forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			937 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			937 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This family of functions identifies calls to builtin functions that allocate
 | |
| // or free memory.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/Analysis/TargetFolder.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/Argument.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "memory-builtins"
 | |
| 
 | |
| enum AllocType : uint8_t {
 | |
|   OpNewLike          = 1<<0, // allocates; never returns null
 | |
|   MallocLike         = 1<<1 | OpNewLike, // allocates; may return null
 | |
|   CallocLike         = 1<<2, // allocates + bzero
 | |
|   ReallocLike        = 1<<3, // reallocates
 | |
|   StrDupLike         = 1<<4,
 | |
|   MallocOrCallocLike = MallocLike | CallocLike,
 | |
|   AllocLike          = MallocLike | CallocLike | StrDupLike,
 | |
|   AnyAlloc           = AllocLike | ReallocLike
 | |
| };
 | |
| 
 | |
| struct AllocFnsTy {
 | |
|   AllocType AllocTy;
 | |
|   unsigned NumParams;
 | |
|   // First and Second size parameters (or -1 if unused)
 | |
|   int FstParam, SndParam;
 | |
| };
 | |
| 
 | |
| // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
 | |
| // know which functions are nounwind, noalias, nocapture parameters, etc.
 | |
| static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
 | |
|   {LibFunc_malloc,              {MallocLike,  1, 0,  -1}},
 | |
|   {LibFunc_valloc,              {MallocLike,  1, 0,  -1}},
 | |
|   {LibFunc_Znwj,                {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
 | |
|   {LibFunc_ZnwjRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
 | |
|   {LibFunc_Znwm,                {OpNewLike,   1, 0,  -1}}, // new(unsigned long)
 | |
|   {LibFunc_ZnwmRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned long, nothrow)
 | |
|   {LibFunc_Znaj,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
 | |
|   {LibFunc_ZnajRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
 | |
|   {LibFunc_Znam,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned long)
 | |
|   {LibFunc_ZnamRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned long, nothrow)
 | |
|   {LibFunc_msvc_new_int,         {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
 | |
|   {LibFunc_msvc_new_int_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
 | |
|   {LibFunc_msvc_new_longlong,         {OpNewLike,   1, 0,  -1}}, // new(unsigned long long)
 | |
|   {LibFunc_msvc_new_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned long long, nothrow)
 | |
|   {LibFunc_msvc_new_array_int,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
 | |
|   {LibFunc_msvc_new_array_int_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
 | |
|   {LibFunc_msvc_new_array_longlong,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned long long)
 | |
|   {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned long long, nothrow)
 | |
|   {LibFunc_calloc,              {CallocLike,  2, 0,   1}},
 | |
|   {LibFunc_realloc,             {ReallocLike, 2, 1,  -1}},
 | |
|   {LibFunc_reallocf,            {ReallocLike, 2, 1,  -1}},
 | |
|   {LibFunc_strdup,              {StrDupLike,  1, -1, -1}},
 | |
|   {LibFunc_strndup,             {StrDupLike,  2, 1,  -1}}
 | |
|   // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
 | |
| };
 | |
| 
 | |
| static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast,
 | |
|                                          bool &IsNoBuiltin) {
 | |
|   // Don't care about intrinsics in this case.
 | |
|   if (isa<IntrinsicInst>(V))
 | |
|     return nullptr;
 | |
| 
 | |
|   if (LookThroughBitCast)
 | |
|     V = V->stripPointerCasts();
 | |
| 
 | |
|   ImmutableCallSite CS(V);
 | |
|   if (!CS.getInstruction())
 | |
|     return nullptr;
 | |
| 
 | |
|   IsNoBuiltin = CS.isNoBuiltin();
 | |
| 
 | |
|   const Function *Callee = CS.getCalledFunction();
 | |
|   if (!Callee || !Callee->isDeclaration())
 | |
|     return nullptr;
 | |
|   return Callee;
 | |
| }
 | |
| 
 | |
| /// Returns the allocation data for the given value if it's either a call to a
 | |
| /// known allocation function, or a call to a function with the allocsize
 | |
| /// attribute.
 | |
| static Optional<AllocFnsTy>
 | |
| getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
 | |
|                              const TargetLibraryInfo *TLI) {
 | |
|   // Make sure that the function is available.
 | |
|   StringRef FnName = Callee->getName();
 | |
|   LibFunc TLIFn;
 | |
|   if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
 | |
|     return None;
 | |
| 
 | |
|   const auto *Iter = find_if(
 | |
|       AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
 | |
|         return P.first == TLIFn;
 | |
|       });
 | |
| 
 | |
|   if (Iter == std::end(AllocationFnData))
 | |
|     return None;
 | |
| 
 | |
|   const AllocFnsTy *FnData = &Iter->second;
 | |
|   if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
 | |
|     return None;
 | |
| 
 | |
|   // Check function prototype.
 | |
|   int FstParam = FnData->FstParam;
 | |
|   int SndParam = FnData->SndParam;
 | |
|   FunctionType *FTy = Callee->getFunctionType();
 | |
| 
 | |
|   if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
 | |
|       FTy->getNumParams() == FnData->NumParams &&
 | |
|       (FstParam < 0 ||
 | |
|        (FTy->getParamType(FstParam)->isIntegerTy(32) ||
 | |
|         FTy->getParamType(FstParam)->isIntegerTy(64))) &&
 | |
|       (SndParam < 0 ||
 | |
|        FTy->getParamType(SndParam)->isIntegerTy(32) ||
 | |
|        FTy->getParamType(SndParam)->isIntegerTy(64)))
 | |
|     return *FnData;
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
 | |
|                                               const TargetLibraryInfo *TLI,
 | |
|                                               bool LookThroughBitCast = false) {
 | |
|   bool IsNoBuiltinCall;
 | |
|   if (const Function *Callee =
 | |
|           getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall))
 | |
|     if (!IsNoBuiltinCall)
 | |
|       return getAllocationDataForFunction(Callee, AllocTy, TLI);
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| static Optional<AllocFnsTy> getAllocationSize(const Value *V,
 | |
|                                               const TargetLibraryInfo *TLI) {
 | |
|   bool IsNoBuiltinCall;
 | |
|   const Function *Callee =
 | |
|       getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
 | |
|   if (!Callee)
 | |
|     return None;
 | |
| 
 | |
|   // Prefer to use existing information over allocsize. This will give us an
 | |
|   // accurate AllocTy.
 | |
|   if (!IsNoBuiltinCall)
 | |
|     if (Optional<AllocFnsTy> Data =
 | |
|             getAllocationDataForFunction(Callee, AnyAlloc, TLI))
 | |
|       return Data;
 | |
| 
 | |
|   Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
 | |
|   if (Attr == Attribute())
 | |
|     return None;
 | |
| 
 | |
|   std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
 | |
| 
 | |
|   AllocFnsTy Result;
 | |
|   // Because allocsize only tells us how many bytes are allocated, we're not
 | |
|   // really allowed to assume anything, so we use MallocLike.
 | |
|   Result.AllocTy = MallocLike;
 | |
|   Result.NumParams = Callee->getNumOperands();
 | |
|   Result.FstParam = Args.first;
 | |
|   Result.SndParam = Args.second.getValueOr(-1);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
 | |
|   ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V);
 | |
|   return CS && CS.hasRetAttr(Attribute::NoAlias);
 | |
| }
 | |
| 
 | |
| /// \brief Tests if a value is a call or invoke to a library function that
 | |
| /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
 | |
| /// like).
 | |
| bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
 | |
|                           bool LookThroughBitCast) {
 | |
|   return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue();
 | |
| }
 | |
| 
 | |
| /// \brief Tests if a value is a call or invoke to a function that returns a
 | |
| /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
 | |
| bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
 | |
|                        bool LookThroughBitCast) {
 | |
|   // it's safe to consider realloc as noalias since accessing the original
 | |
|   // pointer is undefined behavior
 | |
|   return isAllocationFn(V, TLI, LookThroughBitCast) ||
 | |
|          hasNoAliasAttr(V, LookThroughBitCast);
 | |
| }
 | |
| 
 | |
| /// \brief Tests if a value is a call or invoke to a library function that
 | |
| /// allocates uninitialized memory (such as malloc).
 | |
| bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
 | |
|                           bool LookThroughBitCast) {
 | |
|   return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue();
 | |
| }
 | |
| 
 | |
| /// \brief Tests if a value is a call or invoke to a library function that
 | |
| /// allocates zero-filled memory (such as calloc).
 | |
| bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
 | |
|                           bool LookThroughBitCast) {
 | |
|   return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue();
 | |
| }
 | |
| 
 | |
| /// \brief Tests if a value is a call or invoke to a library function that
 | |
| /// allocates memory similiar to malloc or calloc.
 | |
| bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
 | |
|                                   bool LookThroughBitCast) {
 | |
|   return getAllocationData(V, MallocOrCallocLike, TLI,
 | |
|                            LookThroughBitCast).hasValue();
 | |
| }
 | |
| 
 | |
| /// \brief Tests if a value is a call or invoke to a library function that
 | |
| /// allocates memory (either malloc, calloc, or strdup like).
 | |
| bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
 | |
|                          bool LookThroughBitCast) {
 | |
|   return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue();
 | |
| }
 | |
| 
 | |
| /// extractMallocCall - Returns the corresponding CallInst if the instruction
 | |
| /// is a malloc call.  Since CallInst::CreateMalloc() only creates calls, we
 | |
| /// ignore InvokeInst here.
 | |
| const CallInst *llvm::extractMallocCall(const Value *I,
 | |
|                                         const TargetLibraryInfo *TLI) {
 | |
|   return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr;
 | |
| }
 | |
| 
 | |
| static Value *computeArraySize(const CallInst *CI, const DataLayout &DL,
 | |
|                                const TargetLibraryInfo *TLI,
 | |
|                                bool LookThroughSExt = false) {
 | |
|   if (!CI)
 | |
|     return nullptr;
 | |
| 
 | |
|   // The size of the malloc's result type must be known to determine array size.
 | |
|   Type *T = getMallocAllocatedType(CI, TLI);
 | |
|   if (!T || !T->isSized())
 | |
|     return nullptr;
 | |
| 
 | |
|   unsigned ElementSize = DL.getTypeAllocSize(T);
 | |
|   if (StructType *ST = dyn_cast<StructType>(T))
 | |
|     ElementSize = DL.getStructLayout(ST)->getSizeInBytes();
 | |
| 
 | |
|   // If malloc call's arg can be determined to be a multiple of ElementSize,
 | |
|   // return the multiple.  Otherwise, return NULL.
 | |
|   Value *MallocArg = CI->getArgOperand(0);
 | |
|   Value *Multiple = nullptr;
 | |
|   if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt))
 | |
|     return Multiple;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// getMallocType - Returns the PointerType resulting from the malloc call.
 | |
| /// The PointerType depends on the number of bitcast uses of the malloc call:
 | |
| ///   0: PointerType is the calls' return type.
 | |
| ///   1: PointerType is the bitcast's result type.
 | |
| ///  >1: Unique PointerType cannot be determined, return NULL.
 | |
| PointerType *llvm::getMallocType(const CallInst *CI,
 | |
|                                  const TargetLibraryInfo *TLI) {
 | |
|   assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
 | |
| 
 | |
|   PointerType *MallocType = nullptr;
 | |
|   unsigned NumOfBitCastUses = 0;
 | |
| 
 | |
|   // Determine if CallInst has a bitcast use.
 | |
|   for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end();
 | |
|        UI != E;)
 | |
|     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) {
 | |
|       MallocType = cast<PointerType>(BCI->getDestTy());
 | |
|       NumOfBitCastUses++;
 | |
|     }
 | |
| 
 | |
|   // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
 | |
|   if (NumOfBitCastUses == 1)
 | |
|     return MallocType;
 | |
| 
 | |
|   // Malloc call was not bitcast, so type is the malloc function's return type.
 | |
|   if (NumOfBitCastUses == 0)
 | |
|     return cast<PointerType>(CI->getType());
 | |
| 
 | |
|   // Type could not be determined.
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// getMallocAllocatedType - Returns the Type allocated by malloc call.
 | |
| /// The Type depends on the number of bitcast uses of the malloc call:
 | |
| ///   0: PointerType is the malloc calls' return type.
 | |
| ///   1: PointerType is the bitcast's result type.
 | |
| ///  >1: Unique PointerType cannot be determined, return NULL.
 | |
| Type *llvm::getMallocAllocatedType(const CallInst *CI,
 | |
|                                    const TargetLibraryInfo *TLI) {
 | |
|   PointerType *PT = getMallocType(CI, TLI);
 | |
|   return PT ? PT->getElementType() : nullptr;
 | |
| }
 | |
| 
 | |
| /// getMallocArraySize - Returns the array size of a malloc call.  If the
 | |
| /// argument passed to malloc is a multiple of the size of the malloced type,
 | |
| /// then return that multiple.  For non-array mallocs, the multiple is
 | |
| /// constant 1.  Otherwise, return NULL for mallocs whose array size cannot be
 | |
| /// determined.
 | |
| Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL,
 | |
|                                 const TargetLibraryInfo *TLI,
 | |
|                                 bool LookThroughSExt) {
 | |
|   assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
 | |
|   return computeArraySize(CI, DL, TLI, LookThroughSExt);
 | |
| }
 | |
| 
 | |
| /// extractCallocCall - Returns the corresponding CallInst if the instruction
 | |
| /// is a calloc call.
 | |
| const CallInst *llvm::extractCallocCall(const Value *I,
 | |
|                                         const TargetLibraryInfo *TLI) {
 | |
|   return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr;
 | |
| }
 | |
| 
 | |
| /// isFreeCall - Returns non-null if the value is a call to the builtin free()
 | |
| const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
 | |
|   const CallInst *CI = dyn_cast<CallInst>(I);
 | |
|   if (!CI || isa<IntrinsicInst>(CI))
 | |
|     return nullptr;
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
|   if (Callee == nullptr)
 | |
|     return nullptr;
 | |
| 
 | |
|   StringRef FnName = Callee->getName();
 | |
|   LibFunc TLIFn;
 | |
|   if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
 | |
|     return nullptr;
 | |
| 
 | |
|   unsigned ExpectedNumParams;
 | |
|   if (TLIFn == LibFunc_free ||
 | |
|       TLIFn == LibFunc_ZdlPv || // operator delete(void*)
 | |
|       TLIFn == LibFunc_ZdaPv || // operator delete[](void*)
 | |
|       TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*)
 | |
|       TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*)
 | |
|       TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*)
 | |
|       TLIFn == LibFunc_msvc_delete_array_ptr64)   // operator delete[](void*)
 | |
|     ExpectedNumParams = 1;
 | |
|   else if (TLIFn == LibFunc_ZdlPvj ||              // delete(void*, uint)
 | |
|            TLIFn == LibFunc_ZdlPvm ||              // delete(void*, ulong)
 | |
|            TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
 | |
|            TLIFn == LibFunc_ZdaPvj ||              // delete[](void*, uint)
 | |
|            TLIFn == LibFunc_ZdaPvm ||              // delete[](void*, ulong)
 | |
|            TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow)
 | |
|            TLIFn == LibFunc_msvc_delete_ptr32_int ||      // delete(void*, uint)
 | |
|            TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong)
 | |
|            TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow)
 | |
|            TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow)
 | |
|            TLIFn == LibFunc_msvc_delete_array_ptr32_int ||      // delete[](void*, uint)
 | |
|            TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong)
 | |
|            TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow)
 | |
|            TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow)   // delete[](void*, nothrow)
 | |
|     ExpectedNumParams = 2;
 | |
|   else
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check free prototype.
 | |
|   // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
 | |
|   // attribute will exist.
 | |
|   FunctionType *FTy = Callee->getFunctionType();
 | |
|   if (!FTy->getReturnType()->isVoidTy())
 | |
|     return nullptr;
 | |
|   if (FTy->getNumParams() != ExpectedNumParams)
 | |
|     return nullptr;
 | |
|   if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext()))
 | |
|     return nullptr;
 | |
| 
 | |
|   return CI;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Utility functions to compute size of objects.
 | |
| //
 | |
| static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
 | |
|   if (Data.second.isNegative() || Data.first.ult(Data.second))
 | |
|     return APInt(Data.first.getBitWidth(), 0);
 | |
|   return Data.first - Data.second;
 | |
| }
 | |
| 
 | |
| /// \brief Compute the size of the object pointed by Ptr. Returns true and the
 | |
| /// object size in Size if successful, and false otherwise.
 | |
| /// If RoundToAlign is true, then Size is rounded up to the alignment of
 | |
| /// allocas, byval arguments, and global variables.
 | |
| bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
 | |
|                          const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
 | |
|   ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
 | |
|   SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
 | |
|   if (!Visitor.bothKnown(Data))
 | |
|     return false;
 | |
| 
 | |
|   Size = getSizeWithOverflow(Data).getZExtValue();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| ConstantInt *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
 | |
|                                        const DataLayout &DL,
 | |
|                                        const TargetLibraryInfo *TLI,
 | |
|                                        bool MustSucceed) {
 | |
|   assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
 | |
|          "ObjectSize must be a call to llvm.objectsize!");
 | |
| 
 | |
|   bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
 | |
|   ObjectSizeOpts EvalOptions;
 | |
|   // Unless we have to fold this to something, try to be as accurate as
 | |
|   // possible.
 | |
|   if (MustSucceed)
 | |
|     EvalOptions.EvalMode =
 | |
|         MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
 | |
|   else
 | |
|     EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;
 | |
| 
 | |
|   EvalOptions.NullIsUnknownSize =
 | |
|       cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
 | |
| 
 | |
|   // FIXME: Does it make sense to just return a failure value if the size won't
 | |
|   // fit in the output and `!MustSucceed`?
 | |
|   uint64_t Size;
 | |
|   auto *ResultType = cast<IntegerType>(ObjectSize->getType());
 | |
|   if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
 | |
|       isUIntN(ResultType->getBitWidth(), Size))
 | |
|     return ConstantInt::get(ResultType, Size);
 | |
| 
 | |
|   if (!MustSucceed)
 | |
|     return nullptr;
 | |
| 
 | |
|   return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
 | |
| }
 | |
| 
 | |
| STATISTIC(ObjectVisitorArgument,
 | |
|           "Number of arguments with unsolved size and offset");
 | |
| STATISTIC(ObjectVisitorLoad,
 | |
|           "Number of load instructions with unsolved size and offset");
 | |
| 
 | |
| APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) {
 | |
|   if (Options.RoundToAlign && Align)
 | |
|     return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align));
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
 | |
|                                                  const TargetLibraryInfo *TLI,
 | |
|                                                  LLVMContext &Context,
 | |
|                                                  ObjectSizeOpts Options)
 | |
|     : DL(DL), TLI(TLI), Options(Options) {
 | |
|   // Pointer size must be rechecked for each object visited since it could have
 | |
|   // a different address space.
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
 | |
|   IntTyBits = DL.getPointerTypeSizeInBits(V->getType());
 | |
|   Zero = APInt::getNullValue(IntTyBits);
 | |
| 
 | |
|   V = V->stripPointerCasts();
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     // If we have already seen this instruction, bail out. Cycles can happen in
 | |
|     // unreachable code after constant propagation.
 | |
|     if (!SeenInsts.insert(I).second)
 | |
|       return unknown();
 | |
| 
 | |
|     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
 | |
|       return visitGEPOperator(*GEP);
 | |
|     return visit(*I);
 | |
|   }
 | |
|   if (Argument *A = dyn_cast<Argument>(V))
 | |
|     return visitArgument(*A);
 | |
|   if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
 | |
|     return visitConstantPointerNull(*P);
 | |
|   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
 | |
|     return visitGlobalAlias(*GA);
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
 | |
|     return visitGlobalVariable(*GV);
 | |
|   if (UndefValue *UV = dyn_cast<UndefValue>(V))
 | |
|     return visitUndefValue(*UV);
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
 | |
|     if (CE->getOpcode() == Instruction::IntToPtr)
 | |
|       return unknown(); // clueless
 | |
|     if (CE->getOpcode() == Instruction::GetElementPtr)
 | |
|       return visitGEPOperator(cast<GEPOperator>(*CE));
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V
 | |
|         << '\n');
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| /// When we're compiling N-bit code, and the user uses parameters that are
 | |
| /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
 | |
| /// trouble with APInt size issues. This function handles resizing + overflow
 | |
| /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
 | |
| /// I's value.
 | |
| bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
 | |
|   // More bits than we can handle. Checking the bit width isn't necessary, but
 | |
|   // it's faster than checking active bits, and should give `false` in the
 | |
|   // vast majority of cases.
 | |
|   if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
 | |
|     return false;
 | |
|   if (I.getBitWidth() != IntTyBits)
 | |
|     I = I.zextOrTrunc(IntTyBits);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
 | |
|   if (!I.getAllocatedType()->isSized())
 | |
|     return unknown();
 | |
| 
 | |
|   APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
 | |
|   if (!I.isArrayAllocation())
 | |
|     return std::make_pair(align(Size, I.getAlignment()), Zero);
 | |
| 
 | |
|   Value *ArraySize = I.getArraySize();
 | |
|   if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
 | |
|     APInt NumElems = C->getValue();
 | |
|     if (!CheckedZextOrTrunc(NumElems))
 | |
|       return unknown();
 | |
| 
 | |
|     bool Overflow;
 | |
|     Size = Size.umul_ov(NumElems, Overflow);
 | |
|     return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()),
 | |
|                                                  Zero);
 | |
|   }
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
 | |
|   // No interprocedural analysis is done at the moment.
 | |
|   if (!A.hasByValOrInAllocaAttr()) {
 | |
|     ++ObjectVisitorArgument;
 | |
|     return unknown();
 | |
|   }
 | |
|   PointerType *PT = cast<PointerType>(A.getType());
 | |
|   APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType()));
 | |
|   return std::make_pair(align(Size, A.getParamAlignment()), Zero);
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) {
 | |
|   Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI);
 | |
|   if (!FnData)
 | |
|     return unknown();
 | |
| 
 | |
|   // Handle strdup-like functions separately.
 | |
|   if (FnData->AllocTy == StrDupLike) {
 | |
|     APInt Size(IntTyBits, GetStringLength(CS.getArgument(0)));
 | |
|     if (!Size)
 | |
|       return unknown();
 | |
| 
 | |
|     // Strndup limits strlen.
 | |
|     if (FnData->FstParam > 0) {
 | |
|       ConstantInt *Arg =
 | |
|           dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
 | |
|       if (!Arg)
 | |
|         return unknown();
 | |
| 
 | |
|       APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
 | |
|       if (Size.ugt(MaxSize))
 | |
|         Size = MaxSize + 1;
 | |
|     }
 | |
|     return std::make_pair(Size, Zero);
 | |
|   }
 | |
| 
 | |
|   ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
 | |
|   if (!Arg)
 | |
|     return unknown();
 | |
| 
 | |
|   APInt Size = Arg->getValue();
 | |
|   if (!CheckedZextOrTrunc(Size))
 | |
|     return unknown();
 | |
| 
 | |
|   // Size is determined by just 1 parameter.
 | |
|   if (FnData->SndParam < 0)
 | |
|     return std::make_pair(Size, Zero);
 | |
| 
 | |
|   Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam));
 | |
|   if (!Arg)
 | |
|     return unknown();
 | |
| 
 | |
|   APInt NumElems = Arg->getValue();
 | |
|   if (!CheckedZextOrTrunc(NumElems))
 | |
|     return unknown();
 | |
| 
 | |
|   bool Overflow;
 | |
|   Size = Size.umul_ov(NumElems, Overflow);
 | |
|   return Overflow ? unknown() : std::make_pair(Size, Zero);
 | |
| 
 | |
|   // TODO: handle more standard functions (+ wchar cousins):
 | |
|   // - strdup / strndup
 | |
|   // - strcpy / strncpy
 | |
|   // - strcat / strncat
 | |
|   // - memcpy / memmove
 | |
|   // - strcat / strncat
 | |
|   // - memset
 | |
| }
 | |
| 
 | |
| SizeOffsetType
 | |
| ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
 | |
|   if (Options.NullIsUnknownSize && CPN.getType()->getAddressSpace() == 0)
 | |
|     return unknown();
 | |
|   return std::make_pair(Zero, Zero);
 | |
| }
 | |
| 
 | |
| SizeOffsetType
 | |
| ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| SizeOffsetType
 | |
| ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
 | |
|   // Easy cases were already folded by previous passes.
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
 | |
|   SizeOffsetType PtrData = compute(GEP.getPointerOperand());
 | |
|   APInt Offset(IntTyBits, 0);
 | |
|   if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
 | |
|     return unknown();
 | |
| 
 | |
|   return std::make_pair(PtrData.first, PtrData.second + Offset);
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
 | |
|   if (GA.isInterposable())
 | |
|     return unknown();
 | |
|   return compute(GA.getAliasee());
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
 | |
|   if (!GV.hasDefinitiveInitializer())
 | |
|     return unknown();
 | |
| 
 | |
|   APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getType()->getElementType()));
 | |
|   return std::make_pair(align(Size, GV.getAlignment()), Zero);
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
 | |
|   // clueless
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
 | |
|   ++ObjectVisitorLoad;
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
 | |
|   // too complex to analyze statically.
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
 | |
|   SizeOffsetType TrueSide  = compute(I.getTrueValue());
 | |
|   SizeOffsetType FalseSide = compute(I.getFalseValue());
 | |
|   if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
 | |
|     if (TrueSide == FalseSide) {
 | |
|         return TrueSide;
 | |
|     }
 | |
| 
 | |
|     APInt TrueResult = getSizeWithOverflow(TrueSide);
 | |
|     APInt FalseResult = getSizeWithOverflow(FalseSide);
 | |
| 
 | |
|     if (TrueResult == FalseResult) {
 | |
|       return TrueSide;
 | |
|     }
 | |
|     if (Options.EvalMode == ObjectSizeOpts::Mode::Min) {
 | |
|       if (TrueResult.slt(FalseResult))
 | |
|         return TrueSide;
 | |
|       return FalseSide;
 | |
|     }
 | |
|     if (Options.EvalMode == ObjectSizeOpts::Mode::Max) {
 | |
|       if (TrueResult.sgt(FalseResult))
 | |
|         return TrueSide;
 | |
|       return FalseSide;
 | |
|     }
 | |
|   }
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
 | |
|   return std::make_pair(Zero, Zero);
 | |
| }
 | |
| 
 | |
| SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
 | |
|   DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I << '\n');
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
 | |
|     const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
 | |
|     bool RoundToAlign)
 | |
|     : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)),
 | |
|       RoundToAlign(RoundToAlign) {
 | |
|   // IntTy and Zero must be set for each compute() since the address space may
 | |
|   // be different for later objects.
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
 | |
|   // XXX - Are vectors of pointers possible here?
 | |
|   IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
 | |
|   Zero = ConstantInt::get(IntTy, 0);
 | |
| 
 | |
|   SizeOffsetEvalType Result = compute_(V);
 | |
| 
 | |
|   if (!bothKnown(Result)) {
 | |
|     // Erase everything that was computed in this iteration from the cache, so
 | |
|     // that no dangling references are left behind. We could be a bit smarter if
 | |
|     // we kept a dependency graph. It's probably not worth the complexity.
 | |
|     for (const Value *SeenVal : SeenVals) {
 | |
|       CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
 | |
|       // non-computable results can be safely cached
 | |
|       if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
 | |
|         CacheMap.erase(CacheIt);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SeenVals.clear();
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
 | |
|   ObjectSizeOpts ObjSizeOptions;
 | |
|   ObjSizeOptions.RoundToAlign = RoundToAlign;
 | |
| 
 | |
|   ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, ObjSizeOptions);
 | |
|   SizeOffsetType Const = Visitor.compute(V);
 | |
|   if (Visitor.bothKnown(Const))
 | |
|     return std::make_pair(ConstantInt::get(Context, Const.first),
 | |
|                           ConstantInt::get(Context, Const.second));
 | |
| 
 | |
|   V = V->stripPointerCasts();
 | |
| 
 | |
|   // Check cache.
 | |
|   CacheMapTy::iterator CacheIt = CacheMap.find(V);
 | |
|   if (CacheIt != CacheMap.end())
 | |
|     return CacheIt->second;
 | |
| 
 | |
|   // Always generate code immediately before the instruction being
 | |
|   // processed, so that the generated code dominates the same BBs.
 | |
|   BuilderTy::InsertPointGuard Guard(Builder);
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     Builder.SetInsertPoint(I);
 | |
| 
 | |
|   // Now compute the size and offset.
 | |
|   SizeOffsetEvalType Result;
 | |
| 
 | |
|   // Record the pointers that were handled in this run, so that they can be
 | |
|   // cleaned later if something fails. We also use this set to break cycles that
 | |
|   // can occur in dead code.
 | |
|   if (!SeenVals.insert(V).second) {
 | |
|     Result = unknown();
 | |
|   } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
 | |
|     Result = visitGEPOperator(*GEP);
 | |
|   } else if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     Result = visit(*I);
 | |
|   } else if (isa<Argument>(V) ||
 | |
|              (isa<ConstantExpr>(V) &&
 | |
|               cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
 | |
|              isa<GlobalAlias>(V) ||
 | |
|              isa<GlobalVariable>(V)) {
 | |
|     // Ignore values where we cannot do more than ObjectSizeVisitor.
 | |
|     Result = unknown();
 | |
|   } else {
 | |
|     DEBUG(dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: "
 | |
|           << *V << '\n');
 | |
|     Result = unknown();
 | |
|   }
 | |
| 
 | |
|   // Don't reuse CacheIt since it may be invalid at this point.
 | |
|   CacheMap[V] = Result;
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
 | |
|   if (!I.getAllocatedType()->isSized())
 | |
|     return unknown();
 | |
| 
 | |
|   // must be a VLA
 | |
|   assert(I.isArrayAllocation());
 | |
|   Value *ArraySize = I.getArraySize();
 | |
|   Value *Size = ConstantInt::get(ArraySize->getType(),
 | |
|                                  DL.getTypeAllocSize(I.getAllocatedType()));
 | |
|   Size = Builder.CreateMul(Size, ArraySize);
 | |
|   return std::make_pair(Size, Zero);
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) {
 | |
|   Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI);
 | |
|   if (!FnData)
 | |
|     return unknown();
 | |
| 
 | |
|   // Handle strdup-like functions separately.
 | |
|   if (FnData->AllocTy == StrDupLike) {
 | |
|     // TODO
 | |
|     return unknown();
 | |
|   }
 | |
| 
 | |
|   Value *FirstArg = CS.getArgument(FnData->FstParam);
 | |
|   FirstArg = Builder.CreateZExt(FirstArg, IntTy);
 | |
|   if (FnData->SndParam < 0)
 | |
|     return std::make_pair(FirstArg, Zero);
 | |
| 
 | |
|   Value *SecondArg = CS.getArgument(FnData->SndParam);
 | |
|   SecondArg = Builder.CreateZExt(SecondArg, IntTy);
 | |
|   Value *Size = Builder.CreateMul(FirstArg, SecondArg);
 | |
|   return std::make_pair(Size, Zero);
 | |
| 
 | |
|   // TODO: handle more standard functions (+ wchar cousins):
 | |
|   // - strdup / strndup
 | |
|   // - strcpy / strncpy
 | |
|   // - strcat / strncat
 | |
|   // - memcpy / memmove
 | |
|   // - strcat / strncat
 | |
|   // - memset
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType
 | |
| ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType
 | |
| ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType
 | |
| ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
 | |
|   SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
 | |
|   if (!bothKnown(PtrData))
 | |
|     return unknown();
 | |
| 
 | |
|   Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
 | |
|   Offset = Builder.CreateAdd(PtrData.second, Offset);
 | |
|   return std::make_pair(PtrData.first, Offset);
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
 | |
|   // clueless
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
 | |
|   return unknown();
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
 | |
|   // Create 2 PHIs: one for size and another for offset.
 | |
|   PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
 | |
|   PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
 | |
| 
 | |
|   // Insert right away in the cache to handle recursive PHIs.
 | |
|   CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
 | |
| 
 | |
|   // Compute offset/size for each PHI incoming pointer.
 | |
|   for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
 | |
|     Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
 | |
|     SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
 | |
| 
 | |
|     if (!bothKnown(EdgeData)) {
 | |
|       OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
 | |
|       OffsetPHI->eraseFromParent();
 | |
|       SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
 | |
|       SizePHI->eraseFromParent();
 | |
|       return unknown();
 | |
|     }
 | |
|     SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
 | |
|     OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
 | |
|   }
 | |
| 
 | |
|   Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp;
 | |
|   if ((Tmp = SizePHI->hasConstantValue())) {
 | |
|     Size = Tmp;
 | |
|     SizePHI->replaceAllUsesWith(Size);
 | |
|     SizePHI->eraseFromParent();
 | |
|   }
 | |
|   if ((Tmp = OffsetPHI->hasConstantValue())) {
 | |
|     Offset = Tmp;
 | |
|     OffsetPHI->replaceAllUsesWith(Offset);
 | |
|     OffsetPHI->eraseFromParent();
 | |
|   }
 | |
|   return std::make_pair(Size, Offset);
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
 | |
|   SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue());
 | |
|   SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
 | |
| 
 | |
|   if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
 | |
|     return unknown();
 | |
|   if (TrueSide == FalseSide)
 | |
|     return TrueSide;
 | |
| 
 | |
|   Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
 | |
|                                      FalseSide.first);
 | |
|   Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
 | |
|                                        FalseSide.second);
 | |
|   return std::make_pair(Size, Offset);
 | |
| }
 | |
| 
 | |
| SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
 | |
|   DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I <<'\n');
 | |
|   return unknown();
 | |
| }
 |