forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			993 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			993 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This simple pass provides alias and mod/ref information for global values
 | |
| // that do not have their address taken, and keeps track of whether functions
 | |
| // read or write memory (are "pure").  For this simple (but very common) case,
 | |
| // we can provide pretty accurate and useful information.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/GlobalsModRef.h"
 | |
| #include "llvm/ADT/SCCIterator.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "globalsmodref-aa"
 | |
| 
 | |
| STATISTIC(NumNonAddrTakenGlobalVars,
 | |
|           "Number of global vars without address taken");
 | |
| STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
 | |
| STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
 | |
| STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
 | |
| STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
 | |
| 
 | |
| // An option to enable unsafe alias results from the GlobalsModRef analysis.
 | |
| // When enabled, GlobalsModRef will provide no-alias results which in extremely
 | |
| // rare cases may not be conservatively correct. In particular, in the face of
 | |
| // transforms which cause assymetry between how effective GetUnderlyingObject
 | |
| // is for two pointers, it may produce incorrect results.
 | |
| //
 | |
| // These unsafe results have been returned by GMR for many years without
 | |
| // causing significant issues in the wild and so we provide a mechanism to
 | |
| // re-enable them for users of LLVM that have a particular performance
 | |
| // sensitivity and no known issues. The option also makes it easy to evaluate
 | |
| // the performance impact of these results.
 | |
| static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults(
 | |
|     "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden);
 | |
| 
 | |
| /// The mod/ref information collected for a particular function.
 | |
| ///
 | |
| /// We collect information about mod/ref behavior of a function here, both in
 | |
| /// general and as pertains to specific globals. We only have this detailed
 | |
| /// information when we know *something* useful about the behavior. If we
 | |
| /// saturate to fully general mod/ref, we remove the info for the function.
 | |
| class GlobalsAAResult::FunctionInfo {
 | |
|   typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType;
 | |
| 
 | |
|   /// Build a wrapper struct that has 8-byte alignment. All heap allocations
 | |
|   /// should provide this much alignment at least, but this makes it clear we
 | |
|   /// specifically rely on this amount of alignment.
 | |
|   struct LLVM_ALIGNAS(8) AlignedMap {
 | |
|     AlignedMap() {}
 | |
|     AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {}
 | |
|     GlobalInfoMapType Map;
 | |
|   };
 | |
| 
 | |
|   /// Pointer traits for our aligned map.
 | |
|   struct AlignedMapPointerTraits {
 | |
|     static inline void *getAsVoidPointer(AlignedMap *P) { return P; }
 | |
|     static inline AlignedMap *getFromVoidPointer(void *P) {
 | |
|       return (AlignedMap *)P;
 | |
|     }
 | |
|     enum { NumLowBitsAvailable = 3 };
 | |
|     static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable),
 | |
|                   "AlignedMap insufficiently aligned to have enough low bits.");
 | |
|   };
 | |
| 
 | |
|   /// The bit that flags that this function may read any global. This is
 | |
|   /// chosen to mix together with ModRefInfo bits.
 | |
|   enum { MayReadAnyGlobal = 4 };
 | |
| 
 | |
|   /// Checks to document the invariants of the bit packing here.
 | |
|   static_assert((MayReadAnyGlobal & MRI_ModRef) == 0,
 | |
|                 "ModRef and the MayReadAnyGlobal flag bits overlap.");
 | |
|   static_assert(((MayReadAnyGlobal | MRI_ModRef) >>
 | |
|                  AlignedMapPointerTraits::NumLowBitsAvailable) == 0,
 | |
|                 "Insufficient low bits to store our flag and ModRef info.");
 | |
| 
 | |
| public:
 | |
|   FunctionInfo() : Info() {}
 | |
|   ~FunctionInfo() {
 | |
|     delete Info.getPointer();
 | |
|   }
 | |
|   // Spell out the copy ond move constructors and assignment operators to get
 | |
|   // deep copy semantics and correct move semantics in the face of the
 | |
|   // pointer-int pair.
 | |
|   FunctionInfo(const FunctionInfo &Arg)
 | |
|       : Info(nullptr, Arg.Info.getInt()) {
 | |
|     if (const auto *ArgPtr = Arg.Info.getPointer())
 | |
|       Info.setPointer(new AlignedMap(*ArgPtr));
 | |
|   }
 | |
|   FunctionInfo(FunctionInfo &&Arg)
 | |
|       : Info(Arg.Info.getPointer(), Arg.Info.getInt()) {
 | |
|     Arg.Info.setPointerAndInt(nullptr, 0);
 | |
|   }
 | |
|   FunctionInfo &operator=(const FunctionInfo &RHS) {
 | |
|     delete Info.getPointer();
 | |
|     Info.setPointerAndInt(nullptr, RHS.Info.getInt());
 | |
|     if (const auto *RHSPtr = RHS.Info.getPointer())
 | |
|       Info.setPointer(new AlignedMap(*RHSPtr));
 | |
|     return *this;
 | |
|   }
 | |
|   FunctionInfo &operator=(FunctionInfo &&RHS) {
 | |
|     delete Info.getPointer();
 | |
|     Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt());
 | |
|     RHS.Info.setPointerAndInt(nullptr, 0);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// Returns the \c ModRefInfo info for this function.
 | |
|   ModRefInfo getModRefInfo() const {
 | |
|     return ModRefInfo(Info.getInt() & MRI_ModRef);
 | |
|   }
 | |
| 
 | |
|   /// Adds new \c ModRefInfo for this function to its state.
 | |
|   void addModRefInfo(ModRefInfo NewMRI) {
 | |
|     Info.setInt(Info.getInt() | NewMRI);
 | |
|   }
 | |
| 
 | |
|   /// Returns whether this function may read any global variable, and we don't
 | |
|   /// know which global.
 | |
|   bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; }
 | |
| 
 | |
|   /// Sets this function as potentially reading from any global.
 | |
|   void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); }
 | |
| 
 | |
|   /// Returns the \c ModRefInfo info for this function w.r.t. a particular
 | |
|   /// global, which may be more precise than the general information above.
 | |
|   ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const {
 | |
|     ModRefInfo GlobalMRI = mayReadAnyGlobal() ? MRI_Ref : MRI_NoModRef;
 | |
|     if (AlignedMap *P = Info.getPointer()) {
 | |
|       auto I = P->Map.find(&GV);
 | |
|       if (I != P->Map.end())
 | |
|         GlobalMRI = ModRefInfo(GlobalMRI | I->second);
 | |
|     }
 | |
|     return GlobalMRI;
 | |
|   }
 | |
| 
 | |
|   /// Add mod/ref info from another function into ours, saturating towards
 | |
|   /// MRI_ModRef.
 | |
|   void addFunctionInfo(const FunctionInfo &FI) {
 | |
|     addModRefInfo(FI.getModRefInfo());
 | |
| 
 | |
|     if (FI.mayReadAnyGlobal())
 | |
|       setMayReadAnyGlobal();
 | |
| 
 | |
|     if (AlignedMap *P = FI.Info.getPointer())
 | |
|       for (const auto &G : P->Map)
 | |
|         addModRefInfoForGlobal(*G.first, G.second);
 | |
|   }
 | |
| 
 | |
|   void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) {
 | |
|     AlignedMap *P = Info.getPointer();
 | |
|     if (!P) {
 | |
|       P = new AlignedMap();
 | |
|       Info.setPointer(P);
 | |
|     }
 | |
|     auto &GlobalMRI = P->Map[&GV];
 | |
|     GlobalMRI = ModRefInfo(GlobalMRI | NewMRI);
 | |
|   }
 | |
| 
 | |
|   /// Clear a global's ModRef info. Should be used when a global is being
 | |
|   /// deleted.
 | |
|   void eraseModRefInfoForGlobal(const GlobalValue &GV) {
 | |
|     if (AlignedMap *P = Info.getPointer())
 | |
|       P->Map.erase(&GV);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   /// All of the information is encoded into a single pointer, with a three bit
 | |
|   /// integer in the low three bits. The high bit provides a flag for when this
 | |
|   /// function may read any global. The low two bits are the ModRefInfo. And
 | |
|   /// the pointer, when non-null, points to a map from GlobalValue to
 | |
|   /// ModRefInfo specific to that GlobalValue.
 | |
|   PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info;
 | |
| };
 | |
| 
 | |
| void GlobalsAAResult::DeletionCallbackHandle::deleted() {
 | |
|   Value *V = getValPtr();
 | |
|   if (auto *F = dyn_cast<Function>(V))
 | |
|     GAR->FunctionInfos.erase(F);
 | |
| 
 | |
|   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | |
|     if (GAR->NonAddressTakenGlobals.erase(GV)) {
 | |
|       // This global might be an indirect global.  If so, remove it and
 | |
|       // remove any AllocRelatedValues for it.
 | |
|       if (GAR->IndirectGlobals.erase(GV)) {
 | |
|         // Remove any entries in AllocsForIndirectGlobals for this global.
 | |
|         for (auto I = GAR->AllocsForIndirectGlobals.begin(),
 | |
|                   E = GAR->AllocsForIndirectGlobals.end();
 | |
|              I != E; ++I)
 | |
|           if (I->second == GV)
 | |
|             GAR->AllocsForIndirectGlobals.erase(I);
 | |
|       }
 | |
| 
 | |
|       // Scan the function info we have collected and remove this global
 | |
|       // from all of them.
 | |
|       for (auto &FIPair : GAR->FunctionInfos)
 | |
|         FIPair.second.eraseModRefInfoForGlobal(*GV);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is an allocation related to an indirect global, remove it.
 | |
|   GAR->AllocsForIndirectGlobals.erase(V);
 | |
| 
 | |
|   // And clear out the handle.
 | |
|   setValPtr(nullptr);
 | |
|   GAR->Handles.erase(I);
 | |
|   // This object is now destroyed!
 | |
| }
 | |
| 
 | |
| FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) {
 | |
|   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
 | |
| 
 | |
|   if (FunctionInfo *FI = getFunctionInfo(F)) {
 | |
|     if (FI->getModRefInfo() == MRI_NoModRef)
 | |
|       Min = FMRB_DoesNotAccessMemory;
 | |
|     else if ((FI->getModRefInfo() & MRI_Mod) == 0)
 | |
|       Min = FMRB_OnlyReadsMemory;
 | |
|   }
 | |
| 
 | |
|   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
 | |
| }
 | |
| 
 | |
| FunctionModRefBehavior
 | |
| GlobalsAAResult::getModRefBehavior(ImmutableCallSite CS) {
 | |
|   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
 | |
| 
 | |
|   if (!CS.hasOperandBundles())
 | |
|     if (const Function *F = CS.getCalledFunction())
 | |
|       if (FunctionInfo *FI = getFunctionInfo(F)) {
 | |
|         if (FI->getModRefInfo() == MRI_NoModRef)
 | |
|           Min = FMRB_DoesNotAccessMemory;
 | |
|         else if ((FI->getModRefInfo() & MRI_Mod) == 0)
 | |
|           Min = FMRB_OnlyReadsMemory;
 | |
|       }
 | |
| 
 | |
|   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
 | |
| }
 | |
| 
 | |
| /// Returns the function info for the function, or null if we don't have
 | |
| /// anything useful to say about it.
 | |
| GlobalsAAResult::FunctionInfo *
 | |
| GlobalsAAResult::getFunctionInfo(const Function *F) {
 | |
|   auto I = FunctionInfos.find(F);
 | |
|   if (I != FunctionInfos.end())
 | |
|     return &I->second;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// AnalyzeGlobals - Scan through the users of all of the internal
 | |
| /// GlobalValue's in the program.  If none of them have their "address taken"
 | |
| /// (really, their address passed to something nontrivial), record this fact,
 | |
| /// and record the functions that they are used directly in.
 | |
| void GlobalsAAResult::AnalyzeGlobals(Module &M) {
 | |
|   SmallPtrSet<Function *, 32> TrackedFunctions;
 | |
|   for (Function &F : M)
 | |
|     if (F.hasLocalLinkage())
 | |
|       if (!AnalyzeUsesOfPointer(&F)) {
 | |
|         // Remember that we are tracking this global.
 | |
|         NonAddressTakenGlobals.insert(&F);
 | |
|         TrackedFunctions.insert(&F);
 | |
|         Handles.emplace_front(*this, &F);
 | |
|         Handles.front().I = Handles.begin();
 | |
|         ++NumNonAddrTakenFunctions;
 | |
|       }
 | |
| 
 | |
|   SmallPtrSet<Function *, 16> Readers, Writers;
 | |
|   for (GlobalVariable &GV : M.globals())
 | |
|     if (GV.hasLocalLinkage()) {
 | |
|       if (!AnalyzeUsesOfPointer(&GV, &Readers,
 | |
|                                 GV.isConstant() ? nullptr : &Writers)) {
 | |
|         // Remember that we are tracking this global, and the mod/ref fns
 | |
|         NonAddressTakenGlobals.insert(&GV);
 | |
|         Handles.emplace_front(*this, &GV);
 | |
|         Handles.front().I = Handles.begin();
 | |
| 
 | |
|         for (Function *Reader : Readers) {
 | |
|           if (TrackedFunctions.insert(Reader).second) {
 | |
|             Handles.emplace_front(*this, Reader);
 | |
|             Handles.front().I = Handles.begin();
 | |
|           }
 | |
|           FunctionInfos[Reader].addModRefInfoForGlobal(GV, MRI_Ref);
 | |
|         }
 | |
| 
 | |
|         if (!GV.isConstant()) // No need to keep track of writers to constants
 | |
|           for (Function *Writer : Writers) {
 | |
|             if (TrackedFunctions.insert(Writer).second) {
 | |
|               Handles.emplace_front(*this, Writer);
 | |
|               Handles.front().I = Handles.begin();
 | |
|             }
 | |
|             FunctionInfos[Writer].addModRefInfoForGlobal(GV, MRI_Mod);
 | |
|           }
 | |
|         ++NumNonAddrTakenGlobalVars;
 | |
| 
 | |
|         // If this global holds a pointer type, see if it is an indirect global.
 | |
|         if (GV.getValueType()->isPointerTy() &&
 | |
|             AnalyzeIndirectGlobalMemory(&GV))
 | |
|           ++NumIndirectGlobalVars;
 | |
|       }
 | |
|       Readers.clear();
 | |
|       Writers.clear();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
 | |
| /// If this is used by anything complex (i.e., the address escapes), return
 | |
| /// true.  Also, while we are at it, keep track of those functions that read and
 | |
| /// write to the value.
 | |
| ///
 | |
| /// If OkayStoreDest is non-null, stores into this global are allowed.
 | |
| bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V,
 | |
|                                            SmallPtrSetImpl<Function *> *Readers,
 | |
|                                            SmallPtrSetImpl<Function *> *Writers,
 | |
|                                            GlobalValue *OkayStoreDest) {
 | |
|   if (!V->getType()->isPointerTy())
 | |
|     return true;
 | |
| 
 | |
|   for (Use &U : V->uses()) {
 | |
|     User *I = U.getUser();
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|       if (Readers)
 | |
|         Readers->insert(LI->getParent()->getParent());
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | |
|       if (V == SI->getOperand(1)) {
 | |
|         if (Writers)
 | |
|           Writers->insert(SI->getParent()->getParent());
 | |
|       } else if (SI->getOperand(1) != OkayStoreDest) {
 | |
|         return true; // Storing the pointer
 | |
|       }
 | |
|     } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
 | |
|       if (AnalyzeUsesOfPointer(I, Readers, Writers))
 | |
|         return true;
 | |
|     } else if (Operator::getOpcode(I) == Instruction::BitCast) {
 | |
|       if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
 | |
|         return true;
 | |
|     } else if (auto CS = CallSite(I)) {
 | |
|       // Make sure that this is just the function being called, not that it is
 | |
|       // passing into the function.
 | |
|       if (CS.isDataOperand(&U)) {
 | |
|         // Detect calls to free.
 | |
|         if (CS.isArgOperand(&U) && isFreeCall(I, &TLI)) {
 | |
|           if (Writers)
 | |
|             Writers->insert(CS->getParent()->getParent());
 | |
|         } else {
 | |
|           return true; // Argument of an unknown call.
 | |
|         }
 | |
|       }
 | |
|     } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
 | |
|       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
 | |
|         return true; // Allow comparison against null.
 | |
|     } else if (Constant *C = dyn_cast<Constant>(I)) {
 | |
|       // Ignore constants which don't have any live uses.
 | |
|       if (isa<GlobalValue>(C) || C->isConstantUsed())
 | |
|         return true;
 | |
|     } else {
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
 | |
| /// which holds a pointer type.  See if the global always points to non-aliased
 | |
| /// heap memory: that is, all initializers of the globals are allocations, and
 | |
| /// those allocations have no use other than initialization of the global.
 | |
| /// Further, all loads out of GV must directly use the memory, not store the
 | |
| /// pointer somewhere.  If this is true, we consider the memory pointed to by
 | |
| /// GV to be owned by GV and can disambiguate other pointers from it.
 | |
| bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) {
 | |
|   // Keep track of values related to the allocation of the memory, f.e. the
 | |
|   // value produced by the malloc call and any casts.
 | |
|   std::vector<Value *> AllocRelatedValues;
 | |
| 
 | |
|   // If the initializer is a valid pointer, bail.
 | |
|   if (Constant *C = GV->getInitializer())
 | |
|     if (!C->isNullValue())
 | |
|       return false;
 | |
|     
 | |
|   // Walk the user list of the global.  If we find anything other than a direct
 | |
|   // load or store, bail out.
 | |
|   for (User *U : GV->users()) {
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
 | |
|       // The pointer loaded from the global can only be used in simple ways:
 | |
|       // we allow addressing of it and loading storing to it.  We do *not* allow
 | |
|       // storing the loaded pointer somewhere else or passing to a function.
 | |
|       if (AnalyzeUsesOfPointer(LI))
 | |
|         return false; // Loaded pointer escapes.
 | |
|       // TODO: Could try some IP mod/ref of the loaded pointer.
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
 | |
|       // Storing the global itself.
 | |
|       if (SI->getOperand(0) == GV)
 | |
|         return false;
 | |
| 
 | |
|       // If storing the null pointer, ignore it.
 | |
|       if (isa<ConstantPointerNull>(SI->getOperand(0)))
 | |
|         continue;
 | |
| 
 | |
|       // Check the value being stored.
 | |
|       Value *Ptr = GetUnderlyingObject(SI->getOperand(0),
 | |
|                                        GV->getParent()->getDataLayout());
 | |
| 
 | |
|       if (!isAllocLikeFn(Ptr, &TLI))
 | |
|         return false; // Too hard to analyze.
 | |
| 
 | |
|       // Analyze all uses of the allocation.  If any of them are used in a
 | |
|       // non-simple way (e.g. stored to another global) bail out.
 | |
|       if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr,
 | |
|                                GV))
 | |
|         return false; // Loaded pointer escapes.
 | |
| 
 | |
|       // Remember that this allocation is related to the indirect global.
 | |
|       AllocRelatedValues.push_back(Ptr);
 | |
|     } else {
 | |
|       // Something complex, bail out.
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Okay, this is an indirect global.  Remember all of the allocations for
 | |
|   // this global in AllocsForIndirectGlobals.
 | |
|   while (!AllocRelatedValues.empty()) {
 | |
|     AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
 | |
|     Handles.emplace_front(*this, AllocRelatedValues.back());
 | |
|     Handles.front().I = Handles.begin();
 | |
|     AllocRelatedValues.pop_back();
 | |
|   }
 | |
|   IndirectGlobals.insert(GV);
 | |
|   Handles.emplace_front(*this, GV);
 | |
|   Handles.front().I = Handles.begin();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) {  
 | |
|   // We do a bottom-up SCC traversal of the call graph.  In other words, we
 | |
|   // visit all callees before callers (leaf-first).
 | |
|   unsigned SCCID = 0;
 | |
|   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
 | |
|     const std::vector<CallGraphNode *> &SCC = *I;
 | |
|     assert(!SCC.empty() && "SCC with no functions?");
 | |
| 
 | |
|     for (auto *CGN : SCC)
 | |
|       if (Function *F = CGN->getFunction())
 | |
|         FunctionToSCCMap[F] = SCCID;
 | |
|     ++SCCID;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AnalyzeCallGraph - At this point, we know the functions where globals are
 | |
| /// immediately stored to and read from.  Propagate this information up the call
 | |
| /// graph to all callers and compute the mod/ref info for all memory for each
 | |
| /// function.
 | |
| void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) {
 | |
|   // We do a bottom-up SCC traversal of the call graph.  In other words, we
 | |
|   // visit all callees before callers (leaf-first).
 | |
|   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
 | |
|     const std::vector<CallGraphNode *> &SCC = *I;
 | |
|     assert(!SCC.empty() && "SCC with no functions?");
 | |
| 
 | |
|     Function *F = SCC[0]->getFunction();
 | |
| 
 | |
|     if (!F || !F->isDefinitionExact()) {
 | |
|       // Calls externally or not exact - can't say anything useful. Remove any
 | |
|       // existing function records (may have been created when scanning
 | |
|       // globals).
 | |
|       for (auto *Node : SCC)
 | |
|         FunctionInfos.erase(Node->getFunction());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     FunctionInfo &FI = FunctionInfos[F];
 | |
|     bool KnowNothing = false;
 | |
| 
 | |
|     // Collect the mod/ref properties due to called functions.  We only compute
 | |
|     // one mod-ref set.
 | |
|     for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
 | |
|       if (!F) {
 | |
|         KnowNothing = true;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (F->isDeclaration() || F->hasFnAttribute(Attribute::OptimizeNone)) {
 | |
|         // Try to get mod/ref behaviour from function attributes.
 | |
|         if (F->doesNotAccessMemory()) {
 | |
|           // Can't do better than that!
 | |
|         } else if (F->onlyReadsMemory()) {
 | |
|           FI.addModRefInfo(MRI_Ref);
 | |
|           if (!F->isIntrinsic() && !F->onlyAccessesArgMemory())
 | |
|             // This function might call back into the module and read a global -
 | |
|             // consider every global as possibly being read by this function.
 | |
|             FI.setMayReadAnyGlobal();
 | |
|         } else {
 | |
|           FI.addModRefInfo(MRI_ModRef);
 | |
|           // Can't say anything useful unless it's an intrinsic - they don't
 | |
|           // read or write global variables of the kind considered here.
 | |
|           KnowNothing = !F->isIntrinsic();
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
 | |
|            CI != E && !KnowNothing; ++CI)
 | |
|         if (Function *Callee = CI->second->getFunction()) {
 | |
|           if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) {
 | |
|             // Propagate function effect up.
 | |
|             FI.addFunctionInfo(*CalleeFI);
 | |
|           } else {
 | |
|             // Can't say anything about it.  However, if it is inside our SCC,
 | |
|             // then nothing needs to be done.
 | |
|             CallGraphNode *CalleeNode = CG[Callee];
 | |
|             if (!is_contained(SCC, CalleeNode))
 | |
|               KnowNothing = true;
 | |
|           }
 | |
|         } else {
 | |
|           KnowNothing = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If we can't say anything useful about this SCC, remove all SCC functions
 | |
|     // from the FunctionInfos map.
 | |
|     if (KnowNothing) {
 | |
|       for (auto *Node : SCC)
 | |
|         FunctionInfos.erase(Node->getFunction());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Scan the function bodies for explicit loads or stores.
 | |
|     for (auto *Node : SCC) {
 | |
|       if (FI.getModRefInfo() == MRI_ModRef)
 | |
|         break; // The mod/ref lattice saturates here.
 | |
| 
 | |
|       // Don't prove any properties based on the implementation of an optnone
 | |
|       // function. Function attributes were already used as a best approximation
 | |
|       // above.
 | |
|       if (Node->getFunction()->hasFnAttribute(Attribute::OptimizeNone))
 | |
|         continue;
 | |
| 
 | |
|       for (Instruction &I : instructions(Node->getFunction())) {
 | |
|         if (FI.getModRefInfo() == MRI_ModRef)
 | |
|           break; // The mod/ref lattice saturates here.
 | |
| 
 | |
|         // We handle calls specially because the graph-relevant aspects are
 | |
|         // handled above.
 | |
|         if (auto CS = CallSite(&I)) {
 | |
|           if (isAllocationFn(&I, &TLI) || isFreeCall(&I, &TLI)) {
 | |
|             // FIXME: It is completely unclear why this is necessary and not
 | |
|             // handled by the above graph code.
 | |
|             FI.addModRefInfo(MRI_ModRef);
 | |
|           } else if (Function *Callee = CS.getCalledFunction()) {
 | |
|             // The callgraph doesn't include intrinsic calls.
 | |
|             if (Callee->isIntrinsic()) {
 | |
|               FunctionModRefBehavior Behaviour =
 | |
|                   AAResultBase::getModRefBehavior(Callee);
 | |
|               FI.addModRefInfo(ModRefInfo(Behaviour & MRI_ModRef));
 | |
|             }
 | |
|           }
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // All non-call instructions we use the primary predicates for whether
 | |
|         // thay read or write memory.
 | |
|         if (I.mayReadFromMemory())
 | |
|           FI.addModRefInfo(MRI_Ref);
 | |
|         if (I.mayWriteToMemory())
 | |
|           FI.addModRefInfo(MRI_Mod);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if ((FI.getModRefInfo() & MRI_Mod) == 0)
 | |
|       ++NumReadMemFunctions;
 | |
|     if (FI.getModRefInfo() == MRI_NoModRef)
 | |
|       ++NumNoMemFunctions;
 | |
| 
 | |
|     // Finally, now that we know the full effect on this SCC, clone the
 | |
|     // information to each function in the SCC.
 | |
|     // FI is a reference into FunctionInfos, so copy it now so that it doesn't
 | |
|     // get invalidated if DenseMap decides to re-hash.
 | |
|     FunctionInfo CachedFI = FI;
 | |
|     for (unsigned i = 1, e = SCC.size(); i != e; ++i)
 | |
|       FunctionInfos[SCC[i]->getFunction()] = CachedFI;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // GV is a non-escaping global. V is a pointer address that has been loaded from.
 | |
| // If we can prove that V must escape, we can conclude that a load from V cannot
 | |
| // alias GV.
 | |
| static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV,
 | |
|                                                const Value *V,
 | |
|                                                int &Depth,
 | |
|                                                const DataLayout &DL) {
 | |
|   SmallPtrSet<const Value *, 8> Visited;
 | |
|   SmallVector<const Value *, 8> Inputs;
 | |
|   Visited.insert(V);
 | |
|   Inputs.push_back(V);
 | |
|   do {
 | |
|     const Value *Input = Inputs.pop_back_val();
 | |
|     
 | |
|     if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) ||
 | |
|         isa<InvokeInst>(Input))
 | |
|       // Arguments to functions or returns from functions are inherently
 | |
|       // escaping, so we can immediately classify those as not aliasing any
 | |
|       // non-addr-taken globals.
 | |
|       //
 | |
|       // (Transitive) loads from a global are also safe - if this aliased
 | |
|       // another global, its address would escape, so no alias.
 | |
|       continue;
 | |
| 
 | |
|     // Recurse through a limited number of selects, loads and PHIs. This is an
 | |
|     // arbitrary depth of 4, lower numbers could be used to fix compile time
 | |
|     // issues if needed, but this is generally expected to be only be important
 | |
|     // for small depths.
 | |
|     if (++Depth > 4)
 | |
|       return false;
 | |
| 
 | |
|     if (auto *LI = dyn_cast<LoadInst>(Input)) {
 | |
|       Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL));
 | |
|       continue;
 | |
|     }  
 | |
|     if (auto *SI = dyn_cast<SelectInst>(Input)) {
 | |
|       const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
 | |
|       const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
 | |
|       if (Visited.insert(LHS).second)
 | |
|         Inputs.push_back(LHS);
 | |
|       if (Visited.insert(RHS).second)
 | |
|         Inputs.push_back(RHS);
 | |
|       continue;
 | |
|     }
 | |
|     if (auto *PN = dyn_cast<PHINode>(Input)) {
 | |
|       for (const Value *Op : PN->incoming_values()) {
 | |
|         Op = GetUnderlyingObject(Op, DL);
 | |
|         if (Visited.insert(Op).second)
 | |
|           Inputs.push_back(Op);
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     return false;
 | |
|   } while (!Inputs.empty());
 | |
| 
 | |
|   // All inputs were known to be no-alias.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // There are particular cases where we can conclude no-alias between
 | |
| // a non-addr-taken global and some other underlying object. Specifically,
 | |
| // a non-addr-taken global is known to not be escaped from any function. It is
 | |
| // also incorrect for a transformation to introduce an escape of a global in
 | |
| // a way that is observable when it was not there previously. One function
 | |
| // being transformed to introduce an escape which could possibly be observed
 | |
| // (via loading from a global or the return value for example) within another
 | |
| // function is never safe. If the observation is made through non-atomic
 | |
| // operations on different threads, it is a data-race and UB. If the
 | |
| // observation is well defined, by being observed the transformation would have
 | |
| // changed program behavior by introducing the observed escape, making it an
 | |
| // invalid transform.
 | |
| //
 | |
| // This property does require that transformations which *temporarily* escape
 | |
| // a global that was not previously escaped, prior to restoring it, cannot rely
 | |
| // on the results of GMR::alias. This seems a reasonable restriction, although
 | |
| // currently there is no way to enforce it. There is also no realistic
 | |
| // optimization pass that would make this mistake. The closest example is
 | |
| // a transformation pass which does reg2mem of SSA values but stores them into
 | |
| // global variables temporarily before restoring the global variable's value.
 | |
| // This could be useful to expose "benign" races for example. However, it seems
 | |
| // reasonable to require that a pass which introduces escapes of global
 | |
| // variables in this way to either not trust AA results while the escape is
 | |
| // active, or to be forced to operate as a module pass that cannot co-exist
 | |
| // with an alias analysis such as GMR.
 | |
| bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV,
 | |
|                                                  const Value *V) {
 | |
|   // In order to know that the underlying object cannot alias the
 | |
|   // non-addr-taken global, we must know that it would have to be an escape.
 | |
|   // Thus if the underlying object is a function argument, a load from
 | |
|   // a global, or the return of a function, it cannot alias. We can also
 | |
|   // recurse through PHI nodes and select nodes provided all of their inputs
 | |
|   // resolve to one of these known-escaping roots.
 | |
|   SmallPtrSet<const Value *, 8> Visited;
 | |
|   SmallVector<const Value *, 8> Inputs;
 | |
|   Visited.insert(V);
 | |
|   Inputs.push_back(V);
 | |
|   int Depth = 0;
 | |
|   do {
 | |
|     const Value *Input = Inputs.pop_back_val();
 | |
| 
 | |
|     if (auto *InputGV = dyn_cast<GlobalValue>(Input)) {
 | |
|       // If one input is the very global we're querying against, then we can't
 | |
|       // conclude no-alias.
 | |
|       if (InputGV == GV)
 | |
|         return false;
 | |
| 
 | |
|       // Distinct GlobalVariables never alias, unless overriden or zero-sized.
 | |
|       // FIXME: The condition can be refined, but be conservative for now.
 | |
|       auto *GVar = dyn_cast<GlobalVariable>(GV);
 | |
|       auto *InputGVar = dyn_cast<GlobalVariable>(InputGV);
 | |
|       if (GVar && InputGVar &&
 | |
|           !GVar->isDeclaration() && !InputGVar->isDeclaration() &&
 | |
|           !GVar->isInterposable() && !InputGVar->isInterposable()) {
 | |
|         Type *GVType = GVar->getInitializer()->getType();
 | |
|         Type *InputGVType = InputGVar->getInitializer()->getType();
 | |
|         if (GVType->isSized() && InputGVType->isSized() &&
 | |
|             (DL.getTypeAllocSize(GVType) > 0) &&
 | |
|             (DL.getTypeAllocSize(InputGVType) > 0))
 | |
|           continue;
 | |
|       }
 | |
| 
 | |
|       // Conservatively return false, even though we could be smarter
 | |
|       // (e.g. look through GlobalAliases).
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (isa<Argument>(Input) || isa<CallInst>(Input) ||
 | |
|         isa<InvokeInst>(Input)) {
 | |
|       // Arguments to functions or returns from functions are inherently
 | |
|       // escaping, so we can immediately classify those as not aliasing any
 | |
|       // non-addr-taken globals.
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Recurse through a limited number of selects, loads and PHIs. This is an
 | |
|     // arbitrary depth of 4, lower numbers could be used to fix compile time
 | |
|     // issues if needed, but this is generally expected to be only be important
 | |
|     // for small depths.
 | |
|     if (++Depth > 4)
 | |
|       return false;
 | |
| 
 | |
|     if (auto *LI = dyn_cast<LoadInst>(Input)) {
 | |
|       // A pointer loaded from a global would have been captured, and we know
 | |
|       // that the global is non-escaping, so no alias.
 | |
|       const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL);
 | |
|       if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL))
 | |
|         // The load does not alias with GV.
 | |
|         continue;
 | |
|       // Otherwise, a load could come from anywhere, so bail.
 | |
|       return false;
 | |
|     }
 | |
|     if (auto *SI = dyn_cast<SelectInst>(Input)) {
 | |
|       const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
 | |
|       const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
 | |
|       if (Visited.insert(LHS).second)
 | |
|         Inputs.push_back(LHS);
 | |
|       if (Visited.insert(RHS).second)
 | |
|         Inputs.push_back(RHS);
 | |
|       continue;
 | |
|     }
 | |
|     if (auto *PN = dyn_cast<PHINode>(Input)) {
 | |
|       for (const Value *Op : PN->incoming_values()) {
 | |
|         Op = GetUnderlyingObject(Op, DL);
 | |
|         if (Visited.insert(Op).second)
 | |
|           Inputs.push_back(Op);
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // FIXME: It would be good to handle other obvious no-alias cases here, but
 | |
|     // it isn't clear how to do so reasonbly without building a small version
 | |
|     // of BasicAA into this code. We could recurse into AAResultBase::alias
 | |
|     // here but that seems likely to go poorly as we're inside the
 | |
|     // implementation of such a query. Until then, just conservatievly retun
 | |
|     // false.
 | |
|     return false;
 | |
|   } while (!Inputs.empty());
 | |
| 
 | |
|   // If all the inputs to V were definitively no-alias, then V is no-alias.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// alias - If one of the pointers is to a global that we are tracking, and the
 | |
| /// other is some random pointer, we know there cannot be an alias, because the
 | |
| /// address of the global isn't taken.
 | |
| AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA,
 | |
|                                    const MemoryLocation &LocB) {
 | |
|   // Get the base object these pointers point to.
 | |
|   const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL);
 | |
|   const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL);
 | |
| 
 | |
|   // If either of the underlying values is a global, they may be non-addr-taken
 | |
|   // globals, which we can answer queries about.
 | |
|   const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
 | |
|   const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
 | |
|   if (GV1 || GV2) {
 | |
|     // If the global's address is taken, pretend we don't know it's a pointer to
 | |
|     // the global.
 | |
|     if (GV1 && !NonAddressTakenGlobals.count(GV1))
 | |
|       GV1 = nullptr;
 | |
|     if (GV2 && !NonAddressTakenGlobals.count(GV2))
 | |
|       GV2 = nullptr;
 | |
| 
 | |
|     // If the two pointers are derived from two different non-addr-taken
 | |
|     // globals we know these can't alias.
 | |
|     if (GV1 && GV2 && GV1 != GV2)
 | |
|       return NoAlias;
 | |
| 
 | |
|     // If one is and the other isn't, it isn't strictly safe but we can fake
 | |
|     // this result if necessary for performance. This does not appear to be
 | |
|     // a common problem in practice.
 | |
|     if (EnableUnsafeGlobalsModRefAliasResults)
 | |
|       if ((GV1 || GV2) && GV1 != GV2)
 | |
|         return NoAlias;
 | |
| 
 | |
|     // Check for a special case where a non-escaping global can be used to
 | |
|     // conclude no-alias.
 | |
|     if ((GV1 || GV2) && GV1 != GV2) {
 | |
|       const GlobalValue *GV = GV1 ? GV1 : GV2;
 | |
|       const Value *UV = GV1 ? UV2 : UV1;
 | |
|       if (isNonEscapingGlobalNoAlias(GV, UV))
 | |
|         return NoAlias;
 | |
|     }
 | |
| 
 | |
|     // Otherwise if they are both derived from the same addr-taken global, we
 | |
|     // can't know the two accesses don't overlap.
 | |
|   }
 | |
| 
 | |
|   // These pointers may be based on the memory owned by an indirect global.  If
 | |
|   // so, we may be able to handle this.  First check to see if the base pointer
 | |
|   // is a direct load from an indirect global.
 | |
|   GV1 = GV2 = nullptr;
 | |
|   if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
 | |
|     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
 | |
|       if (IndirectGlobals.count(GV))
 | |
|         GV1 = GV;
 | |
|   if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
 | |
|     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
 | |
|       if (IndirectGlobals.count(GV))
 | |
|         GV2 = GV;
 | |
| 
 | |
|   // These pointers may also be from an allocation for the indirect global.  If
 | |
|   // so, also handle them.
 | |
|   if (!GV1)
 | |
|     GV1 = AllocsForIndirectGlobals.lookup(UV1);
 | |
|   if (!GV2)
 | |
|     GV2 = AllocsForIndirectGlobals.lookup(UV2);
 | |
| 
 | |
|   // Now that we know whether the two pointers are related to indirect globals,
 | |
|   // use this to disambiguate the pointers. If the pointers are based on
 | |
|   // different indirect globals they cannot alias.
 | |
|   if (GV1 && GV2 && GV1 != GV2)
 | |
|     return NoAlias;
 | |
| 
 | |
|   // If one is based on an indirect global and the other isn't, it isn't
 | |
|   // strictly safe but we can fake this result if necessary for performance.
 | |
|   // This does not appear to be a common problem in practice.
 | |
|   if (EnableUnsafeGlobalsModRefAliasResults)
 | |
|     if ((GV1 || GV2) && GV1 != GV2)
 | |
|       return NoAlias;
 | |
| 
 | |
|   return AAResultBase::alias(LocA, LocB);
 | |
| }
 | |
| 
 | |
| ModRefInfo GlobalsAAResult::getModRefInfoForArgument(ImmutableCallSite CS,
 | |
|                                                      const GlobalValue *GV) {
 | |
|   if (CS.doesNotAccessMemory())
 | |
|     return MRI_NoModRef;
 | |
|   ModRefInfo ConservativeResult = CS.onlyReadsMemory() ? MRI_Ref : MRI_ModRef;
 | |
| 
 | |
|   // Iterate through all the arguments to the called function. If any argument
 | |
|   // is based on GV, return the conservative result.
 | |
|   for (auto &A : CS.args()) {
 | |
|     SmallVector<Value*, 4> Objects;
 | |
|     GetUnderlyingObjects(A, Objects, DL);
 | |
| 
 | |
|     // All objects must be identified.
 | |
|     if (!all_of(Objects, isIdentifiedObject) &&
 | |
|         // Try ::alias to see if all objects are known not to alias GV.
 | |
|         !all_of(Objects, [&](Value *V) {
 | |
|           return this->alias(MemoryLocation(V), MemoryLocation(GV)) == NoAlias;
 | |
|         }))
 | |
|       return ConservativeResult;
 | |
| 
 | |
|     if (is_contained(Objects, GV))
 | |
|       return ConservativeResult;
 | |
|   }
 | |
| 
 | |
|   // We identified all objects in the argument list, and none of them were GV.
 | |
|   return MRI_NoModRef;
 | |
| }
 | |
| 
 | |
| ModRefInfo GlobalsAAResult::getModRefInfo(ImmutableCallSite CS,
 | |
|                                           const MemoryLocation &Loc) {
 | |
|   unsigned Known = MRI_ModRef;
 | |
| 
 | |
|   // If we are asking for mod/ref info of a direct call with a pointer to a
 | |
|   // global we are tracking, return information if we have it.
 | |
|   if (const GlobalValue *GV =
 | |
|           dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL)))
 | |
|     if (GV->hasLocalLinkage())
 | |
|       if (const Function *F = CS.getCalledFunction())
 | |
|         if (NonAddressTakenGlobals.count(GV))
 | |
|           if (const FunctionInfo *FI = getFunctionInfo(F))
 | |
|             Known = FI->getModRefInfoForGlobal(*GV) |
 | |
|               getModRefInfoForArgument(CS, GV);
 | |
| 
 | |
|   if (Known == MRI_NoModRef)
 | |
|     return MRI_NoModRef; // No need to query other mod/ref analyses
 | |
|   return ModRefInfo(Known & AAResultBase::getModRefInfo(CS, Loc));
 | |
| }
 | |
| 
 | |
| GlobalsAAResult::GlobalsAAResult(const DataLayout &DL,
 | |
|                                  const TargetLibraryInfo &TLI)
 | |
|     : AAResultBase(), DL(DL), TLI(TLI) {}
 | |
| 
 | |
| GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg)
 | |
|     : AAResultBase(std::move(Arg)), DL(Arg.DL), TLI(Arg.TLI),
 | |
|       NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)),
 | |
|       IndirectGlobals(std::move(Arg.IndirectGlobals)),
 | |
|       AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)),
 | |
|       FunctionInfos(std::move(Arg.FunctionInfos)),
 | |
|       Handles(std::move(Arg.Handles)) {
 | |
|   // Update the parent for each DeletionCallbackHandle.
 | |
|   for (auto &H : Handles) {
 | |
|     assert(H.GAR == &Arg);
 | |
|     H.GAR = this;
 | |
|   }
 | |
| }
 | |
| 
 | |
| GlobalsAAResult::~GlobalsAAResult() {}
 | |
| 
 | |
| /*static*/ GlobalsAAResult
 | |
| GlobalsAAResult::analyzeModule(Module &M, const TargetLibraryInfo &TLI,
 | |
|                                CallGraph &CG) {
 | |
|   GlobalsAAResult Result(M.getDataLayout(), TLI);
 | |
| 
 | |
|   // Discover which functions aren't recursive, to feed into AnalyzeGlobals.
 | |
|   Result.CollectSCCMembership(CG);
 | |
| 
 | |
|   // Find non-addr taken globals.
 | |
|   Result.AnalyzeGlobals(M);
 | |
| 
 | |
|   // Propagate on CG.
 | |
|   Result.AnalyzeCallGraph(CG, M);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| AnalysisKey GlobalsAA::Key;
 | |
| 
 | |
| GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) {
 | |
|   return GlobalsAAResult::analyzeModule(M,
 | |
|                                         AM.getResult<TargetLibraryAnalysis>(M),
 | |
|                                         AM.getResult<CallGraphAnalysis>(M));
 | |
| }
 | |
| 
 | |
| char GlobalsAAWrapperPass::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa",
 | |
|                       "Globals Alias Analysis", false, true)
 | |
| INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa",
 | |
|                     "Globals Alias Analysis", false, true)
 | |
| 
 | |
| ModulePass *llvm::createGlobalsAAWrapperPass() {
 | |
|   return new GlobalsAAWrapperPass();
 | |
| }
 | |
| 
 | |
| GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) {
 | |
|   initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| bool GlobalsAAWrapperPass::runOnModule(Module &M) {
 | |
|   Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule(
 | |
|       M, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
 | |
|       getAnalysis<CallGraphWrapperPass>().getCallGraph())));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool GlobalsAAWrapperPass::doFinalization(Module &M) {
 | |
|   Result.reset();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AU.addRequired<CallGraphWrapperPass>();
 | |
|   AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
| }
 |