forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2193 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2193 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file implements semantic analysis for C++ expressions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "Sema.h"
 | 
						|
#include "SemaInit.h"
 | 
						|
#include "Lookup.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/CXXInheritance.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/Basic/PartialDiagnostic.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "clang/Lex/Preprocessor.h"
 | 
						|
#include "clang/Parse/DeclSpec.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
/// ActOnCXXTypeidOfType - Parse typeid( type-id ).
 | 
						|
Action::OwningExprResult
 | 
						|
Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
 | 
						|
                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
 | 
						|
  if (!StdNamespace)
 | 
						|
    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
 | 
						|
 | 
						|
  if (isType) {
 | 
						|
    // C++ [expr.typeid]p4:
 | 
						|
    //   The top-level cv-qualifiers of the lvalue expression or the type-id 
 | 
						|
    //   that is the operand of typeid are always ignored.
 | 
						|
    // FIXME: Preserve type source info.
 | 
						|
    // FIXME: Preserve the type before we stripped the cv-qualifiers?
 | 
						|
    QualType T = GetTypeFromParser(TyOrExpr);
 | 
						|
    if (T.isNull())
 | 
						|
      return ExprError();
 | 
						|
    
 | 
						|
    // C++ [expr.typeid]p4:
 | 
						|
    //   If the type of the type-id is a class type or a reference to a class 
 | 
						|
    //   type, the class shall be completely-defined.
 | 
						|
    QualType CheckT = T;
 | 
						|
    if (const ReferenceType *RefType = CheckT->getAs<ReferenceType>())
 | 
						|
      CheckT = RefType->getPointeeType();
 | 
						|
    
 | 
						|
    if (CheckT->getAs<RecordType>() &&
 | 
						|
        RequireCompleteType(OpLoc, CheckT, diag::err_incomplete_typeid))
 | 
						|
      return ExprError();
 | 
						|
    
 | 
						|
    TyOrExpr = T.getUnqualifiedType().getAsOpaquePtr();
 | 
						|
  }
 | 
						|
 | 
						|
  IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
 | 
						|
  LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
 | 
						|
  LookupQualifiedName(R, StdNamespace);
 | 
						|
  RecordDecl *TypeInfoRecordDecl = R.getAsSingle<RecordDecl>();
 | 
						|
  if (!TypeInfoRecordDecl)
 | 
						|
    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
 | 
						|
 | 
						|
  QualType TypeInfoType = Context.getTypeDeclType(TypeInfoRecordDecl);
 | 
						|
 | 
						|
  if (!isType) {
 | 
						|
    bool isUnevaluatedOperand = true;
 | 
						|
    Expr *E = static_cast<Expr *>(TyOrExpr);
 | 
						|
    if (E && !E->isTypeDependent()) {
 | 
						|
      QualType T = E->getType();
 | 
						|
      if (const RecordType *RecordT = T->getAs<RecordType>()) {
 | 
						|
        CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
 | 
						|
        // C++ [expr.typeid]p3:
 | 
						|
        //   When typeid is applied to an expression other than an lvalue of a
 | 
						|
        //   polymorphic class type [...] [the] expression is an unevaluated
 | 
						|
        //   operand. [...]
 | 
						|
        if (RecordD->isPolymorphic() && E->isLvalue(Context) == Expr::LV_Valid)
 | 
						|
          isUnevaluatedOperand = false;
 | 
						|
        else {
 | 
						|
          // C++ [expr.typeid]p3:
 | 
						|
          //   [...] If the type of the expression is a class type, the class
 | 
						|
          //   shall be completely-defined.
 | 
						|
          if (RequireCompleteType(OpLoc, T, diag::err_incomplete_typeid))
 | 
						|
            return ExprError();
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // C++ [expr.typeid]p4:
 | 
						|
      //   [...] If the type of the type-id is a reference to a possibly
 | 
						|
      //   cv-qualified type, the result of the typeid expression refers to a 
 | 
						|
      //   std::type_info object representing the cv-unqualified referenced 
 | 
						|
      //   type.
 | 
						|
      if (T.hasQualifiers()) {
 | 
						|
        ImpCastExprToType(E, T.getUnqualifiedType(), CastExpr::CK_NoOp,
 | 
						|
                          E->isLvalue(Context));
 | 
						|
        TyOrExpr = E;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is an unevaluated operand, clear out the set of
 | 
						|
    // declaration references we have been computing and eliminate any
 | 
						|
    // temporaries introduced in its computation.
 | 
						|
    if (isUnevaluatedOperand)
 | 
						|
      ExprEvalContexts.back().Context = Unevaluated;
 | 
						|
  }
 | 
						|
 | 
						|
  return Owned(new (Context) CXXTypeidExpr(isType, TyOrExpr,
 | 
						|
                                           TypeInfoType.withConst(),
 | 
						|
                                           SourceRange(OpLoc, RParenLoc)));
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnCXXBoolLiteral - Parse {true,false} literals.
 | 
						|
Action::OwningExprResult
 | 
						|
Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
 | 
						|
  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
 | 
						|
         "Unknown C++ Boolean value!");
 | 
						|
  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
 | 
						|
                                                Context.BoolTy, OpLoc));
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
 | 
						|
Action::OwningExprResult
 | 
						|
Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
 | 
						|
  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnCXXThrow - Parse throw expressions.
 | 
						|
Action::OwningExprResult
 | 
						|
Sema::ActOnCXXThrow(SourceLocation OpLoc, ExprArg E) {
 | 
						|
  Expr *Ex = E.takeAs<Expr>();
 | 
						|
  if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex))
 | 
						|
    return ExprError();
 | 
						|
  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
 | 
						|
}
 | 
						|
 | 
						|
/// CheckCXXThrowOperand - Validate the operand of a throw.
 | 
						|
bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) {
 | 
						|
  // C++ [except.throw]p3:
 | 
						|
  //   A throw-expression initializes a temporary object, called the exception
 | 
						|
  //   object, the type of which is determined by removing any top-level
 | 
						|
  //   cv-qualifiers from the static type of the operand of throw and adjusting
 | 
						|
  //   the type from "array of T" or "function returning T" to "pointer to T" 
 | 
						|
  //   or "pointer to function returning T", [...]
 | 
						|
  if (E->getType().hasQualifiers())
 | 
						|
    ImpCastExprToType(E, E->getType().getUnqualifiedType(), CastExpr::CK_NoOp,
 | 
						|
                      E->isLvalue(Context) == Expr::LV_Valid);
 | 
						|
  
 | 
						|
  DefaultFunctionArrayConversion(E);
 | 
						|
 | 
						|
  //   If the type of the exception would be an incomplete type or a pointer
 | 
						|
  //   to an incomplete type other than (cv) void the program is ill-formed.
 | 
						|
  QualType Ty = E->getType();
 | 
						|
  int isPointer = 0;
 | 
						|
  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
 | 
						|
    Ty = Ptr->getPointeeType();
 | 
						|
    isPointer = 1;
 | 
						|
  }
 | 
						|
  if (!isPointer || !Ty->isVoidType()) {
 | 
						|
    if (RequireCompleteType(ThrowLoc, Ty,
 | 
						|
                            PDiag(isPointer ? diag::err_throw_incomplete_ptr
 | 
						|
                                            : diag::err_throw_incomplete)
 | 
						|
                              << E->getSourceRange()))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Construct a temporary here.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Action::OwningExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) {
 | 
						|
  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
 | 
						|
  /// is a non-lvalue expression whose value is the address of the object for
 | 
						|
  /// which the function is called.
 | 
						|
 | 
						|
  if (!isa<FunctionDecl>(CurContext))
 | 
						|
    return ExprError(Diag(ThisLoc, diag::err_invalid_this_use));
 | 
						|
 | 
						|
  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext))
 | 
						|
    if (MD->isInstance())
 | 
						|
      return Owned(new (Context) CXXThisExpr(ThisLoc,
 | 
						|
                                             MD->getThisType(Context),
 | 
						|
                                             /*isImplicit=*/false));
 | 
						|
 | 
						|
  return ExprError(Diag(ThisLoc, diag::err_invalid_this_use));
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
 | 
						|
/// Can be interpreted either as function-style casting ("int(x)")
 | 
						|
/// or class type construction ("ClassType(x,y,z)")
 | 
						|
/// or creation of a value-initialized type ("int()").
 | 
						|
Action::OwningExprResult
 | 
						|
Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep,
 | 
						|
                                SourceLocation LParenLoc,
 | 
						|
                                MultiExprArg exprs,
 | 
						|
                                SourceLocation *CommaLocs,
 | 
						|
                                SourceLocation RParenLoc) {
 | 
						|
  assert(TypeRep && "Missing type!");
 | 
						|
  TypeSourceInfo *TInfo;
 | 
						|
  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
 | 
						|
  if (!TInfo)
 | 
						|
    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
 | 
						|
  unsigned NumExprs = exprs.size();
 | 
						|
  Expr **Exprs = (Expr**)exprs.get();
 | 
						|
  SourceLocation TyBeginLoc = TypeRange.getBegin();
 | 
						|
  SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
 | 
						|
 | 
						|
  if (Ty->isDependentType() ||
 | 
						|
      CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
 | 
						|
    exprs.release();
 | 
						|
 | 
						|
    return Owned(CXXUnresolvedConstructExpr::Create(Context,
 | 
						|
                                                    TypeRange.getBegin(), Ty,
 | 
						|
                                                    LParenLoc,
 | 
						|
                                                    Exprs, NumExprs,
 | 
						|
                                                    RParenLoc));
 | 
						|
  }
 | 
						|
 | 
						|
  if (Ty->isArrayType())
 | 
						|
    return ExprError(Diag(TyBeginLoc,
 | 
						|
                          diag::err_value_init_for_array_type) << FullRange);
 | 
						|
  if (!Ty->isVoidType() &&
 | 
						|
      RequireCompleteType(TyBeginLoc, Ty,
 | 
						|
                          PDiag(diag::err_invalid_incomplete_type_use)
 | 
						|
                            << FullRange))
 | 
						|
    return ExprError();
 | 
						|
  
 | 
						|
  if (RequireNonAbstractType(TyBeginLoc, Ty,
 | 
						|
                             diag::err_allocation_of_abstract_type))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
 | 
						|
  // C++ [expr.type.conv]p1:
 | 
						|
  // If the expression list is a single expression, the type conversion
 | 
						|
  // expression is equivalent (in definedness, and if defined in meaning) to the
 | 
						|
  // corresponding cast expression.
 | 
						|
  //
 | 
						|
  if (NumExprs == 1) {
 | 
						|
    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
 | 
						|
    CXXMethodDecl *Method = 0;
 | 
						|
    if (CheckCastTypes(TypeRange, Ty, Exprs[0], Kind, Method,
 | 
						|
                       /*FunctionalStyle=*/true))
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    exprs.release();
 | 
						|
    if (Method) {
 | 
						|
      OwningExprResult CastArg 
 | 
						|
        = BuildCXXCastArgument(TypeRange.getBegin(), Ty.getNonReferenceType(), 
 | 
						|
                               Kind, Method, Owned(Exprs[0]));
 | 
						|
      if (CastArg.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      Exprs[0] = CastArg.takeAs<Expr>();
 | 
						|
    }
 | 
						|
 | 
						|
    return Owned(new (Context) CXXFunctionalCastExpr(Ty.getNonReferenceType(),
 | 
						|
                                                     TInfo, TyBeginLoc, Kind,
 | 
						|
                                                     Exprs[0], RParenLoc));
 | 
						|
  }
 | 
						|
 | 
						|
  if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | 
						|
    CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
 | 
						|
 | 
						|
    if (NumExprs > 1 || !Record->hasTrivialConstructor() ||
 | 
						|
        !Record->hasTrivialDestructor()) {
 | 
						|
      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
 | 
						|
      
 | 
						|
      CXXConstructorDecl *Constructor
 | 
						|
        = PerformInitializationByConstructor(Ty, move(exprs),
 | 
						|
                                             TypeRange.getBegin(),
 | 
						|
                                             SourceRange(TypeRange.getBegin(),
 | 
						|
                                                         RParenLoc),
 | 
						|
                                             DeclarationName(),
 | 
						|
                         InitializationKind::CreateDirect(TypeRange.getBegin(), 
 | 
						|
                                                          LParenLoc, 
 | 
						|
                                                          RParenLoc),
 | 
						|
                                             ConstructorArgs);
 | 
						|
 | 
						|
      if (!Constructor)
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      OwningExprResult Result =
 | 
						|
        BuildCXXTemporaryObjectExpr(Constructor, Ty, TyBeginLoc,
 | 
						|
                                    move_arg(ConstructorArgs), RParenLoc);
 | 
						|
      if (Result.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      return MaybeBindToTemporary(Result.takeAs<Expr>());
 | 
						|
    }
 | 
						|
 | 
						|
    // Fall through to value-initialize an object of class type that
 | 
						|
    // doesn't have a user-declared default constructor.
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [expr.type.conv]p1:
 | 
						|
  // If the expression list specifies more than a single value, the type shall
 | 
						|
  // be a class with a suitably declared constructor.
 | 
						|
  //
 | 
						|
  if (NumExprs > 1)
 | 
						|
    return ExprError(Diag(CommaLocs[0],
 | 
						|
                          diag::err_builtin_func_cast_more_than_one_arg)
 | 
						|
      << FullRange);
 | 
						|
 | 
						|
  assert(NumExprs == 0 && "Expected 0 expressions");
 | 
						|
  // C++ [expr.type.conv]p2:
 | 
						|
  // The expression T(), where T is a simple-type-specifier for a non-array
 | 
						|
  // complete object type or the (possibly cv-qualified) void type, creates an
 | 
						|
  // rvalue of the specified type, which is value-initialized.
 | 
						|
  //
 | 
						|
  exprs.release();
 | 
						|
  return Owned(new (Context) CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
 | 
						|
/// @code new (memory) int[size][4] @endcode
 | 
						|
/// or
 | 
						|
/// @code ::new Foo(23, "hello") @endcode
 | 
						|
/// For the interpretation of this heap of arguments, consult the base version.
 | 
						|
Action::OwningExprResult
 | 
						|
Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
 | 
						|
                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
 | 
						|
                  SourceLocation PlacementRParen, bool ParenTypeId,
 | 
						|
                  Declarator &D, SourceLocation ConstructorLParen,
 | 
						|
                  MultiExprArg ConstructorArgs,
 | 
						|
                  SourceLocation ConstructorRParen) {
 | 
						|
  Expr *ArraySize = 0;
 | 
						|
  // If the specified type is an array, unwrap it and save the expression.
 | 
						|
  if (D.getNumTypeObjects() > 0 &&
 | 
						|
      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
 | 
						|
    DeclaratorChunk &Chunk = D.getTypeObject(0);
 | 
						|
    if (Chunk.Arr.hasStatic)
 | 
						|
      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
 | 
						|
        << D.getSourceRange());
 | 
						|
    if (!Chunk.Arr.NumElts)
 | 
						|
      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
 | 
						|
        << D.getSourceRange());
 | 
						|
 | 
						|
    if (ParenTypeId) {
 | 
						|
      // Can't have dynamic array size when the type-id is in parentheses.
 | 
						|
      Expr *NumElts = (Expr *)Chunk.Arr.NumElts;
 | 
						|
      if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
 | 
						|
          !NumElts->isIntegerConstantExpr(Context)) {
 | 
						|
        Diag(D.getTypeObject(0).Loc, diag::err_new_paren_array_nonconst)
 | 
						|
          << NumElts->getSourceRange();
 | 
						|
        return ExprError();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
 | 
						|
    D.DropFirstTypeObject();
 | 
						|
  }
 | 
						|
 | 
						|
  // Every dimension shall be of constant size.
 | 
						|
  if (ArraySize) {
 | 
						|
    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
 | 
						|
      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
 | 
						|
        break;
 | 
						|
 | 
						|
      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
 | 
						|
      if (Expr *NumElts = (Expr *)Array.NumElts) {
 | 
						|
        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
 | 
						|
            !NumElts->isIntegerConstantExpr(Context)) {
 | 
						|
          Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
 | 
						|
            << NumElts->getSourceRange();
 | 
						|
          return ExprError();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  //FIXME: Store TypeSourceInfo in CXXNew expression.
 | 
						|
  TypeSourceInfo *TInfo = 0;
 | 
						|
  QualType AllocType = GetTypeForDeclarator(D, /*Scope=*/0, &TInfo);
 | 
						|
  if (D.isInvalidType())
 | 
						|
    return ExprError();
 | 
						|
    
 | 
						|
  return BuildCXXNew(StartLoc, UseGlobal,
 | 
						|
                     PlacementLParen,
 | 
						|
                     move(PlacementArgs),
 | 
						|
                     PlacementRParen,
 | 
						|
                     ParenTypeId,
 | 
						|
                     AllocType,
 | 
						|
                     D.getSourceRange().getBegin(),
 | 
						|
                     D.getSourceRange(),
 | 
						|
                     Owned(ArraySize),
 | 
						|
                     ConstructorLParen,
 | 
						|
                     move(ConstructorArgs),
 | 
						|
                     ConstructorRParen);
 | 
						|
}
 | 
						|
 | 
						|
Sema::OwningExprResult
 | 
						|
Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
 | 
						|
                  SourceLocation PlacementLParen,
 | 
						|
                  MultiExprArg PlacementArgs,
 | 
						|
                  SourceLocation PlacementRParen,
 | 
						|
                  bool ParenTypeId,
 | 
						|
                  QualType AllocType,
 | 
						|
                  SourceLocation TypeLoc,
 | 
						|
                  SourceRange TypeRange,
 | 
						|
                  ExprArg ArraySizeE,
 | 
						|
                  SourceLocation ConstructorLParen,
 | 
						|
                  MultiExprArg ConstructorArgs,
 | 
						|
                  SourceLocation ConstructorRParen) {
 | 
						|
  if (CheckAllocatedType(AllocType, TypeLoc, TypeRange))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  QualType ResultType = Context.getPointerType(AllocType);
 | 
						|
 | 
						|
  // That every array dimension except the first is constant was already
 | 
						|
  // checked by the type check above.
 | 
						|
 | 
						|
  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
 | 
						|
  //   or enumeration type with a non-negative value."
 | 
						|
  Expr *ArraySize = (Expr *)ArraySizeE.get();
 | 
						|
  if (ArraySize && !ArraySize->isTypeDependent()) {
 | 
						|
    QualType SizeType = ArraySize->getType();
 | 
						|
    if (!SizeType->isIntegralType() && !SizeType->isEnumeralType())
 | 
						|
      return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
 | 
						|
                            diag::err_array_size_not_integral)
 | 
						|
        << SizeType << ArraySize->getSourceRange());
 | 
						|
    // Let's see if this is a constant < 0. If so, we reject it out of hand.
 | 
						|
    // We don't care about special rules, so we tell the machinery it's not
 | 
						|
    // evaluated - it gives us a result in more cases.
 | 
						|
    if (!ArraySize->isValueDependent()) {
 | 
						|
      llvm::APSInt Value;
 | 
						|
      if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
 | 
						|
        if (Value < llvm::APSInt(
 | 
						|
                        llvm::APInt::getNullValue(Value.getBitWidth()), 
 | 
						|
                                 Value.isUnsigned()))
 | 
						|
          return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
 | 
						|
                           diag::err_typecheck_negative_array_size)
 | 
						|
            << ArraySize->getSourceRange());
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    ImpCastExprToType(ArraySize, Context.getSizeType(),
 | 
						|
                      CastExpr::CK_IntegralCast);
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionDecl *OperatorNew = 0;
 | 
						|
  FunctionDecl *OperatorDelete = 0;
 | 
						|
  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
 | 
						|
  unsigned NumPlaceArgs = PlacementArgs.size();
 | 
						|
  
 | 
						|
  if (!AllocType->isDependentType() &&
 | 
						|
      !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
 | 
						|
      FindAllocationFunctions(StartLoc,
 | 
						|
                              SourceRange(PlacementLParen, PlacementRParen),
 | 
						|
                              UseGlobal, AllocType, ArraySize, PlaceArgs,
 | 
						|
                              NumPlaceArgs, OperatorNew, OperatorDelete))
 | 
						|
    return ExprError();
 | 
						|
  llvm::SmallVector<Expr *, 8> AllPlaceArgs;
 | 
						|
  if (OperatorNew) {
 | 
						|
    // Add default arguments, if any.
 | 
						|
    const FunctionProtoType *Proto = 
 | 
						|
      OperatorNew->getType()->getAs<FunctionProtoType>();
 | 
						|
    VariadicCallType CallType = 
 | 
						|
      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
 | 
						|
    bool Invalid = GatherArgumentsForCall(PlacementLParen, OperatorNew,
 | 
						|
                                          Proto, 1, PlaceArgs, NumPlaceArgs, 
 | 
						|
                                          AllPlaceArgs, CallType);
 | 
						|
    if (Invalid)
 | 
						|
      return ExprError();
 | 
						|
    
 | 
						|
    NumPlaceArgs = AllPlaceArgs.size();
 | 
						|
    if (NumPlaceArgs > 0)
 | 
						|
      PlaceArgs = &AllPlaceArgs[0];
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool Init = ConstructorLParen.isValid();
 | 
						|
  // --- Choosing a constructor ---
 | 
						|
  CXXConstructorDecl *Constructor = 0;
 | 
						|
  Expr **ConsArgs = (Expr**)ConstructorArgs.get();
 | 
						|
  unsigned NumConsArgs = ConstructorArgs.size();
 | 
						|
  ASTOwningVector<&ActionBase::DeleteExpr> ConvertedConstructorArgs(*this);
 | 
						|
 | 
						|
  if (!AllocType->isDependentType() &&
 | 
						|
      !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
 | 
						|
    // C++0x [expr.new]p15:
 | 
						|
    //   A new-expression that creates an object of type T initializes that
 | 
						|
    //   object as follows:
 | 
						|
    InitializationKind Kind
 | 
						|
    //     - If the new-initializer is omitted, the object is default-
 | 
						|
    //       initialized (8.5); if no initialization is performed,
 | 
						|
    //       the object has indeterminate value
 | 
						|
      = !Init? InitializationKind::CreateDefault(TypeLoc)
 | 
						|
    //     - Otherwise, the new-initializer is interpreted according to the 
 | 
						|
    //       initialization rules of 8.5 for direct-initialization.
 | 
						|
             : InitializationKind::CreateDirect(TypeLoc,
 | 
						|
                                                ConstructorLParen, 
 | 
						|
                                                ConstructorRParen);
 | 
						|
    
 | 
						|
    InitializedEntity Entity
 | 
						|
      = InitializedEntity::InitializeNew(StartLoc, AllocType);
 | 
						|
    InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
 | 
						|
    OwningExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, 
 | 
						|
                                                move(ConstructorArgs));
 | 
						|
    if (FullInit.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
    
 | 
						|
    // FullInit is our initializer; walk through it to determine if it's a 
 | 
						|
    // constructor call, which CXXNewExpr handles directly.
 | 
						|
    if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
 | 
						|
      if (CXXBindTemporaryExpr *Binder
 | 
						|
            = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
 | 
						|
        FullInitExpr = Binder->getSubExpr();
 | 
						|
      if (CXXConstructExpr *Construct
 | 
						|
                    = dyn_cast<CXXConstructExpr>(FullInitExpr)) {
 | 
						|
        Constructor = Construct->getConstructor();
 | 
						|
        for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
 | 
						|
                                         AEnd = Construct->arg_end();
 | 
						|
             A != AEnd; ++A)
 | 
						|
          ConvertedConstructorArgs.push_back(A->Retain());
 | 
						|
      } else {
 | 
						|
        // Take the converted initializer.
 | 
						|
        ConvertedConstructorArgs.push_back(FullInit.release());
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // No initialization required.
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Take the converted arguments and use them for the new expression.
 | 
						|
    NumConsArgs = ConvertedConstructorArgs.size();
 | 
						|
    ConsArgs = (Expr **)ConvertedConstructorArgs.take();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
 | 
						|
  
 | 
						|
  PlacementArgs.release();
 | 
						|
  ConstructorArgs.release();
 | 
						|
  ArraySizeE.release();
 | 
						|
  return Owned(new (Context) CXXNewExpr(UseGlobal, OperatorNew, PlaceArgs,
 | 
						|
                        NumPlaceArgs, ParenTypeId, ArraySize, Constructor, Init,
 | 
						|
                        ConsArgs, NumConsArgs, OperatorDelete, ResultType,
 | 
						|
                        StartLoc, Init ? ConstructorRParen : SourceLocation()));
 | 
						|
}
 | 
						|
 | 
						|
/// CheckAllocatedType - Checks that a type is suitable as the allocated type
 | 
						|
/// in a new-expression.
 | 
						|
/// dimension off and stores the size expression in ArraySize.
 | 
						|
bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
 | 
						|
                              SourceRange R) {
 | 
						|
  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
 | 
						|
  //   abstract class type or array thereof.
 | 
						|
  if (AllocType->isFunctionType())
 | 
						|
    return Diag(Loc, diag::err_bad_new_type)
 | 
						|
      << AllocType << 0 << R;
 | 
						|
  else if (AllocType->isReferenceType())
 | 
						|
    return Diag(Loc, diag::err_bad_new_type)
 | 
						|
      << AllocType << 1 << R;
 | 
						|
  else if (!AllocType->isDependentType() &&
 | 
						|
           RequireCompleteType(Loc, AllocType,
 | 
						|
                               PDiag(diag::err_new_incomplete_type)
 | 
						|
                                 << R))
 | 
						|
    return true;
 | 
						|
  else if (RequireNonAbstractType(Loc, AllocType,
 | 
						|
                                  diag::err_allocation_of_abstract_type))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// FindAllocationFunctions - Finds the overloads of operator new and delete
 | 
						|
/// that are appropriate for the allocation.
 | 
						|
bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
 | 
						|
                                   bool UseGlobal, QualType AllocType,
 | 
						|
                                   bool IsArray, Expr **PlaceArgs,
 | 
						|
                                   unsigned NumPlaceArgs,
 | 
						|
                                   FunctionDecl *&OperatorNew,
 | 
						|
                                   FunctionDecl *&OperatorDelete) {
 | 
						|
  // --- Choosing an allocation function ---
 | 
						|
  // C++ 5.3.4p8 - 14 & 18
 | 
						|
  // 1) If UseGlobal is true, only look in the global scope. Else, also look
 | 
						|
  //   in the scope of the allocated class.
 | 
						|
  // 2) If an array size is given, look for operator new[], else look for
 | 
						|
  //   operator new.
 | 
						|
  // 3) The first argument is always size_t. Append the arguments from the
 | 
						|
  //   placement form.
 | 
						|
  // FIXME: Also find the appropriate delete operator.
 | 
						|
 | 
						|
  llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
 | 
						|
  // We don't care about the actual value of this argument.
 | 
						|
  // FIXME: Should the Sema create the expression and embed it in the syntax
 | 
						|
  // tree? Or should the consumer just recalculate the value?
 | 
						|
  IntegerLiteral Size(llvm::APInt::getNullValue(
 | 
						|
                      Context.Target.getPointerWidth(0)),
 | 
						|
                      Context.getSizeType(),
 | 
						|
                      SourceLocation());
 | 
						|
  AllocArgs[0] = &Size;
 | 
						|
  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
 | 
						|
 | 
						|
  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
 | 
						|
                                        IsArray ? OO_Array_New : OO_New);
 | 
						|
  if (AllocType->isRecordType() && !UseGlobal) {
 | 
						|
    CXXRecordDecl *Record
 | 
						|
      = cast<CXXRecordDecl>(AllocType->getAs<RecordType>()->getDecl());
 | 
						|
    // FIXME: We fail to find inherited overloads.
 | 
						|
    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
 | 
						|
                          AllocArgs.size(), Record, /*AllowMissing=*/true,
 | 
						|
                          OperatorNew))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  if (!OperatorNew) {
 | 
						|
    // Didn't find a member overload. Look for a global one.
 | 
						|
    DeclareGlobalNewDelete();
 | 
						|
    DeclContext *TUDecl = Context.getTranslationUnitDecl();
 | 
						|
    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
 | 
						|
                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
 | 
						|
                          OperatorNew))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // FindAllocationOverload can change the passed in arguments, so we need to
 | 
						|
  // copy them back.
 | 
						|
  if (NumPlaceArgs > 0)
 | 
						|
    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// FindAllocationOverload - Find an fitting overload for the allocation
 | 
						|
/// function in the specified scope.
 | 
						|
bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
 | 
						|
                                  DeclarationName Name, Expr** Args,
 | 
						|
                                  unsigned NumArgs, DeclContext *Ctx,
 | 
						|
                                  bool AllowMissing, FunctionDecl *&Operator) {
 | 
						|
  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
 | 
						|
  LookupQualifiedName(R, Ctx);
 | 
						|
  if (R.empty()) {
 | 
						|
    if (AllowMissing)
 | 
						|
      return false;
 | 
						|
    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
 | 
						|
      << Name << Range;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: handle ambiguity
 | 
						|
 | 
						|
  OverloadCandidateSet Candidates;
 | 
						|
  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); 
 | 
						|
       Alloc != AllocEnd; ++Alloc) {
 | 
						|
    // Even member operator new/delete are implicitly treated as
 | 
						|
    // static, so don't use AddMemberCandidate.
 | 
						|
    if (FunctionDecl *Fn = 
 | 
						|
          dyn_cast<FunctionDecl>((*Alloc)->getUnderlyingDecl())) {
 | 
						|
      AddOverloadCandidate(Fn, Args, NumArgs, Candidates,
 | 
						|
                           /*SuppressUserConversions=*/false);
 | 
						|
      continue;
 | 
						|
    } 
 | 
						|
    
 | 
						|
    // FIXME: Handle function templates
 | 
						|
  }
 | 
						|
 | 
						|
  // Do the resolution.
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  switch(BestViableFunction(Candidates, StartLoc, Best)) {
 | 
						|
  case OR_Success: {
 | 
						|
    // Got one!
 | 
						|
    FunctionDecl *FnDecl = Best->Function;
 | 
						|
    // The first argument is size_t, and the first parameter must be size_t,
 | 
						|
    // too. This is checked on declaration and can be assumed. (It can't be
 | 
						|
    // asserted on, though, since invalid decls are left in there.)
 | 
						|
    // Whatch out for variadic allocator function.
 | 
						|
    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
 | 
						|
    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
 | 
						|
      if (PerformCopyInitialization(Args[i],
 | 
						|
                                    FnDecl->getParamDecl(i)->getType(),
 | 
						|
                                    AA_Passing))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    Operator = FnDecl;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  case OR_No_Viable_Function:
 | 
						|
    Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
 | 
						|
      << Name << Range;
 | 
						|
    PrintOverloadCandidates(Candidates, OCD_AllCandidates, Args, NumArgs);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case OR_Ambiguous:
 | 
						|
    Diag(StartLoc, diag::err_ovl_ambiguous_call)
 | 
						|
      << Name << Range;
 | 
						|
    PrintOverloadCandidates(Candidates, OCD_ViableCandidates, Args, NumArgs);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case OR_Deleted:
 | 
						|
    Diag(StartLoc, diag::err_ovl_deleted_call)
 | 
						|
      << Best->Function->isDeleted()
 | 
						|
      << Name << Range;
 | 
						|
    PrintOverloadCandidates(Candidates, OCD_AllCandidates, Args, NumArgs);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  assert(false && "Unreachable, bad result from BestViableFunction");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// DeclareGlobalNewDelete - Declare the global forms of operator new and
 | 
						|
/// delete. These are:
 | 
						|
/// @code
 | 
						|
///   void* operator new(std::size_t) throw(std::bad_alloc);
 | 
						|
///   void* operator new[](std::size_t) throw(std::bad_alloc);
 | 
						|
///   void operator delete(void *) throw();
 | 
						|
///   void operator delete[](void *) throw();
 | 
						|
/// @endcode
 | 
						|
/// Note that the placement and nothrow forms of new are *not* implicitly
 | 
						|
/// declared. Their use requires including \<new\>.
 | 
						|
void Sema::DeclareGlobalNewDelete() {
 | 
						|
  if (GlobalNewDeleteDeclared)
 | 
						|
    return;
 | 
						|
  
 | 
						|
  // C++ [basic.std.dynamic]p2:
 | 
						|
  //   [...] The following allocation and deallocation functions (18.4) are 
 | 
						|
  //   implicitly declared in global scope in each translation unit of a 
 | 
						|
  //   program
 | 
						|
  //   
 | 
						|
  //     void* operator new(std::size_t) throw(std::bad_alloc);
 | 
						|
  //     void* operator new[](std::size_t) throw(std::bad_alloc); 
 | 
						|
  //     void  operator delete(void*) throw(); 
 | 
						|
  //     void  operator delete[](void*) throw();
 | 
						|
  //
 | 
						|
  //   These implicit declarations introduce only the function names operator 
 | 
						|
  //   new, operator new[], operator delete, operator delete[].
 | 
						|
  //
 | 
						|
  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
 | 
						|
  // "std" or "bad_alloc" as necessary to form the exception specification.
 | 
						|
  // However, we do not make these implicit declarations visible to name
 | 
						|
  // lookup.
 | 
						|
  if (!StdNamespace) {
 | 
						|
    // The "std" namespace has not yet been defined, so build one implicitly.
 | 
						|
    StdNamespace = NamespaceDecl::Create(Context, 
 | 
						|
                                         Context.getTranslationUnitDecl(),
 | 
						|
                                         SourceLocation(),
 | 
						|
                                         &PP.getIdentifierTable().get("std"));
 | 
						|
    StdNamespace->setImplicit(true);
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (!StdBadAlloc) {
 | 
						|
    // The "std::bad_alloc" class has not yet been declared, so build it
 | 
						|
    // implicitly.
 | 
						|
    StdBadAlloc = CXXRecordDecl::Create(Context, TagDecl::TK_class, 
 | 
						|
                                        StdNamespace, 
 | 
						|
                                        SourceLocation(), 
 | 
						|
                                      &PP.getIdentifierTable().get("bad_alloc"), 
 | 
						|
                                        SourceLocation(), 0);
 | 
						|
    StdBadAlloc->setImplicit(true);
 | 
						|
  }
 | 
						|
  
 | 
						|
  GlobalNewDeleteDeclared = true;
 | 
						|
 | 
						|
  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
 | 
						|
  QualType SizeT = Context.getSizeType();
 | 
						|
  bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
 | 
						|
 | 
						|
  DeclareGlobalAllocationFunction(
 | 
						|
      Context.DeclarationNames.getCXXOperatorName(OO_New),
 | 
						|
      VoidPtr, SizeT, AssumeSaneOperatorNew);
 | 
						|
  DeclareGlobalAllocationFunction(
 | 
						|
      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
 | 
						|
      VoidPtr, SizeT, AssumeSaneOperatorNew);
 | 
						|
  DeclareGlobalAllocationFunction(
 | 
						|
      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
 | 
						|
      Context.VoidTy, VoidPtr);
 | 
						|
  DeclareGlobalAllocationFunction(
 | 
						|
      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
 | 
						|
      Context.VoidTy, VoidPtr);
 | 
						|
}
 | 
						|
 | 
						|
/// DeclareGlobalAllocationFunction - Declares a single implicit global
 | 
						|
/// allocation function if it doesn't already exist.
 | 
						|
void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
 | 
						|
                                           QualType Return, QualType Argument,
 | 
						|
                                           bool AddMallocAttr) {
 | 
						|
  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
 | 
						|
 | 
						|
  // Check if this function is already declared.
 | 
						|
  {
 | 
						|
    DeclContext::lookup_iterator Alloc, AllocEnd;
 | 
						|
    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
 | 
						|
         Alloc != AllocEnd; ++Alloc) {
 | 
						|
      // FIXME: Do we need to check for default arguments here?
 | 
						|
      FunctionDecl *Func = cast<FunctionDecl>(*Alloc);
 | 
						|
      if (Func->getNumParams() == 1 &&
 | 
						|
          Context.getCanonicalType(
 | 
						|
            Func->getParamDecl(0)->getType().getUnqualifiedType()) == Argument)
 | 
						|
        return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  QualType BadAllocType;
 | 
						|
  bool HasBadAllocExceptionSpec 
 | 
						|
    = (Name.getCXXOverloadedOperator() == OO_New ||
 | 
						|
       Name.getCXXOverloadedOperator() == OO_Array_New);
 | 
						|
  if (HasBadAllocExceptionSpec) {
 | 
						|
    assert(StdBadAlloc && "Must have std::bad_alloc declared");
 | 
						|
    BadAllocType = Context.getTypeDeclType(StdBadAlloc);
 | 
						|
  }
 | 
						|
  
 | 
						|
  QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0,
 | 
						|
                                            true, false,
 | 
						|
                                            HasBadAllocExceptionSpec? 1 : 0,
 | 
						|
                                            &BadAllocType);
 | 
						|
  FunctionDecl *Alloc =
 | 
						|
    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name,
 | 
						|
                         FnType, /*TInfo=*/0, FunctionDecl::None, false, true);
 | 
						|
  Alloc->setImplicit();
 | 
						|
  
 | 
						|
  if (AddMallocAttr)
 | 
						|
    Alloc->addAttr(::new (Context) MallocAttr());
 | 
						|
  
 | 
						|
  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
 | 
						|
                                           0, Argument, /*TInfo=*/0,
 | 
						|
                                           VarDecl::None, 0);
 | 
						|
  Alloc->setParams(Context, &Param, 1);
 | 
						|
 | 
						|
  // FIXME: Also add this declaration to the IdentifierResolver, but
 | 
						|
  // make sure it is at the end of the chain to coincide with the
 | 
						|
  // global scope.
 | 
						|
  ((DeclContext *)TUScope->getEntity())->addDecl(Alloc);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
 | 
						|
                                    DeclarationName Name,
 | 
						|
                                    FunctionDecl* &Operator) {
 | 
						|
  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
 | 
						|
  // Try to find operator delete/operator delete[] in class scope.
 | 
						|
  LookupQualifiedName(Found, RD);
 | 
						|
  
 | 
						|
  if (Found.isAmbiguous())
 | 
						|
    return true;
 | 
						|
 | 
						|
  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
 | 
						|
       F != FEnd; ++F) {
 | 
						|
    if (CXXMethodDecl *Delete = dyn_cast<CXXMethodDecl>(*F))
 | 
						|
      if (Delete->isUsualDeallocationFunction()) {
 | 
						|
        Operator = Delete;
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // We did find operator delete/operator delete[] declarations, but
 | 
						|
  // none of them were suitable.
 | 
						|
  if (!Found.empty()) {
 | 
						|
    Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
 | 
						|
      << Name << RD;
 | 
						|
        
 | 
						|
    for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
 | 
						|
         F != FEnd; ++F) {
 | 
						|
      Diag((*F)->getLocation(), 
 | 
						|
           diag::note_delete_member_function_declared_here)
 | 
						|
        << Name;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Look for a global declaration.
 | 
						|
  DeclareGlobalNewDelete();
 | 
						|
  DeclContext *TUDecl = Context.getTranslationUnitDecl();
 | 
						|
  
 | 
						|
  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
 | 
						|
  Expr* DeallocArgs[1];
 | 
						|
  DeallocArgs[0] = &Null;
 | 
						|
  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
 | 
						|
                             DeallocArgs, 1, TUDecl, /*AllowMissing=*/false,
 | 
						|
                             Operator))
 | 
						|
    return true;
 | 
						|
 | 
						|
  assert(Operator && "Did not find a deallocation function!");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
 | 
						|
/// @code ::delete ptr; @endcode
 | 
						|
/// or
 | 
						|
/// @code delete [] ptr; @endcode
 | 
						|
Action::OwningExprResult
 | 
						|
Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
 | 
						|
                     bool ArrayForm, ExprArg Operand) {
 | 
						|
  // C++ [expr.delete]p1:
 | 
						|
  //   The operand shall have a pointer type, or a class type having a single
 | 
						|
  //   conversion function to a pointer type. The result has type void.
 | 
						|
  //
 | 
						|
  // DR599 amends "pointer type" to "pointer to object type" in both cases.
 | 
						|
 | 
						|
  FunctionDecl *OperatorDelete = 0;
 | 
						|
 | 
						|
  Expr *Ex = (Expr *)Operand.get();
 | 
						|
  if (!Ex->isTypeDependent()) {
 | 
						|
    QualType Type = Ex->getType();
 | 
						|
 | 
						|
    if (const RecordType *Record = Type->getAs<RecordType>()) {
 | 
						|
      llvm::SmallVector<CXXConversionDecl *, 4> ObjectPtrConversions;
 | 
						|
      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
 | 
						|
      const UnresolvedSet *Conversions = RD->getVisibleConversionFunctions();
 | 
						|
      
 | 
						|
      for (UnresolvedSet::iterator I = Conversions->begin(),
 | 
						|
             E = Conversions->end(); I != E; ++I) {
 | 
						|
        // Skip over templated conversion functions; they aren't considered.
 | 
						|
        if (isa<FunctionTemplateDecl>(*I))
 | 
						|
          continue;
 | 
						|
        
 | 
						|
        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I);
 | 
						|
        
 | 
						|
        QualType ConvType = Conv->getConversionType().getNonReferenceType();
 | 
						|
        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
 | 
						|
          if (ConvPtrType->getPointeeType()->isObjectType())
 | 
						|
            ObjectPtrConversions.push_back(Conv);
 | 
						|
      }
 | 
						|
      if (ObjectPtrConversions.size() == 1) {
 | 
						|
        // We have a single conversion to a pointer-to-object type. Perform
 | 
						|
        // that conversion.
 | 
						|
        Operand.release();
 | 
						|
        if (!PerformImplicitConversion(Ex, 
 | 
						|
                            ObjectPtrConversions.front()->getConversionType(), 
 | 
						|
                                      AA_Converting)) {
 | 
						|
          Operand = Owned(Ex);
 | 
						|
          Type = Ex->getType();
 | 
						|
        }
 | 
						|
      }
 | 
						|
      else if (ObjectPtrConversions.size() > 1) {
 | 
						|
        Diag(StartLoc, diag::err_ambiguous_delete_operand)
 | 
						|
              << Type << Ex->getSourceRange();
 | 
						|
        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++) {
 | 
						|
          CXXConversionDecl *Conv = ObjectPtrConversions[i];
 | 
						|
          NoteOverloadCandidate(Conv);
 | 
						|
        }
 | 
						|
        return ExprError();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Type->isPointerType())
 | 
						|
      return ExprError(Diag(StartLoc, diag::err_delete_operand)
 | 
						|
        << Type << Ex->getSourceRange());
 | 
						|
 | 
						|
    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
 | 
						|
    if (Pointee->isFunctionType() || Pointee->isVoidType())
 | 
						|
      return ExprError(Diag(StartLoc, diag::err_delete_operand)
 | 
						|
        << Type << Ex->getSourceRange());
 | 
						|
    else if (!Pointee->isDependentType() &&
 | 
						|
             RequireCompleteType(StartLoc, Pointee,
 | 
						|
                                 PDiag(diag::warn_delete_incomplete)
 | 
						|
                                   << Ex->getSourceRange()))
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    // C++ [expr.delete]p2:
 | 
						|
    //   [Note: a pointer to a const type can be the operand of a 
 | 
						|
    //   delete-expression; it is not necessary to cast away the constness 
 | 
						|
    //   (5.2.11) of the pointer expression before it is used as the operand 
 | 
						|
    //   of the delete-expression. ]
 | 
						|
    ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy), 
 | 
						|
                      CastExpr::CK_NoOp);
 | 
						|
    
 | 
						|
    // Update the operand.
 | 
						|
    Operand.take();
 | 
						|
    Operand = ExprArg(*this, Ex);
 | 
						|
    
 | 
						|
    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
 | 
						|
                                      ArrayForm ? OO_Array_Delete : OO_Delete);
 | 
						|
 | 
						|
    if (const RecordType *RT = Pointee->getAs<RecordType>()) {
 | 
						|
      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | 
						|
 | 
						|
      if (!UseGlobal && 
 | 
						|
          FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
 | 
						|
        return ExprError();
 | 
						|
      
 | 
						|
      if (!RD->hasTrivialDestructor())
 | 
						|
        if (const CXXDestructorDecl *Dtor = RD->getDestructor(Context))
 | 
						|
          MarkDeclarationReferenced(StartLoc,
 | 
						|
                                    const_cast<CXXDestructorDecl*>(Dtor));
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (!OperatorDelete) {
 | 
						|
      // Look for a global declaration.
 | 
						|
      DeclareGlobalNewDelete();
 | 
						|
      DeclContext *TUDecl = Context.getTranslationUnitDecl();
 | 
						|
      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
 | 
						|
                                 &Ex, 1, TUDecl, /*AllowMissing=*/false,
 | 
						|
                                 OperatorDelete))
 | 
						|
        return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: Check access and ambiguity of operator delete and destructor.
 | 
						|
  }
 | 
						|
 | 
						|
  Operand.release();
 | 
						|
  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
 | 
						|
                                           OperatorDelete, Ex, StartLoc));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check the use of the given variable as a C++ condition in an if,
 | 
						|
/// while, do-while, or switch statement.
 | 
						|
Action::OwningExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar) {
 | 
						|
  QualType T = ConditionVar->getType();
 | 
						|
  
 | 
						|
  // C++ [stmt.select]p2:
 | 
						|
  //   The declarator shall not specify a function or an array.
 | 
						|
  if (T->isFunctionType())
 | 
						|
    return ExprError(Diag(ConditionVar->getLocation(), 
 | 
						|
                          diag::err_invalid_use_of_function_type)
 | 
						|
                       << ConditionVar->getSourceRange());
 | 
						|
  else if (T->isArrayType())
 | 
						|
    return ExprError(Diag(ConditionVar->getLocation(), 
 | 
						|
                          diag::err_invalid_use_of_array_type)
 | 
						|
                     << ConditionVar->getSourceRange());
 | 
						|
 | 
						|
  return Owned(DeclRefExpr::Create(Context, 0, SourceRange(), ConditionVar,
 | 
						|
                                   ConditionVar->getLocation(), 
 | 
						|
                                ConditionVar->getType().getNonReferenceType()));
 | 
						|
}
 | 
						|
 | 
						|
/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
 | 
						|
bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
 | 
						|
  // C++ 6.4p4:
 | 
						|
  // The value of a condition that is an initialized declaration in a statement
 | 
						|
  // other than a switch statement is the value of the declared variable
 | 
						|
  // implicitly converted to type bool. If that conversion is ill-formed, the
 | 
						|
  // program is ill-formed.
 | 
						|
  // The value of a condition that is an expression is the value of the
 | 
						|
  // expression, implicitly converted to bool.
 | 
						|
  //
 | 
						|
  return PerformContextuallyConvertToBool(CondExpr);
 | 
						|
}
 | 
						|
 | 
						|
/// Helper function to determine whether this is the (deprecated) C++
 | 
						|
/// conversion from a string literal to a pointer to non-const char or
 | 
						|
/// non-const wchar_t (for narrow and wide string literals,
 | 
						|
/// respectively).
 | 
						|
bool
 | 
						|
Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
 | 
						|
  // Look inside the implicit cast, if it exists.
 | 
						|
  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
 | 
						|
    From = Cast->getSubExpr();
 | 
						|
 | 
						|
  // A string literal (2.13.4) that is not a wide string literal can
 | 
						|
  // be converted to an rvalue of type "pointer to char"; a wide
 | 
						|
  // string literal can be converted to an rvalue of type "pointer
 | 
						|
  // to wchar_t" (C++ 4.2p2).
 | 
						|
  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From))
 | 
						|
    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
 | 
						|
      if (const BuiltinType *ToPointeeType
 | 
						|
          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
 | 
						|
        // This conversion is considered only when there is an
 | 
						|
        // explicit appropriate pointer target type (C++ 4.2p2).
 | 
						|
        if (!ToPtrType->getPointeeType().hasQualifiers() &&
 | 
						|
            ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
 | 
						|
             (!StrLit->isWide() &&
 | 
						|
              (ToPointeeType->getKind() == BuiltinType::Char_U ||
 | 
						|
               ToPointeeType->getKind() == BuiltinType::Char_S))))
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// PerformImplicitConversion - Perform an implicit conversion of the
 | 
						|
/// expression From to the type ToType. Returns true if there was an
 | 
						|
/// error, false otherwise. The expression From is replaced with the
 | 
						|
/// converted expression. Flavor is the kind of conversion we're
 | 
						|
/// performing, used in the error message. If @p AllowExplicit,
 | 
						|
/// explicit user-defined conversions are permitted. @p Elidable should be true
 | 
						|
/// when called for copies which may be elided (C++ 12.8p15). C++0x overload
 | 
						|
/// resolution works differently in that case.
 | 
						|
bool
 | 
						|
Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
 | 
						|
                                AssignmentAction Action, bool AllowExplicit,
 | 
						|
                                bool Elidable) {
 | 
						|
  ImplicitConversionSequence ICS;
 | 
						|
  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, 
 | 
						|
                                   Elidable, ICS);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
 | 
						|
                                AssignmentAction Action, bool AllowExplicit,
 | 
						|
                                bool Elidable,
 | 
						|
                                ImplicitConversionSequence& ICS) {
 | 
						|
  ICS.setBad();
 | 
						|
  ICS.Bad.init(BadConversionSequence::no_conversion, From, ToType);
 | 
						|
  if (Elidable && getLangOptions().CPlusPlus0x) {
 | 
						|
    ICS = TryImplicitConversion(From, ToType,
 | 
						|
                                /*SuppressUserConversions=*/false,
 | 
						|
                                AllowExplicit,
 | 
						|
                                /*ForceRValue=*/true,
 | 
						|
                                /*InOverloadResolution=*/false);
 | 
						|
  }
 | 
						|
  if (ICS.isBad()) {
 | 
						|
    ICS = TryImplicitConversion(From, ToType,
 | 
						|
                                /*SuppressUserConversions=*/false,
 | 
						|
                                AllowExplicit,
 | 
						|
                                /*ForceRValue=*/false,
 | 
						|
                                /*InOverloadResolution=*/false);
 | 
						|
  }
 | 
						|
  return PerformImplicitConversion(From, ToType, ICS, Action);
 | 
						|
}
 | 
						|
 | 
						|
/// PerformImplicitConversion - Perform an implicit conversion of the
 | 
						|
/// expression From to the type ToType using the pre-computed implicit
 | 
						|
/// conversion sequence ICS. Returns true if there was an error, false
 | 
						|
/// otherwise. The expression From is replaced with the converted
 | 
						|
/// expression. Action is the kind of conversion we're performing,
 | 
						|
/// used in the error message.
 | 
						|
bool
 | 
						|
Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
 | 
						|
                                const ImplicitConversionSequence &ICS,
 | 
						|
                                AssignmentAction Action, bool IgnoreBaseAccess) {
 | 
						|
  switch (ICS.getKind()) {
 | 
						|
  case ImplicitConversionSequence::StandardConversion:
 | 
						|
    if (PerformImplicitConversion(From, ToType, ICS.Standard, Action,
 | 
						|
                                  IgnoreBaseAccess))
 | 
						|
      return true;
 | 
						|
    break;
 | 
						|
 | 
						|
  case ImplicitConversionSequence::UserDefinedConversion: {
 | 
						|
    
 | 
						|
      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
 | 
						|
      CastExpr::CastKind CastKind = CastExpr::CK_Unknown;
 | 
						|
      QualType BeforeToType;
 | 
						|
      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
 | 
						|
        CastKind = CastExpr::CK_UserDefinedConversion;
 | 
						|
        
 | 
						|
        // If the user-defined conversion is specified by a conversion function,
 | 
						|
        // the initial standard conversion sequence converts the source type to
 | 
						|
        // the implicit object parameter of the conversion function.
 | 
						|
        BeforeToType = Context.getTagDeclType(Conv->getParent());
 | 
						|
      } else if (const CXXConstructorDecl *Ctor = 
 | 
						|
                  dyn_cast<CXXConstructorDecl>(FD)) {
 | 
						|
        CastKind = CastExpr::CK_ConstructorConversion;
 | 
						|
        // Do no conversion if dealing with ... for the first conversion.
 | 
						|
        if (!ICS.UserDefined.EllipsisConversion) {
 | 
						|
          // If the user-defined conversion is specified by a constructor, the 
 | 
						|
          // initial standard conversion sequence converts the source type to the
 | 
						|
          // type required by the argument of the constructor
 | 
						|
          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
 | 
						|
        }
 | 
						|
      }    
 | 
						|
      else
 | 
						|
        assert(0 && "Unknown conversion function kind!");
 | 
						|
      // Whatch out for elipsis conversion.
 | 
						|
      if (!ICS.UserDefined.EllipsisConversion) {
 | 
						|
        if (PerformImplicitConversion(From, BeforeToType, 
 | 
						|
                                      ICS.UserDefined.Before, AA_Converting,
 | 
						|
                                      IgnoreBaseAccess))
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    
 | 
						|
      OwningExprResult CastArg 
 | 
						|
        = BuildCXXCastArgument(From->getLocStart(),
 | 
						|
                               ToType.getNonReferenceType(),
 | 
						|
                               CastKind, cast<CXXMethodDecl>(FD), 
 | 
						|
                               Owned(From));
 | 
						|
 | 
						|
      if (CastArg.isInvalid())
 | 
						|
        return true;
 | 
						|
 | 
						|
      From = CastArg.takeAs<Expr>();
 | 
						|
 | 
						|
      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
 | 
						|
                                       AA_Converting, IgnoreBaseAccess);
 | 
						|
  }
 | 
						|
 | 
						|
  case ImplicitConversionSequence::AmbiguousConversion:
 | 
						|
    DiagnoseAmbiguousConversion(ICS, From->getExprLoc(),
 | 
						|
                          PDiag(diag::err_typecheck_ambiguous_condition)
 | 
						|
                            << From->getSourceRange());
 | 
						|
     return true;
 | 
						|
      
 | 
						|
  case ImplicitConversionSequence::EllipsisConversion:
 | 
						|
    assert(false && "Cannot perform an ellipsis conversion");
 | 
						|
    return false;
 | 
						|
 | 
						|
  case ImplicitConversionSequence::BadConversion:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Everything went well.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// PerformImplicitConversion - Perform an implicit conversion of the
 | 
						|
/// expression From to the type ToType by following the standard
 | 
						|
/// conversion sequence SCS. Returns true if there was an error, false
 | 
						|
/// otherwise. The expression From is replaced with the converted
 | 
						|
/// expression. Flavor is the context in which we're performing this
 | 
						|
/// conversion, for use in error messages.
 | 
						|
bool
 | 
						|
Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
 | 
						|
                                const StandardConversionSequence& SCS,
 | 
						|
                                AssignmentAction Action, bool IgnoreBaseAccess) {
 | 
						|
  // Overall FIXME: we are recomputing too many types here and doing far too
 | 
						|
  // much extra work. What this means is that we need to keep track of more
 | 
						|
  // information that is computed when we try the implicit conversion initially,
 | 
						|
  // so that we don't need to recompute anything here.
 | 
						|
  QualType FromType = From->getType();
 | 
						|
 | 
						|
  if (SCS.CopyConstructor) {
 | 
						|
    // FIXME: When can ToType be a reference type?
 | 
						|
    assert(!ToType->isReferenceType());
 | 
						|
    if (SCS.Second == ICK_Derived_To_Base) {
 | 
						|
      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
 | 
						|
      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
 | 
						|
                                  MultiExprArg(*this, (void **)&From, 1),
 | 
						|
                                  /*FIXME:ConstructLoc*/SourceLocation(), 
 | 
						|
                                  ConstructorArgs))
 | 
						|
        return true;
 | 
						|
      OwningExprResult FromResult =
 | 
						|
        BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
 | 
						|
                              ToType, SCS.CopyConstructor,
 | 
						|
                              move_arg(ConstructorArgs));
 | 
						|
      if (FromResult.isInvalid())
 | 
						|
        return true;
 | 
						|
      From = FromResult.takeAs<Expr>();
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    OwningExprResult FromResult =
 | 
						|
      BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
 | 
						|
                            ToType, SCS.CopyConstructor,
 | 
						|
                            MultiExprArg(*this, (void**)&From, 1));
 | 
						|
 | 
						|
    if (FromResult.isInvalid())
 | 
						|
      return true;
 | 
						|
 | 
						|
    From = FromResult.takeAs<Expr>();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform the first implicit conversion.
 | 
						|
  switch (SCS.First) {
 | 
						|
  case ICK_Identity:
 | 
						|
  case ICK_Lvalue_To_Rvalue:
 | 
						|
    // Nothing to do.
 | 
						|
    break;
 | 
						|
 | 
						|
  case ICK_Array_To_Pointer:
 | 
						|
    FromType = Context.getArrayDecayedType(FromType);
 | 
						|
    ImpCastExprToType(From, FromType, CastExpr::CK_ArrayToPointerDecay);
 | 
						|
    break;
 | 
						|
 | 
						|
  case ICK_Function_To_Pointer:
 | 
						|
    if (Context.getCanonicalType(FromType) == Context.OverloadTy) {
 | 
						|
      FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, true);
 | 
						|
      if (!Fn)
 | 
						|
        return true;
 | 
						|
 | 
						|
      if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
 | 
						|
        return true;
 | 
						|
 | 
						|
      From = FixOverloadedFunctionReference(From, Fn);
 | 
						|
      FromType = From->getType();
 | 
						|
        
 | 
						|
      // If there's already an address-of operator in the expression, we have
 | 
						|
      // the right type already, and the code below would just introduce an
 | 
						|
      // invalid additional pointer level.
 | 
						|
      if (FromType->isPointerType() || FromType->isMemberFunctionPointerType())
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    FromType = Context.getPointerType(FromType);
 | 
						|
    ImpCastExprToType(From, FromType, CastExpr::CK_FunctionToPointerDecay);
 | 
						|
    break;
 | 
						|
 | 
						|
  default:
 | 
						|
    assert(false && "Improper first standard conversion");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform the second implicit conversion
 | 
						|
  switch (SCS.Second) {
 | 
						|
  case ICK_Identity:
 | 
						|
    // If both sides are functions (or pointers/references to them), there could
 | 
						|
    // be incompatible exception declarations.
 | 
						|
    if (CheckExceptionSpecCompatibility(From, ToType))
 | 
						|
      return true;
 | 
						|
    // Nothing else to do.
 | 
						|
    break;
 | 
						|
 | 
						|
  case ICK_NoReturn_Adjustment:
 | 
						|
    // If both sides are functions (or pointers/references to them), there could
 | 
						|
    // be incompatible exception declarations.
 | 
						|
    if (CheckExceptionSpecCompatibility(From, ToType))
 | 
						|
      return true;      
 | 
						|
      
 | 
						|
    ImpCastExprToType(From, Context.getNoReturnType(From->getType(), false),
 | 
						|
                      CastExpr::CK_NoOp);
 | 
						|
    break;
 | 
						|
      
 | 
						|
  case ICK_Integral_Promotion:
 | 
						|
  case ICK_Integral_Conversion:
 | 
						|
    ImpCastExprToType(From, ToType, CastExpr::CK_IntegralCast);
 | 
						|
    break;
 | 
						|
 | 
						|
  case ICK_Floating_Promotion:
 | 
						|
  case ICK_Floating_Conversion:
 | 
						|
    ImpCastExprToType(From, ToType, CastExpr::CK_FloatingCast);
 | 
						|
    break;
 | 
						|
 | 
						|
  case ICK_Complex_Promotion:
 | 
						|
  case ICK_Complex_Conversion:
 | 
						|
    ImpCastExprToType(From, ToType, CastExpr::CK_Unknown);
 | 
						|
    break;
 | 
						|
 | 
						|
  case ICK_Floating_Integral:
 | 
						|
    if (ToType->isFloatingType())
 | 
						|
      ImpCastExprToType(From, ToType, CastExpr::CK_IntegralToFloating);
 | 
						|
    else
 | 
						|
      ImpCastExprToType(From, ToType, CastExpr::CK_FloatingToIntegral);
 | 
						|
    break;
 | 
						|
 | 
						|
  case ICK_Complex_Real:
 | 
						|
    ImpCastExprToType(From, ToType, CastExpr::CK_Unknown);
 | 
						|
    break;
 | 
						|
 | 
						|
  case ICK_Compatible_Conversion:
 | 
						|
    ImpCastExprToType(From, ToType, CastExpr::CK_NoOp);
 | 
						|
    break;
 | 
						|
 | 
						|
  case ICK_Pointer_Conversion: {
 | 
						|
    if (SCS.IncompatibleObjC) {
 | 
						|
      // Diagnose incompatible Objective-C conversions
 | 
						|
      Diag(From->getSourceRange().getBegin(),
 | 
						|
           diag::ext_typecheck_convert_incompatible_pointer)
 | 
						|
        << From->getType() << ToType << Action
 | 
						|
        << From->getSourceRange();
 | 
						|
    }
 | 
						|
 | 
						|
    
 | 
						|
    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
 | 
						|
    if (CheckPointerConversion(From, ToType, Kind, IgnoreBaseAccess))
 | 
						|
      return true;
 | 
						|
    ImpCastExprToType(From, ToType, Kind);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  case ICK_Pointer_Member: {
 | 
						|
    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
 | 
						|
    if (CheckMemberPointerConversion(From, ToType, Kind, IgnoreBaseAccess))
 | 
						|
      return true;
 | 
						|
    if (CheckExceptionSpecCompatibility(From, ToType))
 | 
						|
      return true;
 | 
						|
    ImpCastExprToType(From, ToType, Kind);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ICK_Boolean_Conversion: {
 | 
						|
    CastExpr::CastKind Kind = CastExpr::CK_Unknown;
 | 
						|
    if (FromType->isMemberPointerType())
 | 
						|
      Kind = CastExpr::CK_MemberPointerToBoolean;
 | 
						|
    
 | 
						|
    ImpCastExprToType(From, Context.BoolTy, Kind);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ICK_Derived_To_Base:
 | 
						|
    if (CheckDerivedToBaseConversion(From->getType(), 
 | 
						|
                                     ToType.getNonReferenceType(),
 | 
						|
                                     From->getLocStart(),
 | 
						|
                                     From->getSourceRange(),
 | 
						|
                                     IgnoreBaseAccess))
 | 
						|
      return true;
 | 
						|
    ImpCastExprToType(From, ToType.getNonReferenceType(), 
 | 
						|
                      CastExpr::CK_DerivedToBase);
 | 
						|
    break;
 | 
						|
      
 | 
						|
  default:
 | 
						|
    assert(false && "Improper second standard conversion");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (SCS.Third) {
 | 
						|
  case ICK_Identity:
 | 
						|
    // Nothing to do.
 | 
						|
    break;
 | 
						|
 | 
						|
  case ICK_Qualification:
 | 
						|
    // FIXME: Not sure about lvalue vs rvalue here in the presence of rvalue
 | 
						|
    // references.
 | 
						|
    ImpCastExprToType(From, ToType.getNonReferenceType(),
 | 
						|
                      CastExpr::CK_NoOp,
 | 
						|
                      ToType->isLValueReferenceType());
 | 
						|
    break;
 | 
						|
      
 | 
						|
  default:
 | 
						|
    assert(false && "Improper second standard conversion");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Sema::OwningExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait OTT,
 | 
						|
                                                 SourceLocation KWLoc,
 | 
						|
                                                 SourceLocation LParen,
 | 
						|
                                                 TypeTy *Ty,
 | 
						|
                                                 SourceLocation RParen) {
 | 
						|
  QualType T = GetTypeFromParser(Ty);
 | 
						|
 | 
						|
  // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
 | 
						|
  // all traits except __is_class, __is_enum and __is_union require a the type
 | 
						|
  // to be complete.
 | 
						|
  if (OTT != UTT_IsClass && OTT != UTT_IsEnum && OTT != UTT_IsUnion) {
 | 
						|
    if (RequireCompleteType(KWLoc, T,
 | 
						|
                            diag::err_incomplete_type_used_in_type_trait_expr))
 | 
						|
      return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // There is no point in eagerly computing the value. The traits are designed
 | 
						|
  // to be used from type trait templates, so Ty will be a template parameter
 | 
						|
  // 99% of the time.
 | 
						|
  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, OTT, T,
 | 
						|
                                                RParen, Context.BoolTy));
 | 
						|
}
 | 
						|
 | 
						|
QualType Sema::CheckPointerToMemberOperands(
 | 
						|
  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isIndirect) {
 | 
						|
  const char *OpSpelling = isIndirect ? "->*" : ".*";
 | 
						|
  // C++ 5.5p2
 | 
						|
  //   The binary operator .* [p3: ->*] binds its second operand, which shall
 | 
						|
  //   be of type "pointer to member of T" (where T is a completely-defined
 | 
						|
  //   class type) [...]
 | 
						|
  QualType RType = rex->getType();
 | 
						|
  const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
 | 
						|
  if (!MemPtr) {
 | 
						|
    Diag(Loc, diag::err_bad_memptr_rhs)
 | 
						|
      << OpSpelling << RType << rex->getSourceRange();
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  QualType Class(MemPtr->getClass(), 0);
 | 
						|
 | 
						|
  // C++ 5.5p2
 | 
						|
  //   [...] to its first operand, which shall be of class T or of a class of
 | 
						|
  //   which T is an unambiguous and accessible base class. [p3: a pointer to
 | 
						|
  //   such a class]
 | 
						|
  QualType LType = lex->getType();
 | 
						|
  if (isIndirect) {
 | 
						|
    if (const PointerType *Ptr = LType->getAs<PointerType>())
 | 
						|
      LType = Ptr->getPointeeType().getNonReferenceType();
 | 
						|
    else {
 | 
						|
      Diag(Loc, diag::err_bad_memptr_lhs)
 | 
						|
        << OpSpelling << 1 << LType
 | 
						|
        << CodeModificationHint::CreateReplacement(SourceRange(Loc), ".*");
 | 
						|
      return QualType();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Context.hasSameUnqualifiedType(Class, LType)) {
 | 
						|
    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
 | 
						|
                       /*DetectVirtual=*/false);
 | 
						|
    // FIXME: Would it be useful to print full ambiguity paths, or is that
 | 
						|
    // overkill?
 | 
						|
    if (!IsDerivedFrom(LType, Class, Paths) ||
 | 
						|
        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
 | 
						|
      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
 | 
						|
        << (int)isIndirect << lex->getType();
 | 
						|
      return QualType();
 | 
						|
    }
 | 
						|
    // Cast LHS to type of use.
 | 
						|
    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
 | 
						|
    bool isLValue = !isIndirect && lex->isLvalue(Context) == Expr::LV_Valid;
 | 
						|
    ImpCastExprToType(lex, UseType, CastExpr::CK_DerivedToBase, isLValue);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<CXXZeroInitValueExpr>(rex->IgnoreParens())) {
 | 
						|
    // Diagnose use of pointer-to-member type which when used as
 | 
						|
    // the functional cast in a pointer-to-member expression.
 | 
						|
    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
 | 
						|
     return QualType();
 | 
						|
  }
 | 
						|
  // C++ 5.5p2
 | 
						|
  //   The result is an object or a function of the type specified by the
 | 
						|
  //   second operand.
 | 
						|
  // The cv qualifiers are the union of those in the pointer and the left side,
 | 
						|
  // in accordance with 5.5p5 and 5.2.5.
 | 
						|
  // FIXME: This returns a dereferenced member function pointer as a normal
 | 
						|
  // function type. However, the only operation valid on such functions is
 | 
						|
  // calling them. There's also a GCC extension to get a function pointer to the
 | 
						|
  // thing, which is another complication, because this type - unlike the type
 | 
						|
  // that is the result of this expression - takes the class as the first
 | 
						|
  // argument.
 | 
						|
  // We probably need a "MemberFunctionClosureType" or something like that.
 | 
						|
  QualType Result = MemPtr->getPointeeType();
 | 
						|
  Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Get the target type of a standard or user-defined conversion.
 | 
						|
static QualType TargetType(const ImplicitConversionSequence &ICS) {
 | 
						|
  switch (ICS.getKind()) {
 | 
						|
  case ImplicitConversionSequence::StandardConversion:
 | 
						|
    return ICS.Standard.getToType();
 | 
						|
  case ImplicitConversionSequence::UserDefinedConversion:
 | 
						|
    return ICS.UserDefined.After.getToType();
 | 
						|
  case ImplicitConversionSequence::AmbiguousConversion:
 | 
						|
    return ICS.Ambiguous.getToType();
 | 
						|
  case ImplicitConversionSequence::EllipsisConversion:
 | 
						|
  case ImplicitConversionSequence::BadConversion:
 | 
						|
    llvm_unreachable("function not valid for ellipsis or bad conversions");
 | 
						|
  }
 | 
						|
  return QualType(); // silence warnings
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to convert a type to another according to C++0x 5.16p3.
 | 
						|
///
 | 
						|
/// This is part of the parameter validation for the ? operator. If either
 | 
						|
/// value operand is a class type, the two operands are attempted to be
 | 
						|
/// converted to each other. This function does the conversion in one direction.
 | 
						|
/// It emits a diagnostic and returns true only if it finds an ambiguous
 | 
						|
/// conversion.
 | 
						|
static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
 | 
						|
                                SourceLocation QuestionLoc,
 | 
						|
                                ImplicitConversionSequence &ICS) {
 | 
						|
  // C++0x 5.16p3
 | 
						|
  //   The process for determining whether an operand expression E1 of type T1
 | 
						|
  //   can be converted to match an operand expression E2 of type T2 is defined
 | 
						|
  //   as follows:
 | 
						|
  //   -- If E2 is an lvalue:
 | 
						|
  if (To->isLvalue(Self.Context) == Expr::LV_Valid) {
 | 
						|
    //   E1 can be converted to match E2 if E1 can be implicitly converted to
 | 
						|
    //   type "lvalue reference to T2", subject to the constraint that in the
 | 
						|
    //   conversion the reference must bind directly to E1.
 | 
						|
    if (!Self.CheckReferenceInit(From,
 | 
						|
                            Self.Context.getLValueReferenceType(To->getType()),
 | 
						|
                                 To->getLocStart(),
 | 
						|
                                 /*SuppressUserConversions=*/false,
 | 
						|
                                 /*AllowExplicit=*/false,
 | 
						|
                                 /*ForceRValue=*/false,
 | 
						|
                                 &ICS))
 | 
						|
    {
 | 
						|
      assert((ICS.isStandard() || ICS.isUserDefined()) &&
 | 
						|
             "expected a definite conversion");
 | 
						|
      bool DirectBinding =
 | 
						|
        ICS.isStandard() ? ICS.Standard.DirectBinding
 | 
						|
                         : ICS.UserDefined.After.DirectBinding;
 | 
						|
      if (DirectBinding)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  ICS.setBad();
 | 
						|
  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
 | 
						|
  //      -- if E1 and E2 have class type, and the underlying class types are
 | 
						|
  //         the same or one is a base class of the other:
 | 
						|
  QualType FTy = From->getType();
 | 
						|
  QualType TTy = To->getType();
 | 
						|
  const RecordType *FRec = FTy->getAs<RecordType>();
 | 
						|
  const RecordType *TRec = TTy->getAs<RecordType>();
 | 
						|
  bool FDerivedFromT = FRec && TRec && Self.IsDerivedFrom(FTy, TTy);
 | 
						|
  if (FRec && TRec && (FRec == TRec ||
 | 
						|
        FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
 | 
						|
    //         E1 can be converted to match E2 if the class of T2 is the
 | 
						|
    //         same type as, or a base class of, the class of T1, and
 | 
						|
    //         [cv2 > cv1].
 | 
						|
    if ((FRec == TRec || FDerivedFromT) && TTy.isAtLeastAsQualifiedAs(FTy)) {
 | 
						|
      // Could still fail if there's no copy constructor.
 | 
						|
      // FIXME: Is this a hard error then, or just a conversion failure? The
 | 
						|
      // standard doesn't say.
 | 
						|
      ICS = Self.TryCopyInitialization(From, TTy,
 | 
						|
                                       /*SuppressUserConversions=*/false,
 | 
						|
                                       /*ForceRValue=*/false,
 | 
						|
                                       /*InOverloadResolution=*/false);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    //     -- Otherwise: E1 can be converted to match E2 if E1 can be
 | 
						|
    //        implicitly converted to the type that expression E2 would have
 | 
						|
    //        if E2 were converted to an rvalue.
 | 
						|
    // First find the decayed type.
 | 
						|
    if (TTy->isFunctionType())
 | 
						|
      TTy = Self.Context.getPointerType(TTy);
 | 
						|
    else if (TTy->isArrayType())
 | 
						|
      TTy = Self.Context.getArrayDecayedType(TTy);
 | 
						|
 | 
						|
    // Now try the implicit conversion.
 | 
						|
    // FIXME: This doesn't detect ambiguities.
 | 
						|
    ICS = Self.TryImplicitConversion(From, TTy,
 | 
						|
                                     /*SuppressUserConversions=*/false,
 | 
						|
                                     /*AllowExplicit=*/false,
 | 
						|
                                     /*ForceRValue=*/false,
 | 
						|
                                     /*InOverloadResolution=*/false);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to find a common type for two according to C++0x 5.16p5.
 | 
						|
///
 | 
						|
/// This is part of the parameter validation for the ? operator. If either
 | 
						|
/// value operand is a class type, overload resolution is used to find a
 | 
						|
/// conversion to a common type.
 | 
						|
static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS,
 | 
						|
                                    SourceLocation Loc) {
 | 
						|
  Expr *Args[2] = { LHS, RHS };
 | 
						|
  OverloadCandidateSet CandidateSet;
 | 
						|
  Self.AddBuiltinOperatorCandidates(OO_Conditional, Loc, Args, 2, CandidateSet);
 | 
						|
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  switch (Self.BestViableFunction(CandidateSet, Loc, Best)) {
 | 
						|
    case OR_Success:
 | 
						|
      // We found a match. Perform the conversions on the arguments and move on.
 | 
						|
      if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
 | 
						|
                                         Best->Conversions[0], Sema::AA_Converting) ||
 | 
						|
          Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
 | 
						|
                                         Best->Conversions[1], Sema::AA_Converting))
 | 
						|
        break;
 | 
						|
      return false;
 | 
						|
 | 
						|
    case OR_No_Viable_Function:
 | 
						|
      Self.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
 | 
						|
        << LHS->getType() << RHS->getType()
 | 
						|
        << LHS->getSourceRange() << RHS->getSourceRange();
 | 
						|
      return true;
 | 
						|
 | 
						|
    case OR_Ambiguous:
 | 
						|
      Self.Diag(Loc, diag::err_conditional_ambiguous_ovl)
 | 
						|
        << LHS->getType() << RHS->getType()
 | 
						|
        << LHS->getSourceRange() << RHS->getSourceRange();
 | 
						|
      // FIXME: Print the possible common types by printing the return types of
 | 
						|
      // the viable candidates.
 | 
						|
      break;
 | 
						|
 | 
						|
    case OR_Deleted:
 | 
						|
      assert(false && "Conditional operator has only built-in overloads");
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Perform an "extended" implicit conversion as returned by
 | 
						|
/// TryClassUnification.
 | 
						|
///
 | 
						|
/// TryClassUnification generates ICSs that include reference bindings.
 | 
						|
/// PerformImplicitConversion is not suitable for this; it chokes if the
 | 
						|
/// second part of a standard conversion is ICK_DerivedToBase. This function
 | 
						|
/// handles the reference binding specially.
 | 
						|
static bool ConvertForConditional(Sema &Self, Expr *&E,
 | 
						|
                                  const ImplicitConversionSequence &ICS) {
 | 
						|
  if (ICS.isStandard() && ICS.Standard.ReferenceBinding) {
 | 
						|
    assert(ICS.Standard.DirectBinding &&
 | 
						|
           "TryClassUnification should never generate indirect ref bindings");
 | 
						|
    // FIXME: CheckReferenceInit should be able to reuse the ICS instead of
 | 
						|
    // redoing all the work.
 | 
						|
    return Self.CheckReferenceInit(E, Self.Context.getLValueReferenceType(
 | 
						|
                                        TargetType(ICS)),
 | 
						|
                                   /*FIXME:*/E->getLocStart(),
 | 
						|
                                   /*SuppressUserConversions=*/false,
 | 
						|
                                   /*AllowExplicit=*/false,
 | 
						|
                                   /*ForceRValue=*/false);
 | 
						|
  }
 | 
						|
  if (ICS.isUserDefined() && ICS.UserDefined.After.ReferenceBinding) {
 | 
						|
    assert(ICS.UserDefined.After.DirectBinding &&
 | 
						|
           "TryClassUnification should never generate indirect ref bindings");
 | 
						|
    return Self.CheckReferenceInit(E, Self.Context.getLValueReferenceType(
 | 
						|
                                        TargetType(ICS)),
 | 
						|
                                   /*FIXME:*/E->getLocStart(),
 | 
						|
                                   /*SuppressUserConversions=*/false,
 | 
						|
                                   /*AllowExplicit=*/false,
 | 
						|
                                   /*ForceRValue=*/false);
 | 
						|
  }
 | 
						|
  if (Self.PerformImplicitConversion(E, TargetType(ICS), ICS, Sema::AA_Converting))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check the operands of ?: under C++ semantics.
 | 
						|
///
 | 
						|
/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
 | 
						|
/// extension. In this case, LHS == Cond. (But they're not aliases.)
 | 
						|
QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
 | 
						|
                                           SourceLocation QuestionLoc) {
 | 
						|
  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
 | 
						|
  // interface pointers.
 | 
						|
 | 
						|
  // C++0x 5.16p1
 | 
						|
  //   The first expression is contextually converted to bool.
 | 
						|
  if (!Cond->isTypeDependent()) {
 | 
						|
    if (CheckCXXBooleanCondition(Cond))
 | 
						|
      return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // Either of the arguments dependent?
 | 
						|
  if (LHS->isTypeDependent() || RHS->isTypeDependent())
 | 
						|
    return Context.DependentTy;
 | 
						|
 | 
						|
  CheckSignCompare(LHS, RHS, QuestionLoc, diag::warn_mixed_sign_conditional);
 | 
						|
 | 
						|
  // C++0x 5.16p2
 | 
						|
  //   If either the second or the third operand has type (cv) void, ...
 | 
						|
  QualType LTy = LHS->getType();
 | 
						|
  QualType RTy = RHS->getType();
 | 
						|
  bool LVoid = LTy->isVoidType();
 | 
						|
  bool RVoid = RTy->isVoidType();
 | 
						|
  if (LVoid || RVoid) {
 | 
						|
    //   ... then the [l2r] conversions are performed on the second and third
 | 
						|
    //   operands ...
 | 
						|
    DefaultFunctionArrayConversion(LHS);
 | 
						|
    DefaultFunctionArrayConversion(RHS);
 | 
						|
    LTy = LHS->getType();
 | 
						|
    RTy = RHS->getType();
 | 
						|
 | 
						|
    //   ... and one of the following shall hold:
 | 
						|
    //   -- The second or the third operand (but not both) is a throw-
 | 
						|
    //      expression; the result is of the type of the other and is an rvalue.
 | 
						|
    bool LThrow = isa<CXXThrowExpr>(LHS);
 | 
						|
    bool RThrow = isa<CXXThrowExpr>(RHS);
 | 
						|
    if (LThrow && !RThrow)
 | 
						|
      return RTy;
 | 
						|
    if (RThrow && !LThrow)
 | 
						|
      return LTy;
 | 
						|
 | 
						|
    //   -- Both the second and third operands have type void; the result is of
 | 
						|
    //      type void and is an rvalue.
 | 
						|
    if (LVoid && RVoid)
 | 
						|
      return Context.VoidTy;
 | 
						|
 | 
						|
    // Neither holds, error.
 | 
						|
    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
 | 
						|
      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
 | 
						|
      << LHS->getSourceRange() << RHS->getSourceRange();
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // Neither is void.
 | 
						|
 | 
						|
  // C++0x 5.16p3
 | 
						|
  //   Otherwise, if the second and third operand have different types, and
 | 
						|
  //   either has (cv) class type, and attempt is made to convert each of those
 | 
						|
  //   operands to the other.
 | 
						|
  if (Context.getCanonicalType(LTy) != Context.getCanonicalType(RTy) &&
 | 
						|
      (LTy->isRecordType() || RTy->isRecordType())) {
 | 
						|
    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
 | 
						|
    // These return true if a single direction is already ambiguous.
 | 
						|
    if (TryClassUnification(*this, LHS, RHS, QuestionLoc, ICSLeftToRight))
 | 
						|
      return QualType();
 | 
						|
    if (TryClassUnification(*this, RHS, LHS, QuestionLoc, ICSRightToLeft))
 | 
						|
      return QualType();
 | 
						|
 | 
						|
    bool HaveL2R = !ICSLeftToRight.isBad();
 | 
						|
    bool HaveR2L = !ICSRightToLeft.isBad();
 | 
						|
    //   If both can be converted, [...] the program is ill-formed.
 | 
						|
    if (HaveL2R && HaveR2L) {
 | 
						|
      Diag(QuestionLoc, diag::err_conditional_ambiguous)
 | 
						|
        << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange();
 | 
						|
      return QualType();
 | 
						|
    }
 | 
						|
 | 
						|
    //   If exactly one conversion is possible, that conversion is applied to
 | 
						|
    //   the chosen operand and the converted operands are used in place of the
 | 
						|
    //   original operands for the remainder of this section.
 | 
						|
    if (HaveL2R) {
 | 
						|
      if (ConvertForConditional(*this, LHS, ICSLeftToRight))
 | 
						|
        return QualType();
 | 
						|
      LTy = LHS->getType();
 | 
						|
    } else if (HaveR2L) {
 | 
						|
      if (ConvertForConditional(*this, RHS, ICSRightToLeft))
 | 
						|
        return QualType();
 | 
						|
      RTy = RHS->getType();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x 5.16p4
 | 
						|
  //   If the second and third operands are lvalues and have the same type,
 | 
						|
  //   the result is of that type [...]
 | 
						|
  bool Same = Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy);
 | 
						|
  if (Same && LHS->isLvalue(Context) == Expr::LV_Valid &&
 | 
						|
      RHS->isLvalue(Context) == Expr::LV_Valid)
 | 
						|
    return LTy;
 | 
						|
 | 
						|
  // C++0x 5.16p5
 | 
						|
  //   Otherwise, the result is an rvalue. If the second and third operands
 | 
						|
  //   do not have the same type, and either has (cv) class type, ...
 | 
						|
  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
 | 
						|
    //   ... overload resolution is used to determine the conversions (if any)
 | 
						|
    //   to be applied to the operands. If the overload resolution fails, the
 | 
						|
    //   program is ill-formed.
 | 
						|
    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
 | 
						|
      return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x 5.16p6
 | 
						|
  //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
 | 
						|
  //   conversions are performed on the second and third operands.
 | 
						|
  DefaultFunctionArrayConversion(LHS);
 | 
						|
  DefaultFunctionArrayConversion(RHS);
 | 
						|
  LTy = LHS->getType();
 | 
						|
  RTy = RHS->getType();
 | 
						|
 | 
						|
  //   After those conversions, one of the following shall hold:
 | 
						|
  //   -- The second and third operands have the same type; the result
 | 
						|
  //      is of that type.
 | 
						|
  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy))
 | 
						|
    return LTy;
 | 
						|
 | 
						|
  //   -- The second and third operands have arithmetic or enumeration type;
 | 
						|
  //      the usual arithmetic conversions are performed to bring them to a
 | 
						|
  //      common type, and the result is of that type.
 | 
						|
  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
 | 
						|
    UsualArithmeticConversions(LHS, RHS);
 | 
						|
    return LHS->getType();
 | 
						|
  }
 | 
						|
 | 
						|
  //   -- The second and third operands have pointer type, or one has pointer
 | 
						|
  //      type and the other is a null pointer constant; pointer conversions
 | 
						|
  //      and qualification conversions are performed to bring them to their
 | 
						|
  //      composite pointer type. The result is of the composite pointer type.
 | 
						|
  //   -- The second and third operands have pointer to member type, or one has
 | 
						|
  //      pointer to member type and the other is a null pointer constant;
 | 
						|
  //      pointer to member conversions and qualification conversions are
 | 
						|
  //      performed to bring them to a common type, whose cv-qualification
 | 
						|
  //      shall match the cv-qualification of either the second or the third
 | 
						|
  //      operand. The result is of the common type.
 | 
						|
  QualType Composite = FindCompositePointerType(LHS, RHS);
 | 
						|
  if (!Composite.isNull())
 | 
						|
    return Composite;
 | 
						|
  
 | 
						|
  // Similarly, attempt to find composite type of twp objective-c pointers.
 | 
						|
  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
 | 
						|
  if (!Composite.isNull())
 | 
						|
    return Composite;
 | 
						|
 | 
						|
  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
 | 
						|
    << LHS->getType() << RHS->getType()
 | 
						|
    << LHS->getSourceRange() << RHS->getSourceRange();
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Find a merged pointer type and convert the two expressions to it.
 | 
						|
///
 | 
						|
/// This finds the composite pointer type (or member pointer type) for @p E1
 | 
						|
/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
 | 
						|
/// type and returns it.
 | 
						|
/// It does not emit diagnostics.
 | 
						|
QualType Sema::FindCompositePointerType(Expr *&E1, Expr *&E2) {
 | 
						|
  assert(getLangOptions().CPlusPlus && "This function assumes C++");
 | 
						|
  QualType T1 = E1->getType(), T2 = E2->getType();
 | 
						|
 | 
						|
  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
 | 
						|
      !T2->isAnyPointerType() && !T2->isMemberPointerType())
 | 
						|
   return QualType();
 | 
						|
 | 
						|
  // C++0x 5.9p2
 | 
						|
  //   Pointer conversions and qualification conversions are performed on
 | 
						|
  //   pointer operands to bring them to their composite pointer type. If
 | 
						|
  //   one operand is a null pointer constant, the composite pointer type is
 | 
						|
  //   the type of the other operand.
 | 
						|
  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
 | 
						|
    if (T2->isMemberPointerType())
 | 
						|
      ImpCastExprToType(E1, T2, CastExpr::CK_NullToMemberPointer);
 | 
						|
    else
 | 
						|
      ImpCastExprToType(E1, T2, CastExpr::CK_IntegralToPointer);
 | 
						|
    return T2;
 | 
						|
  }
 | 
						|
  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
 | 
						|
    if (T1->isMemberPointerType())
 | 
						|
      ImpCastExprToType(E2, T1, CastExpr::CK_NullToMemberPointer);
 | 
						|
    else
 | 
						|
      ImpCastExprToType(E2, T1, CastExpr::CK_IntegralToPointer);
 | 
						|
    return T1;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now both have to be pointers or member pointers.
 | 
						|
  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
 | 
						|
      (!T2->isPointerType() && !T2->isMemberPointerType()))
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
 | 
						|
  //   the other has type "pointer to cv2 T" and the composite pointer type is
 | 
						|
  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
 | 
						|
  //   Otherwise, the composite pointer type is a pointer type similar to the
 | 
						|
  //   type of one of the operands, with a cv-qualification signature that is
 | 
						|
  //   the union of the cv-qualification signatures of the operand types.
 | 
						|
  // In practice, the first part here is redundant; it's subsumed by the second.
 | 
						|
  // What we do here is, we build the two possible composite types, and try the
 | 
						|
  // conversions in both directions. If only one works, or if the two composite
 | 
						|
  // types are the same, we have succeeded.
 | 
						|
  // FIXME: extended qualifiers?
 | 
						|
  typedef llvm::SmallVector<unsigned, 4> QualifierVector;
 | 
						|
  QualifierVector QualifierUnion;
 | 
						|
  typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
 | 
						|
      ContainingClassVector;
 | 
						|
  ContainingClassVector MemberOfClass;
 | 
						|
  QualType Composite1 = Context.getCanonicalType(T1),
 | 
						|
           Composite2 = Context.getCanonicalType(T2);
 | 
						|
  do {
 | 
						|
    const PointerType *Ptr1, *Ptr2;
 | 
						|
    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
 | 
						|
        (Ptr2 = Composite2->getAs<PointerType>())) {
 | 
						|
      Composite1 = Ptr1->getPointeeType();
 | 
						|
      Composite2 = Ptr2->getPointeeType();
 | 
						|
      QualifierUnion.push_back(
 | 
						|
                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
 | 
						|
      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    const MemberPointerType *MemPtr1, *MemPtr2;
 | 
						|
    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
 | 
						|
        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
 | 
						|
      Composite1 = MemPtr1->getPointeeType();
 | 
						|
      Composite2 = MemPtr2->getPointeeType();
 | 
						|
      QualifierUnion.push_back(
 | 
						|
                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
 | 
						|
      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
 | 
						|
                                             MemPtr2->getClass()));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: block pointer types?
 | 
						|
 | 
						|
    // Cannot unwrap any more types.
 | 
						|
    break;
 | 
						|
  } while (true);
 | 
						|
 | 
						|
  // Rewrap the composites as pointers or member pointers with the union CVRs.
 | 
						|
  ContainingClassVector::reverse_iterator MOC
 | 
						|
    = MemberOfClass.rbegin();
 | 
						|
  for (QualifierVector::reverse_iterator
 | 
						|
         I = QualifierUnion.rbegin(),
 | 
						|
         E = QualifierUnion.rend();
 | 
						|
       I != E; (void)++I, ++MOC) {
 | 
						|
    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
 | 
						|
    if (MOC->first && MOC->second) {
 | 
						|
      // Rebuild member pointer type
 | 
						|
      Composite1 = Context.getMemberPointerType(
 | 
						|
                                    Context.getQualifiedType(Composite1, Quals),
 | 
						|
                                    MOC->first);
 | 
						|
      Composite2 = Context.getMemberPointerType(
 | 
						|
                                    Context.getQualifiedType(Composite2, Quals),
 | 
						|
                                    MOC->second);
 | 
						|
    } else {
 | 
						|
      // Rebuild pointer type
 | 
						|
      Composite1
 | 
						|
        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
 | 
						|
      Composite2
 | 
						|
        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ImplicitConversionSequence E1ToC1 =
 | 
						|
    TryImplicitConversion(E1, Composite1,
 | 
						|
                          /*SuppressUserConversions=*/false,
 | 
						|
                          /*AllowExplicit=*/false,
 | 
						|
                          /*ForceRValue=*/false,
 | 
						|
                          /*InOverloadResolution=*/false);
 | 
						|
  ImplicitConversionSequence E2ToC1 =
 | 
						|
    TryImplicitConversion(E2, Composite1,
 | 
						|
                          /*SuppressUserConversions=*/false,
 | 
						|
                          /*AllowExplicit=*/false,
 | 
						|
                          /*ForceRValue=*/false,
 | 
						|
                          /*InOverloadResolution=*/false);
 | 
						|
 | 
						|
  ImplicitConversionSequence E1ToC2, E2ToC2;
 | 
						|
  E1ToC2.setBad();
 | 
						|
  E2ToC2.setBad();  
 | 
						|
  if (Context.getCanonicalType(Composite1) !=
 | 
						|
      Context.getCanonicalType(Composite2)) {
 | 
						|
    E1ToC2 = TryImplicitConversion(E1, Composite2,
 | 
						|
                                   /*SuppressUserConversions=*/false,
 | 
						|
                                   /*AllowExplicit=*/false,
 | 
						|
                                   /*ForceRValue=*/false,
 | 
						|
                                   /*InOverloadResolution=*/false);
 | 
						|
    E2ToC2 = TryImplicitConversion(E2, Composite2,
 | 
						|
                                   /*SuppressUserConversions=*/false,
 | 
						|
                                   /*AllowExplicit=*/false,
 | 
						|
                                   /*ForceRValue=*/false,
 | 
						|
                                   /*InOverloadResolution=*/false);
 | 
						|
  }
 | 
						|
 | 
						|
  bool ToC1Viable = !E1ToC1.isBad() && !E2ToC1.isBad();
 | 
						|
  bool ToC2Viable = !E1ToC2.isBad() && !E2ToC2.isBad();
 | 
						|
  if (ToC1Viable && !ToC2Viable) {
 | 
						|
    if (!PerformImplicitConversion(E1, Composite1, E1ToC1, Sema::AA_Converting) &&
 | 
						|
        !PerformImplicitConversion(E2, Composite1, E2ToC1, Sema::AA_Converting))
 | 
						|
      return Composite1;
 | 
						|
  }
 | 
						|
  if (ToC2Viable && !ToC1Viable) {
 | 
						|
    if (!PerformImplicitConversion(E1, Composite2, E1ToC2, Sema::AA_Converting) &&
 | 
						|
        !PerformImplicitConversion(E2, Composite2, E2ToC2, Sema::AA_Converting))
 | 
						|
      return Composite2;
 | 
						|
  }
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
Sema::OwningExprResult Sema::MaybeBindToTemporary(Expr *E) {
 | 
						|
  if (!Context.getLangOptions().CPlusPlus)
 | 
						|
    return Owned(E);
 | 
						|
 | 
						|
  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
 | 
						|
 | 
						|
  const RecordType *RT = E->getType()->getAs<RecordType>();
 | 
						|
  if (!RT)
 | 
						|
    return Owned(E);
 | 
						|
 | 
						|
  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | 
						|
  if (RD->hasTrivialDestructor())
 | 
						|
    return Owned(E);
 | 
						|
 | 
						|
  if (CallExpr *CE = dyn_cast<CallExpr>(E)) {
 | 
						|
    QualType Ty = CE->getCallee()->getType();
 | 
						|
    if (const PointerType *PT = Ty->getAs<PointerType>())
 | 
						|
      Ty = PT->getPointeeType();
 | 
						|
    
 | 
						|
    const FunctionType *FTy = Ty->getAs<FunctionType>();
 | 
						|
    if (FTy->getResultType()->isReferenceType())
 | 
						|
      return Owned(E);
 | 
						|
  }
 | 
						|
  CXXTemporary *Temp = CXXTemporary::Create(Context,
 | 
						|
                                            RD->getDestructor(Context));
 | 
						|
  ExprTemporaries.push_back(Temp);
 | 
						|
  if (CXXDestructorDecl *Destructor =
 | 
						|
        const_cast<CXXDestructorDecl*>(RD->getDestructor(Context)))
 | 
						|
    MarkDeclarationReferenced(E->getExprLoc(), Destructor);
 | 
						|
  // FIXME: Add the temporary to the temporaries vector.
 | 
						|
  return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
 | 
						|
}
 | 
						|
 | 
						|
Expr *Sema::MaybeCreateCXXExprWithTemporaries(Expr *SubExpr) {
 | 
						|
  assert(SubExpr && "sub expression can't be null!");
 | 
						|
 | 
						|
  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
 | 
						|
  assert(ExprTemporaries.size() >= FirstTemporary);
 | 
						|
  if (ExprTemporaries.size() == FirstTemporary)
 | 
						|
    return SubExpr;
 | 
						|
 | 
						|
  Expr *E = CXXExprWithTemporaries::Create(Context, SubExpr,
 | 
						|
                                           &ExprTemporaries[FirstTemporary],
 | 
						|
                                       ExprTemporaries.size() - FirstTemporary);
 | 
						|
  ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
 | 
						|
                        ExprTemporaries.end());
 | 
						|
 | 
						|
  return E;
 | 
						|
}
 | 
						|
 | 
						|
Sema::OwningExprResult 
 | 
						|
Sema::MaybeCreateCXXExprWithTemporaries(OwningExprResult SubExpr) {
 | 
						|
  if (SubExpr.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
  
 | 
						|
  return Owned(MaybeCreateCXXExprWithTemporaries(SubExpr.takeAs<Expr>()));
 | 
						|
}
 | 
						|
 | 
						|
FullExpr Sema::CreateFullExpr(Expr *SubExpr) {
 | 
						|
  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
 | 
						|
  assert(ExprTemporaries.size() >= FirstTemporary);
 | 
						|
  
 | 
						|
  unsigned NumTemporaries = ExprTemporaries.size() - FirstTemporary;
 | 
						|
  CXXTemporary **Temporaries = 
 | 
						|
    NumTemporaries == 0 ? 0 : &ExprTemporaries[FirstTemporary];
 | 
						|
  
 | 
						|
  FullExpr E = FullExpr::Create(Context, SubExpr, Temporaries, NumTemporaries);
 | 
						|
 | 
						|
  ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
 | 
						|
                        ExprTemporaries.end());
 | 
						|
 | 
						|
  return E;
 | 
						|
}
 | 
						|
 | 
						|
Sema::OwningExprResult
 | 
						|
Sema::ActOnStartCXXMemberReference(Scope *S, ExprArg Base, SourceLocation OpLoc,
 | 
						|
                                   tok::TokenKind OpKind, TypeTy *&ObjectType) {
 | 
						|
  // Since this might be a postfix expression, get rid of ParenListExprs.
 | 
						|
  Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
 | 
						|
 | 
						|
  Expr *BaseExpr = (Expr*)Base.get();
 | 
						|
  assert(BaseExpr && "no record expansion");
 | 
						|
 | 
						|
  QualType BaseType = BaseExpr->getType();
 | 
						|
  if (BaseType->isDependentType()) {
 | 
						|
    // If we have a pointer to a dependent type and are using the -> operator,
 | 
						|
    // the object type is the type that the pointer points to. We might still
 | 
						|
    // have enough information about that type to do something useful.
 | 
						|
    if (OpKind == tok::arrow)
 | 
						|
      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
 | 
						|
        BaseType = Ptr->getPointeeType();
 | 
						|
    
 | 
						|
    ObjectType = BaseType.getAsOpaquePtr();
 | 
						|
    return move(Base);
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [over.match.oper]p8:
 | 
						|
  //   [...] When operator->returns, the operator-> is applied  to the value
 | 
						|
  //   returned, with the original second operand.
 | 
						|
  if (OpKind == tok::arrow) {
 | 
						|
    // The set of types we've considered so far.
 | 
						|
    llvm::SmallPtrSet<CanQualType,8> CTypes;
 | 
						|
    llvm::SmallVector<SourceLocation, 8> Locations;
 | 
						|
    CTypes.insert(Context.getCanonicalType(BaseType));
 | 
						|
    
 | 
						|
    while (BaseType->isRecordType()) {
 | 
						|
      Base = BuildOverloadedArrowExpr(S, move(Base), OpLoc);
 | 
						|
      BaseExpr = (Expr*)Base.get();
 | 
						|
      if (BaseExpr == NULL)
 | 
						|
        return ExprError();
 | 
						|
      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(BaseExpr))
 | 
						|
        Locations.push_back(OpCall->getDirectCallee()->getLocation());
 | 
						|
      BaseType = BaseExpr->getType();
 | 
						|
      CanQualType CBaseType = Context.getCanonicalType(BaseType);
 | 
						|
      if (!CTypes.insert(CBaseType)) {
 | 
						|
        Diag(OpLoc, diag::err_operator_arrow_circular);
 | 
						|
        for (unsigned i = 0; i < Locations.size(); i++)
 | 
						|
          Diag(Locations[i], diag::note_declared_at);
 | 
						|
        return ExprError();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (BaseType->isPointerType())
 | 
						|
      BaseType = BaseType->getPointeeType();
 | 
						|
  }
 | 
						|
 | 
						|
  // We could end up with various non-record types here, such as extended
 | 
						|
  // vector types or Objective-C interfaces. Just return early and let
 | 
						|
  // ActOnMemberReferenceExpr do the work.
 | 
						|
  if (!BaseType->isRecordType()) {
 | 
						|
    // C++ [basic.lookup.classref]p2:
 | 
						|
    //   [...] If the type of the object expression is of pointer to scalar
 | 
						|
    //   type, the unqualified-id is looked up in the context of the complete
 | 
						|
    //   postfix-expression.
 | 
						|
    ObjectType = 0;
 | 
						|
    return move(Base);
 | 
						|
  }
 | 
						|
 | 
						|
  // The object type must be complete (or dependent).
 | 
						|
  if (!BaseType->isDependentType() &&
 | 
						|
      RequireCompleteType(OpLoc, BaseType, 
 | 
						|
                          PDiag(diag::err_incomplete_member_access)))
 | 
						|
    return ExprError();
 | 
						|
  
 | 
						|
  // C++ [basic.lookup.classref]p2:
 | 
						|
  //   If the id-expression in a class member access (5.2.5) is an
 | 
						|
  //   unqualified-id, and the type of the object expression is of a class
 | 
						|
  //   type C (or of pointer to a class type C), the unqualified-id is looked
 | 
						|
  //   up in the scope of class C. [...]
 | 
						|
  ObjectType = BaseType.getAsOpaquePtr();
 | 
						|
  
 | 
						|
  return move(Base);
 | 
						|
}
 | 
						|
 | 
						|
CXXMemberCallExpr *Sema::BuildCXXMemberCallExpr(Expr *Exp, 
 | 
						|
                                                CXXMethodDecl *Method) {
 | 
						|
  if (PerformObjectArgumentInitialization(Exp, Method))
 | 
						|
    assert(0 && "Calling BuildCXXMemberCallExpr with invalid call?");
 | 
						|
 | 
						|
  MemberExpr *ME = 
 | 
						|
      new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method, 
 | 
						|
                               SourceLocation(), Method->getType());
 | 
						|
  QualType ResultType = Method->getResultType().getNonReferenceType();
 | 
						|
  MarkDeclarationReferenced(Exp->getLocStart(), Method);
 | 
						|
  CXXMemberCallExpr *CE =
 | 
						|
    new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType,
 | 
						|
                                    Exp->getLocEnd());
 | 
						|
  return CE;
 | 
						|
}
 | 
						|
 | 
						|
Sema::OwningExprResult Sema::BuildCXXCastArgument(SourceLocation CastLoc,
 | 
						|
                                                  QualType Ty,
 | 
						|
                                                  CastExpr::CastKind Kind,
 | 
						|
                                                  CXXMethodDecl *Method,
 | 
						|
                                                  ExprArg Arg) {
 | 
						|
  Expr *From = Arg.takeAs<Expr>();
 | 
						|
 | 
						|
  switch (Kind) {
 | 
						|
  default: assert(0 && "Unhandled cast kind!");
 | 
						|
  case CastExpr::CK_ConstructorConversion: {
 | 
						|
    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
 | 
						|
    
 | 
						|
    if (CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
 | 
						|
                                MultiExprArg(*this, (void **)&From, 1),
 | 
						|
                                CastLoc, ConstructorArgs))
 | 
						|
      return ExprError();
 | 
						|
    
 | 
						|
    OwningExprResult Result = 
 | 
						|
      BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method), 
 | 
						|
                            move_arg(ConstructorArgs));
 | 
						|
    if (Result.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
    
 | 
						|
    return MaybeBindToTemporary(Result.takeAs<Expr>());
 | 
						|
  }
 | 
						|
 | 
						|
  case CastExpr::CK_UserDefinedConversion: {
 | 
						|
    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
 | 
						|
 | 
						|
    // Create an implicit call expr that calls it.
 | 
						|
    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(From, Method);
 | 
						|
    return MaybeBindToTemporary(CE);
 | 
						|
  }
 | 
						|
  }
 | 
						|
}    
 | 
						|
 | 
						|
Sema::OwningExprResult Sema::ActOnFinishFullExpr(ExprArg Arg) {
 | 
						|
  Expr *FullExpr = Arg.takeAs<Expr>();
 | 
						|
  if (FullExpr)
 | 
						|
    FullExpr = MaybeCreateCXXExprWithTemporaries(FullExpr);
 | 
						|
 | 
						|
  return Owned(FullExpr);
 | 
						|
}
 |