forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1805 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1805 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/LazyCallGraph.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/ScopeExit.h"
 | |
| #include "llvm/ADT/Sequence.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/iterator_range.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/PassManager.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/GraphWriter.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <iterator>
 | |
| #include <string>
 | |
| #include <tuple>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "lcg"
 | |
| 
 | |
| void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN,
 | |
|                                                      Edge::Kind EK) {
 | |
|   EdgeIndexMap.insert({&TargetN, Edges.size()});
 | |
|   Edges.emplace_back(TargetN, EK);
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) {
 | |
|   Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK);
 | |
| }
 | |
| 
 | |
| bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) {
 | |
|   auto IndexMapI = EdgeIndexMap.find(&TargetN);
 | |
|   if (IndexMapI == EdgeIndexMap.end())
 | |
|     return false;
 | |
| 
 | |
|   Edges[IndexMapI->second] = Edge();
 | |
|   EdgeIndexMap.erase(IndexMapI);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
 | |
|                     DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap,
 | |
|                     LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) {
 | |
|   if (!EdgeIndexMap.insert({&N, Edges.size()}).second)
 | |
|     return;
 | |
| 
 | |
|   DEBUG(dbgs() << "    Added callable function: " << N.getName() << "\n");
 | |
|   Edges.emplace_back(LazyCallGraph::Edge(N, EK));
 | |
| }
 | |
| 
 | |
| LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() {
 | |
|   assert(!Edges && "Must not have already populated the edges for this node!");
 | |
| 
 | |
|   DEBUG(dbgs() << "  Adding functions called by '" << getName()
 | |
|                << "' to the graph.\n");
 | |
| 
 | |
|   Edges = EdgeSequence();
 | |
| 
 | |
|   SmallVector<Constant *, 16> Worklist;
 | |
|   SmallPtrSet<Function *, 4> Callees;
 | |
|   SmallPtrSet<Constant *, 16> Visited;
 | |
| 
 | |
|   // Find all the potential call graph edges in this function. We track both
 | |
|   // actual call edges and indirect references to functions. The direct calls
 | |
|   // are trivially added, but to accumulate the latter we walk the instructions
 | |
|   // and add every operand which is a constant to the worklist to process
 | |
|   // afterward.
 | |
|   //
 | |
|   // Note that we consider *any* function with a definition to be a viable
 | |
|   // edge. Even if the function's definition is subject to replacement by
 | |
|   // some other module (say, a weak definition) there may still be
 | |
|   // optimizations which essentially speculate based on the definition and
 | |
|   // a way to check that the specific definition is in fact the one being
 | |
|   // used. For example, this could be done by moving the weak definition to
 | |
|   // a strong (internal) definition and making the weak definition be an
 | |
|   // alias. Then a test of the address of the weak function against the new
 | |
|   // strong definition's address would be an effective way to determine the
 | |
|   // safety of optimizing a direct call edge.
 | |
|   for (BasicBlock &BB : *F)
 | |
|     for (Instruction &I : BB) {
 | |
|       if (auto CS = CallSite(&I))
 | |
|         if (Function *Callee = CS.getCalledFunction())
 | |
|           if (!Callee->isDeclaration())
 | |
|             if (Callees.insert(Callee).second) {
 | |
|               Visited.insert(Callee);
 | |
|               addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee),
 | |
|                       LazyCallGraph::Edge::Call);
 | |
|             }
 | |
| 
 | |
|       for (Value *Op : I.operand_values())
 | |
|         if (Constant *C = dyn_cast<Constant>(Op))
 | |
|           if (Visited.insert(C).second)
 | |
|             Worklist.push_back(C);
 | |
|     }
 | |
| 
 | |
|   // We've collected all the constant (and thus potentially function or
 | |
|   // function containing) operands to all of the instructions in the function.
 | |
|   // Process them (recursively) collecting every function found.
 | |
|   visitReferences(Worklist, Visited, [&](Function &F) {
 | |
|     addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F),
 | |
|             LazyCallGraph::Edge::Ref);
 | |
|   });
 | |
| 
 | |
|   // Add implicit reference edges to any defined libcall functions (if we
 | |
|   // haven't found an explicit edge).
 | |
|   for (auto *F : G->LibFunctions)
 | |
|     if (!Visited.count(F))
 | |
|       addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F),
 | |
|               LazyCallGraph::Edge::Ref);
 | |
| 
 | |
|   return *Edges;
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::Node::replaceFunction(Function &NewF) {
 | |
|   assert(F != &NewF && "Must not replace a function with itself!");
 | |
|   F = &NewF;
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
 | |
|   dbgs() << *this << '\n';
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) {
 | |
|   LibFunc LF;
 | |
| 
 | |
|   // Either this is a normal library function or a "vectorizable" function.
 | |
|   return TLI.getLibFunc(F, LF) || TLI.isFunctionVectorizable(F.getName());
 | |
| }
 | |
| 
 | |
| LazyCallGraph::LazyCallGraph(Module &M, TargetLibraryInfo &TLI) {
 | |
|   DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
 | |
|                << "\n");
 | |
|   for (Function &F : M) {
 | |
|     if (F.isDeclaration())
 | |
|       continue;
 | |
|     // If this function is a known lib function to LLVM then we want to
 | |
|     // synthesize reference edges to it to model the fact that LLVM can turn
 | |
|     // arbitrary code into a library function call.
 | |
|     if (isKnownLibFunction(F, TLI))
 | |
|       LibFunctions.insert(&F);
 | |
| 
 | |
|     if (F.hasLocalLinkage())
 | |
|       continue;
 | |
| 
 | |
|     // External linkage defined functions have edges to them from other
 | |
|     // modules.
 | |
|     DEBUG(dbgs() << "  Adding '" << F.getName()
 | |
|                  << "' to entry set of the graph.\n");
 | |
|     addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref);
 | |
|   }
 | |
| 
 | |
|   // Now add entry nodes for functions reachable via initializers to globals.
 | |
|   SmallVector<Constant *, 16> Worklist;
 | |
|   SmallPtrSet<Constant *, 16> Visited;
 | |
|   for (GlobalVariable &GV : M.globals())
 | |
|     if (GV.hasInitializer())
 | |
|       if (Visited.insert(GV.getInitializer()).second)
 | |
|         Worklist.push_back(GV.getInitializer());
 | |
| 
 | |
|   DEBUG(dbgs() << "  Adding functions referenced by global initializers to the "
 | |
|                   "entry set.\n");
 | |
|   visitReferences(Worklist, Visited, [&](Function &F) {
 | |
|     addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F),
 | |
|             LazyCallGraph::Edge::Ref);
 | |
|   });
 | |
| }
 | |
| 
 | |
| LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
 | |
|     : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
 | |
|       EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)),
 | |
|       SCCMap(std::move(G.SCCMap)),
 | |
|       LibFunctions(std::move(G.LibFunctions)) {
 | |
|   updateGraphPtrs();
 | |
| }
 | |
| 
 | |
| LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
 | |
|   BPA = std::move(G.BPA);
 | |
|   NodeMap = std::move(G.NodeMap);
 | |
|   EntryEdges = std::move(G.EntryEdges);
 | |
|   SCCBPA = std::move(G.SCCBPA);
 | |
|   SCCMap = std::move(G.SCCMap);
 | |
|   LibFunctions = std::move(G.LibFunctions);
 | |
|   updateGraphPtrs();
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const {
 | |
|   dbgs() << *this << '\n';
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| void LazyCallGraph::SCC::verify() {
 | |
|   assert(OuterRefSCC && "Can't have a null RefSCC!");
 | |
|   assert(!Nodes.empty() && "Can't have an empty SCC!");
 | |
| 
 | |
|   for (Node *N : Nodes) {
 | |
|     assert(N && "Can't have a null node!");
 | |
|     assert(OuterRefSCC->G->lookupSCC(*N) == this &&
 | |
|            "Node does not map to this SCC!");
 | |
|     assert(N->DFSNumber == -1 &&
 | |
|            "Must set DFS numbers to -1 when adding a node to an SCC!");
 | |
|     assert(N->LowLink == -1 &&
 | |
|            "Must set low link to -1 when adding a node to an SCC!");
 | |
|     for (Edge &E : **N)
 | |
|       assert(E.getNode().isPopulated() && "Can't have an unpopulated node!");
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
 | |
|   if (this == &C)
 | |
|     return false;
 | |
| 
 | |
|   for (Node &N : *this)
 | |
|     for (Edge &E : N->calls())
 | |
|       if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C)
 | |
|         return true;
 | |
| 
 | |
|   // No edges found.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
 | |
|   if (this == &TargetC)
 | |
|     return false;
 | |
| 
 | |
|   LazyCallGraph &G = *OuterRefSCC->G;
 | |
| 
 | |
|   // Start with this SCC.
 | |
|   SmallPtrSet<const SCC *, 16> Visited = {this};
 | |
|   SmallVector<const SCC *, 16> Worklist = {this};
 | |
| 
 | |
|   // Walk down the graph until we run out of edges or find a path to TargetC.
 | |
|   do {
 | |
|     const SCC &C = *Worklist.pop_back_val();
 | |
|     for (Node &N : C)
 | |
|       for (Edge &E : N->calls()) {
 | |
|         SCC *CalleeC = G.lookupSCC(E.getNode());
 | |
|         if (!CalleeC)
 | |
|           continue;
 | |
| 
 | |
|         // If the callee's SCC is the TargetC, we're done.
 | |
|         if (CalleeC == &TargetC)
 | |
|           return true;
 | |
| 
 | |
|         // If this is the first time we've reached this SCC, put it on the
 | |
|         // worklist to recurse through.
 | |
|         if (Visited.insert(CalleeC).second)
 | |
|           Worklist.push_back(CalleeC);
 | |
|       }
 | |
|   } while (!Worklist.empty());
 | |
| 
 | |
|   // No paths found.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const {
 | |
|   dbgs() << *this << '\n';
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| void LazyCallGraph::RefSCC::verify() {
 | |
|   assert(G && "Can't have a null graph!");
 | |
|   assert(!SCCs.empty() && "Can't have an empty SCC!");
 | |
| 
 | |
|   // Verify basic properties of the SCCs.
 | |
|   SmallPtrSet<SCC *, 4> SCCSet;
 | |
|   for (SCC *C : SCCs) {
 | |
|     assert(C && "Can't have a null SCC!");
 | |
|     C->verify();
 | |
|     assert(&C->getOuterRefSCC() == this &&
 | |
|            "SCC doesn't think it is inside this RefSCC!");
 | |
|     bool Inserted = SCCSet.insert(C).second;
 | |
|     assert(Inserted && "Found a duplicate SCC!");
 | |
|     auto IndexIt = SCCIndices.find(C);
 | |
|     assert(IndexIt != SCCIndices.end() &&
 | |
|            "Found an SCC that doesn't have an index!");
 | |
|   }
 | |
| 
 | |
|   // Check that our indices map correctly.
 | |
|   for (auto &SCCIndexPair : SCCIndices) {
 | |
|     SCC *C = SCCIndexPair.first;
 | |
|     int i = SCCIndexPair.second;
 | |
|     assert(C && "Can't have a null SCC in the indices!");
 | |
|     assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
 | |
|     assert(SCCs[i] == C && "Index doesn't point to SCC!");
 | |
|   }
 | |
| 
 | |
|   // Check that the SCCs are in fact in post-order.
 | |
|   for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
 | |
|     SCC &SourceSCC = *SCCs[i];
 | |
|     for (Node &N : SourceSCC)
 | |
|       for (Edge &E : *N) {
 | |
|         if (!E.isCall())
 | |
|           continue;
 | |
|         SCC &TargetSCC = *G->lookupSCC(E.getNode());
 | |
|         if (&TargetSCC.getOuterRefSCC() == this) {
 | |
|           assert(SCCIndices.find(&TargetSCC)->second <= i &&
 | |
|                  "Edge between SCCs violates post-order relationship.");
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const {
 | |
|   if (&RC == this)
 | |
|     return false;
 | |
| 
 | |
|   // Search all edges to see if this is a parent.
 | |
|   for (SCC &C : *this)
 | |
|     for (Node &N : C)
 | |
|       for (Edge &E : *N)
 | |
|         if (G->lookupRefSCC(E.getNode()) == &RC)
 | |
|           return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const {
 | |
|   if (&RC == this)
 | |
|     return false;
 | |
| 
 | |
|   // For each descendant of this RefSCC, see if one of its children is the
 | |
|   // argument. If not, add that descendant to the worklist and continue
 | |
|   // searching.
 | |
|   SmallVector<const RefSCC *, 4> Worklist;
 | |
|   SmallPtrSet<const RefSCC *, 4> Visited;
 | |
|   Worklist.push_back(this);
 | |
|   Visited.insert(this);
 | |
|   do {
 | |
|     const RefSCC &DescendantRC = *Worklist.pop_back_val();
 | |
|     for (SCC &C : DescendantRC)
 | |
|       for (Node &N : C)
 | |
|         for (Edge &E : *N) {
 | |
|           auto *ChildRC = G->lookupRefSCC(E.getNode());
 | |
|           if (ChildRC == &RC)
 | |
|             return true;
 | |
|           if (!ChildRC || !Visited.insert(ChildRC).second)
 | |
|             continue;
 | |
|           Worklist.push_back(ChildRC);
 | |
|         }
 | |
|   } while (!Worklist.empty());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Generic helper that updates a postorder sequence of SCCs for a potentially
 | |
| /// cycle-introducing edge insertion.
 | |
| ///
 | |
| /// A postorder sequence of SCCs of a directed graph has one fundamental
 | |
| /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
 | |
| /// all edges in the SCC DAG point to prior SCCs in the sequence.
 | |
| ///
 | |
| /// This routine both updates a postorder sequence and uses that sequence to
 | |
| /// compute the set of SCCs connected into a cycle. It should only be called to
 | |
| /// insert a "downward" edge which will require changing the sequence to
 | |
| /// restore it to a postorder.
 | |
| ///
 | |
| /// When inserting an edge from an earlier SCC to a later SCC in some postorder
 | |
| /// sequence, all of the SCCs which may be impacted are in the closed range of
 | |
| /// those two within the postorder sequence. The algorithm used here to restore
 | |
| /// the state is as follows:
 | |
| ///
 | |
| /// 1) Starting from the source SCC, construct a set of SCCs which reach the
 | |
| ///    source SCC consisting of just the source SCC. Then scan toward the
 | |
| ///    target SCC in postorder and for each SCC, if it has an edge to an SCC
 | |
| ///    in the set, add it to the set. Otherwise, the source SCC is not
 | |
| ///    a successor, move it in the postorder sequence to immediately before
 | |
| ///    the source SCC, shifting the source SCC and all SCCs in the set one
 | |
| ///    position toward the target SCC. Stop scanning after processing the
 | |
| ///    target SCC.
 | |
| /// 2) If the source SCC is now past the target SCC in the postorder sequence,
 | |
| ///    and thus the new edge will flow toward the start, we are done.
 | |
| /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
 | |
| ///    SCC between the source and the target, and add them to the set of
 | |
| ///    connected SCCs, then recurse through them. Once a complete set of the
 | |
| ///    SCCs the target connects to is known, hoist the remaining SCCs between
 | |
| ///    the source and the target to be above the target. Note that there is no
 | |
| ///    need to process the source SCC, it is already known to connect.
 | |
| /// 4) At this point, all of the SCCs in the closed range between the source
 | |
| ///    SCC and the target SCC in the postorder sequence are connected,
 | |
| ///    including the target SCC and the source SCC. Inserting the edge from
 | |
| ///    the source SCC to the target SCC will form a cycle out of precisely
 | |
| ///    these SCCs. Thus we can merge all of the SCCs in this closed range into
 | |
| ///    a single SCC.
 | |
| ///
 | |
| /// This process has various important properties:
 | |
| /// - Only mutates the SCCs when adding the edge actually changes the SCC
 | |
| ///   structure.
 | |
| /// - Never mutates SCCs which are unaffected by the change.
 | |
| /// - Updates the postorder sequence to correctly satisfy the postorder
 | |
| ///   constraint after the edge is inserted.
 | |
| /// - Only reorders SCCs in the closed postorder sequence from the source to
 | |
| ///   the target, so easy to bound how much has changed even in the ordering.
 | |
| /// - Big-O is the number of edges in the closed postorder range of SCCs from
 | |
| ///   source to target.
 | |
| ///
 | |
| /// This helper routine, in addition to updating the postorder sequence itself
 | |
| /// will also update a map from SCCs to indices within that sequecne.
 | |
| ///
 | |
| /// The sequence and the map must operate on pointers to the SCC type.
 | |
| ///
 | |
| /// Two callbacks must be provided. The first computes the subset of SCCs in
 | |
| /// the postorder closed range from the source to the target which connect to
 | |
| /// the source SCC via some (transitive) set of edges. The second computes the
 | |
| /// subset of the same range which the target SCC connects to via some
 | |
| /// (transitive) set of edges. Both callbacks should populate the set argument
 | |
| /// provided.
 | |
| template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
 | |
|           typename ComputeSourceConnectedSetCallableT,
 | |
|           typename ComputeTargetConnectedSetCallableT>
 | |
| static iterator_range<typename PostorderSequenceT::iterator>
 | |
| updatePostorderSequenceForEdgeInsertion(
 | |
|     SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
 | |
|     SCCIndexMapT &SCCIndices,
 | |
|     ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
 | |
|     ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
 | |
|   int SourceIdx = SCCIndices[&SourceSCC];
 | |
|   int TargetIdx = SCCIndices[&TargetSCC];
 | |
|   assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
 | |
| 
 | |
|   SmallPtrSet<SCCT *, 4> ConnectedSet;
 | |
| 
 | |
|   // Compute the SCCs which (transitively) reach the source.
 | |
|   ComputeSourceConnectedSet(ConnectedSet);
 | |
| 
 | |
|   // Partition the SCCs in this part of the port-order sequence so only SCCs
 | |
|   // connecting to the source remain between it and the target. This is
 | |
|   // a benign partition as it preserves postorder.
 | |
|   auto SourceI = std::stable_partition(
 | |
|       SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
 | |
|       [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
 | |
|   for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
 | |
|     SCCIndices.find(SCCs[i])->second = i;
 | |
| 
 | |
|   // If the target doesn't connect to the source, then we've corrected the
 | |
|   // post-order and there are no cycles formed.
 | |
|   if (!ConnectedSet.count(&TargetSCC)) {
 | |
|     assert(SourceI > (SCCs.begin() + SourceIdx) &&
 | |
|            "Must have moved the source to fix the post-order.");
 | |
|     assert(*std::prev(SourceI) == &TargetSCC &&
 | |
|            "Last SCC to move should have bene the target.");
 | |
| 
 | |
|     // Return an empty range at the target SCC indicating there is nothing to
 | |
|     // merge.
 | |
|     return make_range(std::prev(SourceI), std::prev(SourceI));
 | |
|   }
 | |
| 
 | |
|   assert(SCCs[TargetIdx] == &TargetSCC &&
 | |
|          "Should not have moved target if connected!");
 | |
|   SourceIdx = SourceI - SCCs.begin();
 | |
|   assert(SCCs[SourceIdx] == &SourceSCC &&
 | |
|          "Bad updated index computation for the source SCC!");
 | |
| 
 | |
| 
 | |
|   // See whether there are any remaining intervening SCCs between the source
 | |
|   // and target. If so we need to make sure they all are reachable form the
 | |
|   // target.
 | |
|   if (SourceIdx + 1 < TargetIdx) {
 | |
|     ConnectedSet.clear();
 | |
|     ComputeTargetConnectedSet(ConnectedSet);
 | |
| 
 | |
|     // Partition SCCs so that only SCCs reached from the target remain between
 | |
|     // the source and the target. This preserves postorder.
 | |
|     auto TargetI = std::stable_partition(
 | |
|         SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
 | |
|         [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
 | |
|     for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
 | |
|       SCCIndices.find(SCCs[i])->second = i;
 | |
|     TargetIdx = std::prev(TargetI) - SCCs.begin();
 | |
|     assert(SCCs[TargetIdx] == &TargetSCC &&
 | |
|            "Should always end with the target!");
 | |
|   }
 | |
| 
 | |
|   // At this point, we know that connecting source to target forms a cycle
 | |
|   // because target connects back to source, and we know that all of the SCCs
 | |
|   // between the source and target in the postorder sequence participate in that
 | |
|   // cycle.
 | |
|   return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
 | |
| }
 | |
| 
 | |
| bool
 | |
| LazyCallGraph::RefSCC::switchInternalEdgeToCall(
 | |
|     Node &SourceN, Node &TargetN,
 | |
|     function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) {
 | |
|   assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
 | |
|   SmallVector<SCC *, 1> DeletedSCCs;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // In a debug build, verify the RefSCC is valid to start with and when this
 | |
|   // routine finishes.
 | |
|   verify();
 | |
|   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
 | |
| #endif
 | |
| 
 | |
|   SCC &SourceSCC = *G->lookupSCC(SourceN);
 | |
|   SCC &TargetSCC = *G->lookupSCC(TargetN);
 | |
| 
 | |
|   // If the two nodes are already part of the same SCC, we're also done as
 | |
|   // we've just added more connectivity.
 | |
|   if (&SourceSCC == &TargetSCC) {
 | |
|     SourceN->setEdgeKind(TargetN, Edge::Call);
 | |
|     return false; // No new cycle.
 | |
|   }
 | |
| 
 | |
|   // At this point we leverage the postorder list of SCCs to detect when the
 | |
|   // insertion of an edge changes the SCC structure in any way.
 | |
|   //
 | |
|   // First and foremost, we can eliminate the need for any changes when the
 | |
|   // edge is toward the beginning of the postorder sequence because all edges
 | |
|   // flow in that direction already. Thus adding a new one cannot form a cycle.
 | |
|   int SourceIdx = SCCIndices[&SourceSCC];
 | |
|   int TargetIdx = SCCIndices[&TargetSCC];
 | |
|   if (TargetIdx < SourceIdx) {
 | |
|     SourceN->setEdgeKind(TargetN, Edge::Call);
 | |
|     return false; // No new cycle.
 | |
|   }
 | |
| 
 | |
|   // Compute the SCCs which (transitively) reach the source.
 | |
|   auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
 | |
| #ifndef NDEBUG
 | |
|     // Check that the RefSCC is still valid before computing this as the
 | |
|     // results will be nonsensical of we've broken its invariants.
 | |
|     verify();
 | |
| #endif
 | |
|     ConnectedSet.insert(&SourceSCC);
 | |
|     auto IsConnected = [&](SCC &C) {
 | |
|       for (Node &N : C)
 | |
|         for (Edge &E : N->calls())
 | |
|           if (ConnectedSet.count(G->lookupSCC(E.getNode())))
 | |
|             return true;
 | |
| 
 | |
|       return false;
 | |
|     };
 | |
| 
 | |
|     for (SCC *C :
 | |
|          make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
 | |
|       if (IsConnected(*C))
 | |
|         ConnectedSet.insert(C);
 | |
|   };
 | |
| 
 | |
|   // Use a normal worklist to find which SCCs the target connects to. We still
 | |
|   // bound the search based on the range in the postorder list we care about,
 | |
|   // but because this is forward connectivity we just "recurse" through the
 | |
|   // edges.
 | |
|   auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
 | |
| #ifndef NDEBUG
 | |
|     // Check that the RefSCC is still valid before computing this as the
 | |
|     // results will be nonsensical of we've broken its invariants.
 | |
|     verify();
 | |
| #endif
 | |
|     ConnectedSet.insert(&TargetSCC);
 | |
|     SmallVector<SCC *, 4> Worklist;
 | |
|     Worklist.push_back(&TargetSCC);
 | |
|     do {
 | |
|       SCC &C = *Worklist.pop_back_val();
 | |
|       for (Node &N : C)
 | |
|         for (Edge &E : *N) {
 | |
|           if (!E.isCall())
 | |
|             continue;
 | |
|           SCC &EdgeC = *G->lookupSCC(E.getNode());
 | |
|           if (&EdgeC.getOuterRefSCC() != this)
 | |
|             // Not in this RefSCC...
 | |
|             continue;
 | |
|           if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
 | |
|             // Not in the postorder sequence between source and target.
 | |
|             continue;
 | |
| 
 | |
|           if (ConnectedSet.insert(&EdgeC).second)
 | |
|             Worklist.push_back(&EdgeC);
 | |
|         }
 | |
|     } while (!Worklist.empty());
 | |
|   };
 | |
| 
 | |
|   // Use a generic helper to update the postorder sequence of SCCs and return
 | |
|   // a range of any SCCs connected into a cycle by inserting this edge. This
 | |
|   // routine will also take care of updating the indices into the postorder
 | |
|   // sequence.
 | |
|   auto MergeRange = updatePostorderSequenceForEdgeInsertion(
 | |
|       SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
 | |
|       ComputeTargetConnectedSet);
 | |
| 
 | |
|   // Run the user's callback on the merged SCCs before we actually merge them.
 | |
|   if (MergeCB)
 | |
|     MergeCB(makeArrayRef(MergeRange.begin(), MergeRange.end()));
 | |
| 
 | |
|   // If the merge range is empty, then adding the edge didn't actually form any
 | |
|   // new cycles. We're done.
 | |
|   if (MergeRange.begin() == MergeRange.end()) {
 | |
|     // Now that the SCC structure is finalized, flip the kind to call.
 | |
|     SourceN->setEdgeKind(TargetN, Edge::Call);
 | |
|     return false; // No new cycle.
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Before merging, check that the RefSCC remains valid after all the
 | |
|   // postorder updates.
 | |
|   verify();
 | |
| #endif
 | |
| 
 | |
|   // Otherwise we need to merge all of the SCCs in the cycle into a single
 | |
|   // result SCC.
 | |
|   //
 | |
|   // NB: We merge into the target because all of these functions were already
 | |
|   // reachable from the target, meaning any SCC-wide properties deduced about it
 | |
|   // other than the set of functions within it will not have changed.
 | |
|   for (SCC *C : MergeRange) {
 | |
|     assert(C != &TargetSCC &&
 | |
|            "We merge *into* the target and shouldn't process it here!");
 | |
|     SCCIndices.erase(C);
 | |
|     TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
 | |
|     for (Node *N : C->Nodes)
 | |
|       G->SCCMap[N] = &TargetSCC;
 | |
|     C->clear();
 | |
|     DeletedSCCs.push_back(C);
 | |
|   }
 | |
| 
 | |
|   // Erase the merged SCCs from the list and update the indices of the
 | |
|   // remaining SCCs.
 | |
|   int IndexOffset = MergeRange.end() - MergeRange.begin();
 | |
|   auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
 | |
|   for (SCC *C : make_range(EraseEnd, SCCs.end()))
 | |
|     SCCIndices[C] -= IndexOffset;
 | |
| 
 | |
|   // Now that the SCC structure is finalized, flip the kind to call.
 | |
|   SourceN->setEdgeKind(TargetN, Edge::Call);
 | |
| 
 | |
|   // And we're done, but we did form a new cycle.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN,
 | |
|                                                            Node &TargetN) {
 | |
|   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // In a debug build, verify the RefSCC is valid to start with and when this
 | |
|   // routine finishes.
 | |
|   verify();
 | |
|   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
 | |
| #endif
 | |
| 
 | |
|   assert(G->lookupRefSCC(SourceN) == this &&
 | |
|          "Source must be in this RefSCC.");
 | |
|   assert(G->lookupRefSCC(TargetN) == this &&
 | |
|          "Target must be in this RefSCC.");
 | |
|   assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
 | |
|          "Source and Target must be in separate SCCs for this to be trivial!");
 | |
| 
 | |
|   // Set the edge kind.
 | |
|   SourceN->setEdgeKind(TargetN, Edge::Ref);
 | |
| }
 | |
| 
 | |
| iterator_range<LazyCallGraph::RefSCC::iterator>
 | |
| LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
 | |
|   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // In a debug build, verify the RefSCC is valid to start with and when this
 | |
|   // routine finishes.
 | |
|   verify();
 | |
|   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
 | |
| #endif
 | |
| 
 | |
|   assert(G->lookupRefSCC(SourceN) == this &&
 | |
|          "Source must be in this RefSCC.");
 | |
|   assert(G->lookupRefSCC(TargetN) == this &&
 | |
|          "Target must be in this RefSCC.");
 | |
| 
 | |
|   SCC &TargetSCC = *G->lookupSCC(TargetN);
 | |
|   assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
 | |
|                                                 "the same SCC to require the "
 | |
|                                                 "full CG update.");
 | |
| 
 | |
|   // Set the edge kind.
 | |
|   SourceN->setEdgeKind(TargetN, Edge::Ref);
 | |
| 
 | |
|   // Otherwise we are removing a call edge from a single SCC. This may break
 | |
|   // the cycle. In order to compute the new set of SCCs, we need to do a small
 | |
|   // DFS over the nodes within the SCC to form any sub-cycles that remain as
 | |
|   // distinct SCCs and compute a postorder over the resulting SCCs.
 | |
|   //
 | |
|   // However, we specially handle the target node. The target node is known to
 | |
|   // reach all other nodes in the original SCC by definition. This means that
 | |
|   // we want the old SCC to be replaced with an SCC contaning that node as it
 | |
|   // will be the root of whatever SCC DAG results from the DFS. Assumptions
 | |
|   // about an SCC such as the set of functions called will continue to hold,
 | |
|   // etc.
 | |
| 
 | |
|   SCC &OldSCC = TargetSCC;
 | |
|   SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack;
 | |
|   SmallVector<Node *, 16> PendingSCCStack;
 | |
|   SmallVector<SCC *, 4> NewSCCs;
 | |
| 
 | |
|   // Prepare the nodes for a fresh DFS.
 | |
|   SmallVector<Node *, 16> Worklist;
 | |
|   Worklist.swap(OldSCC.Nodes);
 | |
|   for (Node *N : Worklist) {
 | |
|     N->DFSNumber = N->LowLink = 0;
 | |
|     G->SCCMap.erase(N);
 | |
|   }
 | |
| 
 | |
|   // Force the target node to be in the old SCC. This also enables us to take
 | |
|   // a very significant short-cut in the standard Tarjan walk to re-form SCCs
 | |
|   // below: whenever we build an edge that reaches the target node, we know
 | |
|   // that the target node eventually connects back to all other nodes in our
 | |
|   // walk. As a consequence, we can detect and handle participants in that
 | |
|   // cycle without walking all the edges that form this connection, and instead
 | |
|   // by relying on the fundamental guarantee coming into this operation (all
 | |
|   // nodes are reachable from the target due to previously forming an SCC).
 | |
|   TargetN.DFSNumber = TargetN.LowLink = -1;
 | |
|   OldSCC.Nodes.push_back(&TargetN);
 | |
|   G->SCCMap[&TargetN] = &OldSCC;
 | |
| 
 | |
|   // Scan down the stack and DFS across the call edges.
 | |
|   for (Node *RootN : Worklist) {
 | |
|     assert(DFSStack.empty() &&
 | |
|            "Cannot begin a new root with a non-empty DFS stack!");
 | |
|     assert(PendingSCCStack.empty() &&
 | |
|            "Cannot begin a new root with pending nodes for an SCC!");
 | |
| 
 | |
|     // Skip any nodes we've already reached in the DFS.
 | |
|     if (RootN->DFSNumber != 0) {
 | |
|       assert(RootN->DFSNumber == -1 &&
 | |
|              "Shouldn't have any mid-DFS root nodes!");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     RootN->DFSNumber = RootN->LowLink = 1;
 | |
|     int NextDFSNumber = 2;
 | |
| 
 | |
|     DFSStack.push_back({RootN, (*RootN)->call_begin()});
 | |
|     do {
 | |
|       Node *N;
 | |
|       EdgeSequence::call_iterator I;
 | |
|       std::tie(N, I) = DFSStack.pop_back_val();
 | |
|       auto E = (*N)->call_end();
 | |
|       while (I != E) {
 | |
|         Node &ChildN = I->getNode();
 | |
|         if (ChildN.DFSNumber == 0) {
 | |
|           // We haven't yet visited this child, so descend, pushing the current
 | |
|           // node onto the stack.
 | |
|           DFSStack.push_back({N, I});
 | |
| 
 | |
|           assert(!G->SCCMap.count(&ChildN) &&
 | |
|                  "Found a node with 0 DFS number but already in an SCC!");
 | |
|           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
 | |
|           N = &ChildN;
 | |
|           I = (*N)->call_begin();
 | |
|           E = (*N)->call_end();
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Check for the child already being part of some component.
 | |
|         if (ChildN.DFSNumber == -1) {
 | |
|           if (G->lookupSCC(ChildN) == &OldSCC) {
 | |
|             // If the child is part of the old SCC, we know that it can reach
 | |
|             // every other node, so we have formed a cycle. Pull the entire DFS
 | |
|             // and pending stacks into it. See the comment above about setting
 | |
|             // up the old SCC for why we do this.
 | |
|             int OldSize = OldSCC.size();
 | |
|             OldSCC.Nodes.push_back(N);
 | |
|             OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
 | |
|             PendingSCCStack.clear();
 | |
|             while (!DFSStack.empty())
 | |
|               OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
 | |
|             for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
 | |
|               N.DFSNumber = N.LowLink = -1;
 | |
|               G->SCCMap[&N] = &OldSCC;
 | |
|             }
 | |
|             N = nullptr;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           // If the child has already been added to some child component, it
 | |
|           // couldn't impact the low-link of this parent because it isn't
 | |
|           // connected, and thus its low-link isn't relevant so skip it.
 | |
|           ++I;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Track the lowest linked child as the lowest link for this node.
 | |
|         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
 | |
|         if (ChildN.LowLink < N->LowLink)
 | |
|           N->LowLink = ChildN.LowLink;
 | |
| 
 | |
|         // Move to the next edge.
 | |
|         ++I;
 | |
|       }
 | |
|       if (!N)
 | |
|         // Cleared the DFS early, start another round.
 | |
|         break;
 | |
| 
 | |
|       // We've finished processing N and its descendents, put it on our pending
 | |
|       // SCC stack to eventually get merged into an SCC of nodes.
 | |
|       PendingSCCStack.push_back(N);
 | |
| 
 | |
|       // If this node is linked to some lower entry, continue walking up the
 | |
|       // stack.
 | |
|       if (N->LowLink != N->DFSNumber)
 | |
|         continue;
 | |
| 
 | |
|       // Otherwise, we've completed an SCC. Append it to our post order list of
 | |
|       // SCCs.
 | |
|       int RootDFSNumber = N->DFSNumber;
 | |
|       // Find the range of the node stack by walking down until we pass the
 | |
|       // root DFS number.
 | |
|       auto SCCNodes = make_range(
 | |
|           PendingSCCStack.rbegin(),
 | |
|           find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
 | |
|             return N->DFSNumber < RootDFSNumber;
 | |
|           }));
 | |
| 
 | |
|       // Form a new SCC out of these nodes and then clear them off our pending
 | |
|       // stack.
 | |
|       NewSCCs.push_back(G->createSCC(*this, SCCNodes));
 | |
|       for (Node &N : *NewSCCs.back()) {
 | |
|         N.DFSNumber = N.LowLink = -1;
 | |
|         G->SCCMap[&N] = NewSCCs.back();
 | |
|       }
 | |
|       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
 | |
|     } while (!DFSStack.empty());
 | |
|   }
 | |
| 
 | |
|   // Insert the remaining SCCs before the old one. The old SCC can reach all
 | |
|   // other SCCs we form because it contains the target node of the removed edge
 | |
|   // of the old SCC. This means that we will have edges into all of the new
 | |
|   // SCCs, which means the old one must come last for postorder.
 | |
|   int OldIdx = SCCIndices[&OldSCC];
 | |
|   SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
 | |
| 
 | |
|   // Update the mapping from SCC* to index to use the new SCC*s, and remove the
 | |
|   // old SCC from the mapping.
 | |
|   for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
 | |
|     SCCIndices[SCCs[Idx]] = Idx;
 | |
| 
 | |
|   return make_range(SCCs.begin() + OldIdx,
 | |
|                     SCCs.begin() + OldIdx + NewSCCs.size());
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
 | |
|                                                      Node &TargetN) {
 | |
|   assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
 | |
| 
 | |
|   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
 | |
|   assert(G->lookupRefSCC(TargetN) != this &&
 | |
|          "Target must not be in this RefSCC.");
 | |
| #ifdef EXPENSIVE_CHECKS
 | |
|   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
 | |
|          "Target must be a descendant of the Source.");
 | |
| #endif
 | |
| 
 | |
|   // Edges between RefSCCs are the same regardless of call or ref, so we can
 | |
|   // just flip the edge here.
 | |
|   SourceN->setEdgeKind(TargetN, Edge::Call);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Check that the RefSCC is still valid.
 | |
|   verify();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
 | |
|                                                     Node &TargetN) {
 | |
|   assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
 | |
| 
 | |
|   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
 | |
|   assert(G->lookupRefSCC(TargetN) != this &&
 | |
|          "Target must not be in this RefSCC.");
 | |
| #ifdef EXPENSIVE_CHECKS
 | |
|   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
 | |
|          "Target must be a descendant of the Source.");
 | |
| #endif
 | |
| 
 | |
|   // Edges between RefSCCs are the same regardless of call or ref, so we can
 | |
|   // just flip the edge here.
 | |
|   SourceN->setEdgeKind(TargetN, Edge::Ref);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Check that the RefSCC is still valid.
 | |
|   verify();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
 | |
|                                                   Node &TargetN) {
 | |
|   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
 | |
|   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
 | |
| 
 | |
|   SourceN->insertEdgeInternal(TargetN, Edge::Ref);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Check that the RefSCC is still valid.
 | |
|   verify();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
 | |
|                                                Edge::Kind EK) {
 | |
|   // First insert it into the caller.
 | |
|   SourceN->insertEdgeInternal(TargetN, EK);
 | |
| 
 | |
|   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
 | |
| 
 | |
|   assert(G->lookupRefSCC(TargetN) != this &&
 | |
|          "Target must not be in this RefSCC.");
 | |
| #ifdef EXPENSIVE_CHECKS
 | |
|   assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
 | |
|          "Target must be a descendant of the Source.");
 | |
| #endif
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Check that the RefSCC is still valid.
 | |
|   verify();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| SmallVector<LazyCallGraph::RefSCC *, 1>
 | |
| LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
 | |
|   assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
 | |
|   RefSCC &SourceC = *G->lookupRefSCC(SourceN);
 | |
|   assert(&SourceC != this && "Source must not be in this RefSCC.");
 | |
| #ifdef EXPENSIVE_CHECKS
 | |
|   assert(SourceC.isDescendantOf(*this) &&
 | |
|          "Source must be a descendant of the Target.");
 | |
| #endif
 | |
| 
 | |
|   SmallVector<RefSCC *, 1> DeletedRefSCCs;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // In a debug build, verify the RefSCC is valid to start with and when this
 | |
|   // routine finishes.
 | |
|   verify();
 | |
|   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
 | |
| #endif
 | |
| 
 | |
|   int SourceIdx = G->RefSCCIndices[&SourceC];
 | |
|   int TargetIdx = G->RefSCCIndices[this];
 | |
|   assert(SourceIdx < TargetIdx &&
 | |
|          "Postorder list doesn't see edge as incoming!");
 | |
| 
 | |
|   // Compute the RefSCCs which (transitively) reach the source. We do this by
 | |
|   // working backwards from the source using the parent set in each RefSCC,
 | |
|   // skipping any RefSCCs that don't fall in the postorder range. This has the
 | |
|   // advantage of walking the sparser parent edge (in high fan-out graphs) but
 | |
|   // more importantly this removes examining all forward edges in all RefSCCs
 | |
|   // within the postorder range which aren't in fact connected. Only connected
 | |
|   // RefSCCs (and their edges) are visited here.
 | |
|   auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
 | |
|     Set.insert(&SourceC);
 | |
|     auto IsConnected = [&](RefSCC &RC) {
 | |
|       for (SCC &C : RC)
 | |
|         for (Node &N : C)
 | |
|           for (Edge &E : *N)
 | |
|             if (Set.count(G->lookupRefSCC(E.getNode())))
 | |
|               return true;
 | |
| 
 | |
|       return false;
 | |
|     };
 | |
| 
 | |
|     for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1,
 | |
|                                 G->PostOrderRefSCCs.begin() + TargetIdx + 1))
 | |
|       if (IsConnected(*C))
 | |
|         Set.insert(C);
 | |
|   };
 | |
| 
 | |
|   // Use a normal worklist to find which SCCs the target connects to. We still
 | |
|   // bound the search based on the range in the postorder list we care about,
 | |
|   // but because this is forward connectivity we just "recurse" through the
 | |
|   // edges.
 | |
|   auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
 | |
|     Set.insert(this);
 | |
|     SmallVector<RefSCC *, 4> Worklist;
 | |
|     Worklist.push_back(this);
 | |
|     do {
 | |
|       RefSCC &RC = *Worklist.pop_back_val();
 | |
|       for (SCC &C : RC)
 | |
|         for (Node &N : C)
 | |
|           for (Edge &E : *N) {
 | |
|             RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode());
 | |
|             if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
 | |
|               // Not in the postorder sequence between source and target.
 | |
|               continue;
 | |
| 
 | |
|             if (Set.insert(&EdgeRC).second)
 | |
|               Worklist.push_back(&EdgeRC);
 | |
|           }
 | |
|     } while (!Worklist.empty());
 | |
|   };
 | |
| 
 | |
|   // Use a generic helper to update the postorder sequence of RefSCCs and return
 | |
|   // a range of any RefSCCs connected into a cycle by inserting this edge. This
 | |
|   // routine will also take care of updating the indices into the postorder
 | |
|   // sequence.
 | |
|   iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
 | |
|       updatePostorderSequenceForEdgeInsertion(
 | |
|           SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
 | |
|           ComputeSourceConnectedSet, ComputeTargetConnectedSet);
 | |
| 
 | |
|   // Build a set so we can do fast tests for whether a RefSCC will end up as
 | |
|   // part of the merged RefSCC.
 | |
|   SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
 | |
| 
 | |
|   // This RefSCC will always be part of that set, so just insert it here.
 | |
|   MergeSet.insert(this);
 | |
| 
 | |
|   // Now that we have identified all of the SCCs which need to be merged into
 | |
|   // a connected set with the inserted edge, merge all of them into this SCC.
 | |
|   SmallVector<SCC *, 16> MergedSCCs;
 | |
|   int SCCIndex = 0;
 | |
|   for (RefSCC *RC : MergeRange) {
 | |
|     assert(RC != this && "We're merging into the target RefSCC, so it "
 | |
|                          "shouldn't be in the range.");
 | |
| 
 | |
|     // Walk the inner SCCs to update their up-pointer and walk all the edges to
 | |
|     // update any parent sets.
 | |
|     // FIXME: We should try to find a way to avoid this (rather expensive) edge
 | |
|     // walk by updating the parent sets in some other manner.
 | |
|     for (SCC &InnerC : *RC) {
 | |
|       InnerC.OuterRefSCC = this;
 | |
|       SCCIndices[&InnerC] = SCCIndex++;
 | |
|       for (Node &N : InnerC)
 | |
|         G->SCCMap[&N] = &InnerC;
 | |
|     }
 | |
| 
 | |
|     // Now merge in the SCCs. We can actually move here so try to reuse storage
 | |
|     // the first time through.
 | |
|     if (MergedSCCs.empty())
 | |
|       MergedSCCs = std::move(RC->SCCs);
 | |
|     else
 | |
|       MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
 | |
|     RC->SCCs.clear();
 | |
|     DeletedRefSCCs.push_back(RC);
 | |
|   }
 | |
| 
 | |
|   // Append our original SCCs to the merged list and move it into place.
 | |
|   for (SCC &InnerC : *this)
 | |
|     SCCIndices[&InnerC] = SCCIndex++;
 | |
|   MergedSCCs.append(SCCs.begin(), SCCs.end());
 | |
|   SCCs = std::move(MergedSCCs);
 | |
| 
 | |
|   // Remove the merged away RefSCCs from the post order sequence.
 | |
|   for (RefSCC *RC : MergeRange)
 | |
|     G->RefSCCIndices.erase(RC);
 | |
|   int IndexOffset = MergeRange.end() - MergeRange.begin();
 | |
|   auto EraseEnd =
 | |
|       G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
 | |
|   for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
 | |
|     G->RefSCCIndices[RC] -= IndexOffset;
 | |
| 
 | |
|   // At this point we have a merged RefSCC with a post-order SCCs list, just
 | |
|   // connect the nodes to form the new edge.
 | |
|   SourceN->insertEdgeInternal(TargetN, Edge::Ref);
 | |
| 
 | |
|   // We return the list of SCCs which were merged so that callers can
 | |
|   // invalidate any data they have associated with those SCCs. Note that these
 | |
|   // SCCs are no longer in an interesting state (they are totally empty) but
 | |
|   // the pointers will remain stable for the life of the graph itself.
 | |
|   return DeletedRefSCCs;
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
 | |
|   assert(G->lookupRefSCC(SourceN) == this &&
 | |
|          "The source must be a member of this RefSCC.");
 | |
|   assert(G->lookupRefSCC(TargetN) != this &&
 | |
|          "The target must not be a member of this RefSCC");
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // In a debug build, verify the RefSCC is valid to start with and when this
 | |
|   // routine finishes.
 | |
|   verify();
 | |
|   auto VerifyOnExit = make_scope_exit([&]() { verify(); });
 | |
| #endif
 | |
| 
 | |
|   // First remove it from the node.
 | |
|   bool Removed = SourceN->removeEdgeInternal(TargetN);
 | |
|   (void)Removed;
 | |
|   assert(Removed && "Target not in the edge set for this caller?");
 | |
| }
 | |
| 
 | |
| SmallVector<LazyCallGraph::RefSCC *, 1>
 | |
| LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN,
 | |
|                                              ArrayRef<Node *> TargetNs) {
 | |
|   // We return a list of the resulting *new* RefSCCs in post-order.
 | |
|   SmallVector<RefSCC *, 1> Result;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // In a debug build, verify the RefSCC is valid to start with and that either
 | |
|   // we return an empty list of result RefSCCs and this RefSCC remains valid,
 | |
|   // or we return new RefSCCs and this RefSCC is dead.
 | |
|   verify();
 | |
|   auto VerifyOnExit = make_scope_exit([&]() {
 | |
|     // If we didn't replace our RefSCC with new ones, check that this one
 | |
|     // remains valid.
 | |
|     if (G)
 | |
|       verify();
 | |
|   });
 | |
| #endif
 | |
| 
 | |
|   // First remove the actual edges.
 | |
|   for (Node *TargetN : TargetNs) {
 | |
|     assert(!(*SourceN)[*TargetN].isCall() &&
 | |
|            "Cannot remove a call edge, it must first be made a ref edge");
 | |
| 
 | |
|     bool Removed = SourceN->removeEdgeInternal(*TargetN);
 | |
|     (void)Removed;
 | |
|     assert(Removed && "Target not in the edge set for this caller?");
 | |
|   }
 | |
| 
 | |
|   // Direct self references don't impact the ref graph at all.
 | |
|   if (llvm::all_of(TargetNs,
 | |
|                    [&](Node *TargetN) { return &SourceN == TargetN; }))
 | |
|     return Result;
 | |
| 
 | |
|   // If all targets are in the same SCC as the source, because no call edges
 | |
|   // were removed there is no RefSCC structure change.
 | |
|   SCC &SourceC = *G->lookupSCC(SourceN);
 | |
|   if (llvm::all_of(TargetNs, [&](Node *TargetN) {
 | |
|         return G->lookupSCC(*TargetN) == &SourceC;
 | |
|       }))
 | |
|     return Result;
 | |
| 
 | |
|   // We build somewhat synthetic new RefSCCs by providing a postorder mapping
 | |
|   // for each inner SCC. We store these inside the low-link field of the nodes
 | |
|   // rather than associated with SCCs because this saves a round-trip through
 | |
|   // the node->SCC map and in the common case, SCCs are small. We will verify
 | |
|   // that we always give the same number to every node in the SCC such that
 | |
|   // these are equivalent.
 | |
|   int PostOrderNumber = 0;
 | |
| 
 | |
|   // Reset all the other nodes to prepare for a DFS over them, and add them to
 | |
|   // our worklist.
 | |
|   SmallVector<Node *, 8> Worklist;
 | |
|   for (SCC *C : SCCs) {
 | |
|     for (Node &N : *C)
 | |
|       N.DFSNumber = N.LowLink = 0;
 | |
| 
 | |
|     Worklist.append(C->Nodes.begin(), C->Nodes.end());
 | |
|   }
 | |
| 
 | |
|   // Track the number of nodes in this RefSCC so that we can quickly recognize
 | |
|   // an important special case of the edge removal not breaking the cycle of
 | |
|   // this RefSCC.
 | |
|   const int NumRefSCCNodes = Worklist.size();
 | |
| 
 | |
|   SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack;
 | |
|   SmallVector<Node *, 4> PendingRefSCCStack;
 | |
|   do {
 | |
|     assert(DFSStack.empty() &&
 | |
|            "Cannot begin a new root with a non-empty DFS stack!");
 | |
|     assert(PendingRefSCCStack.empty() &&
 | |
|            "Cannot begin a new root with pending nodes for an SCC!");
 | |
| 
 | |
|     Node *RootN = Worklist.pop_back_val();
 | |
|     // Skip any nodes we've already reached in the DFS.
 | |
|     if (RootN->DFSNumber != 0) {
 | |
|       assert(RootN->DFSNumber == -1 &&
 | |
|              "Shouldn't have any mid-DFS root nodes!");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     RootN->DFSNumber = RootN->LowLink = 1;
 | |
|     int NextDFSNumber = 2;
 | |
| 
 | |
|     DFSStack.push_back({RootN, (*RootN)->begin()});
 | |
|     do {
 | |
|       Node *N;
 | |
|       EdgeSequence::iterator I;
 | |
|       std::tie(N, I) = DFSStack.pop_back_val();
 | |
|       auto E = (*N)->end();
 | |
| 
 | |
|       assert(N->DFSNumber != 0 && "We should always assign a DFS number "
 | |
|                                   "before processing a node.");
 | |
| 
 | |
|       while (I != E) {
 | |
|         Node &ChildN = I->getNode();
 | |
|         if (ChildN.DFSNumber == 0) {
 | |
|           // Mark that we should start at this child when next this node is the
 | |
|           // top of the stack. We don't start at the next child to ensure this
 | |
|           // child's lowlink is reflected.
 | |
|           DFSStack.push_back({N, I});
 | |
| 
 | |
|           // Continue, resetting to the child node.
 | |
|           ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
 | |
|           N = &ChildN;
 | |
|           I = ChildN->begin();
 | |
|           E = ChildN->end();
 | |
|           continue;
 | |
|         }
 | |
|         if (ChildN.DFSNumber == -1) {
 | |
|           // If this child isn't currently in this RefSCC, no need to process
 | |
|           // it.
 | |
|           ++I;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Track the lowest link of the children, if any are still in the stack.
 | |
|         // Any child not on the stack will have a LowLink of -1.
 | |
|         assert(ChildN.LowLink != 0 &&
 | |
|                "Low-link must not be zero with a non-zero DFS number.");
 | |
|         if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
 | |
|           N->LowLink = ChildN.LowLink;
 | |
|         ++I;
 | |
|       }
 | |
| 
 | |
|       // We've finished processing N and its descendents, put it on our pending
 | |
|       // stack to eventually get merged into a RefSCC.
 | |
|       PendingRefSCCStack.push_back(N);
 | |
| 
 | |
|       // If this node is linked to some lower entry, continue walking up the
 | |
|       // stack.
 | |
|       if (N->LowLink != N->DFSNumber) {
 | |
|         assert(!DFSStack.empty() &&
 | |
|                "We never found a viable root for a RefSCC to pop off!");
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, form a new RefSCC from the top of the pending node stack.
 | |
|       int RefSCCNumber = PostOrderNumber++;
 | |
|       int RootDFSNumber = N->DFSNumber;
 | |
| 
 | |
|       // Find the range of the node stack by walking down until we pass the
 | |
|       // root DFS number. Update the DFS numbers and low link numbers in the
 | |
|       // process to avoid re-walking this list where possible.
 | |
|       auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) {
 | |
|         if (N->DFSNumber < RootDFSNumber)
 | |
|           // We've found the bottom.
 | |
|           return true;
 | |
| 
 | |
|         // Update this node and keep scanning.
 | |
|         N->DFSNumber = -1;
 | |
|         // Save the post-order number in the lowlink field so that we can use
 | |
|         // it to map SCCs into new RefSCCs after we finish the DFS.
 | |
|         N->LowLink = RefSCCNumber;
 | |
|         return false;
 | |
|       });
 | |
|       auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end());
 | |
| 
 | |
|       // If we find a cycle containing all nodes originally in this RefSCC then
 | |
|       // the removal hasn't changed the structure at all. This is an important
 | |
|       // special case and we can directly exit the entire routine more
 | |
|       // efficiently as soon as we discover it.
 | |
|       if (std::distance(RefSCCNodes.begin(), RefSCCNodes.end()) ==
 | |
|           NumRefSCCNodes) {
 | |
|         // Clear out the low link field as we won't need it.
 | |
|         for (Node *N : RefSCCNodes)
 | |
|           N->LowLink = -1;
 | |
|         // Return the empty result immediately.
 | |
|         return Result;
 | |
|       }
 | |
| 
 | |
|       // We've already marked the nodes internally with the RefSCC number so
 | |
|       // just clear them off the stack and continue.
 | |
|       PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end());
 | |
|     } while (!DFSStack.empty());
 | |
| 
 | |
|     assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
 | |
|     assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
 | |
|   } while (!Worklist.empty());
 | |
| 
 | |
|   assert(PostOrderNumber > 1 &&
 | |
|          "Should never finish the DFS when the existing RefSCC remains valid!");
 | |
| 
 | |
|   // Otherwise we create a collection of new RefSCC nodes and build
 | |
|   // a radix-sort style map from postorder number to these new RefSCCs. We then
 | |
|   // append SCCs to each of these RefSCCs in the order they occured in the
 | |
|   // original SCCs container.
 | |
|   for (int i = 0; i < PostOrderNumber; ++i)
 | |
|     Result.push_back(G->createRefSCC(*G));
 | |
| 
 | |
|   // Insert the resulting postorder sequence into the global graph postorder
 | |
|   // sequence before the current RefSCC in that sequence, and then remove the
 | |
|   // current one.
 | |
|   //
 | |
|   // FIXME: It'd be nice to change the APIs so that we returned an iterator
 | |
|   // range over the global postorder sequence and generally use that sequence
 | |
|   // rather than building a separate result vector here.
 | |
|   int Idx = G->getRefSCCIndex(*this);
 | |
|   G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx);
 | |
|   G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(),
 | |
|                              Result.end());
 | |
|   for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size()))
 | |
|     G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i;
 | |
| 
 | |
|   for (SCC *C : SCCs) {
 | |
|     // We store the SCC number in the node's low-link field above.
 | |
|     int SCCNumber = C->begin()->LowLink;
 | |
|     // Clear out all of the SCC's node's low-link fields now that we're done
 | |
|     // using them as side-storage.
 | |
|     for (Node &N : *C) {
 | |
|       assert(N.LowLink == SCCNumber &&
 | |
|              "Cannot have different numbers for nodes in the same SCC!");
 | |
|       N.LowLink = -1;
 | |
|     }
 | |
| 
 | |
|     RefSCC &RC = *Result[SCCNumber];
 | |
|     int SCCIndex = RC.SCCs.size();
 | |
|     RC.SCCs.push_back(C);
 | |
|     RC.SCCIndices[C] = SCCIndex;
 | |
|     C->OuterRefSCC = &RC;
 | |
|   }
 | |
| 
 | |
|   // Now that we've moved things into the new RefSCCs, clear out our current
 | |
|   // one.
 | |
|   G = nullptr;
 | |
|   SCCs.clear();
 | |
|   SCCIndices.clear();
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Verify the new RefSCCs we've built.
 | |
|   for (RefSCC *RC : Result)
 | |
|     RC->verify();
 | |
| #endif
 | |
| 
 | |
|   // Return the new list of SCCs.
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN,
 | |
|                                                        Node &TargetN) {
 | |
|   // The only trivial case that requires any graph updates is when we add new
 | |
|   // ref edge and may connect different RefSCCs along that path. This is only
 | |
|   // because of the parents set. Every other part of the graph remains constant
 | |
|   // after this edge insertion.
 | |
|   assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
 | |
|   RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
 | |
|   if (&TargetRC == this)
 | |
|     return;
 | |
| 
 | |
| #ifdef EXPENSIVE_CHECKS
 | |
|   assert(TargetRC.isDescendantOf(*this) &&
 | |
|          "Target must be a descendant of the Source.");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
 | |
|                                                   Node &TargetN) {
 | |
| #ifndef NDEBUG
 | |
|   // Check that the RefSCC is still valid when we finish.
 | |
|   auto ExitVerifier = make_scope_exit([this] { verify(); });
 | |
| 
 | |
| #ifdef EXPENSIVE_CHECKS
 | |
|   // Check that we aren't breaking some invariants of the SCC graph. Note that
 | |
|   // this is quadratic in the number of edges in the call graph!
 | |
|   SCC &SourceC = *G->lookupSCC(SourceN);
 | |
|   SCC &TargetC = *G->lookupSCC(TargetN);
 | |
|   if (&SourceC != &TargetC)
 | |
|     assert(SourceC.isAncestorOf(TargetC) &&
 | |
|            "Call edge is not trivial in the SCC graph!");
 | |
| #endif // EXPENSIVE_CHECKS
 | |
| #endif // NDEBUG
 | |
| 
 | |
|   // First insert it into the source or find the existing edge.
 | |
|   auto InsertResult =
 | |
|       SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
 | |
|   if (!InsertResult.second) {
 | |
|     // Already an edge, just update it.
 | |
|     Edge &E = SourceN->Edges[InsertResult.first->second];
 | |
|     if (E.isCall())
 | |
|       return; // Nothing to do!
 | |
|     E.setKind(Edge::Call);
 | |
|   } else {
 | |
|     // Create the new edge.
 | |
|     SourceN->Edges.emplace_back(TargetN, Edge::Call);
 | |
|   }
 | |
| 
 | |
|   // Now that we have the edge, handle the graph fallout.
 | |
|   handleTrivialEdgeInsertion(SourceN, TargetN);
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
 | |
| #ifndef NDEBUG
 | |
|   // Check that the RefSCC is still valid when we finish.
 | |
|   auto ExitVerifier = make_scope_exit([this] { verify(); });
 | |
| 
 | |
| #ifdef EXPENSIVE_CHECKS
 | |
|   // Check that we aren't breaking some invariants of the RefSCC graph.
 | |
|   RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
 | |
|   RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
 | |
|   if (&SourceRC != &TargetRC)
 | |
|     assert(SourceRC.isAncestorOf(TargetRC) &&
 | |
|            "Ref edge is not trivial in the RefSCC graph!");
 | |
| #endif // EXPENSIVE_CHECKS
 | |
| #endif // NDEBUG
 | |
| 
 | |
|   // First insert it into the source or find the existing edge.
 | |
|   auto InsertResult =
 | |
|       SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
 | |
|   if (!InsertResult.second)
 | |
|     // Already an edge, we're done.
 | |
|     return;
 | |
| 
 | |
|   // Create the new edge.
 | |
|   SourceN->Edges.emplace_back(TargetN, Edge::Ref);
 | |
| 
 | |
|   // Now that we have the edge, handle the graph fallout.
 | |
|   handleTrivialEdgeInsertion(SourceN, TargetN);
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) {
 | |
|   Function &OldF = N.getFunction();
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Check that the RefSCC is still valid when we finish.
 | |
|   auto ExitVerifier = make_scope_exit([this] { verify(); });
 | |
| 
 | |
|   assert(G->lookupRefSCC(N) == this &&
 | |
|          "Cannot replace the function of a node outside this RefSCC.");
 | |
| 
 | |
|   assert(G->NodeMap.find(&NewF) == G->NodeMap.end() &&
 | |
|          "Must not have already walked the new function!'");
 | |
| 
 | |
|   // It is important that this replacement not introduce graph changes so we
 | |
|   // insist that the caller has already removed every use of the original
 | |
|   // function and that all uses of the new function correspond to existing
 | |
|   // edges in the graph. The common and expected way to use this is when
 | |
|   // replacing the function itself in the IR without changing the call graph
 | |
|   // shape and just updating the analysis based on that.
 | |
|   assert(&OldF != &NewF && "Cannot replace a function with itself!");
 | |
|   assert(OldF.use_empty() &&
 | |
|          "Must have moved all uses from the old function to the new!");
 | |
| #endif
 | |
| 
 | |
|   N.replaceFunction(NewF);
 | |
| 
 | |
|   // Update various call graph maps.
 | |
|   G->NodeMap.erase(&OldF);
 | |
|   G->NodeMap[&NewF] = &N;
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) {
 | |
|   assert(SCCMap.empty() &&
 | |
|          "This method cannot be called after SCCs have been formed!");
 | |
| 
 | |
|   return SourceN->insertEdgeInternal(TargetN, EK);
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) {
 | |
|   assert(SCCMap.empty() &&
 | |
|          "This method cannot be called after SCCs have been formed!");
 | |
| 
 | |
|   bool Removed = SourceN->removeEdgeInternal(TargetN);
 | |
|   (void)Removed;
 | |
|   assert(Removed && "Target not in the edge set for this caller?");
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::removeDeadFunction(Function &F) {
 | |
|   // FIXME: This is unnecessarily restrictive. We should be able to remove
 | |
|   // functions which recursively call themselves.
 | |
|   assert(F.use_empty() &&
 | |
|          "This routine should only be called on trivially dead functions!");
 | |
| 
 | |
|   // We shouldn't remove library functions as they are never really dead while
 | |
|   // the call graph is in use -- every function definition refers to them.
 | |
|   assert(!isLibFunction(F) &&
 | |
|          "Must not remove lib functions from the call graph!");
 | |
| 
 | |
|   auto NI = NodeMap.find(&F);
 | |
|   if (NI == NodeMap.end())
 | |
|     // Not in the graph at all!
 | |
|     return;
 | |
| 
 | |
|   Node &N = *NI->second;
 | |
|   NodeMap.erase(NI);
 | |
| 
 | |
|   // Remove this from the entry edges if present.
 | |
|   EntryEdges.removeEdgeInternal(N);
 | |
| 
 | |
|   if (SCCMap.empty()) {
 | |
|     // No SCCs have been formed, so removing this is fine and there is nothing
 | |
|     // else necessary at this point but clearing out the node.
 | |
|     N.clear();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Cannot remove a function which has yet to be visited in the DFS walk, so
 | |
|   // if we have a node at all then we must have an SCC and RefSCC.
 | |
|   auto CI = SCCMap.find(&N);
 | |
|   assert(CI != SCCMap.end() &&
 | |
|          "Tried to remove a node without an SCC after DFS walk started!");
 | |
|   SCC &C = *CI->second;
 | |
|   SCCMap.erase(CI);
 | |
|   RefSCC &RC = C.getOuterRefSCC();
 | |
| 
 | |
|   // This node must be the only member of its SCC as it has no callers, and
 | |
|   // that SCC must be the only member of a RefSCC as it has no references.
 | |
|   // Validate these properties first.
 | |
|   assert(C.size() == 1 && "Dead functions must be in a singular SCC");
 | |
|   assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC");
 | |
| 
 | |
|   auto RCIndexI = RefSCCIndices.find(&RC);
 | |
|   int RCIndex = RCIndexI->second;
 | |
|   PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex);
 | |
|   RefSCCIndices.erase(RCIndexI);
 | |
|   for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i)
 | |
|     RefSCCIndices[PostOrderRefSCCs[i]] = i;
 | |
| 
 | |
|   // Finally clear out all the data structures from the node down through the
 | |
|   // components.
 | |
|   N.clear();
 | |
|   N.G = nullptr;
 | |
|   N.F = nullptr;
 | |
|   C.clear();
 | |
|   RC.clear();
 | |
|   RC.G = nullptr;
 | |
| 
 | |
|   // Nothing to delete as all the objects are allocated in stable bump pointer
 | |
|   // allocators.
 | |
| }
 | |
| 
 | |
| LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
 | |
|   return *new (MappedN = BPA.Allocate()) Node(*this, F);
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::updateGraphPtrs() {
 | |
|   // Walk the node map to update their graph pointers. While this iterates in
 | |
|   // an unstable order, the order has no effect so it remains correct.
 | |
|   for (auto &FunctionNodePair : NodeMap)
 | |
|     FunctionNodePair.second->G = this;
 | |
| 
 | |
|   for (auto *RC : PostOrderRefSCCs)
 | |
|     RC->G = this;
 | |
| }
 | |
| 
 | |
| template <typename RootsT, typename GetBeginT, typename GetEndT,
 | |
|           typename GetNodeT, typename FormSCCCallbackT>
 | |
| void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
 | |
|                                      GetEndT &&GetEnd, GetNodeT &&GetNode,
 | |
|                                      FormSCCCallbackT &&FormSCC) {
 | |
|   using EdgeItT = decltype(GetBegin(std::declval<Node &>()));
 | |
| 
 | |
|   SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack;
 | |
|   SmallVector<Node *, 16> PendingSCCStack;
 | |
| 
 | |
|   // Scan down the stack and DFS across the call edges.
 | |
|   for (Node *RootN : Roots) {
 | |
|     assert(DFSStack.empty() &&
 | |
|            "Cannot begin a new root with a non-empty DFS stack!");
 | |
|     assert(PendingSCCStack.empty() &&
 | |
|            "Cannot begin a new root with pending nodes for an SCC!");
 | |
| 
 | |
|     // Skip any nodes we've already reached in the DFS.
 | |
|     if (RootN->DFSNumber != 0) {
 | |
|       assert(RootN->DFSNumber == -1 &&
 | |
|              "Shouldn't have any mid-DFS root nodes!");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     RootN->DFSNumber = RootN->LowLink = 1;
 | |
|     int NextDFSNumber = 2;
 | |
| 
 | |
|     DFSStack.push_back({RootN, GetBegin(*RootN)});
 | |
|     do {
 | |
|       Node *N;
 | |
|       EdgeItT I;
 | |
|       std::tie(N, I) = DFSStack.pop_back_val();
 | |
|       auto E = GetEnd(*N);
 | |
|       while (I != E) {
 | |
|         Node &ChildN = GetNode(I);
 | |
|         if (ChildN.DFSNumber == 0) {
 | |
|           // We haven't yet visited this child, so descend, pushing the current
 | |
|           // node onto the stack.
 | |
|           DFSStack.push_back({N, I});
 | |
| 
 | |
|           ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
 | |
|           N = &ChildN;
 | |
|           I = GetBegin(*N);
 | |
|           E = GetEnd(*N);
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // If the child has already been added to some child component, it
 | |
|         // couldn't impact the low-link of this parent because it isn't
 | |
|         // connected, and thus its low-link isn't relevant so skip it.
 | |
|         if (ChildN.DFSNumber == -1) {
 | |
|           ++I;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Track the lowest linked child as the lowest link for this node.
 | |
|         assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
 | |
|         if (ChildN.LowLink < N->LowLink)
 | |
|           N->LowLink = ChildN.LowLink;
 | |
| 
 | |
|         // Move to the next edge.
 | |
|         ++I;
 | |
|       }
 | |
| 
 | |
|       // We've finished processing N and its descendents, put it on our pending
 | |
|       // SCC stack to eventually get merged into an SCC of nodes.
 | |
|       PendingSCCStack.push_back(N);
 | |
| 
 | |
|       // If this node is linked to some lower entry, continue walking up the
 | |
|       // stack.
 | |
|       if (N->LowLink != N->DFSNumber)
 | |
|         continue;
 | |
| 
 | |
|       // Otherwise, we've completed an SCC. Append it to our post order list of
 | |
|       // SCCs.
 | |
|       int RootDFSNumber = N->DFSNumber;
 | |
|       // Find the range of the node stack by walking down until we pass the
 | |
|       // root DFS number.
 | |
|       auto SCCNodes = make_range(
 | |
|           PendingSCCStack.rbegin(),
 | |
|           find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
 | |
|             return N->DFSNumber < RootDFSNumber;
 | |
|           }));
 | |
|       // Form a new SCC out of these nodes and then clear them off our pending
 | |
|       // stack.
 | |
|       FormSCC(SCCNodes);
 | |
|       PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
 | |
|     } while (!DFSStack.empty());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Build the internal SCCs for a RefSCC from a sequence of nodes.
 | |
| ///
 | |
| /// Appends the SCCs to the provided vector and updates the map with their
 | |
| /// indices. Both the vector and map must be empty when passed into this
 | |
| /// routine.
 | |
| void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
 | |
|   assert(RC.SCCs.empty() && "Already built SCCs!");
 | |
|   assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
 | |
| 
 | |
|   for (Node *N : Nodes) {
 | |
|     assert(N->LowLink >= (*Nodes.begin())->LowLink &&
 | |
|            "We cannot have a low link in an SCC lower than its root on the "
 | |
|            "stack!");
 | |
| 
 | |
|     // This node will go into the next RefSCC, clear out its DFS and low link
 | |
|     // as we scan.
 | |
|     N->DFSNumber = N->LowLink = 0;
 | |
|   }
 | |
| 
 | |
|   // Each RefSCC contains a DAG of the call SCCs. To build these, we do
 | |
|   // a direct walk of the call edges using Tarjan's algorithm. We reuse the
 | |
|   // internal storage as we won't need it for the outer graph's DFS any longer.
 | |
|   buildGenericSCCs(
 | |
|       Nodes, [](Node &N) { return N->call_begin(); },
 | |
|       [](Node &N) { return N->call_end(); },
 | |
|       [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); },
 | |
|       [this, &RC](node_stack_range Nodes) {
 | |
|         RC.SCCs.push_back(createSCC(RC, Nodes));
 | |
|         for (Node &N : *RC.SCCs.back()) {
 | |
|           N.DFSNumber = N.LowLink = -1;
 | |
|           SCCMap[&N] = RC.SCCs.back();
 | |
|         }
 | |
|       });
 | |
| 
 | |
|   // Wire up the SCC indices.
 | |
|   for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
 | |
|     RC.SCCIndices[RC.SCCs[i]] = i;
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::buildRefSCCs() {
 | |
|   if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
 | |
|     // RefSCCs are either non-existent or already built!
 | |
|     return;
 | |
| 
 | |
|   assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");
 | |
| 
 | |
|   SmallVector<Node *, 16> Roots;
 | |
|   for (Edge &E : *this)
 | |
|     Roots.push_back(&E.getNode());
 | |
| 
 | |
|   // The roots will be popped of a stack, so use reverse to get a less
 | |
|   // surprising order. This doesn't change any of the semantics anywhere.
 | |
|   std::reverse(Roots.begin(), Roots.end());
 | |
| 
 | |
|   buildGenericSCCs(
 | |
|       Roots,
 | |
|       [](Node &N) {
 | |
|         // We need to populate each node as we begin to walk its edges.
 | |
|         N.populate();
 | |
|         return N->begin();
 | |
|       },
 | |
|       [](Node &N) { return N->end(); },
 | |
|       [](EdgeSequence::iterator I) -> Node & { return I->getNode(); },
 | |
|       [this](node_stack_range Nodes) {
 | |
|         RefSCC *NewRC = createRefSCC(*this);
 | |
|         buildSCCs(*NewRC, Nodes);
 | |
| 
 | |
|         // Push the new node into the postorder list and remember its position
 | |
|         // in the index map.
 | |
|         bool Inserted =
 | |
|             RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second;
 | |
|         (void)Inserted;
 | |
|         assert(Inserted && "Cannot already have this RefSCC in the index map!");
 | |
|         PostOrderRefSCCs.push_back(NewRC);
 | |
| #ifndef NDEBUG
 | |
|         NewRC->verify();
 | |
| #endif
 | |
|       });
 | |
| }
 | |
| 
 | |
| AnalysisKey LazyCallGraphAnalysis::Key;
 | |
| 
 | |
| LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
 | |
| 
 | |
| static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
 | |
|   OS << "  Edges in function: " << N.getFunction().getName() << "\n";
 | |
|   for (LazyCallGraph::Edge &E : N.populate())
 | |
|     OS << "    " << (E.isCall() ? "call" : "ref ") << " -> "
 | |
|        << E.getFunction().getName() << "\n";
 | |
| 
 | |
|   OS << "\n";
 | |
| }
 | |
| 
 | |
| static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
 | |
|   ptrdiff_t Size = std::distance(C.begin(), C.end());
 | |
|   OS << "    SCC with " << Size << " functions:\n";
 | |
| 
 | |
|   for (LazyCallGraph::Node &N : C)
 | |
|     OS << "      " << N.getFunction().getName() << "\n";
 | |
| }
 | |
| 
 | |
| static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
 | |
|   ptrdiff_t Size = std::distance(C.begin(), C.end());
 | |
|   OS << "  RefSCC with " << Size << " call SCCs:\n";
 | |
| 
 | |
|   for (LazyCallGraph::SCC &InnerC : C)
 | |
|     printSCC(OS, InnerC);
 | |
| 
 | |
|   OS << "\n";
 | |
| }
 | |
| 
 | |
| PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
 | |
|                                                 ModuleAnalysisManager &AM) {
 | |
|   LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
 | |
| 
 | |
|   OS << "Printing the call graph for module: " << M.getModuleIdentifier()
 | |
|      << "\n\n";
 | |
| 
 | |
|   for (Function &F : M)
 | |
|     printNode(OS, G.get(F));
 | |
| 
 | |
|   G.buildRefSCCs();
 | |
|   for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
 | |
|     printRefSCC(OS, C);
 | |
| 
 | |
|   return PreservedAnalyses::all();
 | |
| }
 | |
| 
 | |
| LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
 | |
|     : OS(OS) {}
 | |
| 
 | |
| static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
 | |
|   std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\"";
 | |
| 
 | |
|   for (LazyCallGraph::Edge &E : N.populate()) {
 | |
|     OS << "  " << Name << " -> \""
 | |
|        << DOT::EscapeString(E.getFunction().getName()) << "\"";
 | |
|     if (!E.isCall()) // It is a ref edge.
 | |
|       OS << " [style=dashed,label=\"ref\"]";
 | |
|     OS << ";\n";
 | |
|   }
 | |
| 
 | |
|   OS << "\n";
 | |
| }
 | |
| 
 | |
| PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
 | |
|                                                    ModuleAnalysisManager &AM) {
 | |
|   LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
 | |
| 
 | |
|   OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
 | |
| 
 | |
|   for (Function &F : M)
 | |
|     printNodeDOT(OS, G.get(F));
 | |
| 
 | |
|   OS << "}\n";
 | |
| 
 | |
|   return PreservedAnalyses::all();
 | |
| }
 |