forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2115 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2115 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the MemorySSA class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/MemorySSA.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DenseMapInfo.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/Hashing.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/iterator.h"
 | |
| #include "llvm/ADT/iterator_range.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/IteratedDominanceFrontier.h"
 | |
| #include "llvm/Analysis/MemoryLocation.h"
 | |
| #include "llvm/IR/AssemblyAnnotationWriter.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/PassManager.h"
 | |
| #include "llvm/IR/Use.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/AtomicOrdering.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/FormattedStream.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <iterator>
 | |
| #include <memory>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "memoryssa"
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
 | |
|                       true)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | |
| INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
 | |
|                     true)
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
 | |
|                       "Memory SSA Printer", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
 | |
| INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
 | |
|                     "Memory SSA Printer", false, false)
 | |
| 
 | |
| static cl::opt<unsigned> MaxCheckLimit(
 | |
|     "memssa-check-limit", cl::Hidden, cl::init(100),
 | |
|     cl::desc("The maximum number of stores/phis MemorySSA"
 | |
|              "will consider trying to walk past (default = 100)"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden,
 | |
|                     cl::desc("Verify MemorySSA in legacy printer pass."));
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| /// \brief An assembly annotator class to print Memory SSA information in
 | |
| /// comments.
 | |
| class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
 | |
|   friend class MemorySSA;
 | |
| 
 | |
|   const MemorySSA *MSSA;
 | |
| 
 | |
| public:
 | |
|   MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
 | |
| 
 | |
|   void emitBasicBlockStartAnnot(const BasicBlock *BB,
 | |
|                                 formatted_raw_ostream &OS) override {
 | |
|     if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
 | |
|       OS << "; " << *MA << "\n";
 | |
|   }
 | |
| 
 | |
|   void emitInstructionAnnot(const Instruction *I,
 | |
|                             formatted_raw_ostream &OS) override {
 | |
|     if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
 | |
|       OS << "; " << *MA << "\n";
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Our current alias analysis API differentiates heavily between calls and
 | |
| /// non-calls, and functions called on one usually assert on the other.
 | |
| /// This class encapsulates the distinction to simplify other code that wants
 | |
| /// "Memory affecting instructions and related data" to use as a key.
 | |
| /// For example, this class is used as a densemap key in the use optimizer.
 | |
| class MemoryLocOrCall {
 | |
| public:
 | |
|   bool IsCall = false;
 | |
| 
 | |
|   MemoryLocOrCall() = default;
 | |
|   MemoryLocOrCall(MemoryUseOrDef *MUD)
 | |
|       : MemoryLocOrCall(MUD->getMemoryInst()) {}
 | |
|   MemoryLocOrCall(const MemoryUseOrDef *MUD)
 | |
|       : MemoryLocOrCall(MUD->getMemoryInst()) {}
 | |
| 
 | |
|   MemoryLocOrCall(Instruction *Inst) {
 | |
|     if (ImmutableCallSite(Inst)) {
 | |
|       IsCall = true;
 | |
|       CS = ImmutableCallSite(Inst);
 | |
|     } else {
 | |
|       IsCall = false;
 | |
|       // There is no such thing as a memorylocation for a fence inst, and it is
 | |
|       // unique in that regard.
 | |
|       if (!isa<FenceInst>(Inst))
 | |
|         Loc = MemoryLocation::get(Inst);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
 | |
| 
 | |
|   ImmutableCallSite getCS() const {
 | |
|     assert(IsCall);
 | |
|     return CS;
 | |
|   }
 | |
| 
 | |
|   MemoryLocation getLoc() const {
 | |
|     assert(!IsCall);
 | |
|     return Loc;
 | |
|   }
 | |
| 
 | |
|   bool operator==(const MemoryLocOrCall &Other) const {
 | |
|     if (IsCall != Other.IsCall)
 | |
|       return false;
 | |
| 
 | |
|     if (IsCall)
 | |
|       return CS.getCalledValue() == Other.CS.getCalledValue();
 | |
|     return Loc == Other.Loc;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   union {
 | |
|     ImmutableCallSite CS;
 | |
|     MemoryLocation Loc;
 | |
|   };
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| template <> struct DenseMapInfo<MemoryLocOrCall> {
 | |
|   static inline MemoryLocOrCall getEmptyKey() {
 | |
|     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
 | |
|   }
 | |
| 
 | |
|   static inline MemoryLocOrCall getTombstoneKey() {
 | |
|     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
 | |
|   }
 | |
| 
 | |
|   static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
 | |
|     if (MLOC.IsCall)
 | |
|       return hash_combine(MLOC.IsCall,
 | |
|                           DenseMapInfo<const Value *>::getHashValue(
 | |
|                               MLOC.getCS().getCalledValue()));
 | |
|     return hash_combine(
 | |
|         MLOC.IsCall, DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
 | |
|   }
 | |
| 
 | |
|   static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
 | |
|     return LHS == RHS;
 | |
|   }
 | |
| };
 | |
| 
 | |
| enum class Reorderability { Always, IfNoAlias, Never };
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| /// This does one-way checks to see if Use could theoretically be hoisted above
 | |
| /// MayClobber. This will not check the other way around.
 | |
| ///
 | |
| /// This assumes that, for the purposes of MemorySSA, Use comes directly after
 | |
| /// MayClobber, with no potentially clobbering operations in between them.
 | |
| /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
 | |
| static Reorderability getLoadReorderability(const LoadInst *Use,
 | |
|                                             const LoadInst *MayClobber) {
 | |
|   bool VolatileUse = Use->isVolatile();
 | |
|   bool VolatileClobber = MayClobber->isVolatile();
 | |
|   // Volatile operations may never be reordered with other volatile operations.
 | |
|   if (VolatileUse && VolatileClobber)
 | |
|     return Reorderability::Never;
 | |
| 
 | |
|   // The lang ref allows reordering of volatile and non-volatile operations.
 | |
|   // Whether an aliasing nonvolatile load and volatile load can be reordered,
 | |
|   // though, is ambiguous. Because it may not be best to exploit this ambiguity,
 | |
|   // we only allow volatile/non-volatile reordering if the volatile and
 | |
|   // non-volatile operations don't alias.
 | |
|   Reorderability Result = VolatileUse || VolatileClobber
 | |
|                               ? Reorderability::IfNoAlias
 | |
|                               : Reorderability::Always;
 | |
| 
 | |
|   // If a load is seq_cst, it cannot be moved above other loads. If its ordering
 | |
|   // is weaker, it can be moved above other loads. We just need to be sure that
 | |
|   // MayClobber isn't an acquire load, because loads can't be moved above
 | |
|   // acquire loads.
 | |
|   //
 | |
|   // Note that this explicitly *does* allow the free reordering of monotonic (or
 | |
|   // weaker) loads of the same address.
 | |
|   bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
 | |
|   bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
 | |
|                                                      AtomicOrdering::Acquire);
 | |
|   if (SeqCstUse || MayClobberIsAcquire)
 | |
|     return Reorderability::Never;
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| static bool instructionClobbersQuery(MemoryDef *MD,
 | |
|                                      const MemoryLocation &UseLoc,
 | |
|                                      const Instruction *UseInst,
 | |
|                                      AliasAnalysis &AA) {
 | |
|   Instruction *DefInst = MD->getMemoryInst();
 | |
|   assert(DefInst && "Defining instruction not actually an instruction");
 | |
|   ImmutableCallSite UseCS(UseInst);
 | |
| 
 | |
|   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
 | |
|     // These intrinsics will show up as affecting memory, but they are just
 | |
|     // markers.
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     case Intrinsic::lifetime_start:
 | |
|       if (UseCS)
 | |
|         return false;
 | |
|       return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), UseLoc);
 | |
|     case Intrinsic::lifetime_end:
 | |
|     case Intrinsic::invariant_start:
 | |
|     case Intrinsic::invariant_end:
 | |
|     case Intrinsic::assume:
 | |
|       return false;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (UseCS) {
 | |
|     ModRefInfo I = AA.getModRefInfo(DefInst, UseCS);
 | |
|     return I != MRI_NoModRef;
 | |
|   }
 | |
| 
 | |
|   if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) {
 | |
|     if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) {
 | |
|       switch (getLoadReorderability(UseLoad, DefLoad)) {
 | |
|       case Reorderability::Always:
 | |
|         return false;
 | |
|       case Reorderability::Never:
 | |
|         return true;
 | |
|       case Reorderability::IfNoAlias:
 | |
|         return !AA.isNoAlias(UseLoc, MemoryLocation::get(DefLoad));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return AA.getModRefInfo(DefInst, UseLoc) & MRI_Mod;
 | |
| }
 | |
| 
 | |
| static bool instructionClobbersQuery(MemoryDef *MD, const MemoryUseOrDef *MU,
 | |
|                                      const MemoryLocOrCall &UseMLOC,
 | |
|                                      AliasAnalysis &AA) {
 | |
|   // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
 | |
|   // to exist while MemoryLocOrCall is pushed through places.
 | |
|   if (UseMLOC.IsCall)
 | |
|     return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
 | |
|                                     AA);
 | |
|   return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
 | |
|                                   AA);
 | |
| }
 | |
| 
 | |
| // Return true when MD may alias MU, return false otherwise.
 | |
| bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
 | |
|                                         AliasAnalysis &AA) {
 | |
|   return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct UpwardsMemoryQuery {
 | |
|   // True if our original query started off as a call
 | |
|   bool IsCall = false;
 | |
|   // The pointer location we started the query with. This will be empty if
 | |
|   // IsCall is true.
 | |
|   MemoryLocation StartingLoc;
 | |
|   // This is the instruction we were querying about.
 | |
|   const Instruction *Inst = nullptr;
 | |
|   // The MemoryAccess we actually got called with, used to test local domination
 | |
|   const MemoryAccess *OriginalAccess = nullptr;
 | |
| 
 | |
|   UpwardsMemoryQuery() = default;
 | |
| 
 | |
|   UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
 | |
|       : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {
 | |
|     if (!IsCall)
 | |
|       StartingLoc = MemoryLocation::get(Inst);
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
 | |
|                            AliasAnalysis &AA) {
 | |
|   Instruction *Inst = MD->getMemoryInst();
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     case Intrinsic::lifetime_end:
 | |
|       return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
 | |
|                                                    const Instruction *I) {
 | |
|   // If the memory can't be changed, then loads of the memory can't be
 | |
|   // clobbered.
 | |
|   //
 | |
|   // FIXME: We should handle invariant groups, as well. It's a bit harder,
 | |
|   // because we need to pay close attention to invariant group barriers.
 | |
|   return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
 | |
|                               AA.pointsToConstantMemory(cast<LoadInst>(I)->
 | |
|                                                           getPointerOperand()));
 | |
| }
 | |
| 
 | |
| /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
 | |
| /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
 | |
| ///
 | |
| /// This is meant to be as simple and self-contained as possible. Because it
 | |
| /// uses no cache, etc., it can be relatively expensive.
 | |
| ///
 | |
| /// \param Start     The MemoryAccess that we want to walk from.
 | |
| /// \param ClobberAt A clobber for Start.
 | |
| /// \param StartLoc  The MemoryLocation for Start.
 | |
| /// \param MSSA      The MemorySSA isntance that Start and ClobberAt belong to.
 | |
| /// \param Query     The UpwardsMemoryQuery we used for our search.
 | |
| /// \param AA        The AliasAnalysis we used for our search.
 | |
| static void LLVM_ATTRIBUTE_UNUSED
 | |
| checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt,
 | |
|                    const MemoryLocation &StartLoc, const MemorySSA &MSSA,
 | |
|                    const UpwardsMemoryQuery &Query, AliasAnalysis &AA) {
 | |
|   assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
 | |
| 
 | |
|   if (MSSA.isLiveOnEntryDef(Start)) {
 | |
|     assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
 | |
|            "liveOnEntry must clobber itself");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   bool FoundClobber = false;
 | |
|   DenseSet<MemoryAccessPair> VisitedPhis;
 | |
|   SmallVector<MemoryAccessPair, 8> Worklist;
 | |
|   Worklist.emplace_back(Start, StartLoc);
 | |
|   // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
 | |
|   // is found, complain.
 | |
|   while (!Worklist.empty()) {
 | |
|     MemoryAccessPair MAP = Worklist.pop_back_val();
 | |
|     // All we care about is that nothing from Start to ClobberAt clobbers Start.
 | |
|     // We learn nothing from revisiting nodes.
 | |
|     if (!VisitedPhis.insert(MAP).second)
 | |
|       continue;
 | |
| 
 | |
|     for (MemoryAccess *MA : def_chain(MAP.first)) {
 | |
|       if (MA == ClobberAt) {
 | |
|         if (auto *MD = dyn_cast<MemoryDef>(MA)) {
 | |
|           // instructionClobbersQuery isn't essentially free, so don't use `|=`,
 | |
|           // since it won't let us short-circuit.
 | |
|           //
 | |
|           // Also, note that this can't be hoisted out of the `Worklist` loop,
 | |
|           // since MD may only act as a clobber for 1 of N MemoryLocations.
 | |
|           FoundClobber =
 | |
|               FoundClobber || MSSA.isLiveOnEntryDef(MD) ||
 | |
|               instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // We should never hit liveOnEntry, unless it's the clobber.
 | |
|       assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
 | |
| 
 | |
|       if (auto *MD = dyn_cast<MemoryDef>(MA)) {
 | |
|         (void)MD;
 | |
|         assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) &&
 | |
|                "Found clobber before reaching ClobberAt!");
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       assert(isa<MemoryPhi>(MA));
 | |
|       Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
 | |
|   // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
 | |
|   assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
 | |
|          "ClobberAt never acted as a clobber");
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
 | |
| /// in one class.
 | |
| class ClobberWalker {
 | |
|   /// Save a few bytes by using unsigned instead of size_t.
 | |
|   using ListIndex = unsigned;
 | |
| 
 | |
|   /// Represents a span of contiguous MemoryDefs, potentially ending in a
 | |
|   /// MemoryPhi.
 | |
|   struct DefPath {
 | |
|     MemoryLocation Loc;
 | |
|     // Note that, because we always walk in reverse, Last will always dominate
 | |
|     // First. Also note that First and Last are inclusive.
 | |
|     MemoryAccess *First;
 | |
|     MemoryAccess *Last;
 | |
|     Optional<ListIndex> Previous;
 | |
| 
 | |
|     DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
 | |
|             Optional<ListIndex> Previous)
 | |
|         : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
 | |
| 
 | |
|     DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
 | |
|             Optional<ListIndex> Previous)
 | |
|         : DefPath(Loc, Init, Init, Previous) {}
 | |
|   };
 | |
| 
 | |
|   const MemorySSA &MSSA;
 | |
|   AliasAnalysis &AA;
 | |
|   DominatorTree &DT;
 | |
|   UpwardsMemoryQuery *Query;
 | |
| 
 | |
|   // Phi optimization bookkeeping
 | |
|   SmallVector<DefPath, 32> Paths;
 | |
|   DenseSet<ConstMemoryAccessPair> VisitedPhis;
 | |
| 
 | |
|   /// Find the nearest def or phi that `From` can legally be optimized to.
 | |
|   const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
 | |
|     assert(From->getNumOperands() && "Phi with no operands?");
 | |
| 
 | |
|     BasicBlock *BB = From->getBlock();
 | |
|     MemoryAccess *Result = MSSA.getLiveOnEntryDef();
 | |
|     DomTreeNode *Node = DT.getNode(BB);
 | |
|     while ((Node = Node->getIDom())) {
 | |
|       auto *Defs = MSSA.getBlockDefs(Node->getBlock());
 | |
|       if (Defs)
 | |
|         return &*Defs->rbegin();
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   /// Result of calling walkToPhiOrClobber.
 | |
|   struct UpwardsWalkResult {
 | |
|     /// The "Result" of the walk. Either a clobber, the last thing we walked, or
 | |
|     /// both.
 | |
|     MemoryAccess *Result;
 | |
|     bool IsKnownClobber;
 | |
|   };
 | |
| 
 | |
|   /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
 | |
|   /// This will update Desc.Last as it walks. It will (optionally) also stop at
 | |
|   /// StopAt.
 | |
|   ///
 | |
|   /// This does not test for whether StopAt is a clobber
 | |
|   UpwardsWalkResult
 | |
|   walkToPhiOrClobber(DefPath &Desc,
 | |
|                      const MemoryAccess *StopAt = nullptr) const {
 | |
|     assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
 | |
| 
 | |
|     for (MemoryAccess *Current : def_chain(Desc.Last)) {
 | |
|       Desc.Last = Current;
 | |
|       if (Current == StopAt)
 | |
|         return {Current, false};
 | |
| 
 | |
|       if (auto *MD = dyn_cast<MemoryDef>(Current))
 | |
|         if (MSSA.isLiveOnEntryDef(MD) ||
 | |
|             instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA))
 | |
|           return {MD, true};
 | |
|     }
 | |
| 
 | |
|     assert(isa<MemoryPhi>(Desc.Last) &&
 | |
|            "Ended at a non-clobber that's not a phi?");
 | |
|     return {Desc.Last, false};
 | |
|   }
 | |
| 
 | |
|   void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
 | |
|                    ListIndex PriorNode) {
 | |
|     auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
 | |
|                                  upward_defs_end());
 | |
|     for (const MemoryAccessPair &P : UpwardDefs) {
 | |
|       PausedSearches.push_back(Paths.size());
 | |
|       Paths.emplace_back(P.second, P.first, PriorNode);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Represents a search that terminated after finding a clobber. This clobber
 | |
|   /// may or may not be present in the path of defs from LastNode..SearchStart,
 | |
|   /// since it may have been retrieved from cache.
 | |
|   struct TerminatedPath {
 | |
|     MemoryAccess *Clobber;
 | |
|     ListIndex LastNode;
 | |
|   };
 | |
| 
 | |
|   /// Get an access that keeps us from optimizing to the given phi.
 | |
|   ///
 | |
|   /// PausedSearches is an array of indices into the Paths array. Its incoming
 | |
|   /// value is the indices of searches that stopped at the last phi optimization
 | |
|   /// target. It's left in an unspecified state.
 | |
|   ///
 | |
|   /// If this returns None, NewPaused is a vector of searches that terminated
 | |
|   /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
 | |
|   Optional<TerminatedPath>
 | |
|   getBlockingAccess(const MemoryAccess *StopWhere,
 | |
|                     SmallVectorImpl<ListIndex> &PausedSearches,
 | |
|                     SmallVectorImpl<ListIndex> &NewPaused,
 | |
|                     SmallVectorImpl<TerminatedPath> &Terminated) {
 | |
|     assert(!PausedSearches.empty() && "No searches to continue?");
 | |
| 
 | |
|     // BFS vs DFS really doesn't make a difference here, so just do a DFS with
 | |
|     // PausedSearches as our stack.
 | |
|     while (!PausedSearches.empty()) {
 | |
|       ListIndex PathIndex = PausedSearches.pop_back_val();
 | |
|       DefPath &Node = Paths[PathIndex];
 | |
| 
 | |
|       // If we've already visited this path with this MemoryLocation, we don't
 | |
|       // need to do so again.
 | |
|       //
 | |
|       // NOTE: That we just drop these paths on the ground makes caching
 | |
|       // behavior sporadic. e.g. given a diamond:
 | |
|       //  A
 | |
|       // B C
 | |
|       //  D
 | |
|       //
 | |
|       // ...If we walk D, B, A, C, we'll only cache the result of phi
 | |
|       // optimization for A, B, and D; C will be skipped because it dies here.
 | |
|       // This arguably isn't the worst thing ever, since:
 | |
|       //   - We generally query things in a top-down order, so if we got below D
 | |
|       //     without needing cache entries for {C, MemLoc}, then chances are
 | |
|       //     that those cache entries would end up ultimately unused.
 | |
|       //   - We still cache things for A, so C only needs to walk up a bit.
 | |
|       // If this behavior becomes problematic, we can fix without a ton of extra
 | |
|       // work.
 | |
|       if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
 | |
|         continue;
 | |
| 
 | |
|       UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere);
 | |
|       if (Res.IsKnownClobber) {
 | |
|         assert(Res.Result != StopWhere);
 | |
|         // If this wasn't a cache hit, we hit a clobber when walking. That's a
 | |
|         // failure.
 | |
|         TerminatedPath Term{Res.Result, PathIndex};
 | |
|         if (!MSSA.dominates(Res.Result, StopWhere))
 | |
|           return Term;
 | |
| 
 | |
|         // Otherwise, it's a valid thing to potentially optimize to.
 | |
|         Terminated.push_back(Term);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (Res.Result == StopWhere) {
 | |
|         // We've hit our target. Save this path off for if we want to continue
 | |
|         // walking.
 | |
|         NewPaused.push_back(PathIndex);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
 | |
|       addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
 | |
|     }
 | |
| 
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   template <typename T, typename Walker>
 | |
|   struct generic_def_path_iterator
 | |
|       : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
 | |
|                                     std::forward_iterator_tag, T *> {
 | |
|     generic_def_path_iterator() = default;
 | |
|     generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
 | |
| 
 | |
|     T &operator*() const { return curNode(); }
 | |
| 
 | |
|     generic_def_path_iterator &operator++() {
 | |
|       N = curNode().Previous;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     bool operator==(const generic_def_path_iterator &O) const {
 | |
|       if (N.hasValue() != O.N.hasValue())
 | |
|         return false;
 | |
|       return !N.hasValue() || *N == *O.N;
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     T &curNode() const { return W->Paths[*N]; }
 | |
| 
 | |
|     Walker *W = nullptr;
 | |
|     Optional<ListIndex> N = None;
 | |
|   };
 | |
| 
 | |
|   using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
 | |
|   using const_def_path_iterator =
 | |
|       generic_def_path_iterator<const DefPath, const ClobberWalker>;
 | |
| 
 | |
|   iterator_range<def_path_iterator> def_path(ListIndex From) {
 | |
|     return make_range(def_path_iterator(this, From), def_path_iterator());
 | |
|   }
 | |
| 
 | |
|   iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
 | |
|     return make_range(const_def_path_iterator(this, From),
 | |
|                       const_def_path_iterator());
 | |
|   }
 | |
| 
 | |
|   struct OptznResult {
 | |
|     /// The path that contains our result.
 | |
|     TerminatedPath PrimaryClobber;
 | |
|     /// The paths that we can legally cache back from, but that aren't
 | |
|     /// necessarily the result of the Phi optimization.
 | |
|     SmallVector<TerminatedPath, 4> OtherClobbers;
 | |
|   };
 | |
| 
 | |
|   ListIndex defPathIndex(const DefPath &N) const {
 | |
|     // The assert looks nicer if we don't need to do &N
 | |
|     const DefPath *NP = &N;
 | |
|     assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
 | |
|            "Out of bounds DefPath!");
 | |
|     return NP - &Paths.front();
 | |
|   }
 | |
| 
 | |
|   /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
 | |
|   /// that act as legal clobbers. Note that this won't return *all* clobbers.
 | |
|   ///
 | |
|   /// Phi optimization algorithm tl;dr:
 | |
|   ///   - Find the earliest def/phi, A, we can optimize to
 | |
|   ///   - Find if all paths from the starting memory access ultimately reach A
 | |
|   ///     - If not, optimization isn't possible.
 | |
|   ///     - Otherwise, walk from A to another clobber or phi, A'.
 | |
|   ///       - If A' is a def, we're done.
 | |
|   ///       - If A' is a phi, try to optimize it.
 | |
|   ///
 | |
|   /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
 | |
|   /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
 | |
|   OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
 | |
|                              const MemoryLocation &Loc) {
 | |
|     assert(Paths.empty() && VisitedPhis.empty() &&
 | |
|            "Reset the optimization state.");
 | |
| 
 | |
|     Paths.emplace_back(Loc, Start, Phi, None);
 | |
|     // Stores how many "valid" optimization nodes we had prior to calling
 | |
|     // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
 | |
|     auto PriorPathsSize = Paths.size();
 | |
| 
 | |
|     SmallVector<ListIndex, 16> PausedSearches;
 | |
|     SmallVector<ListIndex, 8> NewPaused;
 | |
|     SmallVector<TerminatedPath, 4> TerminatedPaths;
 | |
| 
 | |
|     addSearches(Phi, PausedSearches, 0);
 | |
| 
 | |
|     // Moves the TerminatedPath with the "most dominated" Clobber to the end of
 | |
|     // Paths.
 | |
|     auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
 | |
|       assert(!Paths.empty() && "Need a path to move");
 | |
|       auto Dom = Paths.begin();
 | |
|       for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
 | |
|         if (!MSSA.dominates(I->Clobber, Dom->Clobber))
 | |
|           Dom = I;
 | |
|       auto Last = Paths.end() - 1;
 | |
|       if (Last != Dom)
 | |
|         std::iter_swap(Last, Dom);
 | |
|     };
 | |
| 
 | |
|     MemoryPhi *Current = Phi;
 | |
|     while (true) {
 | |
|       assert(!MSSA.isLiveOnEntryDef(Current) &&
 | |
|              "liveOnEntry wasn't treated as a clobber?");
 | |
| 
 | |
|       const auto *Target = getWalkTarget(Current);
 | |
|       // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
 | |
|       // optimization for the prior phi.
 | |
|       assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
 | |
|         return MSSA.dominates(P.Clobber, Target);
 | |
|       }));
 | |
| 
 | |
|       // FIXME: This is broken, because the Blocker may be reported to be
 | |
|       // liveOnEntry, and we'll happily wait for that to disappear (read: never)
 | |
|       // For the moment, this is fine, since we do nothing with blocker info.
 | |
|       if (Optional<TerminatedPath> Blocker = getBlockingAccess(
 | |
|               Target, PausedSearches, NewPaused, TerminatedPaths)) {
 | |
| 
 | |
|         // Find the node we started at. We can't search based on N->Last, since
 | |
|         // we may have gone around a loop with a different MemoryLocation.
 | |
|         auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
 | |
|           return defPathIndex(N) < PriorPathsSize;
 | |
|         });
 | |
|         assert(Iter != def_path_iterator());
 | |
| 
 | |
|         DefPath &CurNode = *Iter;
 | |
|         assert(CurNode.Last == Current);
 | |
| 
 | |
|         // Two things:
 | |
|         // A. We can't reliably cache all of NewPaused back. Consider a case
 | |
|         //    where we have two paths in NewPaused; one of which can't optimize
 | |
|         //    above this phi, whereas the other can. If we cache the second path
 | |
|         //    back, we'll end up with suboptimal cache entries. We can handle
 | |
|         //    cases like this a bit better when we either try to find all
 | |
|         //    clobbers that block phi optimization, or when our cache starts
 | |
|         //    supporting unfinished searches.
 | |
|         // B. We can't reliably cache TerminatedPaths back here without doing
 | |
|         //    extra checks; consider a case like:
 | |
|         //       T
 | |
|         //      / \
 | |
|         //     D   C
 | |
|         //      \ /
 | |
|         //       S
 | |
|         //    Where T is our target, C is a node with a clobber on it, D is a
 | |
|         //    diamond (with a clobber *only* on the left or right node, N), and
 | |
|         //    S is our start. Say we walk to D, through the node opposite N
 | |
|         //    (read: ignoring the clobber), and see a cache entry in the top
 | |
|         //    node of D. That cache entry gets put into TerminatedPaths. We then
 | |
|         //    walk up to C (N is later in our worklist), find the clobber, and
 | |
|         //    quit. If we append TerminatedPaths to OtherClobbers, we'll cache
 | |
|         //    the bottom part of D to the cached clobber, ignoring the clobber
 | |
|         //    in N. Again, this problem goes away if we start tracking all
 | |
|         //    blockers for a given phi optimization.
 | |
|         TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
 | |
|         return {Result, {}};
 | |
|       }
 | |
| 
 | |
|       // If there's nothing left to search, then all paths led to valid clobbers
 | |
|       // that we got from our cache; pick the nearest to the start, and allow
 | |
|       // the rest to be cached back.
 | |
|       if (NewPaused.empty()) {
 | |
|         MoveDominatedPathToEnd(TerminatedPaths);
 | |
|         TerminatedPath Result = TerminatedPaths.pop_back_val();
 | |
|         return {Result, std::move(TerminatedPaths)};
 | |
|       }
 | |
| 
 | |
|       MemoryAccess *DefChainEnd = nullptr;
 | |
|       SmallVector<TerminatedPath, 4> Clobbers;
 | |
|       for (ListIndex Paused : NewPaused) {
 | |
|         UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
 | |
|         if (WR.IsKnownClobber)
 | |
|           Clobbers.push_back({WR.Result, Paused});
 | |
|         else
 | |
|           // Micro-opt: If we hit the end of the chain, save it.
 | |
|           DefChainEnd = WR.Result;
 | |
|       }
 | |
| 
 | |
|       if (!TerminatedPaths.empty()) {
 | |
|         // If we couldn't find the dominating phi/liveOnEntry in the above loop,
 | |
|         // do it now.
 | |
|         if (!DefChainEnd)
 | |
|           for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
 | |
|             DefChainEnd = MA;
 | |
| 
 | |
|         // If any of the terminated paths don't dominate the phi we'll try to
 | |
|         // optimize, we need to figure out what they are and quit.
 | |
|         const BasicBlock *ChainBB = DefChainEnd->getBlock();
 | |
|         for (const TerminatedPath &TP : TerminatedPaths) {
 | |
|           // Because we know that DefChainEnd is as "high" as we can go, we
 | |
|           // don't need local dominance checks; BB dominance is sufficient.
 | |
|           if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
 | |
|             Clobbers.push_back(TP);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If we have clobbers in the def chain, find the one closest to Current
 | |
|       // and quit.
 | |
|       if (!Clobbers.empty()) {
 | |
|         MoveDominatedPathToEnd(Clobbers);
 | |
|         TerminatedPath Result = Clobbers.pop_back_val();
 | |
|         return {Result, std::move(Clobbers)};
 | |
|       }
 | |
| 
 | |
|       assert(all_of(NewPaused,
 | |
|                     [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
 | |
| 
 | |
|       // Because liveOnEntry is a clobber, this must be a phi.
 | |
|       auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
 | |
| 
 | |
|       PriorPathsSize = Paths.size();
 | |
|       PausedSearches.clear();
 | |
|       for (ListIndex I : NewPaused)
 | |
|         addSearches(DefChainPhi, PausedSearches, I);
 | |
|       NewPaused.clear();
 | |
| 
 | |
|       Current = DefChainPhi;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void verifyOptResult(const OptznResult &R) const {
 | |
|     assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
 | |
|       return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
 | |
|     }));
 | |
|   }
 | |
| 
 | |
|   void resetPhiOptznState() {
 | |
|     Paths.clear();
 | |
|     VisitedPhis.clear();
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
 | |
|       : MSSA(MSSA), AA(AA), DT(DT) {}
 | |
| 
 | |
|   void reset() {}
 | |
| 
 | |
|   /// Finds the nearest clobber for the given query, optimizing phis if
 | |
|   /// possible.
 | |
|   MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
 | |
|     Query = &Q;
 | |
| 
 | |
|     MemoryAccess *Current = Start;
 | |
|     // This walker pretends uses don't exist. If we're handed one, silently grab
 | |
|     // its def. (This has the nice side-effect of ensuring we never cache uses)
 | |
|     if (auto *MU = dyn_cast<MemoryUse>(Start))
 | |
|       Current = MU->getDefiningAccess();
 | |
| 
 | |
|     DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
 | |
|     // Fast path for the overly-common case (no crazy phi optimization
 | |
|     // necessary)
 | |
|     UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
 | |
|     MemoryAccess *Result;
 | |
|     if (WalkResult.IsKnownClobber) {
 | |
|       Result = WalkResult.Result;
 | |
|     } else {
 | |
|       OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
 | |
|                                           Current, Q.StartingLoc);
 | |
|       verifyOptResult(OptRes);
 | |
|       resetPhiOptznState();
 | |
|       Result = OptRes.PrimaryClobber.Clobber;
 | |
|     }
 | |
| 
 | |
| #ifdef EXPENSIVE_CHECKS
 | |
|     checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
 | |
| #endif
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
 | |
| };
 | |
| 
 | |
| struct RenamePassData {
 | |
|   DomTreeNode *DTN;
 | |
|   DomTreeNode::const_iterator ChildIt;
 | |
|   MemoryAccess *IncomingVal;
 | |
| 
 | |
|   RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
 | |
|                  MemoryAccess *M)
 | |
|       : DTN(D), ChildIt(It), IncomingVal(M) {}
 | |
| 
 | |
|   void swap(RenamePassData &RHS) {
 | |
|     std::swap(DTN, RHS.DTN);
 | |
|     std::swap(ChildIt, RHS.ChildIt);
 | |
|     std::swap(IncomingVal, RHS.IncomingVal);
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| /// \brief A MemorySSAWalker that does AA walks to disambiguate accesses. It no
 | |
| /// longer does caching on its own,
 | |
| /// but the name has been retained for the moment.
 | |
| class MemorySSA::CachingWalker final : public MemorySSAWalker {
 | |
|   ClobberWalker Walker;
 | |
|   bool AutoResetWalker = true;
 | |
| 
 | |
|   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);
 | |
|   void verifyRemoved(MemoryAccess *);
 | |
| 
 | |
| public:
 | |
|   CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
 | |
|   ~CachingWalker() override = default;
 | |
| 
 | |
|   using MemorySSAWalker::getClobberingMemoryAccess;
 | |
| 
 | |
|   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
 | |
|   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
 | |
|                                           const MemoryLocation &) override;
 | |
|   void invalidateInfo(MemoryAccess *) override;
 | |
| 
 | |
|   /// Whether we call resetClobberWalker() after each time we *actually* walk to
 | |
|   /// answer a clobber query.
 | |
|   void setAutoResetWalker(bool AutoReset) { AutoResetWalker = AutoReset; }
 | |
| 
 | |
|   /// Drop the walker's persistent data structures.
 | |
|   void resetClobberWalker() { Walker.reset(); }
 | |
| 
 | |
|   void verify(const MemorySSA *MSSA) override {
 | |
|     MemorySSAWalker::verify(MSSA);
 | |
|     Walker.verify(MSSA);
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
 | |
|                                     bool RenameAllUses) {
 | |
|   // Pass through values to our successors
 | |
|   for (const BasicBlock *S : successors(BB)) {
 | |
|     auto It = PerBlockAccesses.find(S);
 | |
|     // Rename the phi nodes in our successor block
 | |
|     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
 | |
|       continue;
 | |
|     AccessList *Accesses = It->second.get();
 | |
|     auto *Phi = cast<MemoryPhi>(&Accesses->front());
 | |
|     if (RenameAllUses) {
 | |
|       int PhiIndex = Phi->getBasicBlockIndex(BB);
 | |
|       assert(PhiIndex != -1 && "Incomplete phi during partial rename");
 | |
|       Phi->setIncomingValue(PhiIndex, IncomingVal);
 | |
|     } else
 | |
|       Phi->addIncoming(IncomingVal, BB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Rename a single basic block into MemorySSA form.
 | |
| /// Uses the standard SSA renaming algorithm.
 | |
| /// \returns The new incoming value.
 | |
| MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
 | |
|                                      bool RenameAllUses) {
 | |
|   auto It = PerBlockAccesses.find(BB);
 | |
|   // Skip most processing if the list is empty.
 | |
|   if (It != PerBlockAccesses.end()) {
 | |
|     AccessList *Accesses = It->second.get();
 | |
|     for (MemoryAccess &L : *Accesses) {
 | |
|       if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
 | |
|         if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
 | |
|           MUD->setDefiningAccess(IncomingVal);
 | |
|         if (isa<MemoryDef>(&L))
 | |
|           IncomingVal = &L;
 | |
|       } else {
 | |
|         IncomingVal = &L;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return IncomingVal;
 | |
| }
 | |
| 
 | |
| /// \brief This is the standard SSA renaming algorithm.
 | |
| ///
 | |
| /// We walk the dominator tree in preorder, renaming accesses, and then filling
 | |
| /// in phi nodes in our successors.
 | |
| void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
 | |
|                            SmallPtrSetImpl<BasicBlock *> &Visited,
 | |
|                            bool SkipVisited, bool RenameAllUses) {
 | |
|   SmallVector<RenamePassData, 32> WorkStack;
 | |
|   // Skip everything if we already renamed this block and we are skipping.
 | |
|   // Note: You can't sink this into the if, because we need it to occur
 | |
|   // regardless of whether we skip blocks or not.
 | |
|   bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
 | |
|   if (SkipVisited && AlreadyVisited)
 | |
|     return;
 | |
| 
 | |
|   IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
 | |
|   renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
 | |
|   WorkStack.push_back({Root, Root->begin(), IncomingVal});
 | |
| 
 | |
|   while (!WorkStack.empty()) {
 | |
|     DomTreeNode *Node = WorkStack.back().DTN;
 | |
|     DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
 | |
|     IncomingVal = WorkStack.back().IncomingVal;
 | |
| 
 | |
|     if (ChildIt == Node->end()) {
 | |
|       WorkStack.pop_back();
 | |
|     } else {
 | |
|       DomTreeNode *Child = *ChildIt;
 | |
|       ++WorkStack.back().ChildIt;
 | |
|       BasicBlock *BB = Child->getBlock();
 | |
|       // Note: You can't sink this into the if, because we need it to occur
 | |
|       // regardless of whether we skip blocks or not.
 | |
|       AlreadyVisited = !Visited.insert(BB).second;
 | |
|       if (SkipVisited && AlreadyVisited) {
 | |
|         // We already visited this during our renaming, which can happen when
 | |
|         // being asked to rename multiple blocks. Figure out the incoming val,
 | |
|         // which is the last def.
 | |
|         // Incoming value can only change if there is a block def, and in that
 | |
|         // case, it's the last block def in the list.
 | |
|         if (auto *BlockDefs = getWritableBlockDefs(BB))
 | |
|           IncomingVal = &*BlockDefs->rbegin();
 | |
|       } else
 | |
|         IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
 | |
|       renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
 | |
|       WorkStack.push_back({Child, Child->begin(), IncomingVal});
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief This handles unreachable block accesses by deleting phi nodes in
 | |
| /// unreachable blocks, and marking all other unreachable MemoryAccess's as
 | |
| /// being uses of the live on entry definition.
 | |
| void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
 | |
|   assert(!DT->isReachableFromEntry(BB) &&
 | |
|          "Reachable block found while handling unreachable blocks");
 | |
| 
 | |
|   // Make sure phi nodes in our reachable successors end up with a
 | |
|   // LiveOnEntryDef for our incoming edge, even though our block is forward
 | |
|   // unreachable.  We could just disconnect these blocks from the CFG fully,
 | |
|   // but we do not right now.
 | |
|   for (const BasicBlock *S : successors(BB)) {
 | |
|     if (!DT->isReachableFromEntry(S))
 | |
|       continue;
 | |
|     auto It = PerBlockAccesses.find(S);
 | |
|     // Rename the phi nodes in our successor block
 | |
|     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
 | |
|       continue;
 | |
|     AccessList *Accesses = It->second.get();
 | |
|     auto *Phi = cast<MemoryPhi>(&Accesses->front());
 | |
|     Phi->addIncoming(LiveOnEntryDef.get(), BB);
 | |
|   }
 | |
| 
 | |
|   auto It = PerBlockAccesses.find(BB);
 | |
|   if (It == PerBlockAccesses.end())
 | |
|     return;
 | |
| 
 | |
|   auto &Accesses = It->second;
 | |
|   for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
 | |
|     auto Next = std::next(AI);
 | |
|     // If we have a phi, just remove it. We are going to replace all
 | |
|     // users with live on entry.
 | |
|     if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
 | |
|       UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
 | |
|     else
 | |
|       Accesses->erase(AI);
 | |
|     AI = Next;
 | |
|   }
 | |
| }
 | |
| 
 | |
| MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
 | |
|     : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
 | |
|       NextID(INVALID_MEMORYACCESS_ID) {
 | |
|   buildMemorySSA();
 | |
| }
 | |
| 
 | |
| MemorySSA::~MemorySSA() {
 | |
|   // Drop all our references
 | |
|   for (const auto &Pair : PerBlockAccesses)
 | |
|     for (MemoryAccess &MA : *Pair.second)
 | |
|       MA.dropAllReferences();
 | |
| }
 | |
| 
 | |
| MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
 | |
|   auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
 | |
| 
 | |
|   if (Res.second)
 | |
|     Res.first->second = llvm::make_unique<AccessList>();
 | |
|   return Res.first->second.get();
 | |
| }
 | |
| 
 | |
| MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
 | |
|   auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
 | |
| 
 | |
|   if (Res.second)
 | |
|     Res.first->second = llvm::make_unique<DefsList>();
 | |
|   return Res.first->second.get();
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| /// This class is a batch walker of all MemoryUse's in the program, and points
 | |
| /// their defining access at the thing that actually clobbers them.  Because it
 | |
| /// is a batch walker that touches everything, it does not operate like the
 | |
| /// other walkers.  This walker is basically performing a top-down SSA renaming
 | |
| /// pass, where the version stack is used as the cache.  This enables it to be
 | |
| /// significantly more time and memory efficient than using the regular walker,
 | |
| /// which is walking bottom-up.
 | |
| class MemorySSA::OptimizeUses {
 | |
| public:
 | |
|   OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
 | |
|                DominatorTree *DT)
 | |
|       : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
 | |
|     Walker = MSSA->getWalker();
 | |
|   }
 | |
| 
 | |
|   void optimizeUses();
 | |
| 
 | |
| private:
 | |
|   /// This represents where a given memorylocation is in the stack.
 | |
|   struct MemlocStackInfo {
 | |
|     // This essentially is keeping track of versions of the stack. Whenever
 | |
|     // the stack changes due to pushes or pops, these versions increase.
 | |
|     unsigned long StackEpoch;
 | |
|     unsigned long PopEpoch;
 | |
|     // This is the lower bound of places on the stack to check. It is equal to
 | |
|     // the place the last stack walk ended.
 | |
|     // Note: Correctness depends on this being initialized to 0, which densemap
 | |
|     // does
 | |
|     unsigned long LowerBound;
 | |
|     const BasicBlock *LowerBoundBlock;
 | |
|     // This is where the last walk for this memory location ended.
 | |
|     unsigned long LastKill;
 | |
|     bool LastKillValid;
 | |
|   };
 | |
| 
 | |
|   void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
 | |
|                            SmallVectorImpl<MemoryAccess *> &,
 | |
|                            DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
 | |
| 
 | |
|   MemorySSA *MSSA;
 | |
|   MemorySSAWalker *Walker;
 | |
|   AliasAnalysis *AA;
 | |
|   DominatorTree *DT;
 | |
| };
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| /// Optimize the uses in a given block This is basically the SSA renaming
 | |
| /// algorithm, with one caveat: We are able to use a single stack for all
 | |
| /// MemoryUses.  This is because the set of *possible* reaching MemoryDefs is
 | |
| /// the same for every MemoryUse.  The *actual* clobbering MemoryDef is just
 | |
| /// going to be some position in that stack of possible ones.
 | |
| ///
 | |
| /// We track the stack positions that each MemoryLocation needs
 | |
| /// to check, and last ended at.  This is because we only want to check the
 | |
| /// things that changed since last time.  The same MemoryLocation should
 | |
| /// get clobbered by the same store (getModRefInfo does not use invariantness or
 | |
| /// things like this, and if they start, we can modify MemoryLocOrCall to
 | |
| /// include relevant data)
 | |
| void MemorySSA::OptimizeUses::optimizeUsesInBlock(
 | |
|     const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
 | |
|     SmallVectorImpl<MemoryAccess *> &VersionStack,
 | |
|     DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
 | |
| 
 | |
|   /// If no accesses, nothing to do.
 | |
|   MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
 | |
|   if (Accesses == nullptr)
 | |
|     return;
 | |
| 
 | |
|   // Pop everything that doesn't dominate the current block off the stack,
 | |
|   // increment the PopEpoch to account for this.
 | |
|   while (true) {
 | |
|     assert(
 | |
|         !VersionStack.empty() &&
 | |
|         "Version stack should have liveOnEntry sentinel dominating everything");
 | |
|     BasicBlock *BackBlock = VersionStack.back()->getBlock();
 | |
|     if (DT->dominates(BackBlock, BB))
 | |
|       break;
 | |
|     while (VersionStack.back()->getBlock() == BackBlock)
 | |
|       VersionStack.pop_back();
 | |
|     ++PopEpoch;
 | |
|   }
 | |
| 
 | |
|   for (MemoryAccess &MA : *Accesses) {
 | |
|     auto *MU = dyn_cast<MemoryUse>(&MA);
 | |
|     if (!MU) {
 | |
|       VersionStack.push_back(&MA);
 | |
|       ++StackEpoch;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
 | |
|       MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     MemoryLocOrCall UseMLOC(MU);
 | |
|     auto &LocInfo = LocStackInfo[UseMLOC];
 | |
|     // If the pop epoch changed, it means we've removed stuff from top of
 | |
|     // stack due to changing blocks. We may have to reset the lower bound or
 | |
|     // last kill info.
 | |
|     if (LocInfo.PopEpoch != PopEpoch) {
 | |
|       LocInfo.PopEpoch = PopEpoch;
 | |
|       LocInfo.StackEpoch = StackEpoch;
 | |
|       // If the lower bound was in something that no longer dominates us, we
 | |
|       // have to reset it.
 | |
|       // We can't simply track stack size, because the stack may have had
 | |
|       // pushes/pops in the meantime.
 | |
|       // XXX: This is non-optimal, but only is slower cases with heavily
 | |
|       // branching dominator trees.  To get the optimal number of queries would
 | |
|       // be to make lowerbound and lastkill a per-loc stack, and pop it until
 | |
|       // the top of that stack dominates us.  This does not seem worth it ATM.
 | |
|       // A much cheaper optimization would be to always explore the deepest
 | |
|       // branch of the dominator tree first. This will guarantee this resets on
 | |
|       // the smallest set of blocks.
 | |
|       if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
 | |
|           !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
 | |
|         // Reset the lower bound of things to check.
 | |
|         // TODO: Some day we should be able to reset to last kill, rather than
 | |
|         // 0.
 | |
|         LocInfo.LowerBound = 0;
 | |
|         LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
 | |
|         LocInfo.LastKillValid = false;
 | |
|       }
 | |
|     } else if (LocInfo.StackEpoch != StackEpoch) {
 | |
|       // If all that has changed is the StackEpoch, we only have to check the
 | |
|       // new things on the stack, because we've checked everything before.  In
 | |
|       // this case, the lower bound of things to check remains the same.
 | |
|       LocInfo.PopEpoch = PopEpoch;
 | |
|       LocInfo.StackEpoch = StackEpoch;
 | |
|     }
 | |
|     if (!LocInfo.LastKillValid) {
 | |
|       LocInfo.LastKill = VersionStack.size() - 1;
 | |
|       LocInfo.LastKillValid = true;
 | |
|     }
 | |
| 
 | |
|     // At this point, we should have corrected last kill and LowerBound to be
 | |
|     // in bounds.
 | |
|     assert(LocInfo.LowerBound < VersionStack.size() &&
 | |
|            "Lower bound out of range");
 | |
|     assert(LocInfo.LastKill < VersionStack.size() &&
 | |
|            "Last kill info out of range");
 | |
|     // In any case, the new upper bound is the top of the stack.
 | |
|     unsigned long UpperBound = VersionStack.size() - 1;
 | |
| 
 | |
|     if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
 | |
|       DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
 | |
|                    << *(MU->getMemoryInst()) << ")"
 | |
|                    << " because there are " << UpperBound - LocInfo.LowerBound
 | |
|                    << " stores to disambiguate\n");
 | |
|       // Because we did not walk, LastKill is no longer valid, as this may
 | |
|       // have been a kill.
 | |
|       LocInfo.LastKillValid = false;
 | |
|       continue;
 | |
|     }
 | |
|     bool FoundClobberResult = false;
 | |
|     while (UpperBound > LocInfo.LowerBound) {
 | |
|       if (isa<MemoryPhi>(VersionStack[UpperBound])) {
 | |
|         // For phis, use the walker, see where we ended up, go there
 | |
|         Instruction *UseInst = MU->getMemoryInst();
 | |
|         MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
 | |
|         // We are guaranteed to find it or something is wrong
 | |
|         while (VersionStack[UpperBound] != Result) {
 | |
|           assert(UpperBound != 0);
 | |
|           --UpperBound;
 | |
|         }
 | |
|         FoundClobberResult = true;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
 | |
|       // If the lifetime of the pointer ends at this instruction, it's live on
 | |
|       // entry.
 | |
|       if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
 | |
|         // Reset UpperBound to liveOnEntryDef's place in the stack
 | |
|         UpperBound = 0;
 | |
|         FoundClobberResult = true;
 | |
|         break;
 | |
|       }
 | |
|       if (instructionClobbersQuery(MD, MU, UseMLOC, *AA)) {
 | |
|         FoundClobberResult = true;
 | |
|         break;
 | |
|       }
 | |
|       --UpperBound;
 | |
|     }
 | |
|     // At the end of this loop, UpperBound is either a clobber, or lower bound
 | |
|     // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
 | |
|     if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
 | |
|       MU->setDefiningAccess(VersionStack[UpperBound], true);
 | |
|       // We were last killed now by where we got to
 | |
|       LocInfo.LastKill = UpperBound;
 | |
|     } else {
 | |
|       // Otherwise, we checked all the new ones, and now we know we can get to
 | |
|       // LastKill.
 | |
|       MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true);
 | |
|     }
 | |
|     LocInfo.LowerBound = VersionStack.size() - 1;
 | |
|     LocInfo.LowerBoundBlock = BB;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Optimize uses to point to their actual clobbering definitions.
 | |
| void MemorySSA::OptimizeUses::optimizeUses() {
 | |
|   SmallVector<MemoryAccess *, 16> VersionStack;
 | |
|   DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
 | |
|   VersionStack.push_back(MSSA->getLiveOnEntryDef());
 | |
| 
 | |
|   unsigned long StackEpoch = 1;
 | |
|   unsigned long PopEpoch = 1;
 | |
|   // We perform a non-recursive top-down dominator tree walk.
 | |
|   for (const auto *DomNode : depth_first(DT->getRootNode()))
 | |
|     optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
 | |
|                         LocStackInfo);
 | |
| }
 | |
| 
 | |
| void MemorySSA::placePHINodes(
 | |
|     const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks,
 | |
|     const DenseMap<const BasicBlock *, unsigned int> &BBNumbers) {
 | |
|   // Determine where our MemoryPhi's should go
 | |
|   ForwardIDFCalculator IDFs(*DT);
 | |
|   IDFs.setDefiningBlocks(DefiningBlocks);
 | |
|   SmallVector<BasicBlock *, 32> IDFBlocks;
 | |
|   IDFs.calculate(IDFBlocks);
 | |
| 
 | |
|   std::sort(IDFBlocks.begin(), IDFBlocks.end(),
 | |
|             [&BBNumbers](const BasicBlock *A, const BasicBlock *B) {
 | |
|               return BBNumbers.lookup(A) < BBNumbers.lookup(B);
 | |
|             });
 | |
| 
 | |
|   // Now place MemoryPhi nodes.
 | |
|   for (auto &BB : IDFBlocks)
 | |
|     createMemoryPhi(BB);
 | |
| }
 | |
| 
 | |
| void MemorySSA::buildMemorySSA() {
 | |
|   // We create an access to represent "live on entry", for things like
 | |
|   // arguments or users of globals, where the memory they use is defined before
 | |
|   // the beginning of the function. We do not actually insert it into the IR.
 | |
|   // We do not define a live on exit for the immediate uses, and thus our
 | |
|   // semantics do *not* imply that something with no immediate uses can simply
 | |
|   // be removed.
 | |
|   BasicBlock &StartingPoint = F.getEntryBlock();
 | |
|   LiveOnEntryDef =
 | |
|       llvm::make_unique<MemoryDef>(F.getContext(), nullptr, nullptr,
 | |
|                                    &StartingPoint, NextID++);
 | |
|   DenseMap<const BasicBlock *, unsigned int> BBNumbers;
 | |
|   unsigned NextBBNum = 0;
 | |
| 
 | |
|   // We maintain lists of memory accesses per-block, trading memory for time. We
 | |
|   // could just look up the memory access for every possible instruction in the
 | |
|   // stream.
 | |
|   SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
 | |
|   // Go through each block, figure out where defs occur, and chain together all
 | |
|   // the accesses.
 | |
|   for (BasicBlock &B : F) {
 | |
|     BBNumbers[&B] = NextBBNum++;
 | |
|     bool InsertIntoDef = false;
 | |
|     AccessList *Accesses = nullptr;
 | |
|     DefsList *Defs = nullptr;
 | |
|     for (Instruction &I : B) {
 | |
|       MemoryUseOrDef *MUD = createNewAccess(&I);
 | |
|       if (!MUD)
 | |
|         continue;
 | |
| 
 | |
|       if (!Accesses)
 | |
|         Accesses = getOrCreateAccessList(&B);
 | |
|       Accesses->push_back(MUD);
 | |
|       if (isa<MemoryDef>(MUD)) {
 | |
|         InsertIntoDef = true;
 | |
|         if (!Defs)
 | |
|           Defs = getOrCreateDefsList(&B);
 | |
|         Defs->push_back(*MUD);
 | |
|       }
 | |
|     }
 | |
|     if (InsertIntoDef)
 | |
|       DefiningBlocks.insert(&B);
 | |
|   }
 | |
|   placePHINodes(DefiningBlocks, BBNumbers);
 | |
| 
 | |
|   // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
 | |
|   // filled in with all blocks.
 | |
|   SmallPtrSet<BasicBlock *, 16> Visited;
 | |
|   renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
 | |
| 
 | |
|   CachingWalker *Walker = getWalkerImpl();
 | |
| 
 | |
|   // We're doing a batch of updates; don't drop useful caches between them.
 | |
|   Walker->setAutoResetWalker(false);
 | |
|   OptimizeUses(this, Walker, AA, DT).optimizeUses();
 | |
|   Walker->setAutoResetWalker(true);
 | |
|   Walker->resetClobberWalker();
 | |
| 
 | |
|   // Mark the uses in unreachable blocks as live on entry, so that they go
 | |
|   // somewhere.
 | |
|   for (auto &BB : F)
 | |
|     if (!Visited.count(&BB))
 | |
|       markUnreachableAsLiveOnEntry(&BB);
 | |
| }
 | |
| 
 | |
| MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
 | |
| 
 | |
| MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
 | |
|   if (Walker)
 | |
|     return Walker.get();
 | |
| 
 | |
|   Walker = llvm::make_unique<CachingWalker>(this, AA, DT);
 | |
|   return Walker.get();
 | |
| }
 | |
| 
 | |
| // This is a helper function used by the creation routines. It places NewAccess
 | |
| // into the access and defs lists for a given basic block, at the given
 | |
| // insertion point.
 | |
| void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
 | |
|                                         const BasicBlock *BB,
 | |
|                                         InsertionPlace Point) {
 | |
|   auto *Accesses = getOrCreateAccessList(BB);
 | |
|   if (Point == Beginning) {
 | |
|     // If it's a phi node, it goes first, otherwise, it goes after any phi
 | |
|     // nodes.
 | |
|     if (isa<MemoryPhi>(NewAccess)) {
 | |
|       Accesses->push_front(NewAccess);
 | |
|       auto *Defs = getOrCreateDefsList(BB);
 | |
|       Defs->push_front(*NewAccess);
 | |
|     } else {
 | |
|       auto AI = find_if_not(
 | |
|           *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
 | |
|       Accesses->insert(AI, NewAccess);
 | |
|       if (!isa<MemoryUse>(NewAccess)) {
 | |
|         auto *Defs = getOrCreateDefsList(BB);
 | |
|         auto DI = find_if_not(
 | |
|             *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
 | |
|         Defs->insert(DI, *NewAccess);
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     Accesses->push_back(NewAccess);
 | |
|     if (!isa<MemoryUse>(NewAccess)) {
 | |
|       auto *Defs = getOrCreateDefsList(BB);
 | |
|       Defs->push_back(*NewAccess);
 | |
|     }
 | |
|   }
 | |
|   BlockNumberingValid.erase(BB);
 | |
| }
 | |
| 
 | |
| void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
 | |
|                                       AccessList::iterator InsertPt) {
 | |
|   auto *Accesses = getWritableBlockAccesses(BB);
 | |
|   bool WasEnd = InsertPt == Accesses->end();
 | |
|   Accesses->insert(AccessList::iterator(InsertPt), What);
 | |
|   if (!isa<MemoryUse>(What)) {
 | |
|     auto *Defs = getOrCreateDefsList(BB);
 | |
|     // If we got asked to insert at the end, we have an easy job, just shove it
 | |
|     // at the end. If we got asked to insert before an existing def, we also get
 | |
|     // an terator. If we got asked to insert before a use, we have to hunt for
 | |
|     // the next def.
 | |
|     if (WasEnd) {
 | |
|       Defs->push_back(*What);
 | |
|     } else if (isa<MemoryDef>(InsertPt)) {
 | |
|       Defs->insert(InsertPt->getDefsIterator(), *What);
 | |
|     } else {
 | |
|       while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
 | |
|         ++InsertPt;
 | |
|       // Either we found a def, or we are inserting at the end
 | |
|       if (InsertPt == Accesses->end())
 | |
|         Defs->push_back(*What);
 | |
|       else
 | |
|         Defs->insert(InsertPt->getDefsIterator(), *What);
 | |
|     }
 | |
|   }
 | |
|   BlockNumberingValid.erase(BB);
 | |
| }
 | |
| 
 | |
| // Move What before Where in the IR.  The end result is taht What will belong to
 | |
| // the right lists and have the right Block set, but will not otherwise be
 | |
| // correct. It will not have the right defining access, and if it is a def,
 | |
| // things below it will not properly be updated.
 | |
| void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
 | |
|                        AccessList::iterator Where) {
 | |
|   // Keep it in the lookup tables, remove from the lists
 | |
|   removeFromLists(What, false);
 | |
|   What->setBlock(BB);
 | |
|   insertIntoListsBefore(What, BB, Where);
 | |
| }
 | |
| 
 | |
| void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
 | |
|                        InsertionPlace Point) {
 | |
|   removeFromLists(What, false);
 | |
|   What->setBlock(BB);
 | |
|   insertIntoListsForBlock(What, BB, Point);
 | |
| }
 | |
| 
 | |
| MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
 | |
|   assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
 | |
|   MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
 | |
|   // Phi's always are placed at the front of the block.
 | |
|   insertIntoListsForBlock(Phi, BB, Beginning);
 | |
|   ValueToMemoryAccess[BB] = Phi;
 | |
|   return Phi;
 | |
| }
 | |
| 
 | |
| MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
 | |
|                                                MemoryAccess *Definition) {
 | |
|   assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
 | |
|   MemoryUseOrDef *NewAccess = createNewAccess(I);
 | |
|   assert(
 | |
|       NewAccess != nullptr &&
 | |
|       "Tried to create a memory access for a non-memory touching instruction");
 | |
|   NewAccess->setDefiningAccess(Definition);
 | |
|   return NewAccess;
 | |
| }
 | |
| 
 | |
| // Return true if the instruction has ordering constraints.
 | |
| // Note specifically that this only considers stores and loads
 | |
| // because others are still considered ModRef by getModRefInfo.
 | |
| static inline bool isOrdered(const Instruction *I) {
 | |
|   if (auto *SI = dyn_cast<StoreInst>(I)) {
 | |
|     if (!SI->isUnordered())
 | |
|       return true;
 | |
|   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
 | |
|     if (!LI->isUnordered())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Helper function to create new memory accesses
 | |
| MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) {
 | |
|   // The assume intrinsic has a control dependency which we model by claiming
 | |
|   // that it writes arbitrarily. Ignore that fake memory dependency here.
 | |
|   // FIXME: Replace this special casing with a more accurate modelling of
 | |
|   // assume's control dependency.
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
 | |
|     if (II->getIntrinsicID() == Intrinsic::assume)
 | |
|       return nullptr;
 | |
| 
 | |
|   // Find out what affect this instruction has on memory.
 | |
|   ModRefInfo ModRef = AA->getModRefInfo(I, None);
 | |
|   // The isOrdered check is used to ensure that volatiles end up as defs
 | |
|   // (atomics end up as ModRef right now anyway).  Until we separate the
 | |
|   // ordering chain from the memory chain, this enables people to see at least
 | |
|   // some relative ordering to volatiles.  Note that getClobberingMemoryAccess
 | |
|   // will still give an answer that bypasses other volatile loads.  TODO:
 | |
|   // Separate memory aliasing and ordering into two different chains so that we
 | |
|   // can precisely represent both "what memory will this read/write/is clobbered
 | |
|   // by" and "what instructions can I move this past".
 | |
|   bool Def = bool(ModRef & MRI_Mod) || isOrdered(I);
 | |
|   bool Use = bool(ModRef & MRI_Ref);
 | |
| 
 | |
|   // It's possible for an instruction to not modify memory at all. During
 | |
|   // construction, we ignore them.
 | |
|   if (!Def && !Use)
 | |
|     return nullptr;
 | |
| 
 | |
|   assert((Def || Use) &&
 | |
|          "Trying to create a memory access with a non-memory instruction");
 | |
| 
 | |
|   MemoryUseOrDef *MUD;
 | |
|   if (Def)
 | |
|     MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
 | |
|   else
 | |
|     MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
 | |
|   ValueToMemoryAccess[I] = MUD;
 | |
|   return MUD;
 | |
| }
 | |
| 
 | |
| /// \brief Returns true if \p Replacer dominates \p Replacee .
 | |
| bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
 | |
|                              const MemoryAccess *Replacee) const {
 | |
|   if (isa<MemoryUseOrDef>(Replacee))
 | |
|     return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
 | |
|   const auto *MP = cast<MemoryPhi>(Replacee);
 | |
|   // For a phi node, the use occurs in the predecessor block of the phi node.
 | |
|   // Since we may occur multiple times in the phi node, we have to check each
 | |
|   // operand to ensure Replacer dominates each operand where Replacee occurs.
 | |
|   for (const Use &Arg : MP->operands()) {
 | |
|     if (Arg.get() != Replacee &&
 | |
|         !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Properly remove \p MA from all of MemorySSA's lookup tables.
 | |
| void MemorySSA::removeFromLookups(MemoryAccess *MA) {
 | |
|   assert(MA->use_empty() &&
 | |
|          "Trying to remove memory access that still has uses");
 | |
|   BlockNumbering.erase(MA);
 | |
|   if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA))
 | |
|     MUD->setDefiningAccess(nullptr);
 | |
|   // Invalidate our walker's cache if necessary
 | |
|   if (!isa<MemoryUse>(MA))
 | |
|     Walker->invalidateInfo(MA);
 | |
|   // The call below to erase will destroy MA, so we can't change the order we
 | |
|   // are doing things here
 | |
|   Value *MemoryInst;
 | |
|   if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
 | |
|     MemoryInst = MUD->getMemoryInst();
 | |
|   } else {
 | |
|     MemoryInst = MA->getBlock();
 | |
|   }
 | |
|   auto VMA = ValueToMemoryAccess.find(MemoryInst);
 | |
|   if (VMA->second == MA)
 | |
|     ValueToMemoryAccess.erase(VMA);
 | |
| }
 | |
| 
 | |
| /// \brief Properly remove \p MA from all of MemorySSA's lists.
 | |
| ///
 | |
| /// Because of the way the intrusive list and use lists work, it is important to
 | |
| /// do removal in the right order.
 | |
| /// ShouldDelete defaults to true, and will cause the memory access to also be
 | |
| /// deleted, not just removed.
 | |
| void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
 | |
|   // The access list owns the reference, so we erase it from the non-owning list
 | |
|   // first.
 | |
|   if (!isa<MemoryUse>(MA)) {
 | |
|     auto DefsIt = PerBlockDefs.find(MA->getBlock());
 | |
|     std::unique_ptr<DefsList> &Defs = DefsIt->second;
 | |
|     Defs->remove(*MA);
 | |
|     if (Defs->empty())
 | |
|       PerBlockDefs.erase(DefsIt);
 | |
|   }
 | |
| 
 | |
|   // The erase call here will delete it. If we don't want it deleted, we call
 | |
|   // remove instead.
 | |
|   auto AccessIt = PerBlockAccesses.find(MA->getBlock());
 | |
|   std::unique_ptr<AccessList> &Accesses = AccessIt->second;
 | |
|   if (ShouldDelete)
 | |
|     Accesses->erase(MA);
 | |
|   else
 | |
|     Accesses->remove(MA);
 | |
| 
 | |
|   if (Accesses->empty())
 | |
|     PerBlockAccesses.erase(AccessIt);
 | |
| }
 | |
| 
 | |
| void MemorySSA::print(raw_ostream &OS) const {
 | |
|   MemorySSAAnnotatedWriter Writer(this);
 | |
|   F.print(OS, &Writer);
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
 | |
| #endif
 | |
| 
 | |
| void MemorySSA::verifyMemorySSA() const {
 | |
|   verifyDefUses(F);
 | |
|   verifyDomination(F);
 | |
|   verifyOrdering(F);
 | |
|   Walker->verify(this);
 | |
| }
 | |
| 
 | |
| /// \brief Verify that the order and existence of MemoryAccesses matches the
 | |
| /// order and existence of memory affecting instructions.
 | |
| void MemorySSA::verifyOrdering(Function &F) const {
 | |
|   // Walk all the blocks, comparing what the lookups think and what the access
 | |
|   // lists think, as well as the order in the blocks vs the order in the access
 | |
|   // lists.
 | |
|   SmallVector<MemoryAccess *, 32> ActualAccesses;
 | |
|   SmallVector<MemoryAccess *, 32> ActualDefs;
 | |
|   for (BasicBlock &B : F) {
 | |
|     const AccessList *AL = getBlockAccesses(&B);
 | |
|     const auto *DL = getBlockDefs(&B);
 | |
|     MemoryAccess *Phi = getMemoryAccess(&B);
 | |
|     if (Phi) {
 | |
|       ActualAccesses.push_back(Phi);
 | |
|       ActualDefs.push_back(Phi);
 | |
|     }
 | |
| 
 | |
|     for (Instruction &I : B) {
 | |
|       MemoryAccess *MA = getMemoryAccess(&I);
 | |
|       assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
 | |
|              "We have memory affecting instructions "
 | |
|              "in this block but they are not in the "
 | |
|              "access list or defs list");
 | |
|       if (MA) {
 | |
|         ActualAccesses.push_back(MA);
 | |
|         if (isa<MemoryDef>(MA))
 | |
|           ActualDefs.push_back(MA);
 | |
|       }
 | |
|     }
 | |
|     // Either we hit the assert, really have no accesses, or we have both
 | |
|     // accesses and an access list.
 | |
|     // Same with defs.
 | |
|     if (!AL && !DL)
 | |
|       continue;
 | |
|     assert(AL->size() == ActualAccesses.size() &&
 | |
|            "We don't have the same number of accesses in the block as on the "
 | |
|            "access list");
 | |
|     assert((DL || ActualDefs.size() == 0) &&
 | |
|            "Either we should have a defs list, or we should have no defs");
 | |
|     assert((!DL || DL->size() == ActualDefs.size()) &&
 | |
|            "We don't have the same number of defs in the block as on the "
 | |
|            "def list");
 | |
|     auto ALI = AL->begin();
 | |
|     auto AAI = ActualAccesses.begin();
 | |
|     while (ALI != AL->end() && AAI != ActualAccesses.end()) {
 | |
|       assert(&*ALI == *AAI && "Not the same accesses in the same order");
 | |
|       ++ALI;
 | |
|       ++AAI;
 | |
|     }
 | |
|     ActualAccesses.clear();
 | |
|     if (DL) {
 | |
|       auto DLI = DL->begin();
 | |
|       auto ADI = ActualDefs.begin();
 | |
|       while (DLI != DL->end() && ADI != ActualDefs.end()) {
 | |
|         assert(&*DLI == *ADI && "Not the same defs in the same order");
 | |
|         ++DLI;
 | |
|         ++ADI;
 | |
|       }
 | |
|     }
 | |
|     ActualDefs.clear();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Verify the domination properties of MemorySSA by checking that each
 | |
| /// definition dominates all of its uses.
 | |
| void MemorySSA::verifyDomination(Function &F) const {
 | |
| #ifndef NDEBUG
 | |
|   for (BasicBlock &B : F) {
 | |
|     // Phi nodes are attached to basic blocks
 | |
|     if (MemoryPhi *MP = getMemoryAccess(&B))
 | |
|       for (const Use &U : MP->uses())
 | |
|         assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
 | |
| 
 | |
|     for (Instruction &I : B) {
 | |
|       MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
 | |
|       if (!MD)
 | |
|         continue;
 | |
| 
 | |
|       for (const Use &U : MD->uses())
 | |
|         assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use
 | |
| /// appears in the use list of \p Def.
 | |
| void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
 | |
| #ifndef NDEBUG
 | |
|   // The live on entry use may cause us to get a NULL def here
 | |
|   if (!Def)
 | |
|     assert(isLiveOnEntryDef(Use) &&
 | |
|            "Null def but use not point to live on entry def");
 | |
|   else
 | |
|     assert(is_contained(Def->users(), Use) &&
 | |
|            "Did not find use in def's use list");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// \brief Verify the immediate use information, by walking all the memory
 | |
| /// accesses and verifying that, for each use, it appears in the
 | |
| /// appropriate def's use list
 | |
| void MemorySSA::verifyDefUses(Function &F) const {
 | |
|   for (BasicBlock &B : F) {
 | |
|     // Phi nodes are attached to basic blocks
 | |
|     if (MemoryPhi *Phi = getMemoryAccess(&B)) {
 | |
|       assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
 | |
|                                           pred_begin(&B), pred_end(&B))) &&
 | |
|              "Incomplete MemoryPhi Node");
 | |
|       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
 | |
|         verifyUseInDefs(Phi->getIncomingValue(I), Phi);
 | |
|     }
 | |
| 
 | |
|     for (Instruction &I : B) {
 | |
|       if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
 | |
|         verifyUseInDefs(MA->getDefiningAccess(), MA);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const {
 | |
|   return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I));
 | |
| }
 | |
| 
 | |
| MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const {
 | |
|   return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB)));
 | |
| }
 | |
| 
 | |
| /// Perform a local numbering on blocks so that instruction ordering can be
 | |
| /// determined in constant time.
 | |
| /// TODO: We currently just number in order.  If we numbered by N, we could
 | |
| /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
 | |
| /// log2(N) sequences of mixed before and after) without needing to invalidate
 | |
| /// the numbering.
 | |
| void MemorySSA::renumberBlock(const BasicBlock *B) const {
 | |
|   // The pre-increment ensures the numbers really start at 1.
 | |
|   unsigned long CurrentNumber = 0;
 | |
|   const AccessList *AL = getBlockAccesses(B);
 | |
|   assert(AL != nullptr && "Asking to renumber an empty block");
 | |
|   for (const auto &I : *AL)
 | |
|     BlockNumbering[&I] = ++CurrentNumber;
 | |
|   BlockNumberingValid.insert(B);
 | |
| }
 | |
| 
 | |
| /// \brief Determine, for two memory accesses in the same block,
 | |
| /// whether \p Dominator dominates \p Dominatee.
 | |
| /// \returns True if \p Dominator dominates \p Dominatee.
 | |
| bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
 | |
|                                  const MemoryAccess *Dominatee) const {
 | |
|   const BasicBlock *DominatorBlock = Dominator->getBlock();
 | |
| 
 | |
|   assert((DominatorBlock == Dominatee->getBlock()) &&
 | |
|          "Asking for local domination when accesses are in different blocks!");
 | |
|   // A node dominates itself.
 | |
|   if (Dominatee == Dominator)
 | |
|     return true;
 | |
| 
 | |
|   // When Dominatee is defined on function entry, it is not dominated by another
 | |
|   // memory access.
 | |
|   if (isLiveOnEntryDef(Dominatee))
 | |
|     return false;
 | |
| 
 | |
|   // When Dominator is defined on function entry, it dominates the other memory
 | |
|   // access.
 | |
|   if (isLiveOnEntryDef(Dominator))
 | |
|     return true;
 | |
| 
 | |
|   if (!BlockNumberingValid.count(DominatorBlock))
 | |
|     renumberBlock(DominatorBlock);
 | |
| 
 | |
|   unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
 | |
|   // All numbers start with 1
 | |
|   assert(DominatorNum != 0 && "Block was not numbered properly");
 | |
|   unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
 | |
|   assert(DominateeNum != 0 && "Block was not numbered properly");
 | |
|   return DominatorNum < DominateeNum;
 | |
| }
 | |
| 
 | |
| bool MemorySSA::dominates(const MemoryAccess *Dominator,
 | |
|                           const MemoryAccess *Dominatee) const {
 | |
|   if (Dominator == Dominatee)
 | |
|     return true;
 | |
| 
 | |
|   if (isLiveOnEntryDef(Dominatee))
 | |
|     return false;
 | |
| 
 | |
|   if (Dominator->getBlock() != Dominatee->getBlock())
 | |
|     return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
 | |
|   return locallyDominates(Dominator, Dominatee);
 | |
| }
 | |
| 
 | |
| bool MemorySSA::dominates(const MemoryAccess *Dominator,
 | |
|                           const Use &Dominatee) const {
 | |
|   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
 | |
|     BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
 | |
|     // The def must dominate the incoming block of the phi.
 | |
|     if (UseBB != Dominator->getBlock())
 | |
|       return DT->dominates(Dominator->getBlock(), UseBB);
 | |
|     // If the UseBB and the DefBB are the same, compare locally.
 | |
|     return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
 | |
|   }
 | |
|   // If it's not a PHI node use, the normal dominates can already handle it.
 | |
|   return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
 | |
| }
 | |
| 
 | |
| const static char LiveOnEntryStr[] = "liveOnEntry";
 | |
| 
 | |
| void MemoryAccess::print(raw_ostream &OS) const {
 | |
|   switch (getValueID()) {
 | |
|   case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
 | |
|   case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
 | |
|   case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
 | |
|   }
 | |
|   llvm_unreachable("invalid value id");
 | |
| }
 | |
| 
 | |
| void MemoryDef::print(raw_ostream &OS) const {
 | |
|   MemoryAccess *UO = getDefiningAccess();
 | |
| 
 | |
|   OS << getID() << " = MemoryDef(";
 | |
|   if (UO && UO->getID())
 | |
|     OS << UO->getID();
 | |
|   else
 | |
|     OS << LiveOnEntryStr;
 | |
|   OS << ')';
 | |
| }
 | |
| 
 | |
| void MemoryPhi::print(raw_ostream &OS) const {
 | |
|   bool First = true;
 | |
|   OS << getID() << " = MemoryPhi(";
 | |
|   for (const auto &Op : operands()) {
 | |
|     BasicBlock *BB = getIncomingBlock(Op);
 | |
|     MemoryAccess *MA = cast<MemoryAccess>(Op);
 | |
|     if (!First)
 | |
|       OS << ',';
 | |
|     else
 | |
|       First = false;
 | |
| 
 | |
|     OS << '{';
 | |
|     if (BB->hasName())
 | |
|       OS << BB->getName();
 | |
|     else
 | |
|       BB->printAsOperand(OS, false);
 | |
|     OS << ',';
 | |
|     if (unsigned ID = MA->getID())
 | |
|       OS << ID;
 | |
|     else
 | |
|       OS << LiveOnEntryStr;
 | |
|     OS << '}';
 | |
|   }
 | |
|   OS << ')';
 | |
| }
 | |
| 
 | |
| void MemoryUse::print(raw_ostream &OS) const {
 | |
|   MemoryAccess *UO = getDefiningAccess();
 | |
|   OS << "MemoryUse(";
 | |
|   if (UO && UO->getID())
 | |
|     OS << UO->getID();
 | |
|   else
 | |
|     OS << LiveOnEntryStr;
 | |
|   OS << ')';
 | |
| }
 | |
| 
 | |
| void MemoryAccess::dump() const {
 | |
| // Cannot completely remove virtual function even in release mode.
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
|   print(dbgs());
 | |
|   dbgs() << "\n";
 | |
| #endif
 | |
| }
 | |
| 
 | |
| char MemorySSAPrinterLegacyPass::ID = 0;
 | |
| 
 | |
| MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
 | |
|   initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AU.addRequired<MemorySSAWrapperPass>();
 | |
| }
 | |
| 
 | |
| bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
 | |
|   auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
 | |
|   MSSA.print(dbgs());
 | |
|   if (VerifyMemorySSA)
 | |
|     MSSA.verifyMemorySSA();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| AnalysisKey MemorySSAAnalysis::Key;
 | |
| 
 | |
| MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
 | |
|                                                  FunctionAnalysisManager &AM) {
 | |
|   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | |
|   auto &AA = AM.getResult<AAManager>(F);
 | |
|   return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
 | |
| }
 | |
| 
 | |
| PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
 | |
|                                             FunctionAnalysisManager &AM) {
 | |
|   OS << "MemorySSA for function: " << F.getName() << "\n";
 | |
|   AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
 | |
| 
 | |
|   return PreservedAnalyses::all();
 | |
| }
 | |
| 
 | |
| PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
 | |
|                                              FunctionAnalysisManager &AM) {
 | |
|   AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
 | |
| 
 | |
|   return PreservedAnalyses::all();
 | |
| }
 | |
| 
 | |
| char MemorySSAWrapperPass::ID = 0;
 | |
| 
 | |
| MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
 | |
|   initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
 | |
| 
 | |
| void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
 | |
|   AU.addRequiredTransitive<AAResultsWrapperPass>();
 | |
| }
 | |
| 
 | |
| bool MemorySSAWrapperPass::runOnFunction(Function &F) {
 | |
|   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
|   MSSA.reset(new MemorySSA(F, &AA, &DT));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
 | |
| 
 | |
| void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
 | |
|   MSSA->print(OS);
 | |
| }
 | |
| 
 | |
| MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
 | |
| 
 | |
| MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A,
 | |
|                                         DominatorTree *D)
 | |
|     : MemorySSAWalker(M), Walker(*M, *A, *D) {}
 | |
| 
 | |
| void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) {
 | |
|   if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
 | |
|     MUD->resetOptimized();
 | |
| }
 | |
| 
 | |
| /// \brief Walk the use-def chains starting at \p MA and find
 | |
| /// the MemoryAccess that actually clobbers Loc.
 | |
| ///
 | |
| /// \returns our clobbering memory access
 | |
| MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
 | |
|     MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) {
 | |
|   MemoryAccess *New = Walker.findClobber(StartingAccess, Q);
 | |
| #ifdef EXPENSIVE_CHECKS
 | |
|   MemoryAccess *NewNoCache = Walker.findClobber(StartingAccess, Q);
 | |
|   assert(NewNoCache == New && "Cache made us hand back a different result?");
 | |
|   (void)NewNoCache;
 | |
| #endif
 | |
|   if (AutoResetWalker)
 | |
|     resetClobberWalker();
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
 | |
|     MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
 | |
|   if (isa<MemoryPhi>(StartingAccess))
 | |
|     return StartingAccess;
 | |
| 
 | |
|   auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
 | |
|   if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
 | |
|     return StartingUseOrDef;
 | |
| 
 | |
|   Instruction *I = StartingUseOrDef->getMemoryInst();
 | |
| 
 | |
|   // Conservatively, fences are always clobbers, so don't perform the walk if we
 | |
|   // hit a fence.
 | |
|   if (!ImmutableCallSite(I) && I->isFenceLike())
 | |
|     return StartingUseOrDef;
 | |
| 
 | |
|   UpwardsMemoryQuery Q;
 | |
|   Q.OriginalAccess = StartingUseOrDef;
 | |
|   Q.StartingLoc = Loc;
 | |
|   Q.Inst = I;
 | |
|   Q.IsCall = false;
 | |
| 
 | |
|   // Unlike the other function, do not walk to the def of a def, because we are
 | |
|   // handed something we already believe is the clobbering access.
 | |
|   MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
 | |
|                                      ? StartingUseOrDef->getDefiningAccess()
 | |
|                                      : StartingUseOrDef;
 | |
| 
 | |
|   MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
 | |
|   DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
 | |
|   DEBUG(dbgs() << *StartingUseOrDef << "\n");
 | |
|   DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
 | |
|   DEBUG(dbgs() << *Clobber << "\n");
 | |
|   return Clobber;
 | |
| }
 | |
| 
 | |
| MemoryAccess *
 | |
| MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
 | |
|   auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
 | |
|   // If this is a MemoryPhi, we can't do anything.
 | |
|   if (!StartingAccess)
 | |
|     return MA;
 | |
| 
 | |
|   // If this is an already optimized use or def, return the optimized result.
 | |
|   // Note: Currently, we do not store the optimized def result because we'd need
 | |
|   // a separate field, since we can't use it as the defining access.
 | |
|   if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess))
 | |
|     if (MUD->isOptimized())
 | |
|       return MUD->getOptimized();
 | |
| 
 | |
|   const Instruction *I = StartingAccess->getMemoryInst();
 | |
|   UpwardsMemoryQuery Q(I, StartingAccess);
 | |
|   // We can't sanely do anything with a fences, they conservatively
 | |
|   // clobber all memory, and have no locations to get pointers from to
 | |
|   // try to disambiguate.
 | |
|   if (!Q.IsCall && I->isFenceLike())
 | |
|     return StartingAccess;
 | |
| 
 | |
|   if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
 | |
|     MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
 | |
|     if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess))
 | |
|       MUD->setOptimized(LiveOnEntry);
 | |
|     return LiveOnEntry;
 | |
|   }
 | |
| 
 | |
|   // Start with the thing we already think clobbers this location
 | |
|   MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
 | |
| 
 | |
|   // At this point, DefiningAccess may be the live on entry def.
 | |
|   // If it is, we will not get a better result.
 | |
|   if (MSSA->isLiveOnEntryDef(DefiningAccess))
 | |
|     return DefiningAccess;
 | |
| 
 | |
|   MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
 | |
|   DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
 | |
|   DEBUG(dbgs() << *DefiningAccess << "\n");
 | |
|   DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
 | |
|   DEBUG(dbgs() << *Result << "\n");
 | |
|   if (auto *MUD = dyn_cast<MemoryUseOrDef>(StartingAccess))
 | |
|     MUD->setOptimized(Result);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| MemoryAccess *
 | |
| DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
 | |
|   if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
 | |
|     return Use->getDefiningAccess();
 | |
|   return MA;
 | |
| }
 | |
| 
 | |
| MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
 | |
|     MemoryAccess *StartingAccess, const MemoryLocation &) {
 | |
|   if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
 | |
|     return Use->getDefiningAccess();
 | |
|   return StartingAccess;
 | |
| }
 | |
| 
 | |
| void MemoryPhi::deleteMe(DerivedUser *Self) {
 | |
|   delete static_cast<MemoryPhi *>(Self);
 | |
| }
 | |
| 
 | |
| void MemoryDef::deleteMe(DerivedUser *Self) {
 | |
|   delete static_cast<MemoryDef *>(Self);
 | |
| }
 | |
| 
 | |
| void MemoryUse::deleteMe(DerivedUser *Self) {
 | |
|   delete static_cast<MemoryUse *>(Self);
 | |
| }
 |