Still to come:
1) SB API's
2) Testcases
3) Loose ends:
a) serialize Thread options
b) serialize Exception resolvers
4) "break list --file" should list breakpoints contained in a file and
"break read -f 1 3 5" should then read in only those breakpoints.
<rdar://problem/12611863>
llvm-svn: 281273
Summary:
It fixes the following compile warnings:
1. '0' flag ignored with precision and ‘%d’ gnu_printf format
2. enumeral and non-enumeral type in conditional expression
3. format ‘%d’ expects argument of type ‘int’, but argument 4 has type ...
4. enumeration value ‘...’ not handled in switch
5. cast from type ‘const uint64_t* {aka ...}’ to type ‘int64_t* {aka ...}’ casts away qualifiers
6. extra ‘;’
7. comparison between signed and unsigned integer expressions
8. variable ‘register_operand’ set but not used
9. control reaches end of non-void function
Reviewers: jingham, emaste, zturner, clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D24331
llvm-svn: 281191
mode in lldb works. I've been discussing this with Jim Ingham,
Greg Clayton, and Kate Stone for the past week or two.
Previously lldb would print three source lines (centered on the
line table entry line for the current line) followed by the assembly.
It would print the context information (module`function + offset)
before those three lines of source.
Now lldb will print up to two lines before/after the line table
entry. It prints two '*' characters for the line table line to
make it clear what line is showing assembly. There is one line of
whitespace before/after the source lines so the separation between
source & assembly is clearer. I don't print the context line
(module`function + offset). I stop printing context lines if it's
a different line table entry, or if it's a source line I've already
printed as context to another source line. If I have two line table
entries one after another for the same source line (I get these often
with clang - with different column information in them), I only print
the source line once.
I'm also using the target.process.thread.step-avoid-regexp setting
(which keeps you from stepping into STL functions that have been inlined
into your own code) and avoid printing any source lines from functions
that match that regexp.
When lldb disassembles into a new function, it will try to find the
declaration line # for the function and print all of the source lines
between the decl and the first line table entry (usually a { curly brace)
so we have a good chance of including the arguments, at least with the
debug info emitted by clang.
Finally, the # of source lines of context to show has been separated
from whether we're doing mixed source & assembly or not. Previously
specifying 0 lines of context would turn off mixed source & assembly.
I think there's room for improvement, and maybe some bugs I haven't
found yet, but it's in good enough shape to upstream and iterate at
this point.
I'm not sure how best to indicate which source line is the actual line
table # versus context lines. I'm using '**' right now. Both Kate
and Greg had the initial idea to reuse '->' (normally used to indicate
"currently executing source line") - I tried it but I wasn't thrilled,
I'm too used to the established meaning of ->.
Greg had the interesting idea of avoiding context source lines only
in two line table entries in the same source file. So we'd print
two lines before & after a source line, and then the next line table
entry (if it was on the next source line after those two context lines)
we'd display only the following two lines -- the previous two had just
been printed. If an inline source line was printed between these two,
though, we'd print the context lines for both of them. It's an
interesting idea, and I want to see how it works with both -O0 and -O3
codegen where we have different amounts of inlining.
<rdar://problem/27961419>
llvm-svn: 280906
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
The commit introduced an array of const objects, which libstdc++ does not like. Make the object
non-const.
Also fix a compiler warning while I'm in there.
llvm-svn: 280697
When a process stops due to a crash, we get the crashing instruction and the
crashing memory location (if there is one). From the user's perspective it is
often unclear what the reason for the crash is in a symbolic sense.
To address this, I have added new fuctionality to StackFrame to parse the
disassembly and reconstruct the sequence of dereferneces and offsets that were
applied to a known variable (or fuction retrn value) to obtain the invalid
pointer.
This makes use of enhancements in the disassembler, as well as new information
provided by the DWARF expression infrastructure, and is exposed through a
"frame diagnose" command. It is also used to provide symbolic information, when
available, in the event of a crash.
The algorithm is very rudimentary, and it needs a bunch of work, including
- better parsing for assembly, preferably with help from LLVM
- support for non-Apple platforms
- cleanup of the algorithm core, preferably to make it all work in terms of
Operands instead of register/offset pairs
- improvement of the GetExpressioPath() logic to make prettier expression
paths, and
- better handling of vtables.
I welcome all suggestios, improvements, and testcases.
llvm-svn: 280692
This code represents the Week of Code work I did on bringing up
lldb-server LLGS support for Darwin. It does not include the
Xcode project changes needed, as we don't want to throw that switch
until more support is implemented (i.e. this change is inert, no
build systems use it yet. I've verified on Ubuntu 16.04, macOS
Xcode and macOS cmake builds).
This change does some minimal refactoring of code that is shared
with the Linux LLGS portion, moving it from NativeProcessLinux into
NativeProcessProtocol. That code is also used by NativeProcessDarwin.
Current state on Darwin:
* Process launching is implemented. (Attach is not).
Launching on devices has not yet been tested (FBS/BKS might
need a bit of work).
* Inferior waitpid monitoring and communication of exit status
via MainLoop callback is implemented.
* Memory read/write, breakpoints, thread register context, etc.
are not yet implemented. This impacts process stop/resume, as
the initial launch suspended immediately starts the process
up and running because it doesn't know it is supposed to remain
stopped.
* I implemented the equivalent of MachThreadList as
NativeThreadListDarwin, in anticipation that we might want to
factor out common parts into NativeThreadList{Protocol} and share
some code here. After writing it, though, the fallout from merging
Mach Task/Process into a single concept plus some other minor
changes makes the whole NativeThreadListDarwin concept nothing more
than dead weight. I am likely going to get rid of this class and
just manage it directly in NativeProcessDarwin, much like I did
for NativeProcessLinux.
* There is a stub-out call for starting a STDIO thread. That will
go away and adopt the MainLoop pselect-based IOObject reading.
I am developing the fully-integrated changes in the following repo,
which contains the necessary Xcode bits and the glue that enables
lldb-debugserver on a macOS system:
https://github.com/tfiala/lldb/tree/llgs-darwin
This change also breaks out a few of the lldb-server tests into
their own directory, and adds some $qHostInfo tests (not sure why
I didn't write those tests back when I initially implemented that
on the Linux side).
llvm-svn: 280604
When, for instance, "step-in" steps into a function that it doesn't want
to stop in (e.g. has no debug info) it will push a step-out plan to implement
the step out so it can then continue stepping. These step out's don't use
the result of the function stepped out of, so they shouldn't spend the time
to compute it.
llvm-svn: 279540
Take 2, with missing cmake line fixed. Build tested on
Ubuntu 14.04 with clang-3.6.
See docs/structured_data/StructuredDataPlugins.md for details.
differential review: https://reviews.llvm.org/D22976
reviewers: clayborg, jingham
llvm-svn: 279202
Options used to store a reference to the CommandInterpreter instance
in the base Options class. This made it impossible to parse options
independent of a CommandInterpreter.
This change removes the reference from the base class. Instead, it
modifies the options-parsing-related methods to take an
ExecutionContext pointer, which the options may inspect if they need
to do so.
Closes https://reviews.llvm.org/D23416
Reviewers: clayborg, jingham
llvm-svn: 278440
Factor out some common logic used to find the runtime library in a list
of modules.
Differential Revision: https://reviews.llvm.org/D23150
llvm-svn: 278368
Adapters for instrumentation runtimes have to do two basic things:
1) Load a runtime library.
2) Install breakpoints in that library.
This logic is duplicated in the adapters for asan and tsan. Factor it
out and document bits of it to make it easier to add new adapters.
I tested this with check-lldb, and double-checked
testcases/functionalities/{a,t}san.
Differential Revision: https://reviews.llvm.org/D23043
llvm-svn: 278367
It's always hard to remember when to include this file, and
when you do include it it's hard to remember what preprocessor
check it needs to be behind, and then you further have to remember
whether it's windows.h or win32.h which you need to include.
This patch changes the name to PosixApi.h, which is more appropriately
named, and makes it independent of any preprocessor setting.
There's still the issue of people not knowing when to include this,
because there's not a well-defined set of things it exposes other
than "whatever is missing on Windows", but at least this should
make it less painful to fix when problems arise.
This patch depends on LLVM revision r278170.
llvm-svn: 278177
frame to another was triggering an early stop when stepping back out to a
real frame. Check that we're doing this only for inlined frames.
<rdar://problem/26482931>
llvm-svn: 277185
The commit accidentally switched a timed wait on a condition variable into an infinite timeout.
Change that back. Android tests were timeing out without this.
llvm-svn: 277133
This finally removes the use of the Mutex and Condition classes. This is an
intricate patch as the Mutex and Condition classes were tied together.
Furthermore, many places had slightly differing uses of time values. Convert
timeout values to relative everywhere to permit the use of
std::chrono::duration, which is required for the use of
std::condition_variable's timeout. Adjust all Condition and related Mutex
classes over to std::{,recursive_}mutex and std::condition_variable.
This change primarily comes at the cost of breaking the TracingMutex which was
based around the Mutex class. It would be possible to write a wrapper to
provide similar functionality, but that is beyond the scope of this change.
llvm-svn: 277011
We were just checking the public state, but that meant if you were hung in a long
running hand-called function, we wouldn't know to interrupt the process, and we would
not succeed in killing it.
<rdar://problem/24805082>
llvm-svn: 276795
review it for consistency, accuracy, and clarity. These changes attempt to
address all of the above while keeping the text relatively terse.
<rdar://problem/24868841>
llvm-svn: 275485
Summary:
Process::SetExitStatus was popping the process io handler and resetting m_process_input_reader
shared pointer, which is not a safe thing to do as the function is called asynchronously and
other threads may be accessing the member variable. (E.g. if the process terminates really
quickly, the private state thread might only be in the process of pushing the handler on the
stack. Sometimes, this leads to deadlock, as the shared pointer's state gets corrupted by the
concurrent access.
Since the IOHandler will be popped anyway in Process:HandleProcessStateChangedEvent when the
exited event gets processed, doing the same in SetExitStatus seems to be unnecessary.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D22209
llvm-svn: 275165
is passed a ModuleSpec with a UUID, it won't accept a file it finds
with a matching FileSpec & ArchSpec, but with a different UUID.
<rdar://problem/27258864>
llvm-svn: 275151
This feature was added to solve a lookup problem in expressions when local variables
shadow ivars. That solution requires fully realizing all local variables to evaluate
any expression, and can cause significant performance problems when evaluating
expressions in frames that have many complex locals.
Until we get a better solution, this setting mitigates the problem when you don't
have local variables that shadow ivars.
<rdar://problem/27226122>
llvm-svn: 274783
Summary:
This patch fills in the implementation of GetMemoryRegions() on the Linux and Mac OS core file implementations of lldb_private::Process (ProcessElfCore::GetMemoryRegions and ProcessMachCore::GetMemoryRegions.) The GetMemoryRegions API was added under: http://reviews.llvm.org/D20565
The patch re-uses the m_core_range_infos list that was recently added to implement GetMemoryRegionInfo in both ProcessElfCore and ProcessMachCore to ensure the returned regions match the regions returned by Process::GetMemoryRegionInfo(addr_t load_addr, MemoryRegionInfo ®ion_info).
Reviewers: clayborg
Subscribers: labath, lldb-commits
Differential Revision: http://reviews.llvm.org/D21751
llvm-svn: 274741
We had support that assumed that thread local data for a variable could be determined solely from the module in which the variable exists. While this work for linux, it doesn't work for Apple OSs. The DWARF for thread local variables consists of location opcodes that do something like:
DW_OP_const8u (x)
DW_OP_form_tls_address
or
DW_OP_const8u (x)
DW_OP_GNU_push_tls_address
The "x" is allowed to be anything that is needed to determine the location of the variable. For Linux "x" is the offset within the TLS data for a given executable (ModuleSP in LLDB). For Apple OS variants, it is the file address of the data structure that contains a pthread key that can be used with pthread_getspecific() and the offset needed.
This fix passes the "x" along to the thread:
virtual lldb::addr_t
lldb_private::Thread::GetThreadLocalData(const lldb::ModuleSP module, lldb::addr_t tls_file_addr);
Then this is passed along to the DynamicLoader::GetThreadLocalData():
virtual lldb::addr_t
lldb_private::DynamicLoader::GetThreadLocalData(const lldb::ModuleSP module, const lldb::ThreadSP thread, lldb::addr_t tls_file_addr);
This allows each DynamicLoader plug-in do the right thing for the current OS.
The DynamicLoaderMacOSXDYLD was modified to be able to grab the pthread key from the data structure that is in memory and call "void *pthread_getspecific(pthread_key_t key)" to get the value of the thread local storage and it caches it per thread since it never changes.
I had to update the test case to access the thread local data before trying to print it as on Apple OS variants, thread locals are not available unless they have been accessed at least one by the current thread.
I also added a new lldb::ValueType named "eValueTypeVariableThreadLocal" so that we can ask SBValue objects for their ValueType and be able to tell when we have a thread local variable.
<rdar://problem/23308080>
llvm-svn: 274366
Target::Install() was assuming the module at index 0 was the executable.
This is often true, but not guaranteed to be the case. The
TestInferiorChanged.py test highlighted this when run against iOS.
After the binary is replaced in the middle of the test, it becomes the
last module in the list. The rest of the Target::Install() logic then
clobbers the executable file by using whatever happens to be the first
module in the target module list.
This change also marks the TestInferiorChanged.py test as a no-debug-info
test.
llvm-svn: 273960
This patch fixes various races between the time the private state thread is signaled to exit and the time it actually exits (during which it no longer responds to events). Previously, this was consistently causing 2-second timeout delays on process detach/stop for us.
This also prevents crashes that were caused by the thread controlling its own owning pointer while the controller was using it (copying the thread wrapper is not enough to mitigate this, since the internal thread object was getting reset anyway). Again, we were seeing this consistently.
Differential Revision: http://reviews.llvm.org/D21296
llvm-svn: 272682
This change implements dumping the executable, triple,
args and environment when using ProcessInfo::Dump().
It also tweaks the way Args::Dump() works so that it prints
a configurable label rather than argv[{index}]={value}. By
default it behaves the same, but if the Dump() method with
the additional arg is provided, it can be overridden. The
environment variables dumped as part of ProcessInfo::Dump()
make use of that.
lldb-server has been modified to dump the gdb-remote stub's
ProcessInfo before launching if the "gdb-remote process" channel
is logged.
llvm-svn: 271312
What with all sorts of folks (TSAN, ASAN, queue detection, etc...) trying to
gather info by calling functions down in the lower layers of lldb, we've started
to see people running expressions simultaneously. The expression evaluation part
is okay, but only one RunThreadPlan can be active at a time. I added a lock to
enforce that.
<rdar://problem/26431072>
llvm-svn: 270593
One of the things slowing us down is that ItaniumABILanguageRuntime class doesn't cache vtable to types in a map. This causes us, on every step, for every variable, to read the first pointer in a C++ type that could be dynamic and lookup the symbol, possibly in every symbol file (some symbols files on Darwin can end up having thousands of .o files when using DWARF in .o files, so thousands of .o files are searched each time).
This fix caches lldb_private::Address (the resolved vtable symbol address in section + offset format) to TypeAndOrName instances inside the one ItaniumABILanguageRuntime in a process. This allows caching of dynamic types and stops us from always doing deep searches in each file.
<rdar://problem/18890778>
llvm-svn: 270488
This is a pretty straightforward first pass over removing a number of uses of
Mutex in favor of std::mutex or std::recursive_mutex. The problem is that there
are interfaces which take Mutex::Locker & to lock internal locks. This patch
cleans up most of the easy cases. The only non-trivial change is in
CommandObjectTarget.cpp where a Mutex::Locker was split into two.
llvm-svn: 269877
The main issues were:
- Listeners recently were converted over to used by getting a shared pointer to a listener. And when they listened to broadcasters they would get a strong reference added to them meaning the listeners would never go away. This caused memory usage to increase and would cause performance issue if many steps were done.
- The lldb_private::Process private state thread had an issue where if a "stop" contol signal was attempted to be sent to that thread, it could end up not responding in 2 seconds and end up getting cancelled which might cause us to cancel a thread that had a mutex locked and it would deadlock the test.
This change makes broadcasters hold onto weak references to listeners. It also fixes some bad threading code that had races inside of it by making the m_events_mutex be non-recursive and getting rid of fragile use of a Predicate<bool> to say that new events are available, and replacing it with using the m_events_mutex with a new m_events_condition to control access to the events in a safer way.
The private state thread now uses a safer way to communicate that the control event has been received by the private state thread: it makes a EventDataReceipt instance that it attaches to the event that sends the control to the private state thread and used this to synchronize the fact that the private state thread has received the event instead of using a Predicate<bool> to convey the info. When the signal event is received, it will pull the event off of the queue in the private state thread and cause the EventData::DoOnRemoval() to be called, which will signal that the event has been received. This cleans up the signal delivery notification so it doesn't rely on a member variable of the process class to convey the info.
std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
m_private_state_control_broadcaster.BroadcastEvent(signal, event_receipt_sp);
<rdar://problem/26256353> Listeners are being kept around longer than they should be due to recent changs
<rdar://problem/26256258> Private process state thread can be cancelled and cause deadlocks in test suite
llvm-svn: 269377