forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			851 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			851 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the LiveInterval analysis pass which is used
 | 
						|
// by the Linear Scan Register allocator. This pass linearizes the
 | 
						|
// basic blocks of the function in DFS order and uses the
 | 
						|
// LiveVariables pass to conservatively compute live intervals for
 | 
						|
// each virtual and physical register.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "liveintervals"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "VirtRegMap.h"
 | 
						|
#include "llvm/Value.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/CodeGen/LiveVariables.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/SSARegMap.h"
 | 
						|
#include "llvm/Target/MRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cmath>
 | 
						|
#include <iostream>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  RegisterAnalysis<LiveIntervals> X("liveintervals", "Live Interval Analysis");
 | 
						|
 | 
						|
  Statistic<> numIntervals
 | 
						|
  ("liveintervals", "Number of original intervals");
 | 
						|
 | 
						|
  Statistic<> numIntervalsAfter
 | 
						|
  ("liveintervals", "Number of intervals after coalescing");
 | 
						|
 | 
						|
  Statistic<> numJoins
 | 
						|
  ("liveintervals", "Number of interval joins performed");
 | 
						|
 | 
						|
  Statistic<> numPeep
 | 
						|
  ("liveintervals", "Number of identity moves eliminated after coalescing");
 | 
						|
 | 
						|
  Statistic<> numFolded
 | 
						|
  ("liveintervals", "Number of loads/stores folded into instructions");
 | 
						|
 | 
						|
  cl::opt<bool>
 | 
						|
  EnableJoining("join-liveintervals",
 | 
						|
                cl::desc("Join compatible live intervals"),
 | 
						|
                cl::init(true));
 | 
						|
};
 | 
						|
 | 
						|
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const
 | 
						|
{
 | 
						|
  AU.addRequired<LiveVariables>();
 | 
						|
  AU.addPreservedID(PHIEliminationID);
 | 
						|
  AU.addRequiredID(PHIEliminationID);
 | 
						|
  AU.addRequiredID(TwoAddressInstructionPassID);
 | 
						|
  AU.addRequired<LoopInfo>();
 | 
						|
  MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::releaseMemory()
 | 
						|
{
 | 
						|
  mi2iMap_.clear();
 | 
						|
  i2miMap_.clear();
 | 
						|
  r2iMap_.clear();
 | 
						|
  r2rMap_.clear();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// runOnMachineFunction - Register allocate the whole function
 | 
						|
///
 | 
						|
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
 | 
						|
  mf_ = &fn;
 | 
						|
  tm_ = &fn.getTarget();
 | 
						|
  mri_ = tm_->getRegisterInfo();
 | 
						|
  tii_ = tm_->getInstrInfo();
 | 
						|
  lv_ = &getAnalysis<LiveVariables>();
 | 
						|
  allocatableRegs_ = mri_->getAllocatableSet(fn);
 | 
						|
  r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
 | 
						|
 | 
						|
  // If this function has any live ins, insert a dummy instruction at the
 | 
						|
  // beginning of the function that we will pretend "defines" the values.  This
 | 
						|
  // is to make the interval analysis simpler by providing a number.
 | 
						|
  if (fn.livein_begin() != fn.livein_end()) {
 | 
						|
    unsigned FirstLiveIn = fn.livein_begin()->first;
 | 
						|
 | 
						|
    // Find a reg class that contains this live in.
 | 
						|
    const TargetRegisterClass *RC = 0;
 | 
						|
    for (MRegisterInfo::regclass_iterator RCI = mri_->regclass_begin(),
 | 
						|
           E = mri_->regclass_end(); RCI != E; ++RCI)
 | 
						|
      if ((*RCI)->contains(FirstLiveIn)) {
 | 
						|
        RC = *RCI;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
    MachineInstr *OldFirstMI = fn.begin()->begin();
 | 
						|
    mri_->copyRegToReg(*fn.begin(), fn.begin()->begin(),
 | 
						|
                       FirstLiveIn, FirstLiveIn, RC);
 | 
						|
    assert(OldFirstMI != fn.begin()->begin() &&
 | 
						|
           "copyRetToReg didn't insert anything!");
 | 
						|
  }
 | 
						|
 | 
						|
  // number MachineInstrs
 | 
						|
  unsigned miIndex = 0;
 | 
						|
  for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
 | 
						|
       mbb != mbbEnd; ++mbb)
 | 
						|
    for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
 | 
						|
         mi != miEnd; ++mi) {
 | 
						|
      bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second;
 | 
						|
      assert(inserted && "multiple MachineInstr -> index mappings");
 | 
						|
      i2miMap_.push_back(mi);
 | 
						|
      miIndex += InstrSlots::NUM;
 | 
						|
    }
 | 
						|
 | 
						|
  // Note intervals due to live-in values.
 | 
						|
  if (fn.livein_begin() != fn.livein_end()) {
 | 
						|
    MachineBasicBlock *Entry = fn.begin();
 | 
						|
    for (MachineFunction::livein_iterator I = fn.livein_begin(),
 | 
						|
           E = fn.livein_end(); I != E; ++I) {
 | 
						|
      handlePhysicalRegisterDef(Entry, Entry->begin(),
 | 
						|
                                getOrCreateInterval(I->first), 0, 0, true);
 | 
						|
      for (const unsigned* AS = mri_->getAliasSet(I->first); *AS; ++AS)
 | 
						|
        handlePhysicalRegisterDef(Entry, Entry->begin(),
 | 
						|
                                  getOrCreateInterval(*AS), 0, 0, true);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  computeIntervals();
 | 
						|
 | 
						|
  numIntervals += getNumIntervals();
 | 
						|
 | 
						|
  DEBUG(std::cerr << "********** INTERVALS **********\n";
 | 
						|
        for (iterator I = begin(), E = end(); I != E; ++I) {
 | 
						|
          I->second.print(std::cerr, mri_);
 | 
						|
          std::cerr << "\n";
 | 
						|
        });
 | 
						|
 | 
						|
  // join intervals if requested
 | 
						|
  if (EnableJoining) joinIntervals();
 | 
						|
 | 
						|
  numIntervalsAfter += getNumIntervals();
 | 
						|
 | 
						|
  // perform a final pass over the instructions and compute spill
 | 
						|
  // weights, coalesce virtual registers and remove identity moves
 | 
						|
  const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
 | 
						|
 | 
						|
  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
 | 
						|
       mbbi != mbbe; ++mbbi) {
 | 
						|
    MachineBasicBlock* mbb = mbbi;
 | 
						|
    unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
 | 
						|
 | 
						|
    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
 | 
						|
         mii != mie; ) {
 | 
						|
      // if the move will be an identity move delete it
 | 
						|
      unsigned srcReg, dstReg, RegRep;
 | 
						|
      if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
 | 
						|
          (RegRep = rep(srcReg)) == rep(dstReg)) {
 | 
						|
        // remove from def list
 | 
						|
        LiveInterval &interval = getOrCreateInterval(RegRep);
 | 
						|
        // remove index -> MachineInstr and
 | 
						|
        // MachineInstr -> index mappings
 | 
						|
        Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii);
 | 
						|
        if (mi2i != mi2iMap_.end()) {
 | 
						|
          i2miMap_[mi2i->second/InstrSlots::NUM] = 0;
 | 
						|
          mi2iMap_.erase(mi2i);
 | 
						|
        }
 | 
						|
        mii = mbbi->erase(mii);
 | 
						|
        ++numPeep;
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        for (unsigned i = 0; i < mii->getNumOperands(); ++i) {
 | 
						|
          const MachineOperand& mop = mii->getOperand(i);
 | 
						|
          if (mop.isRegister() && mop.getReg() &&
 | 
						|
              MRegisterInfo::isVirtualRegister(mop.getReg())) {
 | 
						|
            // replace register with representative register
 | 
						|
            unsigned reg = rep(mop.getReg());
 | 
						|
            mii->SetMachineOperandReg(i, reg);
 | 
						|
 | 
						|
            LiveInterval &RegInt = getInterval(reg);
 | 
						|
            RegInt.weight +=
 | 
						|
              (mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        ++mii;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dump());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// print - Implement the dump method.
 | 
						|
void LiveIntervals::print(std::ostream &O, const Module* ) const {
 | 
						|
  O << "********** INTERVALS **********\n";
 | 
						|
  for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | 
						|
    I->second.print(std::cerr, mri_);
 | 
						|
    std::cerr << "\n";
 | 
						|
  }
 | 
						|
 | 
						|
  O << "********** MACHINEINSTRS **********\n";
 | 
						|
  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
 | 
						|
       mbbi != mbbe; ++mbbi) {
 | 
						|
    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
 | 
						|
    for (MachineBasicBlock::iterator mii = mbbi->begin(),
 | 
						|
           mie = mbbi->end(); mii != mie; ++mii) {
 | 
						|
      O << getInstructionIndex(mii) << '\t' << *mii;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
std::vector<LiveInterval*> LiveIntervals::
 | 
						|
addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
 | 
						|
  // since this is called after the analysis is done we don't know if
 | 
						|
  // LiveVariables is available
 | 
						|
  lv_ = getAnalysisToUpdate<LiveVariables>();
 | 
						|
 | 
						|
  std::vector<LiveInterval*> added;
 | 
						|
 | 
						|
  assert(li.weight != HUGE_VAL &&
 | 
						|
         "attempt to spill already spilled interval!");
 | 
						|
 | 
						|
  DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: "
 | 
						|
        << li << '\n');
 | 
						|
 | 
						|
  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
 | 
						|
 | 
						|
  for (LiveInterval::Ranges::const_iterator
 | 
						|
         i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
 | 
						|
    unsigned index = getBaseIndex(i->start);
 | 
						|
    unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
 | 
						|
    for (; index != end; index += InstrSlots::NUM) {
 | 
						|
      // skip deleted instructions
 | 
						|
      while (index != end && !getInstructionFromIndex(index))
 | 
						|
        index += InstrSlots::NUM;
 | 
						|
      if (index == end) break;
 | 
						|
 | 
						|
      MachineInstr *MI = getInstructionFromIndex(index);
 | 
						|
 | 
						|
      // NewRegLiveIn - This instruction might have multiple uses of the spilled
 | 
						|
      // register.  In this case, for the first use, keep track of the new vreg
 | 
						|
      // that we reload it into.  If we see a second use, reuse this vreg
 | 
						|
      // instead of creating live ranges for two reloads.
 | 
						|
      unsigned NewRegLiveIn = 0;
 | 
						|
 | 
						|
    for_operand:
 | 
						|
      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
 | 
						|
        MachineOperand& mop = MI->getOperand(i);
 | 
						|
        if (mop.isRegister() && mop.getReg() == li.reg) {
 | 
						|
          if (NewRegLiveIn && mop.isUse()) {
 | 
						|
            // We already emitted a reload of this value, reuse it for
 | 
						|
            // subsequent operands.
 | 
						|
            MI->SetMachineOperandReg(i, NewRegLiveIn);
 | 
						|
            DEBUG(std::cerr << "\t\t\t\treused reload into reg" << NewRegLiveIn
 | 
						|
                            << " for operand #" << i << '\n');
 | 
						|
          } else if (MachineInstr* fmi = mri_->foldMemoryOperand(MI, i, slot)) {
 | 
						|
            // Attempt to fold the memory reference into the instruction.  If we
 | 
						|
            // can do this, we don't need to insert spill code.
 | 
						|
            if (lv_)
 | 
						|
              lv_->instructionChanged(MI, fmi);
 | 
						|
            vrm.virtFolded(li.reg, MI, i, fmi);
 | 
						|
            mi2iMap_.erase(MI);
 | 
						|
            i2miMap_[index/InstrSlots::NUM] = fmi;
 | 
						|
            mi2iMap_[fmi] = index;
 | 
						|
            MachineBasicBlock &MBB = *MI->getParent();
 | 
						|
            MI = MBB.insert(MBB.erase(MI), fmi);
 | 
						|
            ++numFolded;
 | 
						|
 | 
						|
            // Folding the load/store can completely change the instruction in
 | 
						|
            // unpredictable ways, rescan it from the beginning.
 | 
						|
            goto for_operand;
 | 
						|
          } else {
 | 
						|
            // This is tricky. We need to add information in the interval about
 | 
						|
            // the spill code so we have to use our extra load/store slots.
 | 
						|
            //
 | 
						|
            // If we have a use we are going to have a load so we start the
 | 
						|
            // interval from the load slot onwards. Otherwise we start from the
 | 
						|
            // def slot.
 | 
						|
            unsigned start = (mop.isUse() ?
 | 
						|
                              getLoadIndex(index) :
 | 
						|
                              getDefIndex(index));
 | 
						|
            // If we have a def we are going to have a store right after it so
 | 
						|
            // we end the interval after the use of the next
 | 
						|
            // instruction. Otherwise we end after the use of this instruction.
 | 
						|
            unsigned end = 1 + (mop.isDef() ?
 | 
						|
                                getStoreIndex(index) :
 | 
						|
                                getUseIndex(index));
 | 
						|
 | 
						|
            // create a new register for this spill
 | 
						|
            NewRegLiveIn = mf_->getSSARegMap()->createVirtualRegister(rc);
 | 
						|
            MI->SetMachineOperandReg(i, NewRegLiveIn);
 | 
						|
            vrm.grow();
 | 
						|
            vrm.assignVirt2StackSlot(NewRegLiveIn, slot);
 | 
						|
            LiveInterval& nI = getOrCreateInterval(NewRegLiveIn);
 | 
						|
            assert(nI.empty());
 | 
						|
 | 
						|
            // the spill weight is now infinity as it
 | 
						|
            // cannot be spilled again
 | 
						|
            nI.weight = float(HUGE_VAL);
 | 
						|
            LiveRange LR(start, end, nI.getNextValue());
 | 
						|
            DEBUG(std::cerr << " +" << LR);
 | 
						|
            nI.addRange(LR);
 | 
						|
            added.push_back(&nI);
 | 
						|
 | 
						|
            // update live variables if it is available
 | 
						|
            if (lv_)
 | 
						|
              lv_->addVirtualRegisterKilled(NewRegLiveIn, MI);
 | 
						|
            
 | 
						|
            // If this is a live in, reuse it for subsequent live-ins.  If it's
 | 
						|
            // a def, we can't do this.
 | 
						|
            if (!mop.isUse()) NewRegLiveIn = 0;
 | 
						|
            
 | 
						|
            DEBUG(std::cerr << "\t\t\t\tadded new interval: " << nI << '\n');
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return added;
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::printRegName(unsigned reg) const
 | 
						|
{
 | 
						|
  if (MRegisterInfo::isPhysicalRegister(reg))
 | 
						|
    std::cerr << mri_->getName(reg);
 | 
						|
  else
 | 
						|
    std::cerr << "%reg" << reg;
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb,
 | 
						|
                                             MachineBasicBlock::iterator mi,
 | 
						|
                                             LiveInterval& interval)
 | 
						|
{
 | 
						|
  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
 | 
						|
  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
 | 
						|
 | 
						|
  // Virtual registers may be defined multiple times (due to phi
 | 
						|
  // elimination and 2-addr elimination).  Much of what we do only has to be
 | 
						|
  // done once for the vreg.  We use an empty interval to detect the first
 | 
						|
  // time we see a vreg.
 | 
						|
  if (interval.empty()) {
 | 
						|
    // Get the Idx of the defining instructions.
 | 
						|
    unsigned defIndex = getDefIndex(getInstructionIndex(mi));
 | 
						|
 | 
						|
    unsigned ValNum = interval.getNextValue();
 | 
						|
    assert(ValNum == 0 && "First value in interval is not 0?");
 | 
						|
    ValNum = 0;  // Clue in the optimizer.
 | 
						|
 | 
						|
    // Loop over all of the blocks that the vreg is defined in.  There are
 | 
						|
    // two cases we have to handle here.  The most common case is a vreg
 | 
						|
    // whose lifetime is contained within a basic block.  In this case there
 | 
						|
    // will be a single kill, in MBB, which comes after the definition.
 | 
						|
    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
 | 
						|
      // FIXME: what about dead vars?
 | 
						|
      unsigned killIdx;
 | 
						|
      if (vi.Kills[0] != mi)
 | 
						|
        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
 | 
						|
      else
 | 
						|
        killIdx = defIndex+1;
 | 
						|
 | 
						|
      // If the kill happens after the definition, we have an intra-block
 | 
						|
      // live range.
 | 
						|
      if (killIdx > defIndex) {
 | 
						|
        assert(vi.AliveBlocks.empty() &&
 | 
						|
               "Shouldn't be alive across any blocks!");
 | 
						|
        LiveRange LR(defIndex, killIdx, ValNum);
 | 
						|
        interval.addRange(LR);
 | 
						|
        DEBUG(std::cerr << " +" << LR << "\n");
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // The other case we handle is when a virtual register lives to the end
 | 
						|
    // of the defining block, potentially live across some blocks, then is
 | 
						|
    // live into some number of blocks, but gets killed.  Start by adding a
 | 
						|
    // range that goes from this definition to the end of the defining block.
 | 
						|
    LiveRange NewLR(defIndex,
 | 
						|
                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
 | 
						|
                    ValNum);
 | 
						|
    DEBUG(std::cerr << " +" << NewLR);
 | 
						|
    interval.addRange(NewLR);
 | 
						|
 | 
						|
    // Iterate over all of the blocks that the variable is completely
 | 
						|
    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
 | 
						|
    // live interval.
 | 
						|
    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
 | 
						|
      if (vi.AliveBlocks[i]) {
 | 
						|
        MachineBasicBlock* mbb = mf_->getBlockNumbered(i);
 | 
						|
        if (!mbb->empty()) {
 | 
						|
          LiveRange LR(getInstructionIndex(&mbb->front()),
 | 
						|
                       getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
 | 
						|
                       ValNum);
 | 
						|
          interval.addRange(LR);
 | 
						|
          DEBUG(std::cerr << " +" << LR);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Finally, this virtual register is live from the start of any killing
 | 
						|
    // block to the 'use' slot of the killing instruction.
 | 
						|
    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
 | 
						|
      MachineInstr *Kill = vi.Kills[i];
 | 
						|
      LiveRange LR(getInstructionIndex(Kill->getParent()->begin()),
 | 
						|
                   getUseIndex(getInstructionIndex(Kill))+1,
 | 
						|
                   ValNum);
 | 
						|
      interval.addRange(LR);
 | 
						|
      DEBUG(std::cerr << " +" << LR);
 | 
						|
    }
 | 
						|
 | 
						|
  } else {
 | 
						|
    // If this is the second time we see a virtual register definition, it
 | 
						|
    // must be due to phi elimination or two addr elimination.  If this is
 | 
						|
    // the result of two address elimination, then the vreg is the first
 | 
						|
    // operand, and is a def-and-use.
 | 
						|
    if (mi->getOperand(0).isRegister() &&
 | 
						|
        mi->getOperand(0).getReg() == interval.reg &&
 | 
						|
        mi->getOperand(0).isDef() && mi->getOperand(0).isUse()) {
 | 
						|
      // If this is a two-address definition, then we have already processed
 | 
						|
      // the live range.  The only problem is that we didn't realize there
 | 
						|
      // are actually two values in the live interval.  Because of this we
 | 
						|
      // need to take the LiveRegion that defines this register and split it
 | 
						|
      // into two values.
 | 
						|
      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
 | 
						|
      unsigned RedefIndex = getDefIndex(getInstructionIndex(mi));
 | 
						|
 | 
						|
      // Delete the initial value, which should be short and continuous,
 | 
						|
      // becuase the 2-addr copy must be in the same MBB as the redef.
 | 
						|
      interval.removeRange(DefIndex, RedefIndex);
 | 
						|
 | 
						|
      LiveRange LR(DefIndex, RedefIndex, interval.getNextValue());
 | 
						|
      DEBUG(std::cerr << " replace range with " << LR);
 | 
						|
      interval.addRange(LR);
 | 
						|
 | 
						|
      // If this redefinition is dead, we need to add a dummy unit live
 | 
						|
      // range covering the def slot.
 | 
						|
      if (lv_->RegisterDefIsDead(mi, interval.reg))
 | 
						|
        interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
 | 
						|
 | 
						|
      DEBUG(std::cerr << "RESULT: " << interval);
 | 
						|
 | 
						|
    } else {
 | 
						|
      // Otherwise, this must be because of phi elimination.  If this is the
 | 
						|
      // first redefinition of the vreg that we have seen, go back and change
 | 
						|
      // the live range in the PHI block to be a different value number.
 | 
						|
      if (interval.containsOneValue()) {
 | 
						|
        assert(vi.Kills.size() == 1 &&
 | 
						|
               "PHI elimination vreg should have one kill, the PHI itself!");
 | 
						|
 | 
						|
        // Remove the old range that we now know has an incorrect number.
 | 
						|
        MachineInstr *Killer = vi.Kills[0];
 | 
						|
        unsigned Start = getInstructionIndex(Killer->getParent()->begin());
 | 
						|
        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
 | 
						|
        DEBUG(std::cerr << "Removing [" << Start << "," << End << "] from: "
 | 
						|
              << interval << "\n");
 | 
						|
        interval.removeRange(Start, End);
 | 
						|
        DEBUG(std::cerr << "RESULT: " << interval);
 | 
						|
 | 
						|
        // Replace the interval with one of a NEW value number.
 | 
						|
        LiveRange LR(Start, End, interval.getNextValue());
 | 
						|
        DEBUG(std::cerr << " replace range with " << LR);
 | 
						|
        interval.addRange(LR);
 | 
						|
        DEBUG(std::cerr << "RESULT: " << interval);
 | 
						|
      }
 | 
						|
 | 
						|
      // In the case of PHI elimination, each variable definition is only
 | 
						|
      // live until the end of the block.  We've already taken care of the
 | 
						|
      // rest of the live range.
 | 
						|
      unsigned defIndex = getDefIndex(getInstructionIndex(mi));
 | 
						|
      LiveRange LR(defIndex,
 | 
						|
                   getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
 | 
						|
                   interval.getNextValue());
 | 
						|
      interval.addRange(LR);
 | 
						|
      DEBUG(std::cerr << " +" << LR);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(std::cerr << '\n');
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
 | 
						|
                                              MachineBasicBlock::iterator mi,
 | 
						|
                                              LiveInterval& interval,
 | 
						|
                                              unsigned SrcReg, unsigned DestReg,
 | 
						|
                                              bool isLiveIn)
 | 
						|
{
 | 
						|
  // A physical register cannot be live across basic block, so its
 | 
						|
  // lifetime must end somewhere in its defining basic block.
 | 
						|
  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
 | 
						|
  typedef LiveVariables::killed_iterator KillIter;
 | 
						|
 | 
						|
  unsigned baseIndex = getInstructionIndex(mi);
 | 
						|
  unsigned start = getDefIndex(baseIndex);
 | 
						|
  unsigned end = start;
 | 
						|
 | 
						|
  // If it is not used after definition, it is considered dead at
 | 
						|
  // the instruction defining it. Hence its interval is:
 | 
						|
  // [defSlot(def), defSlot(def)+1)
 | 
						|
  if (lv_->RegisterDefIsDead(mi, interval.reg)) {
 | 
						|
    DEBUG(std::cerr << " dead");
 | 
						|
    end = getDefIndex(start) + 1;
 | 
						|
    goto exit;
 | 
						|
  }
 | 
						|
 | 
						|
  // If it is not dead on definition, it must be killed by a
 | 
						|
  // subsequent instruction. Hence its interval is:
 | 
						|
  // [defSlot(def), useSlot(kill)+1)
 | 
						|
  while (++mi != MBB->end()) {
 | 
						|
    baseIndex += InstrSlots::NUM;
 | 
						|
    if (lv_->KillsRegister(mi, interval.reg)) {
 | 
						|
      DEBUG(std::cerr << " killed");
 | 
						|
      end = getUseIndex(baseIndex) + 1;
 | 
						|
      goto exit;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // The only case we should have a dead physreg here without a killing or
 | 
						|
  // instruction where we know it's dead is if it is live-in to the function
 | 
						|
  // and never used.
 | 
						|
  assert(isLiveIn && "physreg was not killed in defining block!");
 | 
						|
  end = getDefIndex(start) + 1;  // It's dead.
 | 
						|
 | 
						|
exit:
 | 
						|
  assert(start < end && "did not find end of interval?");
 | 
						|
 | 
						|
  // Finally, if this is defining a new range for the physical register, and if
 | 
						|
  // that physreg is just a copy from a vreg, and if THAT vreg was a copy from
 | 
						|
  // the physreg, then the new fragment has the same value as the one copied
 | 
						|
  // into the vreg.
 | 
						|
  if (interval.reg == DestReg && !interval.empty() &&
 | 
						|
      MRegisterInfo::isVirtualRegister(SrcReg)) {
 | 
						|
 | 
						|
    // Get the live interval for the vreg, see if it is defined by a copy.
 | 
						|
    LiveInterval &SrcInterval = getOrCreateInterval(SrcReg);
 | 
						|
 | 
						|
    if (SrcInterval.containsOneValue()) {
 | 
						|
      assert(!SrcInterval.empty() && "Can't contain a value and be empty!");
 | 
						|
 | 
						|
      // Get the first index of the first range.  Though the interval may have
 | 
						|
      // multiple liveranges in it, we only check the first.
 | 
						|
      unsigned StartIdx = SrcInterval.begin()->start;
 | 
						|
      MachineInstr *SrcDefMI = getInstructionFromIndex(StartIdx);
 | 
						|
 | 
						|
      // Check to see if the vreg was defined by a copy instruction, and that
 | 
						|
      // the source was this physreg.
 | 
						|
      unsigned VRegSrcSrc, VRegSrcDest;
 | 
						|
      if (tii_->isMoveInstr(*SrcDefMI, VRegSrcSrc, VRegSrcDest) &&
 | 
						|
          SrcReg == VRegSrcDest && VRegSrcSrc == DestReg) {
 | 
						|
        // Okay, now we know that the vreg was defined by a copy from this
 | 
						|
        // physreg.  Find the value number being copied and use it as the value
 | 
						|
        // for this range.
 | 
						|
        const LiveRange *DefRange = interval.getLiveRangeContaining(StartIdx-1);
 | 
						|
        if (DefRange) {
 | 
						|
          LiveRange LR(start, end, DefRange->ValId);
 | 
						|
          interval.addRange(LR);
 | 
						|
          DEBUG(std::cerr << " +" << LR << '\n');
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  LiveRange LR(start, end, interval.getNextValue());
 | 
						|
  interval.addRange(LR);
 | 
						|
  DEBUG(std::cerr << " +" << LR << '\n');
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
 | 
						|
                                      MachineBasicBlock::iterator MI,
 | 
						|
                                      unsigned reg) {
 | 
						|
  if (MRegisterInfo::isVirtualRegister(reg))
 | 
						|
    handleVirtualRegisterDef(MBB, MI, getOrCreateInterval(reg));
 | 
						|
  else if (allocatableRegs_[reg]) {
 | 
						|
    unsigned SrcReg = 0, DestReg = 0;
 | 
						|
    if (!tii_->isMoveInstr(*MI, SrcReg, DestReg))
 | 
						|
      SrcReg = DestReg = 0;
 | 
						|
 | 
						|
    handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(reg),
 | 
						|
                              SrcReg, DestReg);
 | 
						|
    for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
 | 
						|
      handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(*AS),
 | 
						|
                                SrcReg, DestReg);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// computeIntervals - computes the live intervals for virtual
 | 
						|
/// registers. for some ordering of the machine instructions [1,N] a
 | 
						|
/// live interval is an interval [i, j) where 1 <= i <= j < N for
 | 
						|
/// which a variable is live
 | 
						|
void LiveIntervals::computeIntervals()
 | 
						|
{
 | 
						|
  DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
 | 
						|
  DEBUG(std::cerr << "********** Function: "
 | 
						|
        << ((Value*)mf_->getFunction())->getName() << '\n');
 | 
						|
  bool IgnoreFirstInstr = mf_->livein_begin() != mf_->livein_end();
 | 
						|
 | 
						|
  for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
 | 
						|
       I != E; ++I) {
 | 
						|
    MachineBasicBlock* mbb = I;
 | 
						|
    DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n");
 | 
						|
 | 
						|
    MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
 | 
						|
    if (IgnoreFirstInstr) { ++mi; IgnoreFirstInstr = false; }
 | 
						|
    for (; mi != miEnd; ++mi) {
 | 
						|
      const TargetInstrDescriptor& tid =
 | 
						|
        tm_->getInstrInfo()->get(mi->getOpcode());
 | 
						|
      DEBUG(std::cerr << getInstructionIndex(mi) << "\t" << *mi);
 | 
						|
 | 
						|
      // handle implicit defs
 | 
						|
      for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
 | 
						|
        handleRegisterDef(mbb, mi, *id);
 | 
						|
 | 
						|
      // handle explicit defs
 | 
						|
      for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
 | 
						|
        MachineOperand& mop = mi->getOperand(i);
 | 
						|
        // handle register defs - build intervals
 | 
						|
        if (mop.isRegister() && mop.getReg() && mop.isDef())
 | 
						|
          handleRegisterDef(mbb, mi, mop.getReg());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// IntA is defined as a copy from IntB and we know it only has one value
 | 
						|
/// number.  If all of the places that IntA and IntB overlap are defined by
 | 
						|
/// copies from IntA to IntB, we know that these two ranges can really be
 | 
						|
/// merged if we adjust the value numbers.  If it is safe, adjust the value
 | 
						|
/// numbers and return true, allowing coalescing to occur.
 | 
						|
bool LiveIntervals::
 | 
						|
AdjustIfAllOverlappingRangesAreCopiesFrom(LiveInterval &IntA,
 | 
						|
                                          LiveInterval &IntB,
 | 
						|
                                          unsigned CopyIdx) {
 | 
						|
  std::vector<LiveRange*> Ranges;
 | 
						|
  IntA.getOverlapingRanges(IntB, CopyIdx, Ranges);
 | 
						|
  
 | 
						|
  assert(!Ranges.empty() && "Why didn't we do a simple join of this?");
 | 
						|
  
 | 
						|
  unsigned IntBRep = rep(IntB.reg);
 | 
						|
  
 | 
						|
  // Check to see if all of the overlaps (entries in Ranges) are defined by a
 | 
						|
  // copy from IntA.  If not, exit.
 | 
						|
  for (unsigned i = 0, e = Ranges.size(); i != e; ++i) {
 | 
						|
    unsigned Idx = Ranges[i]->start;
 | 
						|
    MachineInstr *MI = getInstructionFromIndex(Idx);
 | 
						|
    unsigned SrcReg, DestReg;
 | 
						|
    if (!tii_->isMoveInstr(*MI, SrcReg, DestReg)) return false;
 | 
						|
    
 | 
						|
    // If this copy isn't actually defining this range, it must be a live
 | 
						|
    // range spanning basic blocks or something.
 | 
						|
    if (rep(DestReg) != rep(IntA.reg)) return false;
 | 
						|
    
 | 
						|
    // Check to see if this is coming from IntB.  If not, bail out.
 | 
						|
    if (rep(SrcReg) != IntBRep) return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we can change this one.  Get the IntB value number that IntA is
 | 
						|
  // copied from.
 | 
						|
  unsigned ActualValNo = IntA.getLiveRangeContaining(CopyIdx-1)->ValId;
 | 
						|
  
 | 
						|
  // Change all of the value numbers to the same as what we IntA is copied from.
 | 
						|
  for (unsigned i = 0, e = Ranges.size(); i != e; ++i)
 | 
						|
    Ranges[i]->ValId = ActualValNo;
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::joinIntervalsInMachineBB(MachineBasicBlock *MBB) {
 | 
						|
  DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
 | 
						|
 | 
						|
  for (MachineBasicBlock::iterator mi = MBB->begin(), mie = MBB->end();
 | 
						|
       mi != mie; ++mi) {
 | 
						|
    DEBUG(std::cerr << getInstructionIndex(mi) << '\t' << *mi);
 | 
						|
 | 
						|
    // we only join virtual registers with allocatable
 | 
						|
    // physical registers since we do not have liveness information
 | 
						|
    // on not allocatable physical registers
 | 
						|
    unsigned SrcReg, DestReg;
 | 
						|
    if (tii_->isMoveInstr(*mi, SrcReg, DestReg) &&
 | 
						|
        (MRegisterInfo::isVirtualRegister(SrcReg) || allocatableRegs_[SrcReg])&&
 | 
						|
        (MRegisterInfo::isVirtualRegister(DestReg)||allocatableRegs_[DestReg])){
 | 
						|
 | 
						|
      // Get representative registers.
 | 
						|
      SrcReg = rep(SrcReg);
 | 
						|
      DestReg = rep(DestReg);
 | 
						|
 | 
						|
      // If they are already joined we continue.
 | 
						|
      if (SrcReg == DestReg)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If they are both physical registers, we cannot join them.
 | 
						|
      if (MRegisterInfo::isPhysicalRegister(SrcReg) &&
 | 
						|
          MRegisterInfo::isPhysicalRegister(DestReg))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If they are not of the same register class, we cannot join them.
 | 
						|
      if (differingRegisterClasses(SrcReg, DestReg))
 | 
						|
        continue;
 | 
						|
 | 
						|
      LiveInterval &SrcInt = getInterval(SrcReg);
 | 
						|
      LiveInterval &DestInt = getInterval(DestReg);
 | 
						|
      assert(SrcInt.reg == SrcReg && DestInt.reg == DestReg &&
 | 
						|
             "Register mapping is horribly broken!");
 | 
						|
 | 
						|
      DEBUG(std::cerr << "\t\tInspecting " << SrcInt << " and " << DestInt
 | 
						|
                      << ": ");
 | 
						|
 | 
						|
      // If two intervals contain a single value and are joined by a copy, it
 | 
						|
      // does not matter if the intervals overlap, they can always be joined.
 | 
						|
      bool Joinable = SrcInt.containsOneValue() && DestInt.containsOneValue();
 | 
						|
 | 
						|
      unsigned MIDefIdx = getDefIndex(getInstructionIndex(mi));
 | 
						|
      
 | 
						|
      // If the intervals think that this is joinable, do so now.
 | 
						|
      if (!Joinable && DestInt.joinable(SrcInt, MIDefIdx))
 | 
						|
        Joinable = true;
 | 
						|
 | 
						|
      // If DestInt is actually a copy from SrcInt (which we know) that is used
 | 
						|
      // to define another value of SrcInt, we can change the other range of
 | 
						|
      // SrcInt to be the value of the range that defines DestInt, allowing a
 | 
						|
      // coalesce.
 | 
						|
      if (!Joinable && DestInt.containsOneValue() &&
 | 
						|
          AdjustIfAllOverlappingRangesAreCopiesFrom(SrcInt, DestInt, MIDefIdx))
 | 
						|
        Joinable = true;
 | 
						|
      
 | 
						|
      if (!Joinable || overlapsAliases(&SrcInt, &DestInt)) {
 | 
						|
        DEBUG(std::cerr << "Interference!\n");
 | 
						|
      } else {
 | 
						|
        DestInt.join(SrcInt, MIDefIdx);
 | 
						|
        DEBUG(std::cerr << "Joined.  Result = " << DestInt << "\n");
 | 
						|
 | 
						|
        if (!MRegisterInfo::isPhysicalRegister(SrcReg)) {
 | 
						|
          r2iMap_.erase(SrcReg);
 | 
						|
          r2rMap_[SrcReg] = DestReg;
 | 
						|
        } else {
 | 
						|
          // Otherwise merge the data structures the other way so we don't lose
 | 
						|
          // the physreg information.
 | 
						|
          r2rMap_[DestReg] = SrcReg;
 | 
						|
          DestInt.reg = SrcReg;
 | 
						|
          SrcInt.swap(DestInt);
 | 
						|
          r2iMap_.erase(DestReg);
 | 
						|
        }
 | 
						|
        ++numJoins;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  // DepthMBBCompare - Comparison predicate that sort first based on the loop
 | 
						|
  // depth of the basic block (the unsigned), and then on the MBB number.
 | 
						|
  struct DepthMBBCompare {
 | 
						|
    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
 | 
						|
    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
 | 
						|
      if (LHS.first > RHS.first) return true;   // Deeper loops first
 | 
						|
      return LHS.first == RHS.first &&
 | 
						|
        LHS.second->getNumber() < RHS.second->getNumber();
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::joinIntervals() {
 | 
						|
  DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");
 | 
						|
 | 
						|
  const LoopInfo &LI = getAnalysis<LoopInfo>();
 | 
						|
  if (LI.begin() == LI.end()) {
 | 
						|
    // If there are no loops in the function, join intervals in function order.
 | 
						|
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
 | 
						|
         I != E; ++I)
 | 
						|
      joinIntervalsInMachineBB(I);
 | 
						|
  } else {
 | 
						|
    // Otherwise, join intervals in inner loops before other intervals.
 | 
						|
    // Unfortunately we can't just iterate over loop hierarchy here because
 | 
						|
    // there may be more MBB's than BB's.  Collect MBB's for sorting.
 | 
						|
    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
 | 
						|
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
 | 
						|
         I != E; ++I)
 | 
						|
      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
 | 
						|
 | 
						|
    // Sort by loop depth.
 | 
						|
    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
 | 
						|
 | 
						|
    // Finally, join intervals in loop nest order.
 | 
						|
    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
 | 
						|
      joinIntervalsInMachineBB(MBBs[i].second);
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(std::cerr << "*** Register mapping ***\n");
 | 
						|
  DEBUG(for (int i = 0, e = r2rMap_.size(); i != e; ++i)
 | 
						|
          if (r2rMap_[i])
 | 
						|
             std::cerr << "  reg " << i << " -> reg " << r2rMap_[i] << "\n");
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the two specified registers belong to different register
 | 
						|
/// classes.  The registers may be either phys or virt regs.
 | 
						|
bool LiveIntervals::differingRegisterClasses(unsigned RegA,
 | 
						|
                                             unsigned RegB) const {
 | 
						|
 | 
						|
  // Get the register classes for the first reg.
 | 
						|
  if (MRegisterInfo::isPhysicalRegister(RegA)) {
 | 
						|
    assert(MRegisterInfo::isVirtualRegister(RegB) &&
 | 
						|
           "Shouldn't consider two physregs!");
 | 
						|
    return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
 | 
						|
  }
 | 
						|
 | 
						|
  // Compare against the regclass for the second reg.
 | 
						|
  const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA);
 | 
						|
  if (MRegisterInfo::isVirtualRegister(RegB))
 | 
						|
    return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
 | 
						|
  else
 | 
						|
    return !RegClass->contains(RegB);
 | 
						|
}
 | 
						|
 | 
						|
bool LiveIntervals::overlapsAliases(const LiveInterval *LHS,
 | 
						|
                                    const LiveInterval *RHS) const {
 | 
						|
  if (!MRegisterInfo::isPhysicalRegister(LHS->reg)) {
 | 
						|
    if (!MRegisterInfo::isPhysicalRegister(RHS->reg))
 | 
						|
      return false;   // vreg-vreg merge has no aliases!
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(MRegisterInfo::isPhysicalRegister(LHS->reg) &&
 | 
						|
         MRegisterInfo::isVirtualRegister(RHS->reg) &&
 | 
						|
         "first interval must describe a physical register");
 | 
						|
 | 
						|
  for (const unsigned *AS = mri_->getAliasSet(LHS->reg); *AS; ++AS)
 | 
						|
    if (RHS->overlaps(getInterval(*AS)))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
LiveInterval LiveIntervals::createInterval(unsigned reg) {
 | 
						|
  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
 | 
						|
                       (float)HUGE_VAL :0.0F;
 | 
						|
  return LiveInterval(reg, Weight);
 | 
						|
}
 |