential Revision: http://reviews.llvm.org/D13336
llvm-svn: 254067
The analyzer incorrectly treats captures as references if either the original
captured variable is a reference or the variable is captured by reference.
This causes the analyzer to crash when capturing a reference type by copy
(PR24914). Fix this by refering solely to the capture field to determine when a
DeclRefExpr for a lambda capture should be treated as a reference type.
https://llvm.org/bugs/show_bug.cgi?id=24914
rdar://problem/23524412
llvm-svn: 253157
Summary:
Dear All,
We have been looking at the following problem, where any code after the constant bound loop is not analyzed because of the limit on how many times the same block is visited, as described in bugzillas #7638 and #23438. This problem is of interest to us because we have identified significant bugs that the checkers are not locating. We have been discussing a solution involving ranges as a longer term project, but I would like to propose a patch to improve the current implementation.
Example issue:
```
for (int i = 0; i < 1000; ++i) {...something...}
int *p = 0;
*p = 0xDEADBEEF;
```
The proposal is to go through the first and last iterations of the loop. The patch creates an exploded node for the approximate last iteration of constant bound loops, before the max loop limit / block visit limit is reached. It does this by identifying the variable in the loop condition and finding the value which is “one away” from the loop being false. For example, if the condition is (x < 10), then an exploded node is created where the value of x is 9. Evaluating the loop body with x = 9 will then result in the analysis continuing after the loop, providing x is incremented.
The patch passes all the tests, with some modifications to coverage.c, in order to make the ‘function_which_gives_up’ continue to give up, since the changes allowed the analysis to progress past the loop.
This patch does introduce possible false positives, as a result of not knowing the state of variables which might be modified in the loop. I believe that, as a user, I would rather have false positives after loops than do no analysis at all. I understand this may not be the common opinion and am interested in hearing your views. There are also issues regarding break statements, which are not considered. A more advanced implementation of this approach might be able to consider other conditions in the loop, which would allow paths leading to breaks to be analyzed.
Lastly, I have performed a study on large code bases and I think there is little benefit in having “max-loop” default to 4 with the patch. For variable bound loops this tends to result in duplicated analysis after the loop, and it makes little difference to any constant bound loop which will do more than a few iterations. It might be beneficial to lower the default to 2, especially for the shallow analysis setting.
Please let me know your opinions on this approach to processing constant bound loops and the patch itself.
Regards,
Sean Eveson
SN Systems - Sony Computer Entertainment Group
Reviewers: jordan_rose, krememek, xazax.hun, zaks.anna, dcoughlin
Subscribers: krememek, xazax.hun, cfe-commits
Differential Revision: http://reviews.llvm.org/D12358
llvm-svn: 251621
This fixes PR16833, in which the analyzer was using large amounts of memory
for switch statements with large case ranges.
rdar://problem/14685772
A patch by Aleksei Sidorin!
Differential Revision: http://reviews.llvm.org/D5102
llvm-svn: 248318
Summary:
`TypeTraitExpr`s are not supported by the ExprEngine today. Analyzer
creates a sink, and aborts the block. Therefore, certain bugs that
involve type traits intrinsics cannot be detected (see PR24710).
This patch creates boolean `SVal`s for `TypeTraitExpr`s, which are
evaluated by the compiler.
Test within the patch is a summary of PR24710.
Reviewers: zaks.anna, dcoughlin, krememek
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D12482
llvm-svn: 248314
Adds parsing/sema analysis/serialization/deserialization for array sections in OpenMP constructs (introduced in OpenMP 4.0).
Currently it is allowed to use array sections only in OpenMP clauses that accepts list of expressions.
Differential Revision: http://reviews.llvm.org/D10732
llvm-svn: 245937
(return by value is in ExprEngine::processPointerEscapedOnBind and any
other call to the scanReachableSymbols function template used there)
Protect the special members in the base class to avoid slicing, and make
derived classes final so these special members don't accidentally become
public on an intermediate base which would open up the possibility of
slicing again.
llvm-svn: 244975
The patch is generated using this command:
$ tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
work/llvm/tools/clang
To reduce churn, not touching namespaces spanning less than 10 lines.
llvm-svn: 240270
Added parsing, sema analysis and codegen for '#pragma omp taskgroup' directive (OpenMP 4.0).
The code for directive is generated the following way:
#pragma omp taskgroup
<body>
void __kmpc_taskgroup(<loc>, thread_id);
<body>
void __kmpc_end_taskgroup(<loc>, thread_id);
llvm-svn: 240011