Some FileIDs that may be used by PlistDiagnostics were not added while building
a list of pieces. This caused assertion violation in GetFID() function.
This patch adds some missing FileIDs to avoid the assertion. It also contains
small refactoring of PlistDiagnostics::FlushDiagnosticsImpl().
Patch by Aleksei Sidorin, Ilya Palachev.
Differential Revision: https://reviews.llvm.org/D22090
llvm-svn: 280360
If an attribute name has special characters such as '\01', it is not
properly printed in LLVM assembly language format. Since the format
expects the special characters are printed as it is, it has to contain
escape characters to make it printable.
Before:
attributes #0 = { ... "counting-function"="^A__gnu_mcount_nc" ...
After:
attributes #0 = { ... "counting-function"="\01__gnu_mcount_nc" ...
Reviewers: hfinkel, rengolin, rjmccall, compnerd
Subscribers: nemanjai, mcrosier, hans, shenhan, majnemer, llvm-commits
Differential Revision: https://reviews.llvm.org/D23792
llvm-svn: 280357
Summary:
This is a Minidump parsing code.
There are still some more structures/data streams that need to be added.
The aim ot this is to be used in the implementation of
a minidump debugging plugin that works on all platforms/architectures.
Currently we have a windows-only plugin that uses the WinAPI to parse
the dump files.
Also added unittests for the current functionality.
Reviewers: labath, amccarth
Subscribers: tberghammer, danalbert, srhines, lldb-commits, dschuff
Differential Revision: https://reviews.llvm.org/D23545
llvm-svn: 280356
Since some profiling tools, such as gprof, ftrace, and uftrace, use
-pg option to generate a mcount function call at the entry of each
function. Function invocation can be detected by this hook function.
But mcount insertion is done before function inlining phase in clang,
sometime a function that already has a mcount call can be inlined in the
middle of another function.
This patch adds an attribute "counting-function" to each function
rather than emitting the mcount call directly in frontend so that this
attribute can be processed in backend. Then the mcount calls can be
properly inserted in backend after all the other optimizations are
completed.
Link: https://llvm.org/bugs/show_bug.cgi?id=28660
Reviewers: hans, rjmccall, hfinkel, rengolin, compnerd
Subscribers: shenhan, cfe-commits
Differential Revision: https://reviews.llvm.org/D22666
llvm-svn: 280355
r279460 rewrote this function to be able to handle more than two incoming edges and took pains to ensure this didn't regress anything.
This time we change the logic for determining if an instruction should be sunk. Previously we used a single pass greedy algorithm - sink instructions until one requires more than one PHI node or we run out of instructions to sink.
This had the problem that sinking instructions that had non-identical but trivially the same operands needed extra logic so we sunk them aggressively. For example:
%a = load i32* %b %d = load i32* %b
%c = gep i32* %a, i32 0 %e = gep i32* %d, i32 1
Sinking %c and %e would naively require two PHI merges as %a != %d. But the loads are obviously equivalent (and maybe can't be hoisted because there is no common predecessor).
This is why we implemented the fairly complex function areValuesTriviallySame(), to look through trivial differences like this. However it's just not clever enough.
Instead, throw areValuesTriviallySame away, use pointer equality to check equivalence of operands and switch to a two-stage algorithm.
In the "scan" stage, we look at every sinkable instruction in isolation from end of block to front. If it's sinkable, we keep track of all operands that required PHI merging.
In the "sink" stage, we iteratively sink the last non-terminator in the source blocks. But when calculating how many PHIs are actually required to be inserted (to work out if we should stop or not) we remove any values that have already been sunk from the set of PHI-merges required, which allows us to be more aggressive.
This turns an algorithm with potentially recursive lookahead (looking through GEPs, casts, loads and any other instruction potentially not CSE'd) to two linear scans.
llvm-svn: 280351
LLVM has an @llvm.eh.dwarf.cfa intrinsic, used to lower the GCC-compatible
__builtin_dwarf_cfa() builtin. As pointed out in PR26761, this is currently
broken on PowerPC (and likely on ARM as well). Currently, @llvm.eh.dwarf.cfa is
lowered using:
ADD(FRAMEADDR, FRAME_TO_ARGS_OFFSET)
where FRAME_TO_ARGS_OFFSET defaults to the constant zero. On x86,
FRAME_TO_ARGS_OFFSET is lowered to 2*SlotSize. This setup, however, does not
work for PowerPC. Because of the way that the stack layout works, the canonical
frame address is not exactly (FRAMEADDR + FRAME_TO_ARGS_OFFSET) on PowerPC
(there is a lower save-area offset as well), so it is not just a matter of
implementing FRAME_TO_ARGS_OFFSET for PowerPC (unless we redefine its
semantics -- We can do that, since it is currently used only for
@llvm.eh.dwarf.cfa lowering, but the better to directly lower the CFA construct
itself (since it can be easily represented as a fixed-offset FrameIndex)). Mips
currently does this, but by using a custom lowering for ADD that specifically
recognizes the (FRAMEADDR, FRAME_TO_ARGS_OFFSET) pattern.
This change introduces a ISD::EH_DWARF_CFA node, which by default expands using
the existing logic, but can be directly lowered by the target. Mips is updated
to use this method (which simplifies its implementation, and I suspect makes it
more robust), and updates PowerPC to do the same.
Fixes PR26761.
Differential Revision: https://reviews.llvm.org/D24038
llvm-svn: 280350
Previously we used LayoutInputSection class to correctly assign
symbols defined in linker script. This patch removes it and uses
pointer to preceding input section in SymbolAssignment class instead.
Differential revision: https://reviews.llvm.org/D23661
llvm-svn: 280348
As discussed in https://reviews.llvm.org/D22666, our current mechanism to
support -pg profiling, where we insert calls to mcount(), or some similar
function, is fundamentally broken. We insert these calls in the frontend, which
means they get duplicated when inlining, and so the accumulated execution
counts for the inlined-into functions are wrong.
Because we don't want the presence of these functions to affect optimizaton,
they should be inserted in the backend. Here's a pass which would do just that.
The knowledge of the name of the counting function lives in the frontend, so
we're passing it here as a function attribute. Clang will be updated to use
this mechanism.
Differential Revision: https://reviews.llvm.org/D22825
llvm-svn: 280347
initializers not being in the same order as the members.
Specifically, 'preg' is the first member followed by 'error', so they
will be initialized in that order and should be written in the member
initializer list in that order.
For the constructor in question, there is no change in behavior.
llvm-svn: 280345
the test fails for a very prosaic reason: `(const char *)0x1000` returns "4096" on x86_64 and
"1000" (without the "0x") on i386. I haven't tried other 32-bit arches, but I am guessing the
behaviour is the same. XFAIL until someone can get a chance to look at this.
llvm-svn: 280344
We iterate over the result from SafeToMergeTerminators, so make it a SmallSetVector instead of a SmallPtrSet.
Should fix stage3 convergence builds.
llvm-svn: 280342
This is useful when need to defer the construction,
e.g. using Regex as a member of class.
Differential revision: https://reviews.llvm.org/D24101
llvm-svn: 280339
A very important case is not handled here: multiple arcs to a single block with a PHI. Consider:
a:
%1 = icmp %b, 1
br %1, label %c, label %e
c:
%2 = icmp %b, 2
br %2, label %d, label %e
d:
br %e
e:
phi [0, %a], [1, %c], [2, %d]
FoldValueComparisonIntoPredecessors will refuse to fold this, as it doesn't know how to deal with two arcs to a common destination with different PHI values. The answer is obvious - just split all conflicting arcs.
llvm-svn: 280338
Summary:
This change promotes the 'isTailCall(...)' member function to
TargetInstrInfo as a query interface for determining on a per-target
basis whether a given MachineInstr is a tail call instruction. We build
upon this in the XRay instrumentation pass to emit special sleds for
tail call optimisations, where we emit the correct kind of sled.
The tail call sleds look like a mix between the function entry and
function exit sleds. Form-wise, the sled comes before the "jmp"
instruction that implements the tail call similar to how we do it for
the function entry sled. Functionally, because we know this is a tail
call, it behaves much like an exit sled -- i.e. at runtime we may use
the exit trampolines instead of a different kind of trampoline.
A follow-up change to recognise these sleds will be done in compiler-rt,
so that we can start intercepting these initially as exits, but also
have the option to have different log entries to more accurately reflect
that this is actually a tail call.
Reviewers: echristo, rSerge, majnemer
Subscribers: mehdi_amini, dberris, llvm-commits
Differential Revision: https://reviews.llvm.org/D23986
llvm-svn: 280334
declaration has a dependent type.
This fixes a bug where clang errors out on a valid code.
rdar://problem/28051467
Differential Revision: https://reviews.llvm.org/D24110
llvm-svn: 280330
Older versions of clang defined __has_cpp_attribute in C mode, but
would choke on scoped attributes, as per llvm.org/PR23435. Since we
support building with clang all the way back to 3.1, we have to work
around this issue.
llvm-svn: 280326
explicit specialization to a warning for C++98 mode (this is a defect report
resolution, so per our informal policy it should apply in C++98), and turn
the warning on by default for C++11 and later. In all cases where it fires, the
right thing to do is to remove the pointless explicit instantiation.
llvm-svn: 280308
Previously we were assuming that any visitation of types would
necessarily be against a type we had binary data for. Reasonable
assumption when were just reading PDBs and dumping them, but once
we start writing PDBs from Yaml this breaks down, because we have
no binary data yet, only Yaml, and from that we need to read the
record kind and perform the switch based on that.
So this patch does that. Instead of having the visitor switch
on the kind that is already in the CVType record, we change the
visitTypeBegin() method to return the Kind, and switch on the
returned value. This way, the default implementation can still
return the value from the CVType, but the implementation which
visits Yaml records and serializes binary PDB type records can
use the field in the Yaml as the source of the switch.
llvm-svn: 280307
-fprofile-dir=path allows the user to specify where .gcda files should be
emitted when the program is run. In particular, this is the first flag that
causes the .gcno and .o files to have different paths, LLVM is extended to
support this. -fprofile-dir= does not change the file name in the .gcno (and
thus where lcov looks for the source) but it does change the name in the .gcda
(and thus where the runtime library writes the .gcda file). It's different from
a GCOV_PREFIX because a user can observe that the GCOV_PREFIX_STRIP will strip
paths off of -fprofile-dir= but not off of a supplied GCOV_PREFIX.
To implement this we split -coverage-file into -coverage-data-file and
-coverage-notes-file to specify the two different names. The !llvm.gcov
metadata node grows from a 2-element form {string coverage-file, node dbg.cu}
to 3-elements, {string coverage-notes-file, string coverage-data-file, node
dbg.cu}. In the 3-element form, the file name is already "mangled" with
.gcno/.gcda suffixes, while the 2-element form left that to the middle end
pass.
llvm-svn: 280306
Summary: This patch adds asm.js-style setjmp/longjmp handling support for WebAssembly. It also uses JavaScript's try and catch mechanism.
Reviewers: jpp, dschuff
Subscribers: jfb, dschuff
Differential Revision: https://reviews.llvm.org/D23928
llvm-svn: 280302
This reverts commit r280268, it causes all MSVC 2013 to ICE. This
appears to have been fixed in a later MSVC 2013 update, because I cannot
reproduce it locally. That said, all upstream LLVM bots are broken right
now, so I am reverting.
Also reverts dependent change r280275, "[Hexagon] Deal with undefs when
extending live intervals".
llvm-svn: 280301