forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1063 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1063 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- InputSection.cpp ---------------------------------------------------===//
 | 
						||
//
 | 
						||
//                             The LLVM Linker
 | 
						||
//
 | 
						||
// This file is distributed under the University of Illinois Open Source
 | 
						||
// License. See LICENSE.TXT for details.
 | 
						||
//
 | 
						||
//===----------------------------------------------------------------------===//
 | 
						||
 | 
						||
#include "InputSection.h"
 | 
						||
#include "Config.h"
 | 
						||
#include "EhFrame.h"
 | 
						||
#include "InputFiles.h"
 | 
						||
#include "LinkerScript.h"
 | 
						||
#include "OutputSections.h"
 | 
						||
#include "Relocations.h"
 | 
						||
#include "Symbols.h"
 | 
						||
#include "SyntheticSections.h"
 | 
						||
#include "Target.h"
 | 
						||
#include "Thunks.h"
 | 
						||
#include "lld/Common/ErrorHandler.h"
 | 
						||
#include "lld/Common/Memory.h"
 | 
						||
#include "llvm/Object/Decompressor.h"
 | 
						||
#include "llvm/Support/Compiler.h"
 | 
						||
#include "llvm/Support/Compression.h"
 | 
						||
#include "llvm/Support/Endian.h"
 | 
						||
#include "llvm/Support/Threading.h"
 | 
						||
#include "llvm/Support/xxhash.h"
 | 
						||
#include <mutex>
 | 
						||
 | 
						||
using namespace llvm;
 | 
						||
using namespace llvm::ELF;
 | 
						||
using namespace llvm::object;
 | 
						||
using namespace llvm::support;
 | 
						||
using namespace llvm::support::endian;
 | 
						||
using namespace llvm::sys;
 | 
						||
 | 
						||
using namespace lld;
 | 
						||
using namespace lld::elf;
 | 
						||
 | 
						||
std::vector<InputSectionBase *> elf::InputSections;
 | 
						||
 | 
						||
// Returns a string to construct an error message.
 | 
						||
std::string lld::toString(const InputSectionBase *Sec) {
 | 
						||
  return (toString(Sec->File) + ":(" + Sec->Name + ")").str();
 | 
						||
}
 | 
						||
 | 
						||
template <class ELFT>
 | 
						||
static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &File,
 | 
						||
                                            const typename ELFT::Shdr &Hdr) {
 | 
						||
  if (Hdr.sh_type == SHT_NOBITS)
 | 
						||
    return makeArrayRef<uint8_t>(nullptr, Hdr.sh_size);
 | 
						||
  return check(File.getObj().getSectionContents(&Hdr));
 | 
						||
}
 | 
						||
 | 
						||
InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags,
 | 
						||
                                   uint32_t Type, uint64_t Entsize,
 | 
						||
                                   uint32_t Link, uint32_t Info,
 | 
						||
                                   uint32_t Alignment, ArrayRef<uint8_t> Data,
 | 
						||
                                   StringRef Name, Kind SectionKind)
 | 
						||
    : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info,
 | 
						||
                  Link),
 | 
						||
      File(File), Data(Data) {
 | 
						||
  // In order to reduce memory allocation, we assume that mergeable
 | 
						||
  // sections are smaller than 4 GiB, which is not an unreasonable
 | 
						||
  // assumption as of 2017.
 | 
						||
  if (SectionKind == SectionBase::Merge && Data.size() > UINT32_MAX)
 | 
						||
    error(toString(this) + ": section too large");
 | 
						||
 | 
						||
  NumRelocations = 0;
 | 
						||
  AreRelocsRela = false;
 | 
						||
 | 
						||
  // The ELF spec states that a value of 0 means the section has
 | 
						||
  // no alignment constraits.
 | 
						||
  uint32_t V = std::max<uint64_t>(Alignment, 1);
 | 
						||
  if (!isPowerOf2_64(V))
 | 
						||
    fatal(toString(File) + ": section sh_addralign is not a power of 2");
 | 
						||
  this->Alignment = V;
 | 
						||
}
 | 
						||
 | 
						||
// Drop SHF_GROUP bit unless we are producing a re-linkable object file.
 | 
						||
// SHF_GROUP is a marker that a section belongs to some comdat group.
 | 
						||
// That flag doesn't make sense in an executable.
 | 
						||
static uint64_t getFlags(uint64_t Flags) {
 | 
						||
  Flags &= ~(uint64_t)SHF_INFO_LINK;
 | 
						||
  if (!Config->Relocatable)
 | 
						||
    Flags &= ~(uint64_t)SHF_GROUP;
 | 
						||
  return Flags;
 | 
						||
}
 | 
						||
 | 
						||
// GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of
 | 
						||
// March 2017) fail to infer section types for sections starting with
 | 
						||
// ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of
 | 
						||
// SHF_INIT_ARRAY. As a result, the following assembler directive
 | 
						||
// creates ".init_array.100" with SHT_PROGBITS, for example.
 | 
						||
//
 | 
						||
//   .section .init_array.100, "aw"
 | 
						||
//
 | 
						||
// This function forces SHT_{INIT,FINI}_ARRAY so that we can handle
 | 
						||
// incorrect inputs as if they were correct from the beginning.
 | 
						||
static uint64_t getType(uint64_t Type, StringRef Name) {
 | 
						||
  if (Type == SHT_PROGBITS && Name.startswith(".init_array."))
 | 
						||
    return SHT_INIT_ARRAY;
 | 
						||
  if (Type == SHT_PROGBITS && Name.startswith(".fini_array."))
 | 
						||
    return SHT_FINI_ARRAY;
 | 
						||
  return Type;
 | 
						||
}
 | 
						||
 | 
						||
template <class ELFT>
 | 
						||
InputSectionBase::InputSectionBase(ObjFile<ELFT> &File,
 | 
						||
                                   const typename ELFT::Shdr &Hdr,
 | 
						||
                                   StringRef Name, Kind SectionKind)
 | 
						||
    : InputSectionBase(&File, getFlags(Hdr.sh_flags),
 | 
						||
                       getType(Hdr.sh_type, Name), Hdr.sh_entsize, Hdr.sh_link,
 | 
						||
                       Hdr.sh_info, Hdr.sh_addralign,
 | 
						||
                       getSectionContents(File, Hdr), Name, SectionKind) {
 | 
						||
  // We reject object files having insanely large alignments even though
 | 
						||
  // they are allowed by the spec. I think 4GB is a reasonable limitation.
 | 
						||
  // We might want to relax this in the future.
 | 
						||
  if (Hdr.sh_addralign > UINT32_MAX)
 | 
						||
    fatal(toString(&File) + ": section sh_addralign is too large");
 | 
						||
}
 | 
						||
 | 
						||
size_t InputSectionBase::getSize() const {
 | 
						||
  if (auto *S = dyn_cast<SyntheticSection>(this))
 | 
						||
    return S->getSize();
 | 
						||
 | 
						||
  return Data.size();
 | 
						||
}
 | 
						||
 | 
						||
uint64_t InputSectionBase::getOffsetInFile() const {
 | 
						||
  const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart();
 | 
						||
  const uint8_t *SecStart = Data.begin();
 | 
						||
  return SecStart - FileStart;
 | 
						||
}
 | 
						||
 | 
						||
uint64_t SectionBase::getOffset(uint64_t Offset) const {
 | 
						||
  switch (kind()) {
 | 
						||
  case Output: {
 | 
						||
    auto *OS = cast<OutputSection>(this);
 | 
						||
    // For output sections we treat offset -1 as the end of the section.
 | 
						||
    return Offset == uint64_t(-1) ? OS->Size : Offset;
 | 
						||
  }
 | 
						||
  case Regular:
 | 
						||
  case Synthetic:
 | 
						||
    return cast<InputSection>(this)->getOffset(Offset);
 | 
						||
  case EHFrame:
 | 
						||
    // The file crtbeginT.o has relocations pointing to the start of an empty
 | 
						||
    // .eh_frame that is known to be the first in the link. It does that to
 | 
						||
    // identify the start of the output .eh_frame.
 | 
						||
    return Offset;
 | 
						||
  case Merge:
 | 
						||
    const MergeInputSection *MS = cast<MergeInputSection>(this);
 | 
						||
    if (InputSection *IS = MS->getParent())
 | 
						||
      return IS->getOffset(MS->getParentOffset(Offset));
 | 
						||
    return MS->getParentOffset(Offset);
 | 
						||
  }
 | 
						||
  llvm_unreachable("invalid section kind");
 | 
						||
}
 | 
						||
 | 
						||
uint64_t SectionBase::getVA(uint64_t Offset) const {
 | 
						||
  const OutputSection *Out = getOutputSection();
 | 
						||
  return (Out ? Out->Addr : 0) + getOffset(Offset);
 | 
						||
}
 | 
						||
 | 
						||
OutputSection *SectionBase::getOutputSection() {
 | 
						||
  InputSection *Sec;
 | 
						||
  if (auto *IS = dyn_cast<InputSection>(this))
 | 
						||
    Sec = IS;
 | 
						||
  else if (auto *MS = dyn_cast<MergeInputSection>(this))
 | 
						||
    Sec = MS->getParent();
 | 
						||
  else if (auto *EH = dyn_cast<EhInputSection>(this))
 | 
						||
    Sec = EH->getParent();
 | 
						||
  else
 | 
						||
    return cast<OutputSection>(this);
 | 
						||
  return Sec ? Sec->getParent() : nullptr;
 | 
						||
}
 | 
						||
 | 
						||
// Decompress section contents if required. Note that this function
 | 
						||
// is called from parallelForEach, so it must be thread-safe.
 | 
						||
void InputSectionBase::maybeDecompress() {
 | 
						||
  if (DecompressBuf)
 | 
						||
    return;
 | 
						||
  if (!(Flags & SHF_COMPRESSED) && !Name.startswith(".zdebug"))
 | 
						||
    return;
 | 
						||
 | 
						||
  // Decompress a section.
 | 
						||
  Decompressor Dec = check(Decompressor::create(Name, toStringRef(Data),
 | 
						||
                                                Config->IsLE, Config->Is64));
 | 
						||
 | 
						||
  size_t Size = Dec.getDecompressedSize();
 | 
						||
  DecompressBuf.reset(new char[Size + Name.size()]());
 | 
						||
  if (Error E = Dec.decompress({DecompressBuf.get(), Size}))
 | 
						||
    fatal(toString(this) +
 | 
						||
          ": decompress failed: " + llvm::toString(std::move(E)));
 | 
						||
 | 
						||
  Data = makeArrayRef((uint8_t *)DecompressBuf.get(), Size);
 | 
						||
  Flags &= ~(uint64_t)SHF_COMPRESSED;
 | 
						||
 | 
						||
  // A section name may have been altered if compressed. If that's
 | 
						||
  // the case, restore the original name. (i.e. ".zdebug_" -> ".debug_")
 | 
						||
  if (Name.startswith(".zdebug")) {
 | 
						||
    DecompressBuf[Size] = '.';
 | 
						||
    memcpy(&DecompressBuf[Size + 1], Name.data() + 2, Name.size() - 2);
 | 
						||
    Name = StringRef(&DecompressBuf[Size], Name.size() - 1);
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
InputSection *InputSectionBase::getLinkOrderDep() const {
 | 
						||
  assert(Link);
 | 
						||
  assert(Flags & SHF_LINK_ORDER);
 | 
						||
  return cast<InputSection>(File->getSections()[Link]);
 | 
						||
}
 | 
						||
 | 
						||
// Returns a source location string. Used to construct an error message.
 | 
						||
template <class ELFT>
 | 
						||
std::string InputSectionBase::getLocation(uint64_t Offset) {
 | 
						||
  // We don't have file for synthetic sections.
 | 
						||
  if (getFile<ELFT>() == nullptr)
 | 
						||
    return (Config->OutputFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")")
 | 
						||
        .str();
 | 
						||
 | 
						||
  // First check if we can get desired values from debugging information.
 | 
						||
  std::string LineInfo = getFile<ELFT>()->getLineInfo(this, Offset);
 | 
						||
  if (!LineInfo.empty())
 | 
						||
    return LineInfo;
 | 
						||
 | 
						||
  // File->SourceFile contains STT_FILE symbol that contains a
 | 
						||
  // source file name. If it's missing, we use an object file name.
 | 
						||
  std::string SrcFile = getFile<ELFT>()->SourceFile;
 | 
						||
  if (SrcFile.empty())
 | 
						||
    SrcFile = toString(File);
 | 
						||
 | 
						||
  // Find a function symbol that encloses a given location.
 | 
						||
  for (Symbol *B : File->getSymbols())
 | 
						||
    if (auto *D = dyn_cast<Defined>(B))
 | 
						||
      if (D->Section == this && D->Type == STT_FUNC)
 | 
						||
        if (D->Value <= Offset && Offset < D->Value + D->Size)
 | 
						||
          return SrcFile + ":(function " + toString(*D) + ")";
 | 
						||
 | 
						||
  // If there's no symbol, print out the offset in the section.
 | 
						||
  return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str();
 | 
						||
}
 | 
						||
 | 
						||
// This function is intended to be used for constructing an error message.
 | 
						||
// The returned message looks like this:
 | 
						||
//
 | 
						||
//   foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
 | 
						||
//
 | 
						||
//  Returns an empty string if there's no way to get line info.
 | 
						||
std::string InputSectionBase::getSrcMsg(const Symbol &Sym, uint64_t Offset) {
 | 
						||
  // Synthetic sections don't have input files.
 | 
						||
  if (!File)
 | 
						||
    return "";
 | 
						||
  return File->getSrcMsg(Sym, *this, Offset);
 | 
						||
}
 | 
						||
 | 
						||
// Returns a filename string along with an optional section name. This
 | 
						||
// function is intended to be used for constructing an error
 | 
						||
// message. The returned message looks like this:
 | 
						||
//
 | 
						||
//   path/to/foo.o:(function bar)
 | 
						||
//
 | 
						||
// or
 | 
						||
//
 | 
						||
//   path/to/foo.o:(function bar) in archive path/to/bar.a
 | 
						||
std::string InputSectionBase::getObjMsg(uint64_t Off) {
 | 
						||
  // Synthetic sections don't have input files.
 | 
						||
  if (!File)
 | 
						||
    return ("<internal>:(" + Name + "+0x" + utohexstr(Off) + ")").str();
 | 
						||
  std::string Filename = File->getName();
 | 
						||
 | 
						||
  std::string Archive;
 | 
						||
  if (!File->ArchiveName.empty())
 | 
						||
    Archive = " in archive " + File->ArchiveName;
 | 
						||
 | 
						||
  // Find a symbol that encloses a given location.
 | 
						||
  for (Symbol *B : File->getSymbols())
 | 
						||
    if (auto *D = dyn_cast<Defined>(B))
 | 
						||
      if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size)
 | 
						||
        return Filename + ":(" + toString(*D) + ")" + Archive;
 | 
						||
 | 
						||
  // If there's no symbol, print out the offset in the section.
 | 
						||
  return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive)
 | 
						||
      .str();
 | 
						||
}
 | 
						||
 | 
						||
InputSection InputSection::Discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
 | 
						||
 | 
						||
InputSection::InputSection(InputFile *F, uint64_t Flags, uint32_t Type,
 | 
						||
                           uint32_t Alignment, ArrayRef<uint8_t> Data,
 | 
						||
                           StringRef Name, Kind K)
 | 
						||
    : InputSectionBase(F, Flags, Type,
 | 
						||
                       /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data,
 | 
						||
                       Name, K) {}
 | 
						||
 | 
						||
template <class ELFT>
 | 
						||
InputSection::InputSection(ObjFile<ELFT> &F, const typename ELFT::Shdr &Header,
 | 
						||
                           StringRef Name)
 | 
						||
    : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {}
 | 
						||
 | 
						||
bool InputSection::classof(const SectionBase *S) {
 | 
						||
  return S->kind() == SectionBase::Regular ||
 | 
						||
         S->kind() == SectionBase::Synthetic;
 | 
						||
}
 | 
						||
 | 
						||
OutputSection *InputSection::getParent() const {
 | 
						||
  return cast_or_null<OutputSection>(Parent);
 | 
						||
}
 | 
						||
 | 
						||
// Copy SHT_GROUP section contents. Used only for the -r option.
 | 
						||
template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) {
 | 
						||
  // ELFT::Word is the 32-bit integral type in the target endianness.
 | 
						||
  typedef typename ELFT::Word u32;
 | 
						||
  ArrayRef<u32> From = getDataAs<u32>();
 | 
						||
  auto *To = reinterpret_cast<u32 *>(Buf);
 | 
						||
 | 
						||
  // The first entry is not a section number but a flag.
 | 
						||
  *To++ = From[0];
 | 
						||
 | 
						||
  // Adjust section numbers because section numbers in an input object
 | 
						||
  // files are different in the output.
 | 
						||
  ArrayRef<InputSectionBase *> Sections = File->getSections();
 | 
						||
  for (uint32_t Idx : From.slice(1))
 | 
						||
    *To++ = Sections[Idx]->getOutputSection()->SectionIndex;
 | 
						||
}
 | 
						||
 | 
						||
InputSectionBase *InputSection::getRelocatedSection() const {
 | 
						||
  if (!File || (Type != SHT_RELA && Type != SHT_REL))
 | 
						||
    return nullptr;
 | 
						||
  ArrayRef<InputSectionBase *> Sections = File->getSections();
 | 
						||
  return Sections[Info];
 | 
						||
}
 | 
						||
 | 
						||
// This is used for -r and --emit-relocs. We can't use memcpy to copy
 | 
						||
// relocations because we need to update symbol table offset and section index
 | 
						||
// for each relocation. So we copy relocations one by one.
 | 
						||
template <class ELFT, class RelTy>
 | 
						||
void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) {
 | 
						||
  InputSectionBase *Sec = getRelocatedSection();
 | 
						||
 | 
						||
  for (const RelTy &Rel : Rels) {
 | 
						||
    RelType Type = Rel.getType(Config->IsMips64EL);
 | 
						||
    Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel);
 | 
						||
 | 
						||
    auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf);
 | 
						||
    Buf += sizeof(RelTy);
 | 
						||
 | 
						||
    if (RelTy::IsRela)
 | 
						||
      P->r_addend = getAddend<ELFT>(Rel);
 | 
						||
 | 
						||
    // Output section VA is zero for -r, so r_offset is an offset within the
 | 
						||
    // section, but for --emit-relocs it is an virtual address.
 | 
						||
    P->r_offset = Sec->getVA(Rel.r_offset);
 | 
						||
    P->setSymbolAndType(InX::SymTab->getSymbolIndex(&Sym), Type,
 | 
						||
                        Config->IsMips64EL);
 | 
						||
 | 
						||
    if (Sym.Type == STT_SECTION) {
 | 
						||
      // We combine multiple section symbols into only one per
 | 
						||
      // section. This means we have to update the addend. That is
 | 
						||
      // trivial for Elf_Rela, but for Elf_Rel we have to write to the
 | 
						||
      // section data. We do that by adding to the Relocation vector.
 | 
						||
 | 
						||
      // .eh_frame is horribly special and can reference discarded sections. To
 | 
						||
      // avoid having to parse and recreate .eh_frame, we just replace any
 | 
						||
      // relocation in it pointing to discarded sections with R_*_NONE, which
 | 
						||
      // hopefully creates a frame that is ignored at runtime.
 | 
						||
      auto *D = dyn_cast<Defined>(&Sym);
 | 
						||
      if (!D) {
 | 
						||
        error("STT_SECTION symbol should be defined");
 | 
						||
        continue;
 | 
						||
      }
 | 
						||
      SectionBase *Section = D->Section;
 | 
						||
      if (Section == &InputSection::Discarded) {
 | 
						||
        P->setSymbolAndType(0, 0, false);
 | 
						||
        continue;
 | 
						||
      }
 | 
						||
 | 
						||
      int64_t Addend = getAddend<ELFT>(Rel);
 | 
						||
      const uint8_t *BufLoc = Sec->Data.begin() + Rel.r_offset;
 | 
						||
      if (!RelTy::IsRela)
 | 
						||
        Addend = Target->getImplicitAddend(BufLoc, Type);
 | 
						||
 | 
						||
      if (Config->EMachine == EM_MIPS && Config->Relocatable &&
 | 
						||
          Target->getRelExpr(Type, Sym, BufLoc) == R_MIPS_GOTREL) {
 | 
						||
        // Some MIPS relocations depend on "gp" value. By default,
 | 
						||
        // this value has 0x7ff0 offset from a .got section. But
 | 
						||
        // relocatable files produced by a complier or a linker
 | 
						||
        // might redefine this default value and we must use it
 | 
						||
        // for a calculation of the relocation result. When we
 | 
						||
        // generate EXE or DSO it's trivial. Generating a relocatable
 | 
						||
        // output is more difficult case because the linker does
 | 
						||
        // not calculate relocations in this mode and loses
 | 
						||
        // individual "gp" values used by each input object file.
 | 
						||
        // As a workaround we add the "gp" value to the relocation
 | 
						||
        // addend and save it back to the file.
 | 
						||
        Addend += Sec->getFile<ELFT>()->MipsGp0;
 | 
						||
      }
 | 
						||
 | 
						||
      if (RelTy::IsRela)
 | 
						||
        P->r_addend = Sym.getVA(Addend) - Section->getOutputSection()->Addr;
 | 
						||
      else if (Config->Relocatable)
 | 
						||
        Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset, Addend, &Sym});
 | 
						||
    }
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
// The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
 | 
						||
// references specially. The general rule is that the value of the symbol in
 | 
						||
// this context is the address of the place P. A further special case is that
 | 
						||
// branch relocations to an undefined weak reference resolve to the next
 | 
						||
// instruction.
 | 
						||
static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A,
 | 
						||
                                              uint32_t P) {
 | 
						||
  switch (Type) {
 | 
						||
  // Unresolved branch relocations to weak references resolve to next
 | 
						||
  // instruction, this will be either 2 or 4 bytes on from P.
 | 
						||
  case R_ARM_THM_JUMP11:
 | 
						||
    return P + 2 + A;
 | 
						||
  case R_ARM_CALL:
 | 
						||
  case R_ARM_JUMP24:
 | 
						||
  case R_ARM_PC24:
 | 
						||
  case R_ARM_PLT32:
 | 
						||
  case R_ARM_PREL31:
 | 
						||
  case R_ARM_THM_JUMP19:
 | 
						||
  case R_ARM_THM_JUMP24:
 | 
						||
    return P + 4 + A;
 | 
						||
  case R_ARM_THM_CALL:
 | 
						||
    // We don't want an interworking BLX to ARM
 | 
						||
    return P + 5 + A;
 | 
						||
  // Unresolved non branch pc-relative relocations
 | 
						||
  // R_ARM_TARGET2 which can be resolved relatively is not present as it never
 | 
						||
  // targets a weak-reference.
 | 
						||
  case R_ARM_MOVW_PREL_NC:
 | 
						||
  case R_ARM_MOVT_PREL:
 | 
						||
  case R_ARM_REL32:
 | 
						||
  case R_ARM_THM_MOVW_PREL_NC:
 | 
						||
  case R_ARM_THM_MOVT_PREL:
 | 
						||
    return P + A;
 | 
						||
  }
 | 
						||
  llvm_unreachable("ARM pc-relative relocation expected\n");
 | 
						||
}
 | 
						||
 | 
						||
// The comment above getARMUndefinedRelativeWeakVA applies to this function.
 | 
						||
static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A,
 | 
						||
                                                  uint64_t P) {
 | 
						||
  switch (Type) {
 | 
						||
  // Unresolved branch relocations to weak references resolve to next
 | 
						||
  // instruction, this is 4 bytes on from P.
 | 
						||
  case R_AARCH64_CALL26:
 | 
						||
  case R_AARCH64_CONDBR19:
 | 
						||
  case R_AARCH64_JUMP26:
 | 
						||
  case R_AARCH64_TSTBR14:
 | 
						||
    return P + 4 + A;
 | 
						||
  // Unresolved non branch pc-relative relocations
 | 
						||
  case R_AARCH64_PREL16:
 | 
						||
  case R_AARCH64_PREL32:
 | 
						||
  case R_AARCH64_PREL64:
 | 
						||
  case R_AARCH64_ADR_PREL_LO21:
 | 
						||
  case R_AARCH64_LD_PREL_LO19:
 | 
						||
    return P + A;
 | 
						||
  }
 | 
						||
  llvm_unreachable("AArch64 pc-relative relocation expected\n");
 | 
						||
}
 | 
						||
 | 
						||
// ARM SBREL relocations are of the form S + A - B where B is the static base
 | 
						||
// The ARM ABI defines base to be "addressing origin of the output segment
 | 
						||
// defining the symbol S". We defined the "addressing origin"/static base to be
 | 
						||
// the base of the PT_LOAD segment containing the Sym.
 | 
						||
// The procedure call standard only defines a Read Write Position Independent
 | 
						||
// RWPI variant so in practice we should expect the static base to be the base
 | 
						||
// of the RW segment.
 | 
						||
static uint64_t getARMStaticBase(const Symbol &Sym) {
 | 
						||
  OutputSection *OS = Sym.getOutputSection();
 | 
						||
  if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec)
 | 
						||
    fatal("SBREL relocation to " + Sym.getName() + " without static base");
 | 
						||
  return OS->PtLoad->FirstSec->Addr;
 | 
						||
}
 | 
						||
 | 
						||
static uint64_t getRelocTargetVA(const InputFile *File, RelType Type, int64_t A,
 | 
						||
                                 uint64_t P, const Symbol &Sym, RelExpr Expr) {
 | 
						||
  switch (Expr) {
 | 
						||
  case R_INVALID:
 | 
						||
    return 0;
 | 
						||
  case R_ABS:
 | 
						||
  case R_RELAX_GOT_PC_NOPIC:
 | 
						||
    return Sym.getVA(A);
 | 
						||
  case R_ADDEND:
 | 
						||
    return A;
 | 
						||
  case R_ARM_SBREL:
 | 
						||
    return Sym.getVA(A) - getARMStaticBase(Sym);
 | 
						||
  case R_GOT:
 | 
						||
  case R_RELAX_TLS_GD_TO_IE_ABS:
 | 
						||
    return Sym.getGotVA() + A;
 | 
						||
  case R_GOTONLY_PC:
 | 
						||
    return InX::Got->getVA() + A - P;
 | 
						||
  case R_GOTONLY_PC_FROM_END:
 | 
						||
    return InX::Got->getVA() + A - P + InX::Got->getSize();
 | 
						||
  case R_GOTREL:
 | 
						||
    return Sym.getVA(A) - InX::Got->getVA();
 | 
						||
  case R_GOTREL_FROM_END:
 | 
						||
    return Sym.getVA(A) - InX::Got->getVA() - InX::Got->getSize();
 | 
						||
  case R_GOT_FROM_END:
 | 
						||
  case R_RELAX_TLS_GD_TO_IE_END:
 | 
						||
    return Sym.getGotOffset() + A - InX::Got->getSize();
 | 
						||
  case R_GOT_OFF:
 | 
						||
    return Sym.getGotOffset() + A;
 | 
						||
  case R_GOT_PAGE_PC:
 | 
						||
  case R_RELAX_TLS_GD_TO_IE_PAGE_PC:
 | 
						||
    return getAArch64Page(Sym.getGotVA() + A) - getAArch64Page(P);
 | 
						||
  case R_GOT_PC:
 | 
						||
  case R_RELAX_TLS_GD_TO_IE:
 | 
						||
    return Sym.getGotVA() + A - P;
 | 
						||
  case R_HINT:
 | 
						||
  case R_NONE:
 | 
						||
  case R_TLSDESC_CALL:
 | 
						||
    llvm_unreachable("cannot relocate hint relocs");
 | 
						||
  case R_MIPS_GOTREL:
 | 
						||
    return Sym.getVA(A) - InX::MipsGot->getGp(File);
 | 
						||
  case R_MIPS_GOT_GP:
 | 
						||
    return InX::MipsGot->getGp(File) + A;
 | 
						||
  case R_MIPS_GOT_GP_PC: {
 | 
						||
    // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
 | 
						||
    // is _gp_disp symbol. In that case we should use the following
 | 
						||
    // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
 | 
						||
    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
 | 
						||
    // microMIPS variants of these relocations use slightly different
 | 
						||
    // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
 | 
						||
    // to correctly handle less-sugnificant bit of the microMIPS symbol.
 | 
						||
    uint64_t V = InX::MipsGot->getGp(File) + A - P;
 | 
						||
    if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16)
 | 
						||
      V += 4;
 | 
						||
    if (Type == R_MICROMIPS_LO16 || Type == R_MICROMIPS_HI16)
 | 
						||
      V -= 1;
 | 
						||
    return V;
 | 
						||
  }
 | 
						||
  case R_MIPS_GOT_LOCAL_PAGE:
 | 
						||
    // If relocation against MIPS local symbol requires GOT entry, this entry
 | 
						||
    // should be initialized by 'page address'. This address is high 16-bits
 | 
						||
    // of sum the symbol's value and the addend.
 | 
						||
    return InX::MipsGot->getVA() +
 | 
						||
           InX::MipsGot->getPageEntryOffset(File, Sym, A) -
 | 
						||
           InX::MipsGot->getGp(File);
 | 
						||
  case R_MIPS_GOT_OFF:
 | 
						||
  case R_MIPS_GOT_OFF32:
 | 
						||
    // In case of MIPS if a GOT relocation has non-zero addend this addend
 | 
						||
    // should be applied to the GOT entry content not to the GOT entry offset.
 | 
						||
    // That is why we use separate expression type.
 | 
						||
    return InX::MipsGot->getVA() +
 | 
						||
           InX::MipsGot->getSymEntryOffset(File, Sym, A) -
 | 
						||
           InX::MipsGot->getGp(File);
 | 
						||
  case R_MIPS_TLSGD:
 | 
						||
    return InX::MipsGot->getVA() + InX::MipsGot->getGlobalDynOffset(File, Sym) -
 | 
						||
           InX::MipsGot->getGp(File);
 | 
						||
  case R_MIPS_TLSLD:
 | 
						||
    return InX::MipsGot->getVA() + InX::MipsGot->getTlsIndexOffset(File) -
 | 
						||
           InX::MipsGot->getGp(File);
 | 
						||
  case R_PAGE_PC:
 | 
						||
  case R_PLT_PAGE_PC: {
 | 
						||
    uint64_t Dest;
 | 
						||
    if (Sym.isUndefWeak())
 | 
						||
      Dest = getAArch64Page(A);
 | 
						||
    else
 | 
						||
      Dest = getAArch64Page(Sym.getVA(A));
 | 
						||
    return Dest - getAArch64Page(P);
 | 
						||
  }
 | 
						||
  case R_PC: {
 | 
						||
    uint64_t Dest;
 | 
						||
    if (Sym.isUndefWeak()) {
 | 
						||
      // On ARM and AArch64 a branch to an undefined weak resolves to the
 | 
						||
      // next instruction, otherwise the place.
 | 
						||
      if (Config->EMachine == EM_ARM)
 | 
						||
        Dest = getARMUndefinedRelativeWeakVA(Type, A, P);
 | 
						||
      else if (Config->EMachine == EM_AARCH64)
 | 
						||
        Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P);
 | 
						||
      else
 | 
						||
        Dest = Sym.getVA(A);
 | 
						||
    } else {
 | 
						||
      Dest = Sym.getVA(A);
 | 
						||
    }
 | 
						||
    return Dest - P;
 | 
						||
  }
 | 
						||
  case R_PLT:
 | 
						||
    return Sym.getPltVA() + A;
 | 
						||
  case R_PLT_PC:
 | 
						||
  case R_PPC_CALL_PLT:
 | 
						||
    return Sym.getPltVA() + A - P;
 | 
						||
  case R_PPC_CALL: {
 | 
						||
    uint64_t SymVA = Sym.getVA(A);
 | 
						||
    // If we have an undefined weak symbol, we might get here with a symbol
 | 
						||
    // address of zero. That could overflow, but the code must be unreachable,
 | 
						||
    // so don't bother doing anything at all.
 | 
						||
    if (!SymVA)
 | 
						||
      return 0;
 | 
						||
 | 
						||
    // PPC64 V2 ABI describes two entry points to a function. The global entry
 | 
						||
    // point sets up the TOC base pointer. When calling a local function, the
 | 
						||
    // call should branch to the local entry point rather than the global entry
 | 
						||
    // point. Section 3.4.1 describes using the 3 most significant bits of the
 | 
						||
    // st_other field to find out how many instructions there are between the
 | 
						||
    // local and global entry point.
 | 
						||
    uint8_t StOther = (Sym.StOther >> 5) & 7;
 | 
						||
    if (StOther == 0 || StOther == 1)
 | 
						||
      return SymVA - P;
 | 
						||
 | 
						||
    return SymVA - P + (1LL << StOther);
 | 
						||
  }
 | 
						||
  case R_PPC_TOC:
 | 
						||
    return getPPC64TocBase() + A;
 | 
						||
  case R_RELAX_GOT_PC:
 | 
						||
    return Sym.getVA(A) - P;
 | 
						||
  case R_RELAX_TLS_GD_TO_LE:
 | 
						||
  case R_RELAX_TLS_IE_TO_LE:
 | 
						||
  case R_RELAX_TLS_LD_TO_LE:
 | 
						||
  case R_TLS:
 | 
						||
    // A weak undefined TLS symbol resolves to the base of the TLS
 | 
						||
    // block, i.e. gets a value of zero. If we pass --gc-sections to
 | 
						||
    // lld and .tbss is not referenced, it gets reclaimed and we don't
 | 
						||
    // create a TLS program header. Therefore, we resolve this
 | 
						||
    // statically to zero.
 | 
						||
    if (Sym.isTls() && Sym.isUndefWeak())
 | 
						||
      return 0;
 | 
						||
 | 
						||
    // For TLS variant 1 the TCB is a fixed size, whereas for TLS variant 2 the
 | 
						||
    // TCB is on unspecified size and content. Targets that implement variant 1
 | 
						||
    // should set TcbSize.
 | 
						||
    if (Target->TcbSize) {
 | 
						||
      // PPC64 V2 ABI has the thread pointer offset into the middle of the TLS
 | 
						||
      // storage area by TlsTpOffset for efficient addressing TCB and up to
 | 
						||
      // 4KB – 8 B of other thread library information (placed before the TCB).
 | 
						||
      // Subtracting this offset will get the address of the first TLS block.
 | 
						||
      if (Target->TlsTpOffset)
 | 
						||
        return Sym.getVA(A) - Target->TlsTpOffset;
 | 
						||
 | 
						||
      // If thread pointer is not offset into the middle, the first thing in the
 | 
						||
      // TLS storage area is the TCB. Add the TcbSize to get the address of the
 | 
						||
      // first TLS block.
 | 
						||
      return Sym.getVA(A) + alignTo(Target->TcbSize, Out::TlsPhdr->p_align);
 | 
						||
    }
 | 
						||
    return Sym.getVA(A) - Out::TlsPhdr->p_memsz;
 | 
						||
  case R_RELAX_TLS_GD_TO_LE_NEG:
 | 
						||
  case R_NEG_TLS:
 | 
						||
    return Out::TlsPhdr->p_memsz - Sym.getVA(A);
 | 
						||
  case R_SIZE:
 | 
						||
    return Sym.getSize() + A;
 | 
						||
  case R_TLSDESC:
 | 
						||
    return InX::Got->getGlobalDynAddr(Sym) + A;
 | 
						||
  case R_TLSDESC_PAGE:
 | 
						||
    return getAArch64Page(InX::Got->getGlobalDynAddr(Sym) + A) -
 | 
						||
           getAArch64Page(P);
 | 
						||
  case R_TLSGD_GOT:
 | 
						||
    return InX::Got->getGlobalDynOffset(Sym) + A;
 | 
						||
  case R_TLSGD_GOT_FROM_END:
 | 
						||
    return InX::Got->getGlobalDynOffset(Sym) + A - InX::Got->getSize();
 | 
						||
  case R_TLSGD_PC:
 | 
						||
    return InX::Got->getGlobalDynAddr(Sym) + A - P;
 | 
						||
  case R_TLSLD_GOT_FROM_END:
 | 
						||
    return InX::Got->getTlsIndexOff() + A - InX::Got->getSize();
 | 
						||
  case R_TLSLD_GOT:
 | 
						||
      return InX::Got->getTlsIndexOff() + A;
 | 
						||
  case R_TLSLD_PC:
 | 
						||
    return InX::Got->getTlsIndexVA() + A - P;
 | 
						||
  }
 | 
						||
  llvm_unreachable("Invalid expression");
 | 
						||
}
 | 
						||
 | 
						||
// This function applies relocations to sections without SHF_ALLOC bit.
 | 
						||
// Such sections are never mapped to memory at runtime. Debug sections are
 | 
						||
// an example. Relocations in non-alloc sections are much easier to
 | 
						||
// handle than in allocated sections because it will never need complex
 | 
						||
// treatement such as GOT or PLT (because at runtime no one refers them).
 | 
						||
// So, we handle relocations for non-alloc sections directly in this
 | 
						||
// function as a performance optimization.
 | 
						||
template <class ELFT, class RelTy>
 | 
						||
void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) {
 | 
						||
  const unsigned Bits = sizeof(typename ELFT::uint) * 8;
 | 
						||
 | 
						||
  for (const RelTy &Rel : Rels) {
 | 
						||
    RelType Type = Rel.getType(Config->IsMips64EL);
 | 
						||
 | 
						||
    // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
 | 
						||
    // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
 | 
						||
    // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
 | 
						||
    // need to keep this bug-compatible code for a while.
 | 
						||
    if (Config->EMachine == EM_386 && Type == R_386_GOTPC)
 | 
						||
      continue;
 | 
						||
 | 
						||
    uint64_t Offset = getOffset(Rel.r_offset);
 | 
						||
    uint8_t *BufLoc = Buf + Offset;
 | 
						||
    int64_t Addend = getAddend<ELFT>(Rel);
 | 
						||
    if (!RelTy::IsRela)
 | 
						||
      Addend += Target->getImplicitAddend(BufLoc, Type);
 | 
						||
 | 
						||
    Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel);
 | 
						||
    RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc);
 | 
						||
    if (Expr == R_NONE)
 | 
						||
      continue;
 | 
						||
 | 
						||
    if (Expr != R_ABS) {
 | 
						||
      std::string Msg = getLocation<ELFT>(Offset) +
 | 
						||
                        ": has non-ABS relocation " + toString(Type) +
 | 
						||
                        " against symbol '" + toString(Sym) + "'";
 | 
						||
      if (Expr != R_PC) {
 | 
						||
        error(Msg);
 | 
						||
        return;
 | 
						||
      }
 | 
						||
 | 
						||
      // If the control reaches here, we found a PC-relative relocation in a
 | 
						||
      // non-ALLOC section. Since non-ALLOC section is not loaded into memory
 | 
						||
      // at runtime, the notion of PC-relative doesn't make sense here. So,
 | 
						||
      // this is a usage error. However, GNU linkers historically accept such
 | 
						||
      // relocations without any errors and relocate them as if they were at
 | 
						||
      // address 0. For bug-compatibilty, we accept them with warnings. We
 | 
						||
      // know Steel Bank Common Lisp as of 2018 have this bug.
 | 
						||
      warn(Msg);
 | 
						||
      Target->relocateOne(BufLoc, Type,
 | 
						||
                          SignExtend64<Bits>(Sym.getVA(Addend - Offset)));
 | 
						||
      continue;
 | 
						||
    }
 | 
						||
 | 
						||
    if (Sym.isTls() && !Out::TlsPhdr)
 | 
						||
      Target->relocateOne(BufLoc, Type, 0);
 | 
						||
    else
 | 
						||
      Target->relocateOne(BufLoc, Type, SignExtend64<Bits>(Sym.getVA(Addend)));
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
template <class ELFT>
 | 
						||
void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) {
 | 
						||
  if (Flags & SHF_ALLOC) {
 | 
						||
    relocateAlloc(Buf, BufEnd);
 | 
						||
    return;
 | 
						||
  }
 | 
						||
 | 
						||
  auto *Sec = cast<InputSection>(this);
 | 
						||
  if (Sec->AreRelocsRela)
 | 
						||
    Sec->relocateNonAlloc<ELFT>(Buf, Sec->template relas<ELFT>());
 | 
						||
  else
 | 
						||
    Sec->relocateNonAlloc<ELFT>(Buf, Sec->template rels<ELFT>());
 | 
						||
}
 | 
						||
 | 
						||
void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) {
 | 
						||
  assert(Flags & SHF_ALLOC);
 | 
						||
  const unsigned Bits = Config->Wordsize * 8;
 | 
						||
 | 
						||
  for (const Relocation &Rel : Relocations) {
 | 
						||
    uint64_t Offset = Rel.Offset;
 | 
						||
    if (auto *Sec = dyn_cast<InputSection>(this))
 | 
						||
      Offset += Sec->OutSecOff;
 | 
						||
    uint8_t *BufLoc = Buf + Offset;
 | 
						||
    RelType Type = Rel.Type;
 | 
						||
 | 
						||
    uint64_t AddrLoc = getOutputSection()->Addr + Offset;
 | 
						||
    RelExpr Expr = Rel.Expr;
 | 
						||
    uint64_t TargetVA = SignExtend64(
 | 
						||
        getRelocTargetVA(File, Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr),
 | 
						||
        Bits);
 | 
						||
 | 
						||
    switch (Expr) {
 | 
						||
    case R_RELAX_GOT_PC:
 | 
						||
    case R_RELAX_GOT_PC_NOPIC:
 | 
						||
      Target->relaxGot(BufLoc, TargetVA);
 | 
						||
      break;
 | 
						||
    case R_RELAX_TLS_IE_TO_LE:
 | 
						||
      Target->relaxTlsIeToLe(BufLoc, Type, TargetVA);
 | 
						||
      break;
 | 
						||
    case R_RELAX_TLS_LD_TO_LE:
 | 
						||
      Target->relaxTlsLdToLe(BufLoc, Type, TargetVA);
 | 
						||
      break;
 | 
						||
    case R_RELAX_TLS_GD_TO_LE:
 | 
						||
    case R_RELAX_TLS_GD_TO_LE_NEG:
 | 
						||
      Target->relaxTlsGdToLe(BufLoc, Type, TargetVA);
 | 
						||
      break;
 | 
						||
    case R_RELAX_TLS_GD_TO_IE:
 | 
						||
    case R_RELAX_TLS_GD_TO_IE_ABS:
 | 
						||
    case R_RELAX_TLS_GD_TO_IE_PAGE_PC:
 | 
						||
    case R_RELAX_TLS_GD_TO_IE_END:
 | 
						||
      Target->relaxTlsGdToIe(BufLoc, Type, TargetVA);
 | 
						||
      break;
 | 
						||
    case R_PPC_CALL:
 | 
						||
      // Patch a nop (0x60000000) to a ld.
 | 
						||
      if (Rel.Sym->NeedsTocRestore) {
 | 
						||
        if (BufLoc + 8 > BufEnd || read32(BufLoc + 4) != 0x60000000) {
 | 
						||
          error(getErrorLocation(BufLoc) + "call lacks nop, can't restore toc");
 | 
						||
          break;
 | 
						||
        }
 | 
						||
        write32(BufLoc + 4, 0xe8410018); // ld %r2, 24(%r1)
 | 
						||
      }
 | 
						||
      Target->relocateOne(BufLoc, Type, TargetVA);
 | 
						||
      break;
 | 
						||
    default:
 | 
						||
      Target->relocateOne(BufLoc, Type, TargetVA);
 | 
						||
      break;
 | 
						||
    }
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
template <class ELFT> void InputSection::writeTo(uint8_t *Buf) {
 | 
						||
  if (Type == SHT_NOBITS)
 | 
						||
    return;
 | 
						||
 | 
						||
  if (auto *S = dyn_cast<SyntheticSection>(this)) {
 | 
						||
    S->writeTo(Buf + OutSecOff);
 | 
						||
    return;
 | 
						||
  }
 | 
						||
 | 
						||
  // If -r or --emit-relocs is given, then an InputSection
 | 
						||
  // may be a relocation section.
 | 
						||
  if (Type == SHT_RELA) {
 | 
						||
    copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rela>());
 | 
						||
    return;
 | 
						||
  }
 | 
						||
  if (Type == SHT_REL) {
 | 
						||
    copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rel>());
 | 
						||
    return;
 | 
						||
  }
 | 
						||
 | 
						||
  // If -r is given, we may have a SHT_GROUP section.
 | 
						||
  if (Type == SHT_GROUP) {
 | 
						||
    copyShtGroup<ELFT>(Buf + OutSecOff);
 | 
						||
    return;
 | 
						||
  }
 | 
						||
 | 
						||
  // Copy section contents from source object file to output file
 | 
						||
  // and then apply relocations.
 | 
						||
  memcpy(Buf + OutSecOff, Data.data(), Data.size());
 | 
						||
  uint8_t *BufEnd = Buf + OutSecOff + Data.size();
 | 
						||
  relocate<ELFT>(Buf, BufEnd);
 | 
						||
}
 | 
						||
 | 
						||
void InputSection::replace(InputSection *Other) {
 | 
						||
  Alignment = std::max(Alignment, Other->Alignment);
 | 
						||
  Other->Repl = Repl;
 | 
						||
  Other->Live = false;
 | 
						||
}
 | 
						||
 | 
						||
template <class ELFT>
 | 
						||
EhInputSection::EhInputSection(ObjFile<ELFT> &F,
 | 
						||
                               const typename ELFT::Shdr &Header,
 | 
						||
                               StringRef Name)
 | 
						||
    : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) {}
 | 
						||
 | 
						||
SyntheticSection *EhInputSection::getParent() const {
 | 
						||
  return cast_or_null<SyntheticSection>(Parent);
 | 
						||
}
 | 
						||
 | 
						||
// Returns the index of the first relocation that points to a region between
 | 
						||
// Begin and Begin+Size.
 | 
						||
template <class IntTy, class RelTy>
 | 
						||
static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels,
 | 
						||
                         unsigned &RelocI) {
 | 
						||
  // Start search from RelocI for fast access. That works because the
 | 
						||
  // relocations are sorted in .eh_frame.
 | 
						||
  for (unsigned N = Rels.size(); RelocI < N; ++RelocI) {
 | 
						||
    const RelTy &Rel = Rels[RelocI];
 | 
						||
    if (Rel.r_offset < Begin)
 | 
						||
      continue;
 | 
						||
 | 
						||
    if (Rel.r_offset < Begin + Size)
 | 
						||
      return RelocI;
 | 
						||
    return -1;
 | 
						||
  }
 | 
						||
  return -1;
 | 
						||
}
 | 
						||
 | 
						||
// .eh_frame is a sequence of CIE or FDE records.
 | 
						||
// This function splits an input section into records and returns them.
 | 
						||
template <class ELFT> void EhInputSection::split() {
 | 
						||
  if (AreRelocsRela)
 | 
						||
    split<ELFT>(relas<ELFT>());
 | 
						||
  else
 | 
						||
    split<ELFT>(rels<ELFT>());
 | 
						||
}
 | 
						||
 | 
						||
template <class ELFT, class RelTy>
 | 
						||
void EhInputSection::split(ArrayRef<RelTy> Rels) {
 | 
						||
  unsigned RelI = 0;
 | 
						||
  for (size_t Off = 0, End = Data.size(); Off != End;) {
 | 
						||
    size_t Size = readEhRecordSize(this, Off);
 | 
						||
    Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI));
 | 
						||
    // The empty record is the end marker.
 | 
						||
    if (Size == 4)
 | 
						||
      break;
 | 
						||
    Off += Size;
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
static size_t findNull(StringRef S, size_t EntSize) {
 | 
						||
  // Optimize the common case.
 | 
						||
  if (EntSize == 1)
 | 
						||
    return S.find(0);
 | 
						||
 | 
						||
  for (unsigned I = 0, N = S.size(); I != N; I += EntSize) {
 | 
						||
    const char *B = S.begin() + I;
 | 
						||
    if (std::all_of(B, B + EntSize, [](char C) { return C == 0; }))
 | 
						||
      return I;
 | 
						||
  }
 | 
						||
  return StringRef::npos;
 | 
						||
}
 | 
						||
 | 
						||
SyntheticSection *MergeInputSection::getParent() const {
 | 
						||
  return cast_or_null<SyntheticSection>(Parent);
 | 
						||
}
 | 
						||
 | 
						||
// Split SHF_STRINGS section. Such section is a sequence of
 | 
						||
// null-terminated strings.
 | 
						||
void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) {
 | 
						||
  size_t Off = 0;
 | 
						||
  bool IsAlloc = Flags & SHF_ALLOC;
 | 
						||
  StringRef S = toStringRef(Data);
 | 
						||
 | 
						||
  while (!S.empty()) {
 | 
						||
    size_t End = findNull(S, EntSize);
 | 
						||
    if (End == StringRef::npos)
 | 
						||
      fatal(toString(this) + ": string is not null terminated");
 | 
						||
    size_t Size = End + EntSize;
 | 
						||
 | 
						||
    Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc);
 | 
						||
    S = S.substr(Size);
 | 
						||
    Off += Size;
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
// Split non-SHF_STRINGS section. Such section is a sequence of
 | 
						||
// fixed size records.
 | 
						||
void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data,
 | 
						||
                                        size_t EntSize) {
 | 
						||
  size_t Size = Data.size();
 | 
						||
  assert((Size % EntSize) == 0);
 | 
						||
  bool IsAlloc = Flags & SHF_ALLOC;
 | 
						||
 | 
						||
  for (size_t I = 0; I != Size; I += EntSize)
 | 
						||
    Pieces.emplace_back(I, xxHash64(toStringRef(Data.slice(I, EntSize))),
 | 
						||
                        !IsAlloc);
 | 
						||
}
 | 
						||
 | 
						||
template <class ELFT>
 | 
						||
MergeInputSection::MergeInputSection(ObjFile<ELFT> &F,
 | 
						||
                                     const typename ELFT::Shdr &Header,
 | 
						||
                                     StringRef Name)
 | 
						||
    : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {}
 | 
						||
 | 
						||
MergeInputSection::MergeInputSection(uint64_t Flags, uint32_t Type,
 | 
						||
                                     uint64_t Entsize, ArrayRef<uint8_t> Data,
 | 
						||
                                     StringRef Name)
 | 
						||
    : InputSectionBase(nullptr, Flags, Type, Entsize, /*Link*/ 0, /*Info*/ 0,
 | 
						||
                       /*Alignment*/ Entsize, Data, Name, SectionBase::Merge) {}
 | 
						||
 | 
						||
// This function is called after we obtain a complete list of input sections
 | 
						||
// that need to be linked. This is responsible to split section contents
 | 
						||
// into small chunks for further processing.
 | 
						||
//
 | 
						||
// Note that this function is called from parallelForEach. This must be
 | 
						||
// thread-safe (i.e. no memory allocation from the pools).
 | 
						||
void MergeInputSection::splitIntoPieces() {
 | 
						||
  assert(Pieces.empty());
 | 
						||
 | 
						||
  if (Flags & SHF_STRINGS)
 | 
						||
    splitStrings(Data, Entsize);
 | 
						||
  else
 | 
						||
    splitNonStrings(Data, Entsize);
 | 
						||
 | 
						||
  OffsetMap.reserve(Pieces.size());
 | 
						||
  for (size_t I = 0, E = Pieces.size(); I != E; ++I)
 | 
						||
    OffsetMap[Pieces[I].InputOff] = I;
 | 
						||
}
 | 
						||
 | 
						||
template <class It, class T, class Compare>
 | 
						||
static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) {
 | 
						||
  size_t Size = std::distance(First, Last);
 | 
						||
  assert(Size != 0);
 | 
						||
  while (Size != 1) {
 | 
						||
    size_t H = Size / 2;
 | 
						||
    const It MI = First + H;
 | 
						||
    Size -= H;
 | 
						||
    First = Comp(Value, *MI) ? First : First + H;
 | 
						||
  }
 | 
						||
  return Comp(Value, *First) ? First : First + 1;
 | 
						||
}
 | 
						||
 | 
						||
// Do binary search to get a section piece at a given input offset.
 | 
						||
static SectionPiece *findSectionPiece(MergeInputSection *Sec, uint64_t Offset) {
 | 
						||
  if (Sec->Data.size() <= Offset)
 | 
						||
    fatal(toString(Sec) + ": entry is past the end of the section");
 | 
						||
 | 
						||
  // Find the element this offset points to.
 | 
						||
  auto I = fastUpperBound(
 | 
						||
      Sec->Pieces.begin(), Sec->Pieces.end(), Offset,
 | 
						||
      [](const uint64_t &A, const SectionPiece &B) { return A < B.InputOff; });
 | 
						||
  --I;
 | 
						||
  return &*I;
 | 
						||
}
 | 
						||
 | 
						||
SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) {
 | 
						||
  // Find a piece starting at a given offset.
 | 
						||
  auto It = OffsetMap.find(Offset);
 | 
						||
  if (It != OffsetMap.end())
 | 
						||
    return &Pieces[It->second];
 | 
						||
 | 
						||
  // If Offset is not at beginning of a section piece, it is not in the map.
 | 
						||
  // In that case we need to search from the original section piece vector.
 | 
						||
  return findSectionPiece(this, Offset);
 | 
						||
}
 | 
						||
 | 
						||
// Returns the offset in an output section for a given input offset.
 | 
						||
// Because contents of a mergeable section is not contiguous in output,
 | 
						||
// it is not just an addition to a base output offset.
 | 
						||
uint64_t MergeInputSection::getParentOffset(uint64_t Offset) const {
 | 
						||
  // Find a string starting at a given offset.
 | 
						||
  auto It = OffsetMap.find(Offset);
 | 
						||
  if (It != OffsetMap.end())
 | 
						||
    return Pieces[It->second].OutputOff;
 | 
						||
 | 
						||
  // If Offset is not at beginning of a section piece, it is not in the map.
 | 
						||
  // In that case we need to search from the original section piece vector.
 | 
						||
  const SectionPiece &Piece =
 | 
						||
      *findSectionPiece(const_cast<MergeInputSection *>(this), Offset);
 | 
						||
  uint64_t Addend = Offset - Piece.InputOff;
 | 
						||
  return Piece.OutputOff + Addend;
 | 
						||
}
 | 
						||
 | 
						||
template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
 | 
						||
                                    StringRef);
 | 
						||
template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
 | 
						||
                                    StringRef);
 | 
						||
template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
 | 
						||
                                    StringRef);
 | 
						||
template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
 | 
						||
                                    StringRef);
 | 
						||
 | 
						||
template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t);
 | 
						||
template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t);
 | 
						||
template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t);
 | 
						||
template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t);
 | 
						||
 | 
						||
template void InputSection::writeTo<ELF32LE>(uint8_t *);
 | 
						||
template void InputSection::writeTo<ELF32BE>(uint8_t *);
 | 
						||
template void InputSection::writeTo<ELF64LE>(uint8_t *);
 | 
						||
template void InputSection::writeTo<ELF64BE>(uint8_t *);
 | 
						||
 | 
						||
template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
 | 
						||
                                              const ELF32LE::Shdr &, StringRef);
 | 
						||
template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
 | 
						||
                                              const ELF32BE::Shdr &, StringRef);
 | 
						||
template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
 | 
						||
                                              const ELF64LE::Shdr &, StringRef);
 | 
						||
template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
 | 
						||
                                              const ELF64BE::Shdr &, StringRef);
 | 
						||
 | 
						||
template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
 | 
						||
                                        const ELF32LE::Shdr &, StringRef);
 | 
						||
template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
 | 
						||
                                        const ELF32BE::Shdr &, StringRef);
 | 
						||
template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
 | 
						||
                                        const ELF64LE::Shdr &, StringRef);
 | 
						||
template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
 | 
						||
                                        const ELF64BE::Shdr &, StringRef);
 | 
						||
 | 
						||
template void EhInputSection::split<ELF32LE>();
 | 
						||
template void EhInputSection::split<ELF32BE>();
 | 
						||
template void EhInputSection::split<ELF64LE>();
 | 
						||
template void EhInputSection::split<ELF64BE>();
 |