*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
- if a synthetic child comes from the same hierarchy as its parent object, then it can't be cached by SharedPointer inside the synthetic provider, or it will cause a reference loop;
- but, if a synthetic child is made from whole cloth (e.g. from an expression, a memory region, ...), then it better be cached by SharedPointer, or it will be cleared out and cause an assert() to fail if used at a later point
For most cases of self-rooted synthetic children, we have a flag we set "IsSyntheticChildrenGenerated", but we were not using it to track caching. So, what ended up happening is each provider would set up its own cache, and if it got it wrong, a hard to diagnose crash would ensue
This patch fixes that by centralizing caching in ValueObjectSynthetic - if a provider returns a self-rooted child (as per the flag), then it gets cached centrally by the ValueObject itself
This cache is used only for lifetime management and not later retrieval of child values - a different cache handles that (because we might have a mix of self-rooted and properly nested child values for the same parent, we can't trivially use this lifetime cache for retrieval)
Fixes rdar://26480007
llvm-svn: 274683
If memory turns out to be a problem, which I don't think it will in practice because all these ValueObjects, we'd be keeping alive anyway, I can always resort to caching the farthest-most iterator only
This gains us an order of magnitude in my benchmark, cutting the time to traverse a 1500-elements list from 22 seconds down to 2
llvm-svn: 254762
Summary:
Loop detection code is being called before every element access. Although it tries to cache some
of the data by remembering the loop-free initial segment, every time it needs to increase this
segment, it will start from scratch. For the typical usage pattern, where one accesses the
elements in order, the loop detection will need to be run after every access, resulting in
quadratic behavior. This behavior is noticable even for the default 255 element limit.
In this commit, I rewrite the algorithm to be truly incremental -- it maintains the state of its
loop-detection runners between calls, and reuses them when it needs to check another segment.
This way, each part of the list is scanned only once, resulting in linear behavior.
Also note that I have changed the operator== of ListEntry to do the comparison based on the
value() function (instead of relying on ValueObjectSP equality). In my experiments, I kept
getting different ValueObjectSPs when going through the same element twice.
Reviewers: granata.enrico
Subscribers: lldb-commits, sivachandra
Differential Revision: http://reviews.llvm.org/D13902
llvm-svn: 250890