forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1534 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1534 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file implements semantic analysis for statements.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "Sema.h"
 | 
						|
#include "SemaInit.h"
 | 
						|
#include "clang/AST/APValue.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/ExprObjC.h"
 | 
						|
#include "clang/AST/StmtObjC.h"
 | 
						|
#include "clang/AST/StmtCXX.h"
 | 
						|
#include "clang/Lex/Preprocessor.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
Sema::OwningStmtResult Sema::ActOnExprStmt(FullExprArg expr) {
 | 
						|
  Expr *E = expr->takeAs<Expr>();
 | 
						|
  assert(E && "ActOnExprStmt(): missing expression");
 | 
						|
  if (E->getType()->isObjCInterfaceType()) {
 | 
						|
    if (LangOpts.ObjCNonFragileABI)
 | 
						|
      Diag(E->getLocEnd(), diag::err_indirection_requires_nonfragile_object)
 | 
						|
             << E->getType();
 | 
						|
    else
 | 
						|
      Diag(E->getLocEnd(), diag::err_direct_interface_unsupported)
 | 
						|
             << E->getType();
 | 
						|
    return StmtError();
 | 
						|
  }
 | 
						|
  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
 | 
						|
  // void expression for its side effects.  Conversion to void allows any
 | 
						|
  // operand, even incomplete types.
 | 
						|
 | 
						|
  // Same thing in for stmt first clause (when expr) and third clause.
 | 
						|
  return Owned(static_cast<Stmt*>(E));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Sema::OwningStmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
 | 
						|
  return Owned(new (Context) NullStmt(SemiLoc));
 | 
						|
}
 | 
						|
 | 
						|
Sema::OwningStmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg,
 | 
						|
                                           SourceLocation StartLoc,
 | 
						|
                                           SourceLocation EndLoc) {
 | 
						|
  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
 | 
						|
 | 
						|
  // If we have an invalid decl, just return an error.
 | 
						|
  if (DG.isNull()) return StmtError();
 | 
						|
 | 
						|
  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
 | 
						|
  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
 | 
						|
  
 | 
						|
  // If we have an invalid decl, just return.
 | 
						|
  if (DG.isNull() || !DG.isSingleDecl()) return;
 | 
						|
  // suppress any potential 'unused variable' warning.
 | 
						|
  DG.getSingleDecl()->setUsed();
 | 
						|
}
 | 
						|
 | 
						|
void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
 | 
						|
  const Expr *E = dyn_cast_or_null<Expr>(S);
 | 
						|
  if (!E)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Ignore expressions that have void type.
 | 
						|
  if (E->getType()->isVoidType())
 | 
						|
    return;
 | 
						|
 | 
						|
  SourceLocation Loc;
 | 
						|
  SourceRange R1, R2;
 | 
						|
  if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Okay, we have an unused result.  Depending on what the base expression is,
 | 
						|
  // we might want to make a more specific diagnostic.  Check for one of these
 | 
						|
  // cases now.
 | 
						|
  unsigned DiagID = diag::warn_unused_expr;
 | 
						|
  E = E->IgnoreParens();
 | 
						|
  if (isa<ObjCImplicitSetterGetterRefExpr>(E))
 | 
						|
    DiagID = diag::warn_unused_property_expr;
 | 
						|
  
 | 
						|
  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
 | 
						|
    // If the callee has attribute pure, const, or warn_unused_result, warn with
 | 
						|
    // a more specific message to make it clear what is happening.
 | 
						|
    if (const Decl *FD = CE->getCalleeDecl()) {
 | 
						|
      if (FD->getAttr<WarnUnusedResultAttr>()) {
 | 
						|
        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      if (FD->getAttr<PureAttr>()) {
 | 
						|
        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      if (FD->getAttr<ConstAttr>()) {
 | 
						|
        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }        
 | 
						|
  }
 | 
						|
 | 
						|
  Diag(Loc, DiagID) << R1 << R2;
 | 
						|
}
 | 
						|
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
 | 
						|
                        MultiStmtArg elts, bool isStmtExpr) {
 | 
						|
  unsigned NumElts = elts.size();
 | 
						|
  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
 | 
						|
  // If we're in C89 mode, check that we don't have any decls after stmts.  If
 | 
						|
  // so, emit an extension diagnostic.
 | 
						|
  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
 | 
						|
    // Note that __extension__ can be around a decl.
 | 
						|
    unsigned i = 0;
 | 
						|
    // Skip over all declarations.
 | 
						|
    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
 | 
						|
      /*empty*/;
 | 
						|
 | 
						|
    // We found the end of the list or a statement.  Scan for another declstmt.
 | 
						|
    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
 | 
						|
      /*empty*/;
 | 
						|
 | 
						|
    if (i != NumElts) {
 | 
						|
      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
 | 
						|
      Diag(D->getLocation(), diag::ext_mixed_decls_code);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Warn about unused expressions in statements.
 | 
						|
  for (unsigned i = 0; i != NumElts; ++i) {
 | 
						|
    // Ignore statements that are last in a statement expression.
 | 
						|
    if (isStmtExpr && i == NumElts - 1)
 | 
						|
      continue;
 | 
						|
 | 
						|
    DiagnoseUnusedExprResult(Elts[i]);
 | 
						|
  }
 | 
						|
 | 
						|
  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
 | 
						|
}
 | 
						|
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprArg lhsval,
 | 
						|
                    SourceLocation DotDotDotLoc, ExprArg rhsval,
 | 
						|
                    SourceLocation ColonLoc) {
 | 
						|
  assert((lhsval.get() != 0) && "missing expression in case statement");
 | 
						|
 | 
						|
  // C99 6.8.4.2p3: The expression shall be an integer constant.
 | 
						|
  // However, GCC allows any evaluatable integer expression.
 | 
						|
  Expr *LHSVal = static_cast<Expr*>(lhsval.get());
 | 
						|
  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
 | 
						|
      VerifyIntegerConstantExpression(LHSVal))
 | 
						|
    return StmtError();
 | 
						|
 | 
						|
  // GCC extension: The expression shall be an integer constant.
 | 
						|
 | 
						|
  Expr *RHSVal = static_cast<Expr*>(rhsval.get());
 | 
						|
  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
 | 
						|
      VerifyIntegerConstantExpression(RHSVal)) {
 | 
						|
    RHSVal = 0;  // Recover by just forgetting about it.
 | 
						|
    rhsval = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (getSwitchStack().empty()) {
 | 
						|
    Diag(CaseLoc, diag::err_case_not_in_switch);
 | 
						|
    return StmtError();
 | 
						|
  }
 | 
						|
 | 
						|
  // Only now release the smart pointers.
 | 
						|
  lhsval.release();
 | 
						|
  rhsval.release();
 | 
						|
  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
 | 
						|
                                        ColonLoc);
 | 
						|
  getSwitchStack().back()->addSwitchCase(CS);
 | 
						|
  return Owned(CS);
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnCaseStmtBody - This installs a statement as the body of a case.
 | 
						|
void Sema::ActOnCaseStmtBody(StmtTy *caseStmt, StmtArg subStmt) {
 | 
						|
  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
 | 
						|
  Stmt *SubStmt = subStmt.takeAs<Stmt>();
 | 
						|
  CS->setSubStmt(SubStmt);
 | 
						|
}
 | 
						|
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
 | 
						|
                       StmtArg subStmt, Scope *CurScope) {
 | 
						|
  Stmt *SubStmt = subStmt.takeAs<Stmt>();
 | 
						|
 | 
						|
  if (getSwitchStack().empty()) {
 | 
						|
    Diag(DefaultLoc, diag::err_default_not_in_switch);
 | 
						|
    return Owned(SubStmt);
 | 
						|
  }
 | 
						|
 | 
						|
  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
 | 
						|
  getSwitchStack().back()->addSwitchCase(DS);
 | 
						|
  return Owned(DS);
 | 
						|
}
 | 
						|
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
 | 
						|
                     SourceLocation ColonLoc, StmtArg subStmt) {
 | 
						|
  Stmt *SubStmt = subStmt.takeAs<Stmt>();
 | 
						|
  // Look up the record for this label identifier.
 | 
						|
  LabelStmt *&LabelDecl = getLabelMap()[II];
 | 
						|
 | 
						|
  // If not forward referenced or defined already, just create a new LabelStmt.
 | 
						|
  if (LabelDecl == 0)
 | 
						|
    return Owned(LabelDecl = new (Context) LabelStmt(IdentLoc, II, SubStmt));
 | 
						|
 | 
						|
  assert(LabelDecl->getID() == II && "Label mismatch!");
 | 
						|
 | 
						|
  // Otherwise, this label was either forward reference or multiply defined.  If
 | 
						|
  // multiply defined, reject it now.
 | 
						|
  if (LabelDecl->getSubStmt()) {
 | 
						|
    Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID();
 | 
						|
    Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition);
 | 
						|
    return Owned(SubStmt);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, this label was forward declared, and we just found its real
 | 
						|
  // definition.  Fill in the forward definition and return it.
 | 
						|
  LabelDecl->setIdentLoc(IdentLoc);
 | 
						|
  LabelDecl->setSubStmt(SubStmt);
 | 
						|
  return Owned(LabelDecl);
 | 
						|
}
 | 
						|
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, DeclPtrTy CondVar,
 | 
						|
                  StmtArg ThenVal, SourceLocation ElseLoc,
 | 
						|
                  StmtArg ElseVal) {
 | 
						|
  OwningExprResult CondResult(CondVal.release());
 | 
						|
 | 
						|
  VarDecl *ConditionVar = 0;
 | 
						|
  if (CondVar.get()) {
 | 
						|
    ConditionVar = CondVar.getAs<VarDecl>();
 | 
						|
    CondResult = CheckConditionVariable(ConditionVar);
 | 
						|
    if (CondResult.isInvalid())
 | 
						|
      return StmtError();
 | 
						|
  }
 | 
						|
  Expr *ConditionExpr = CondResult.takeAs<Expr>();
 | 
						|
  if (!ConditionExpr)
 | 
						|
    return StmtError();
 | 
						|
  
 | 
						|
  if (CheckBooleanCondition(ConditionExpr, IfLoc)) {
 | 
						|
    CondResult = ConditionExpr;
 | 
						|
    return StmtError();
 | 
						|
  }
 | 
						|
 | 
						|
  Stmt *thenStmt = ThenVal.takeAs<Stmt>();
 | 
						|
  DiagnoseUnusedExprResult(thenStmt);
 | 
						|
 | 
						|
  // Warn if the if block has a null body without an else value.
 | 
						|
  // this helps prevent bugs due to typos, such as
 | 
						|
  // if (condition);
 | 
						|
  //   do_stuff();
 | 
						|
  if (!ElseVal.get()) {
 | 
						|
    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
 | 
						|
      Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
 | 
						|
  }
 | 
						|
 | 
						|
  Stmt *elseStmt = ElseVal.takeAs<Stmt>();
 | 
						|
  DiagnoseUnusedExprResult(elseStmt);
 | 
						|
 | 
						|
  CondResult.release();
 | 
						|
  return Owned(new (Context) IfStmt(IfLoc, ConditionVar, ConditionExpr, 
 | 
						|
                                    thenStmt, ElseLoc, elseStmt));
 | 
						|
}
 | 
						|
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnStartOfSwitchStmt(FullExprArg cond, DeclPtrTy CondVar) {
 | 
						|
  OwningExprResult CondResult(cond.release());
 | 
						|
  
 | 
						|
  VarDecl *ConditionVar = 0;
 | 
						|
  if (CondVar.get()) {
 | 
						|
    ConditionVar = CondVar.getAs<VarDecl>();
 | 
						|
    CondResult = CheckConditionVariable(ConditionVar);
 | 
						|
    if (CondResult.isInvalid())
 | 
						|
      return StmtError();
 | 
						|
  }
 | 
						|
  SwitchStmt *SS = new (Context) SwitchStmt(ConditionVar, 
 | 
						|
                                            CondResult.takeAs<Expr>());
 | 
						|
  getSwitchStack().push_back(SS);
 | 
						|
  return Owned(SS);
 | 
						|
}
 | 
						|
 | 
						|
/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
 | 
						|
/// the specified width and sign.  If an overflow occurs, detect it and emit
 | 
						|
/// the specified diagnostic.
 | 
						|
void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
 | 
						|
                                              unsigned NewWidth, bool NewSign,
 | 
						|
                                              SourceLocation Loc,
 | 
						|
                                              unsigned DiagID) {
 | 
						|
  // Perform a conversion to the promoted condition type if needed.
 | 
						|
  if (NewWidth > Val.getBitWidth()) {
 | 
						|
    // If this is an extension, just do it.
 | 
						|
    llvm::APSInt OldVal(Val);
 | 
						|
    Val.extend(NewWidth);
 | 
						|
 | 
						|
    // If the input was signed and negative and the output is unsigned,
 | 
						|
    // warn.
 | 
						|
    if (!NewSign && OldVal.isSigned() && OldVal.isNegative())
 | 
						|
      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
 | 
						|
 | 
						|
    Val.setIsSigned(NewSign);
 | 
						|
  } else if (NewWidth < Val.getBitWidth()) {
 | 
						|
    // If this is a truncation, check for overflow.
 | 
						|
    llvm::APSInt ConvVal(Val);
 | 
						|
    ConvVal.trunc(NewWidth);
 | 
						|
    ConvVal.setIsSigned(NewSign);
 | 
						|
    ConvVal.extend(Val.getBitWidth());
 | 
						|
    ConvVal.setIsSigned(Val.isSigned());
 | 
						|
    if (ConvVal != Val)
 | 
						|
      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
 | 
						|
 | 
						|
    // Regardless of whether a diagnostic was emitted, really do the
 | 
						|
    // truncation.
 | 
						|
    Val.trunc(NewWidth);
 | 
						|
    Val.setIsSigned(NewSign);
 | 
						|
  } else if (NewSign != Val.isSigned()) {
 | 
						|
    // Convert the sign to match the sign of the condition.  This can cause
 | 
						|
    // overflow as well: unsigned(INTMIN)
 | 
						|
    llvm::APSInt OldVal(Val);
 | 
						|
    Val.setIsSigned(NewSign);
 | 
						|
 | 
						|
    if (Val.isNegative())  // Sign bit changes meaning.
 | 
						|
      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct CaseCompareFunctor {
 | 
						|
    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
 | 
						|
                    const llvm::APSInt &RHS) {
 | 
						|
      return LHS.first < RHS;
 | 
						|
    }
 | 
						|
    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
 | 
						|
                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
 | 
						|
      return LHS.first < RHS.first;
 | 
						|
    }
 | 
						|
    bool operator()(const llvm::APSInt &LHS,
 | 
						|
                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
 | 
						|
      return LHS < RHS.first;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// CmpCaseVals - Comparison predicate for sorting case values.
 | 
						|
///
 | 
						|
static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
 | 
						|
                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
 | 
						|
  if (lhs.first < rhs.first)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (lhs.first == rhs.first &&
 | 
						|
      lhs.second->getCaseLoc().getRawEncoding()
 | 
						|
       < rhs.second->getCaseLoc().getRawEncoding())
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
 | 
						|
/// potentially integral-promoted expression @p expr.
 | 
						|
static QualType GetTypeBeforeIntegralPromotion(const Expr* expr) {
 | 
						|
  const ImplicitCastExpr *ImplicitCast =
 | 
						|
      dyn_cast_or_null<ImplicitCastExpr>(expr);
 | 
						|
  if (ImplicitCast != NULL) {
 | 
						|
    const Expr *ExprBeforePromotion = ImplicitCast->getSubExpr();
 | 
						|
    QualType TypeBeforePromotion = ExprBeforePromotion->getType();
 | 
						|
    if (TypeBeforePromotion->isIntegralType()) {
 | 
						|
      return TypeBeforePromotion;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return expr->getType();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check (and possibly convert) the condition in a switch
 | 
						|
/// statement in C++.
 | 
						|
static bool CheckCXXSwitchCondition(Sema &S, SourceLocation SwitchLoc,
 | 
						|
                                    Expr *&CondExpr) {
 | 
						|
  if (CondExpr->isTypeDependent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  QualType CondType = CondExpr->getType();
 | 
						|
 | 
						|
  // C++ 6.4.2.p2:
 | 
						|
  // The condition shall be of integral type, enumeration type, or of a class
 | 
						|
  // type for which a single conversion function to integral or enumeration
 | 
						|
  // type exists (12.3). If the condition is of class type, the condition is
 | 
						|
  // converted by calling that conversion function, and the result of the
 | 
						|
  // conversion is used in place of the original condition for the remainder
 | 
						|
  // of this section. Integral promotions are performed.
 | 
						|
 | 
						|
  // Make sure that the condition expression has a complete type,
 | 
						|
  // otherwise we'll never find any conversions.
 | 
						|
  if (S.RequireCompleteType(SwitchLoc, CondType,
 | 
						|
                            PDiag(diag::err_switch_incomplete_class_type)
 | 
						|
                              << CondExpr->getSourceRange()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  llvm::SmallVector<CXXConversionDecl *, 4> ViableConversions;
 | 
						|
  llvm::SmallVector<CXXConversionDecl *, 4> ExplicitConversions;
 | 
						|
  if (const RecordType *RecordTy = CondType->getAs<RecordType>()) {
 | 
						|
    const UnresolvedSet *Conversions
 | 
						|
      = cast<CXXRecordDecl>(RecordTy->getDecl())
 | 
						|
                                             ->getVisibleConversionFunctions();
 | 
						|
    for (UnresolvedSet::iterator I = Conversions->begin(),
 | 
						|
           E = Conversions->end(); I != E; ++I) {
 | 
						|
      if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(*I))
 | 
						|
        if (Conversion->getConversionType().getNonReferenceType()
 | 
						|
              ->isIntegralType()) {
 | 
						|
          if (Conversion->isExplicit())
 | 
						|
            ExplicitConversions.push_back(Conversion);
 | 
						|
          else
 | 
						|
          ViableConversions.push_back(Conversion);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    switch (ViableConversions.size()) {
 | 
						|
    case 0:
 | 
						|
      if (ExplicitConversions.size() == 1) {
 | 
						|
        // The user probably meant to invoke the given explicit
 | 
						|
        // conversion; use it.
 | 
						|
        QualType ConvTy
 | 
						|
          = ExplicitConversions[0]->getConversionType()
 | 
						|
                        .getNonReferenceType();
 | 
						|
        std::string TypeStr;
 | 
						|
        ConvTy.getAsStringInternal(TypeStr, S.Context.PrintingPolicy);
 | 
						|
 | 
						|
        S.Diag(SwitchLoc, diag::err_switch_explicit_conversion)
 | 
						|
          << CondType << ConvTy << CondExpr->getSourceRange()
 | 
						|
          << CodeModificationHint::CreateInsertion(CondExpr->getLocStart(),
 | 
						|
                                         "static_cast<" + TypeStr + ">(")
 | 
						|
          << CodeModificationHint::CreateInsertion(
 | 
						|
                            S.PP.getLocForEndOfToken(CondExpr->getLocEnd()),
 | 
						|
                               ")");
 | 
						|
        S.Diag(ExplicitConversions[0]->getLocation(),
 | 
						|
             diag::note_switch_conversion)
 | 
						|
          << ConvTy->isEnumeralType() << ConvTy;
 | 
						|
 | 
						|
        // If we aren't in a SFINAE context, build a call to the 
 | 
						|
        // explicit conversion function.
 | 
						|
        if (S.isSFINAEContext())
 | 
						|
          return true;
 | 
						|
 | 
						|
        CondExpr = S.BuildCXXMemberCallExpr(CondExpr, ExplicitConversions[0]);
 | 
						|
      }
 | 
						|
 | 
						|
      // We'll complain below about a non-integral condition type.
 | 
						|
      break;
 | 
						|
 | 
						|
    case 1:
 | 
						|
      // Apply this conversion.
 | 
						|
      CondExpr = S.BuildCXXMemberCallExpr(CondExpr, ViableConversions[0]);
 | 
						|
      break;
 | 
						|
 | 
						|
    default:
 | 
						|
      S.Diag(SwitchLoc, diag::err_switch_multiple_conversions)
 | 
						|
        << CondType << CondExpr->getSourceRange();
 | 
						|
      for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
 | 
						|
        QualType ConvTy
 | 
						|
          = ViableConversions[I]->getConversionType().getNonReferenceType();
 | 
						|
        S.Diag(ViableConversions[I]->getLocation(),
 | 
						|
             diag::note_switch_conversion)
 | 
						|
          << ConvTy->isEnumeralType() << ConvTy;
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  } 
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch,
 | 
						|
                            StmtArg Body) {
 | 
						|
  Stmt *BodyStmt = Body.takeAs<Stmt>();
 | 
						|
 | 
						|
  SwitchStmt *SS = getSwitchStack().back();
 | 
						|
  assert(SS == (SwitchStmt*)Switch.get() && "switch stack missing push/pop!");
 | 
						|
 | 
						|
  SS->setBody(BodyStmt, SwitchLoc);
 | 
						|
  getSwitchStack().pop_back();
 | 
						|
 | 
						|
  if (SS->getCond() == 0) {
 | 
						|
    SS->Destroy(Context);
 | 
						|
    return StmtError();
 | 
						|
  }
 | 
						|
    
 | 
						|
  Expr *CondExpr = SS->getCond();
 | 
						|
  QualType CondTypeBeforePromotion =
 | 
						|
      GetTypeBeforeIntegralPromotion(CondExpr);
 | 
						|
 | 
						|
  if (getLangOptions().CPlusPlus &&
 | 
						|
      CheckCXXSwitchCondition(*this, SwitchLoc, CondExpr))
 | 
						|
    return StmtError();
 | 
						|
 | 
						|
  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
 | 
						|
  UsualUnaryConversions(CondExpr);
 | 
						|
  QualType CondType = CondExpr->getType();
 | 
						|
  SS->setCond(CondExpr);
 | 
						|
 | 
						|
  // C++ 6.4.2.p2:
 | 
						|
  // Integral promotions are performed (on the switch condition).
 | 
						|
  //
 | 
						|
  // A case value unrepresentable by the original switch condition
 | 
						|
  // type (before the promotion) doesn't make sense, even when it can
 | 
						|
  // be represented by the promoted type.  Therefore we need to find
 | 
						|
  // the pre-promotion type of the switch condition.
 | 
						|
  if (!CondExpr->isTypeDependent()) {
 | 
						|
    if (!CondType->isIntegerType()) { // C99 6.8.4.2p1
 | 
						|
      Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer)
 | 
						|
          << CondType << CondExpr->getSourceRange();
 | 
						|
      return StmtError();
 | 
						|
    }
 | 
						|
 | 
						|
    if (CondTypeBeforePromotion->isBooleanType()) {
 | 
						|
      // switch(bool_expr) {...} is often a programmer error, e.g.
 | 
						|
      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
 | 
						|
      // One can always use an if statement instead of switch(bool_expr).
 | 
						|
      Diag(SwitchLoc, diag::warn_bool_switch_condition)
 | 
						|
          << CondExpr->getSourceRange();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the bitwidth of the switched-on value before promotions.  We must
 | 
						|
  // convert the integer case values to this width before comparison.
 | 
						|
  bool HasDependentValue
 | 
						|
    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
 | 
						|
  unsigned CondWidth
 | 
						|
    = HasDependentValue? 0
 | 
						|
      : static_cast<unsigned>(Context.getTypeSize(CondTypeBeforePromotion));
 | 
						|
  bool CondIsSigned = CondTypeBeforePromotion->isSignedIntegerType();
 | 
						|
 | 
						|
  // Accumulate all of the case values in a vector so that we can sort them
 | 
						|
  // and detect duplicates.  This vector contains the APInt for the case after
 | 
						|
  // it has been converted to the condition type.
 | 
						|
  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
 | 
						|
  CaseValsTy CaseVals;
 | 
						|
 | 
						|
  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
 | 
						|
  std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRanges;
 | 
						|
 | 
						|
  DefaultStmt *TheDefaultStmt = 0;
 | 
						|
 | 
						|
  bool CaseListIsErroneous = false;
 | 
						|
 | 
						|
  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
 | 
						|
       SC = SC->getNextSwitchCase()) {
 | 
						|
 | 
						|
    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
 | 
						|
      if (TheDefaultStmt) {
 | 
						|
        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
 | 
						|
        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
 | 
						|
 | 
						|
        // FIXME: Remove the default statement from the switch block so that
 | 
						|
        // we'll return a valid AST.  This requires recursing down the AST and
 | 
						|
        // finding it, not something we are set up to do right now.  For now,
 | 
						|
        // just lop the entire switch stmt out of the AST.
 | 
						|
        CaseListIsErroneous = true;
 | 
						|
      }
 | 
						|
      TheDefaultStmt = DS;
 | 
						|
 | 
						|
    } else {
 | 
						|
      CaseStmt *CS = cast<CaseStmt>(SC);
 | 
						|
 | 
						|
      // We already verified that the expression has a i-c-e value (C99
 | 
						|
      // 6.8.4.2p3) - get that value now.
 | 
						|
      Expr *Lo = CS->getLHS();
 | 
						|
 | 
						|
      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
 | 
						|
        HasDependentValue = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
 | 
						|
 | 
						|
      // Convert the value to the same width/sign as the condition.
 | 
						|
      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
 | 
						|
                                         CS->getLHS()->getLocStart(),
 | 
						|
                                         diag::warn_case_value_overflow);
 | 
						|
 | 
						|
      // If the LHS is not the same type as the condition, insert an implicit
 | 
						|
      // cast.
 | 
						|
      ImpCastExprToType(Lo, CondType, CastExpr::CK_IntegralCast);
 | 
						|
      CS->setLHS(Lo);
 | 
						|
 | 
						|
      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
 | 
						|
      if (CS->getRHS()) {
 | 
						|
        if (CS->getRHS()->isTypeDependent() ||
 | 
						|
            CS->getRHS()->isValueDependent()) {
 | 
						|
          HasDependentValue = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        CaseRanges.push_back(std::make_pair(LoVal, CS));
 | 
						|
      } else
 | 
						|
        CaseVals.push_back(std::make_pair(LoVal, CS));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!HasDependentValue) {
 | 
						|
    // Sort all the scalar case values so we can easily detect duplicates.
 | 
						|
    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
 | 
						|
 | 
						|
    if (!CaseVals.empty()) {
 | 
						|
      for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) {
 | 
						|
        if (CaseVals[i].first == CaseVals[i+1].first) {
 | 
						|
          // If we have a duplicate, report it.
 | 
						|
          Diag(CaseVals[i+1].second->getLHS()->getLocStart(),
 | 
						|
               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
 | 
						|
          Diag(CaseVals[i].second->getLHS()->getLocStart(),
 | 
						|
               diag::note_duplicate_case_prev);
 | 
						|
          // FIXME: We really want to remove the bogus case stmt from the
 | 
						|
          // substmt, but we have no way to do this right now.
 | 
						|
          CaseListIsErroneous = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Detect duplicate case ranges, which usually don't exist at all in
 | 
						|
    // the first place.
 | 
						|
    if (!CaseRanges.empty()) {
 | 
						|
      // Sort all the case ranges by their low value so we can easily detect
 | 
						|
      // overlaps between ranges.
 | 
						|
      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
 | 
						|
 | 
						|
      // Scan the ranges, computing the high values and removing empty ranges.
 | 
						|
      std::vector<llvm::APSInt> HiVals;
 | 
						|
      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
 | 
						|
        CaseStmt *CR = CaseRanges[i].second;
 | 
						|
        Expr *Hi = CR->getRHS();
 | 
						|
        llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
 | 
						|
 | 
						|
        // Convert the value to the same width/sign as the condition.
 | 
						|
        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
 | 
						|
                                           CR->getRHS()->getLocStart(),
 | 
						|
                                           diag::warn_case_value_overflow);
 | 
						|
 | 
						|
        // If the LHS is not the same type as the condition, insert an implicit
 | 
						|
        // cast.
 | 
						|
        ImpCastExprToType(Hi, CondType, CastExpr::CK_IntegralCast);
 | 
						|
        CR->setRHS(Hi);
 | 
						|
 | 
						|
        // If the low value is bigger than the high value, the case is empty.
 | 
						|
        if (CaseRanges[i].first > HiVal) {
 | 
						|
          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
 | 
						|
            << SourceRange(CR->getLHS()->getLocStart(),
 | 
						|
                           CR->getRHS()->getLocEnd());
 | 
						|
          CaseRanges.erase(CaseRanges.begin()+i);
 | 
						|
          --i, --e;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        HiVals.push_back(HiVal);
 | 
						|
      }
 | 
						|
 | 
						|
      // Rescan the ranges, looking for overlap with singleton values and other
 | 
						|
      // ranges.  Since the range list is sorted, we only need to compare case
 | 
						|
      // ranges with their neighbors.
 | 
						|
      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
 | 
						|
        llvm::APSInt &CRLo = CaseRanges[i].first;
 | 
						|
        llvm::APSInt &CRHi = HiVals[i];
 | 
						|
        CaseStmt *CR = CaseRanges[i].second;
 | 
						|
 | 
						|
        // Check to see whether the case range overlaps with any
 | 
						|
        // singleton cases.
 | 
						|
        CaseStmt *OverlapStmt = 0;
 | 
						|
        llvm::APSInt OverlapVal(32);
 | 
						|
 | 
						|
        // Find the smallest value >= the lower bound.  If I is in the
 | 
						|
        // case range, then we have overlap.
 | 
						|
        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
 | 
						|
                                                  CaseVals.end(), CRLo,
 | 
						|
                                                  CaseCompareFunctor());
 | 
						|
        if (I != CaseVals.end() && I->first < CRHi) {
 | 
						|
          OverlapVal  = I->first;   // Found overlap with scalar.
 | 
						|
          OverlapStmt = I->second;
 | 
						|
        }
 | 
						|
 | 
						|
        // Find the smallest value bigger than the upper bound.
 | 
						|
        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
 | 
						|
        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
 | 
						|
          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
 | 
						|
          OverlapStmt = (I-1)->second;
 | 
						|
        }
 | 
						|
 | 
						|
        // Check to see if this case stmt overlaps with the subsequent
 | 
						|
        // case range.
 | 
						|
        if (i && CRLo <= HiVals[i-1]) {
 | 
						|
          OverlapVal  = HiVals[i-1];       // Found overlap with range.
 | 
						|
          OverlapStmt = CaseRanges[i-1].second;
 | 
						|
        }
 | 
						|
 | 
						|
        if (OverlapStmt) {
 | 
						|
          // If we have a duplicate, report it.
 | 
						|
          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
 | 
						|
            << OverlapVal.toString(10);
 | 
						|
          Diag(OverlapStmt->getLHS()->getLocStart(),
 | 
						|
               diag::note_duplicate_case_prev);
 | 
						|
          // FIXME: We really want to remove the bogus case stmt from the
 | 
						|
          // substmt, but we have no way to do this right now.
 | 
						|
          CaseListIsErroneous = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: If the case list was broken is some way, we don't have a good system
 | 
						|
  // to patch it up.  Instead, just return the whole substmt as broken.
 | 
						|
  if (CaseListIsErroneous)
 | 
						|
    return StmtError();
 | 
						|
 | 
						|
  Switch.release();
 | 
						|
  return Owned(SS);
 | 
						|
}
 | 
						|
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond, 
 | 
						|
                     DeclPtrTy CondVar, StmtArg Body) {
 | 
						|
  OwningExprResult CondResult(Cond.release());
 | 
						|
  
 | 
						|
  VarDecl *ConditionVar = 0;
 | 
						|
  if (CondVar.get()) {
 | 
						|
    ConditionVar = CondVar.getAs<VarDecl>();
 | 
						|
    CondResult = CheckConditionVariable(ConditionVar);
 | 
						|
    if (CondResult.isInvalid())
 | 
						|
      return StmtError();
 | 
						|
  }
 | 
						|
  Expr *ConditionExpr = CondResult.takeAs<Expr>();
 | 
						|
  if (!ConditionExpr)
 | 
						|
    return StmtError();
 | 
						|
  
 | 
						|
  if (CheckBooleanCondition(ConditionExpr, WhileLoc)) {
 | 
						|
    CondResult = ConditionExpr;
 | 
						|
    return StmtError();
 | 
						|
  }
 | 
						|
 | 
						|
  Stmt *bodyStmt = Body.takeAs<Stmt>();
 | 
						|
  DiagnoseUnusedExprResult(bodyStmt);
 | 
						|
 | 
						|
  CondResult.release();
 | 
						|
  return Owned(new (Context) WhileStmt(ConditionVar, ConditionExpr, bodyStmt, 
 | 
						|
                                       WhileLoc));
 | 
						|
}
 | 
						|
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnDoStmt(SourceLocation DoLoc, StmtArg Body,
 | 
						|
                  SourceLocation WhileLoc, SourceLocation CondLParen,
 | 
						|
                  ExprArg Cond, SourceLocation CondRParen) {
 | 
						|
  Expr *condExpr = Cond.takeAs<Expr>();
 | 
						|
  assert(condExpr && "ActOnDoStmt(): missing expression");
 | 
						|
 | 
						|
  if (CheckBooleanCondition(condExpr, DoLoc)) {
 | 
						|
    Cond = condExpr;
 | 
						|
    return StmtError();
 | 
						|
  }
 | 
						|
 | 
						|
  Stmt *bodyStmt = Body.takeAs<Stmt>();
 | 
						|
  DiagnoseUnusedExprResult(bodyStmt);
 | 
						|
 | 
						|
  Cond.release();
 | 
						|
  return Owned(new (Context) DoStmt(bodyStmt, condExpr, DoLoc,
 | 
						|
                                    WhileLoc, CondRParen));
 | 
						|
}
 | 
						|
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
 | 
						|
                   StmtArg first, FullExprArg second, DeclPtrTy secondVar,
 | 
						|
                   FullExprArg third,
 | 
						|
                   SourceLocation RParenLoc, StmtArg body) {
 | 
						|
  Stmt *First  = static_cast<Stmt*>(first.get());
 | 
						|
 | 
						|
  if (!getLangOptions().CPlusPlus) {
 | 
						|
    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
 | 
						|
      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
 | 
						|
      // declare identifiers for objects having storage class 'auto' or
 | 
						|
      // 'register'.
 | 
						|
      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
 | 
						|
           DI!=DE; ++DI) {
 | 
						|
        VarDecl *VD = dyn_cast<VarDecl>(*DI);
 | 
						|
        if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
 | 
						|
          VD = 0;
 | 
						|
        if (VD == 0)
 | 
						|
          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
 | 
						|
        // FIXME: mark decl erroneous!
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  OwningExprResult SecondResult(second.release());
 | 
						|
  VarDecl *ConditionVar = 0;
 | 
						|
  if (secondVar.get()) {
 | 
						|
    ConditionVar = secondVar.getAs<VarDecl>();
 | 
						|
    SecondResult = CheckConditionVariable(ConditionVar);
 | 
						|
    if (SecondResult.isInvalid())
 | 
						|
      return StmtError();
 | 
						|
  }
 | 
						|
  
 | 
						|
  Expr *Second = SecondResult.takeAs<Expr>();
 | 
						|
  if (Second && CheckBooleanCondition(Second, ForLoc)) {
 | 
						|
    SecondResult = Second;
 | 
						|
    return StmtError();
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *Third  = third.release().takeAs<Expr>();
 | 
						|
  Stmt *Body  = static_cast<Stmt*>(body.get());
 | 
						|
  
 | 
						|
  DiagnoseUnusedExprResult(First);
 | 
						|
  DiagnoseUnusedExprResult(Third);
 | 
						|
  DiagnoseUnusedExprResult(Body);
 | 
						|
 | 
						|
  first.release();
 | 
						|
  body.release();
 | 
						|
  return Owned(new (Context) ForStmt(First, Second, ConditionVar, Third, Body, 
 | 
						|
                                     ForLoc, LParenLoc, RParenLoc));
 | 
						|
}
 | 
						|
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
 | 
						|
                                 SourceLocation LParenLoc,
 | 
						|
                                 StmtArg first, ExprArg second,
 | 
						|
                                 SourceLocation RParenLoc, StmtArg body) {
 | 
						|
  Stmt *First  = static_cast<Stmt*>(first.get());
 | 
						|
  Expr *Second = static_cast<Expr*>(second.get());
 | 
						|
  Stmt *Body  = static_cast<Stmt*>(body.get());
 | 
						|
  if (First) {
 | 
						|
    QualType FirstType;
 | 
						|
    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
 | 
						|
      if (!DS->isSingleDecl())
 | 
						|
        return StmtError(Diag((*DS->decl_begin())->getLocation(),
 | 
						|
                         diag::err_toomany_element_decls));
 | 
						|
 | 
						|
      Decl *D = DS->getSingleDecl();
 | 
						|
      FirstType = cast<ValueDecl>(D)->getType();
 | 
						|
      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
 | 
						|
      // declare identifiers for objects having storage class 'auto' or
 | 
						|
      // 'register'.
 | 
						|
      VarDecl *VD = cast<VarDecl>(D);
 | 
						|
      if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
 | 
						|
        return StmtError(Diag(VD->getLocation(),
 | 
						|
                              diag::err_non_variable_decl_in_for));
 | 
						|
    } else {
 | 
						|
      if (cast<Expr>(First)->isLvalue(Context) != Expr::LV_Valid)
 | 
						|
        return StmtError(Diag(First->getLocStart(),
 | 
						|
                   diag::err_selector_element_not_lvalue)
 | 
						|
          << First->getSourceRange());
 | 
						|
 | 
						|
      FirstType = static_cast<Expr*>(First)->getType();
 | 
						|
    }
 | 
						|
    if (!FirstType->isObjCObjectPointerType() &&
 | 
						|
        !FirstType->isBlockPointerType())
 | 
						|
        Diag(ForLoc, diag::err_selector_element_type)
 | 
						|
          << FirstType << First->getSourceRange();
 | 
						|
  }
 | 
						|
  if (Second) {
 | 
						|
    DefaultFunctionArrayConversion(Second);
 | 
						|
    QualType SecondType = Second->getType();
 | 
						|
    if (!SecondType->isObjCObjectPointerType())
 | 
						|
      Diag(ForLoc, diag::err_collection_expr_type)
 | 
						|
        << SecondType << Second->getSourceRange();
 | 
						|
  }
 | 
						|
  first.release();
 | 
						|
  second.release();
 | 
						|
  body.release();
 | 
						|
  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
 | 
						|
                                                   ForLoc, RParenLoc));
 | 
						|
}
 | 
						|
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
 | 
						|
                    IdentifierInfo *LabelII) {
 | 
						|
  // Look up the record for this label identifier.
 | 
						|
  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
 | 
						|
 | 
						|
  // If we haven't seen this label yet, create a forward reference.
 | 
						|
  if (LabelDecl == 0)
 | 
						|
    LabelDecl = new (Context) LabelStmt(LabelLoc, LabelII, 0);
 | 
						|
 | 
						|
  return Owned(new (Context) GotoStmt(LabelDecl, GotoLoc, LabelLoc));
 | 
						|
}
 | 
						|
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
 | 
						|
                            ExprArg DestExp) {
 | 
						|
  // Convert operand to void*
 | 
						|
  Expr* E = DestExp.takeAs<Expr>();
 | 
						|
  if (!E->isTypeDependent()) {
 | 
						|
    QualType ETy = E->getType();
 | 
						|
    AssignConvertType ConvTy =
 | 
						|
      CheckSingleAssignmentConstraints(Context.VoidPtrTy, E);
 | 
						|
    if (DiagnoseAssignmentResult(ConvTy, StarLoc, Context.VoidPtrTy, ETy,
 | 
						|
                                 E, AA_Passing))
 | 
						|
      return StmtError();
 | 
						|
  }
 | 
						|
  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
 | 
						|
}
 | 
						|
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
 | 
						|
  Scope *S = CurScope->getContinueParent();
 | 
						|
  if (!S) {
 | 
						|
    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
 | 
						|
    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
 | 
						|
  }
 | 
						|
 | 
						|
  return Owned(new (Context) ContinueStmt(ContinueLoc));
 | 
						|
}
 | 
						|
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
 | 
						|
  Scope *S = CurScope->getBreakParent();
 | 
						|
  if (!S) {
 | 
						|
    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
 | 
						|
    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
 | 
						|
  }
 | 
						|
 | 
						|
  return Owned(new (Context) BreakStmt(BreakLoc));
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
 | 
						|
///
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
 | 
						|
  // If this is the first return we've seen in the block, infer the type of
 | 
						|
  // the block from it.
 | 
						|
  if (CurBlock->ReturnType.isNull()) {
 | 
						|
    if (RetValExp) {
 | 
						|
      // Don't call UsualUnaryConversions(), since we don't want to do
 | 
						|
      // integer promotions here.
 | 
						|
      DefaultFunctionArrayConversion(RetValExp);
 | 
						|
      CurBlock->ReturnType = RetValExp->getType();
 | 
						|
      if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
 | 
						|
        // We have to remove a 'const' added to copied-in variable which was
 | 
						|
        // part of the implementation spec. and not the actual qualifier for
 | 
						|
        // the variable.
 | 
						|
        if (CDRE->isConstQualAdded())
 | 
						|
           CurBlock->ReturnType.removeConst();
 | 
						|
      }
 | 
						|
    } else
 | 
						|
      CurBlock->ReturnType = Context.VoidTy;
 | 
						|
  }
 | 
						|
  QualType FnRetType = CurBlock->ReturnType;
 | 
						|
 | 
						|
  if (CurBlock->TheDecl->hasAttr<NoReturnAttr>()) {
 | 
						|
    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
 | 
						|
      << getCurFunctionOrMethodDecl()->getDeclName();
 | 
						|
    return StmtError();
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, verify that this result type matches the previous one.  We are
 | 
						|
  // pickier with blocks than for normal functions because we don't have GCC
 | 
						|
  // compatibility to worry about here.
 | 
						|
  if (CurBlock->ReturnType->isVoidType()) {
 | 
						|
    if (RetValExp) {
 | 
						|
      Diag(ReturnLoc, diag::err_return_block_has_expr);
 | 
						|
      RetValExp->Destroy(Context);
 | 
						|
      RetValExp = 0;
 | 
						|
    }
 | 
						|
    return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
 | 
						|
  }
 | 
						|
 | 
						|
  if (!RetValExp)
 | 
						|
    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
 | 
						|
 | 
						|
  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
 | 
						|
    // we have a non-void block with an expression, continue checking
 | 
						|
 | 
						|
    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
 | 
						|
    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
 | 
						|
    // function return.
 | 
						|
 | 
						|
    // In C++ the return statement is handled via a copy initialization.
 | 
						|
    // the C version of which boils down to CheckSingleAssignmentConstraints.
 | 
						|
    // FIXME: Leaks RetValExp.
 | 
						|
    if (PerformCopyInitialization(RetValExp, FnRetType, AA_Returning))
 | 
						|
      return StmtError();
 | 
						|
 | 
						|
    if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
 | 
						|
}
 | 
						|
 | 
						|
/// IsReturnCopyElidable - Whether returning @p RetExpr from a function that
 | 
						|
/// returns a @p RetType fulfills the criteria for copy elision (C++0x 12.8p15).
 | 
						|
static bool IsReturnCopyElidable(ASTContext &Ctx, QualType RetType,
 | 
						|
                                 Expr *RetExpr) {
 | 
						|
  QualType ExprType = RetExpr->getType();
 | 
						|
  // - in a return statement in a function with ...
 | 
						|
  // ... a class return type ...
 | 
						|
  if (!RetType->isRecordType())
 | 
						|
    return false;
 | 
						|
  // ... the same cv-unqualified type as the function return type ...
 | 
						|
  if (!Ctx.hasSameUnqualifiedType(RetType, ExprType))
 | 
						|
    return false;
 | 
						|
  // ... the expression is the name of a non-volatile automatic object ...
 | 
						|
  // We ignore parentheses here.
 | 
						|
  // FIXME: Is this compliant?
 | 
						|
  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(RetExpr->IgnoreParens());
 | 
						|
  if (!DR)
 | 
						|
    return false;
 | 
						|
  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
 | 
						|
  if (!VD)
 | 
						|
    return false;
 | 
						|
  return VD->hasLocalStorage() && !VD->getType()->isReferenceType()
 | 
						|
    && !VD->getType().isVolatileQualified();
 | 
						|
}
 | 
						|
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprArg rex) {
 | 
						|
  Expr *RetValExp = rex.takeAs<Expr>();
 | 
						|
  if (CurBlock)
 | 
						|
    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
 | 
						|
 | 
						|
  QualType FnRetType;
 | 
						|
  if (const FunctionDecl *FD = getCurFunctionDecl()) {
 | 
						|
    FnRetType = FD->getResultType();
 | 
						|
    if (FD->hasAttr<NoReturnAttr>())
 | 
						|
      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
 | 
						|
        << getCurFunctionOrMethodDecl()->getDeclName();
 | 
						|
  } else if (ObjCMethodDecl *MD = getCurMethodDecl())
 | 
						|
    FnRetType = MD->getResultType();
 | 
						|
  else // If we don't have a function/method context, bail.
 | 
						|
    return StmtError();
 | 
						|
 | 
						|
  if (FnRetType->isVoidType()) {
 | 
						|
    if (RetValExp && !RetValExp->isTypeDependent()) {
 | 
						|
      // C99 6.8.6.4p1 (ext_ since GCC warns)
 | 
						|
      unsigned D = diag::ext_return_has_expr;
 | 
						|
      if (RetValExp->getType()->isVoidType())
 | 
						|
        D = diag::ext_return_has_void_expr;
 | 
						|
 | 
						|
      // return (some void expression); is legal in C++.
 | 
						|
      if (D != diag::ext_return_has_void_expr ||
 | 
						|
          !getLangOptions().CPlusPlus) {
 | 
						|
        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
 | 
						|
        Diag(ReturnLoc, D)
 | 
						|
          << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
 | 
						|
          << RetValExp->getSourceRange();
 | 
						|
      }
 | 
						|
 | 
						|
      RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
 | 
						|
    }
 | 
						|
    return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
 | 
						|
  }
 | 
						|
 | 
						|
  if (!RetValExp && !FnRetType->isDependentType()) {
 | 
						|
    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
 | 
						|
    // C99 6.8.6.4p1 (ext_ since GCC warns)
 | 
						|
    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
 | 
						|
 | 
						|
    if (FunctionDecl *FD = getCurFunctionDecl())
 | 
						|
      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
 | 
						|
    else
 | 
						|
      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
 | 
						|
    return Owned(new (Context) ReturnStmt(ReturnLoc, (Expr*)0));
 | 
						|
  }
 | 
						|
 | 
						|
  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
 | 
						|
    // we have a non-void function with an expression, continue checking
 | 
						|
 | 
						|
    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
 | 
						|
    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
 | 
						|
    // function return.
 | 
						|
 | 
						|
    // C++0x 12.8p15: When certain criteria are met, an implementation is
 | 
						|
    //   allowed to omit the copy construction of a class object, [...]
 | 
						|
    //   - in a return statement in a function with a class return type, when
 | 
						|
    //     the expression is the name of a non-volatile automatic object with
 | 
						|
    //     the same cv-unqualified type as the function return type, the copy
 | 
						|
    //     operation can be omitted [...]
 | 
						|
    // C++0x 12.8p16: When the criteria for elision of a copy operation are met
 | 
						|
    //   and the object to be copied is designated by an lvalue, overload
 | 
						|
    //   resolution to select the constructor for the copy is first performed
 | 
						|
    //   as if the object were designated by an rvalue.
 | 
						|
    // Note that we only compute Elidable if we're in C++0x, since we don't
 | 
						|
    // care otherwise.
 | 
						|
    bool Elidable = getLangOptions().CPlusPlus0x ?
 | 
						|
                      IsReturnCopyElidable(Context, FnRetType, RetValExp) :
 | 
						|
                      false;
 | 
						|
    // FIXME: Elidable
 | 
						|
    (void)Elidable;
 | 
						|
 | 
						|
    // In C++ the return statement is handled via a copy initialization.
 | 
						|
    // the C version of which boils down to CheckSingleAssignmentConstraints.
 | 
						|
    OwningExprResult Res = PerformCopyInitialization(
 | 
						|
                             InitializedEntity::InitializeResult(ReturnLoc, 
 | 
						|
                                                                 FnRetType),
 | 
						|
                             SourceLocation(),
 | 
						|
                             Owned(RetValExp));
 | 
						|
    if (Res.isInvalid()) {
 | 
						|
      // FIXME: Cleanup temporaries here, anyway?
 | 
						|
      return StmtError();
 | 
						|
    }
 | 
						|
 | 
						|
    RetValExp = Res.takeAs<Expr>();
 | 
						|
    if (RetValExp) 
 | 
						|
      CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  if (RetValExp)
 | 
						|
    RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
 | 
						|
  return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
 | 
						|
}
 | 
						|
 | 
						|
/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
 | 
						|
/// ignore "noop" casts in places where an lvalue is required by an inline asm.
 | 
						|
/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
 | 
						|
/// provide a strong guidance to not use it.
 | 
						|
///
 | 
						|
/// This method checks to see if the argument is an acceptable l-value and
 | 
						|
/// returns false if it is a case we can handle.
 | 
						|
static bool CheckAsmLValue(const Expr *E, Sema &S) {
 | 
						|
  if (E->isLvalue(S.Context) == Expr::LV_Valid)
 | 
						|
    return false;  // Cool, this is an lvalue.
 | 
						|
 | 
						|
  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
 | 
						|
  // are supposed to allow.
 | 
						|
  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
 | 
						|
  if (E != E2 && E2->isLvalue(S.Context) == Expr::LV_Valid) {
 | 
						|
    if (!S.getLangOptions().HeinousExtensions)
 | 
						|
      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
 | 
						|
        << E->getSourceRange();
 | 
						|
    else
 | 
						|
      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
 | 
						|
        << E->getSourceRange();
 | 
						|
    // Accept, even if we emitted an error diagnostic.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // None of the above, just randomly invalid non-lvalue.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Sema::OwningStmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
 | 
						|
                                          bool IsSimple,
 | 
						|
                                          bool IsVolatile,
 | 
						|
                                          unsigned NumOutputs,
 | 
						|
                                          unsigned NumInputs,
 | 
						|
                                          std::string *Names,
 | 
						|
                                          MultiExprArg constraints,
 | 
						|
                                          MultiExprArg exprs,
 | 
						|
                                          ExprArg asmString,
 | 
						|
                                          MultiExprArg clobbers,
 | 
						|
                                          SourceLocation RParenLoc,
 | 
						|
                                          bool MSAsm) {
 | 
						|
  unsigned NumClobbers = clobbers.size();
 | 
						|
  StringLiteral **Constraints =
 | 
						|
    reinterpret_cast<StringLiteral**>(constraints.get());
 | 
						|
  Expr **Exprs = reinterpret_cast<Expr **>(exprs.get());
 | 
						|
  StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString.get());
 | 
						|
  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
 | 
						|
 | 
						|
  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
 | 
						|
 | 
						|
  // The parser verifies that there is a string literal here.
 | 
						|
  if (AsmString->isWide())
 | 
						|
    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
 | 
						|
      << AsmString->getSourceRange());
 | 
						|
 | 
						|
  for (unsigned i = 0; i != NumOutputs; i++) {
 | 
						|
    StringLiteral *Literal = Constraints[i];
 | 
						|
    if (Literal->isWide())
 | 
						|
      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
 | 
						|
        << Literal->getSourceRange());
 | 
						|
 | 
						|
    TargetInfo::ConstraintInfo Info(Literal->getStrData(),
 | 
						|
                                    Literal->getByteLength(),
 | 
						|
                                    Names[i]);
 | 
						|
    if (!Context.Target.validateOutputConstraint(Info))
 | 
						|
      return StmtError(Diag(Literal->getLocStart(),
 | 
						|
                            diag::err_asm_invalid_output_constraint)
 | 
						|
                       << Info.getConstraintStr());
 | 
						|
 | 
						|
    // Check that the output exprs are valid lvalues.
 | 
						|
    Expr *OutputExpr = Exprs[i];
 | 
						|
    if (CheckAsmLValue(OutputExpr, *this)) {
 | 
						|
      return StmtError(Diag(OutputExpr->getLocStart(),
 | 
						|
                  diag::err_asm_invalid_lvalue_in_output)
 | 
						|
        << OutputExpr->getSourceRange());
 | 
						|
    }
 | 
						|
 | 
						|
    OutputConstraintInfos.push_back(Info);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
 | 
						|
 | 
						|
  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
 | 
						|
    StringLiteral *Literal = Constraints[i];
 | 
						|
    if (Literal->isWide())
 | 
						|
      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
 | 
						|
        << Literal->getSourceRange());
 | 
						|
 | 
						|
    TargetInfo::ConstraintInfo Info(Literal->getStrData(),
 | 
						|
                                    Literal->getByteLength(),
 | 
						|
                                    Names[i]);
 | 
						|
    if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
 | 
						|
                                                NumOutputs, Info)) {
 | 
						|
      return StmtError(Diag(Literal->getLocStart(),
 | 
						|
                            diag::err_asm_invalid_input_constraint)
 | 
						|
                       << Info.getConstraintStr());
 | 
						|
    }
 | 
						|
 | 
						|
    Expr *InputExpr = Exprs[i];
 | 
						|
 | 
						|
    // Only allow void types for memory constraints.
 | 
						|
    if (Info.allowsMemory() && !Info.allowsRegister()) {
 | 
						|
      if (CheckAsmLValue(InputExpr, *this))
 | 
						|
        return StmtError(Diag(InputExpr->getLocStart(),
 | 
						|
                              diag::err_asm_invalid_lvalue_in_input)
 | 
						|
                         << Info.getConstraintStr()
 | 
						|
                         << InputExpr->getSourceRange());
 | 
						|
    }
 | 
						|
 | 
						|
    if (Info.allowsRegister()) {
 | 
						|
      if (InputExpr->getType()->isVoidType()) {
 | 
						|
        return StmtError(Diag(InputExpr->getLocStart(),
 | 
						|
                              diag::err_asm_invalid_type_in_input)
 | 
						|
          << InputExpr->getType() << Info.getConstraintStr()
 | 
						|
          << InputExpr->getSourceRange());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    DefaultFunctionArrayConversion(Exprs[i]);
 | 
						|
 | 
						|
    InputConstraintInfos.push_back(Info);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that the clobbers are valid.
 | 
						|
  for (unsigned i = 0; i != NumClobbers; i++) {
 | 
						|
    StringLiteral *Literal = Clobbers[i];
 | 
						|
    if (Literal->isWide())
 | 
						|
      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
 | 
						|
        << Literal->getSourceRange());
 | 
						|
 | 
						|
    std::string Clobber(Literal->getStrData(),
 | 
						|
                        Literal->getStrData() +
 | 
						|
                        Literal->getByteLength());
 | 
						|
 | 
						|
    if (!Context.Target.isValidGCCRegisterName(Clobber.c_str()))
 | 
						|
      return StmtError(Diag(Literal->getLocStart(),
 | 
						|
                  diag::err_asm_unknown_register_name) << Clobber);
 | 
						|
  }
 | 
						|
 | 
						|
  constraints.release();
 | 
						|
  exprs.release();
 | 
						|
  asmString.release();
 | 
						|
  clobbers.release();
 | 
						|
  AsmStmt *NS =
 | 
						|
    new (Context) AsmStmt(AsmLoc, IsSimple, IsVolatile, MSAsm, NumOutputs,
 | 
						|
                          NumInputs, Names, Constraints, Exprs, AsmString,
 | 
						|
                          NumClobbers, Clobbers, RParenLoc);
 | 
						|
  // Validate the asm string, ensuring it makes sense given the operands we
 | 
						|
  // have.
 | 
						|
  llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
 | 
						|
  unsigned DiagOffs;
 | 
						|
  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
 | 
						|
    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
 | 
						|
           << AsmString->getSourceRange();
 | 
						|
    DeleteStmt(NS);
 | 
						|
    return StmtError();
 | 
						|
  }
 | 
						|
 | 
						|
  // Validate tied input operands for type mismatches.
 | 
						|
  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
 | 
						|
    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
 | 
						|
 | 
						|
    // If this is a tied constraint, verify that the output and input have
 | 
						|
    // either exactly the same type, or that they are int/ptr operands with the
 | 
						|
    // same size (int/long, int*/long, are ok etc).
 | 
						|
    if (!Info.hasTiedOperand()) continue;
 | 
						|
 | 
						|
    unsigned TiedTo = Info.getTiedOperand();
 | 
						|
    Expr *OutputExpr = Exprs[TiedTo];
 | 
						|
    Expr *InputExpr = Exprs[i+NumOutputs];
 | 
						|
    QualType InTy = InputExpr->getType();
 | 
						|
    QualType OutTy = OutputExpr->getType();
 | 
						|
    if (Context.hasSameType(InTy, OutTy))
 | 
						|
      continue;  // All types can be tied to themselves.
 | 
						|
 | 
						|
    // Int/ptr operands have some special cases that we allow.
 | 
						|
    if ((OutTy->isIntegerType() || OutTy->isPointerType()) &&
 | 
						|
        (InTy->isIntegerType() || InTy->isPointerType())) {
 | 
						|
 | 
						|
      // They are ok if they are the same size.  Tying void* to int is ok if
 | 
						|
      // they are the same size, for example.  This also allows tying void* to
 | 
						|
      // int*.
 | 
						|
      uint64_t OutSize = Context.getTypeSize(OutTy);
 | 
						|
      uint64_t InSize = Context.getTypeSize(InTy);
 | 
						|
      if (OutSize == InSize)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If the smaller input/output operand is not mentioned in the asm string,
 | 
						|
      // then we can promote it and the asm string won't notice.  Check this
 | 
						|
      // case now.
 | 
						|
      bool SmallerValueMentioned = false;
 | 
						|
      for (unsigned p = 0, e = Pieces.size(); p != e; ++p) {
 | 
						|
        AsmStmt::AsmStringPiece &Piece = Pieces[p];
 | 
						|
        if (!Piece.isOperand()) continue;
 | 
						|
 | 
						|
        // If this is a reference to the input and if the input was the smaller
 | 
						|
        // one, then we have to reject this asm.
 | 
						|
        if (Piece.getOperandNo() == i+NumOutputs) {
 | 
						|
          if (InSize < OutSize) {
 | 
						|
            SmallerValueMentioned = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // If this is a reference to the input and if the input was the smaller
 | 
						|
        // one, then we have to reject this asm.
 | 
						|
        if (Piece.getOperandNo() == TiedTo) {
 | 
						|
          if (InSize > OutSize) {
 | 
						|
            SmallerValueMentioned = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If the smaller value wasn't mentioned in the asm string, and if the
 | 
						|
      // output was a register, just extend the shorter one to the size of the
 | 
						|
      // larger one.
 | 
						|
      if (!SmallerValueMentioned &&
 | 
						|
          OutputConstraintInfos[TiedTo].allowsRegister())
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
 | 
						|
    Diag(InputExpr->getLocStart(),
 | 
						|
         diag::err_asm_tying_incompatible_types)
 | 
						|
      << InTy << OutTy << OutputExpr->getSourceRange()
 | 
						|
      << InputExpr->getSourceRange();
 | 
						|
    DeleteStmt(NS);
 | 
						|
    return StmtError();
 | 
						|
  }
 | 
						|
 | 
						|
  return Owned(NS);
 | 
						|
}
 | 
						|
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
 | 
						|
                           SourceLocation RParen, DeclPtrTy Parm,
 | 
						|
                           StmtArg Body, StmtArg catchList) {
 | 
						|
  Stmt *CatchList = catchList.takeAs<Stmt>();
 | 
						|
  ParmVarDecl *PVD = cast_or_null<ParmVarDecl>(Parm.getAs<Decl>());
 | 
						|
 | 
						|
  // PVD == 0 implies @catch(...).
 | 
						|
  if (PVD) {
 | 
						|
    // If we already know the decl is invalid, reject it.
 | 
						|
    if (PVD->isInvalidDecl())
 | 
						|
      return StmtError();
 | 
						|
 | 
						|
    if (!PVD->getType()->isObjCObjectPointerType())
 | 
						|
      return StmtError(Diag(PVD->getLocation(),
 | 
						|
                       diag::err_catch_param_not_objc_type));
 | 
						|
    if (PVD->getType()->isObjCQualifiedIdType())
 | 
						|
      return StmtError(Diag(PVD->getLocation(),
 | 
						|
                       diag::err_illegal_qualifiers_on_catch_parm));
 | 
						|
  }
 | 
						|
 | 
						|
  ObjCAtCatchStmt *CS = new (Context) ObjCAtCatchStmt(AtLoc, RParen,
 | 
						|
    PVD, Body.takeAs<Stmt>(), CatchList);
 | 
						|
  return Owned(CatchList ? CatchList : CS);
 | 
						|
}
 | 
						|
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body) {
 | 
						|
  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc,
 | 
						|
                                           static_cast<Stmt*>(Body.release())));
 | 
						|
}
 | 
						|
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc,
 | 
						|
                         StmtArg Try, StmtArg Catch, StmtArg Finally) {
 | 
						|
  CurFunctionNeedsScopeChecking = true;
 | 
						|
  return Owned(new (Context) ObjCAtTryStmt(AtLoc, Try.takeAs<Stmt>(),
 | 
						|
                                           Catch.takeAs<Stmt>(),
 | 
						|
                                           Finally.takeAs<Stmt>()));
 | 
						|
}
 | 
						|
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg expr,Scope *CurScope) {
 | 
						|
  Expr *ThrowExpr = expr.takeAs<Expr>();
 | 
						|
  if (!ThrowExpr) {
 | 
						|
    // @throw without an expression designates a rethrow (which much occur
 | 
						|
    // in the context of an @catch clause).
 | 
						|
    Scope *AtCatchParent = CurScope;
 | 
						|
    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
 | 
						|
      AtCatchParent = AtCatchParent->getParent();
 | 
						|
    if (!AtCatchParent)
 | 
						|
      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
 | 
						|
  } else {
 | 
						|
    QualType ThrowType = ThrowExpr->getType();
 | 
						|
    // Make sure the expression type is an ObjC pointer or "void *".
 | 
						|
    if (!ThrowType->isObjCObjectPointerType()) {
 | 
						|
      const PointerType *PT = ThrowType->getAs<PointerType>();
 | 
						|
      if (!PT || !PT->getPointeeType()->isVoidType())
 | 
						|
        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
 | 
						|
                        << ThrowExpr->getType() << ThrowExpr->getSourceRange());
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, ThrowExpr));
 | 
						|
}
 | 
						|
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr,
 | 
						|
                                  StmtArg SynchBody) {
 | 
						|
  CurFunctionNeedsScopeChecking = true;
 | 
						|
 | 
						|
  // Make sure the expression type is an ObjC pointer or "void *".
 | 
						|
  Expr *SyncExpr = static_cast<Expr*>(SynchExpr.get());
 | 
						|
  if (!SyncExpr->getType()->isObjCObjectPointerType()) {
 | 
						|
    const PointerType *PT = SyncExpr->getType()->getAs<PointerType>();
 | 
						|
    if (!PT || !PT->getPointeeType()->isVoidType())
 | 
						|
      return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
 | 
						|
                       << SyncExpr->getType() << SyncExpr->getSourceRange());
 | 
						|
  }
 | 
						|
 | 
						|
  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc,
 | 
						|
                                                    SynchExpr.takeAs<Stmt>(),
 | 
						|
                                                    SynchBody.takeAs<Stmt>()));
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
 | 
						|
/// and creates a proper catch handler from them.
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclPtrTy ExDecl,
 | 
						|
                         StmtArg HandlerBlock) {
 | 
						|
  // There's nothing to test that ActOnExceptionDecl didn't already test.
 | 
						|
  return Owned(new (Context) CXXCatchStmt(CatchLoc,
 | 
						|
                                  cast_or_null<VarDecl>(ExDecl.getAs<Decl>()),
 | 
						|
                                          HandlerBlock.takeAs<Stmt>()));
 | 
						|
}
 | 
						|
 | 
						|
class TypeWithHandler {
 | 
						|
  QualType t;
 | 
						|
  CXXCatchStmt *stmt;
 | 
						|
public:
 | 
						|
  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
 | 
						|
  : t(type), stmt(statement) {}
 | 
						|
 | 
						|
  // An arbitrary order is fine as long as it places identical
 | 
						|
  // types next to each other.
 | 
						|
  bool operator<(const TypeWithHandler &y) const {
 | 
						|
    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
 | 
						|
      return true;
 | 
						|
    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
 | 
						|
      return false;
 | 
						|
    else
 | 
						|
      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator==(const TypeWithHandler& other) const {
 | 
						|
    return t == other.t;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType getQualType() const { return t; }
 | 
						|
  CXXCatchStmt *getCatchStmt() const { return stmt; }
 | 
						|
  SourceLocation getTypeSpecStartLoc() const {
 | 
						|
    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
 | 
						|
/// handlers and creates a try statement from them.
 | 
						|
Action::OwningStmtResult
 | 
						|
Sema::ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock,
 | 
						|
                       MultiStmtArg RawHandlers) {
 | 
						|
  unsigned NumHandlers = RawHandlers.size();
 | 
						|
  assert(NumHandlers > 0 &&
 | 
						|
         "The parser shouldn't call this if there are no handlers.");
 | 
						|
  Stmt **Handlers = reinterpret_cast<Stmt**>(RawHandlers.get());
 | 
						|
 | 
						|
  llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < NumHandlers; ++i) {
 | 
						|
    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
 | 
						|
    if (!Handler->getExceptionDecl()) {
 | 
						|
      if (i < NumHandlers - 1)
 | 
						|
        return StmtError(Diag(Handler->getLocStart(),
 | 
						|
                              diag::err_early_catch_all));
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    const QualType CaughtType = Handler->getCaughtType();
 | 
						|
    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
 | 
						|
    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
 | 
						|
  }
 | 
						|
 | 
						|
  // Detect handlers for the same type as an earlier one.
 | 
						|
  if (NumHandlers > 1) {
 | 
						|
    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
 | 
						|
 | 
						|
    TypeWithHandler prev = TypesWithHandlers[0];
 | 
						|
    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
 | 
						|
      TypeWithHandler curr = TypesWithHandlers[i];
 | 
						|
 | 
						|
      if (curr == prev) {
 | 
						|
        Diag(curr.getTypeSpecStartLoc(),
 | 
						|
             diag::warn_exception_caught_by_earlier_handler)
 | 
						|
          << curr.getCatchStmt()->getCaughtType().getAsString();
 | 
						|
        Diag(prev.getTypeSpecStartLoc(),
 | 
						|
             diag::note_previous_exception_handler)
 | 
						|
          << prev.getCatchStmt()->getCaughtType().getAsString();
 | 
						|
      }
 | 
						|
 | 
						|
      prev = curr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: We should detect handlers that cannot catch anything because an
 | 
						|
  // earlier handler catches a superclass. Need to find a method that is not
 | 
						|
  // quadratic for this.
 | 
						|
  // Neither of these are explicitly forbidden, but every compiler detects them
 | 
						|
  // and warns.
 | 
						|
 | 
						|
  CurFunctionNeedsScopeChecking = true;
 | 
						|
  RawHandlers.release();
 | 
						|
  return Owned(new (Context) CXXTryStmt(TryLoc,
 | 
						|
                                        static_cast<Stmt*>(TryBlock.release()),
 | 
						|
                                        Handlers, NumHandlers));
 | 
						|
}
 |