Vector clocks is the most actively allocated object in tsan runtime.
Current internal allocator is not scalable enough to handle allocation
of clocks in scalable way (too small caches). This changes transforms
clocks to 2-level array with 512-byte blocks. Since all blocks are of
the same size, it's possible to cache them more efficiently in per-thread caches.
llvm-svn: 214912
Make vector clock operations O(1) for several important classes of use cases.
See comments for details.
Below are stats from a large server app, 77% of all clock operations are handled as O(1).
Clock acquire : 25983645
empty clock : 6288080
fast from release-store : 14917504
contains my tid : 4515743
repeated (fast) : 2141428
full (slow) : 2636633
acquired something : 1426863
Clock release : 2544216
resize : 6241
fast1 : 197693
fast2 : 1016293
fast3 : 2007
full (slow) : 1797488
was acquired : 709227
clear tail : 1
last overflow : 0
Clock release store : 3446946
resize : 200516
fast : 469265
slow : 2977681
clear tail : 0
Clock acquire-release : 820028
llvm-svn: 204656
This is intended to address the following problem.
Episodically we see CHECK-failures when recursive interceptors call back into user code. Effectively we are not "in_rtl" at this point, but it's very complicated and fragile to properly maintain in_rtl property. Instead get rid of it. It was used mostly for sanity CHECKs, which basically never uncover real problems.
Instead introduce ignore_interceptors flag, which is used in very few narrow places to disable recursive interceptors (e.g. during runtime initialization).
llvm-svn: 197979