forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1624 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1624 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- AtomicExpandPass.cpp - Expand atomic instructions -------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains a pass (at IR level) to replace atomic instructions with
 | |
| // __atomic_* library calls, or target specific instruction which implement the
 | |
| // same semantics in a way which better fits the target backend.  This can
 | |
| // include the use of (intrinsic-based) load-linked/store-conditional loops,
 | |
| // AtomicCmpXchg, or type coercions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/AtomicExpandUtils.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/TargetPassConfig.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "atomic-expand"
 | |
| 
 | |
| namespace {
 | |
|   class AtomicExpand: public FunctionPass {
 | |
|     const TargetLowering *TLI;
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     AtomicExpand() : FunctionPass(ID), TLI(nullptr) {
 | |
|       initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &F) override;
 | |
| 
 | |
|   private:
 | |
|     bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
 | |
|     IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
 | |
|     LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
 | |
|     bool tryExpandAtomicLoad(LoadInst *LI);
 | |
|     bool expandAtomicLoadToLL(LoadInst *LI);
 | |
|     bool expandAtomicLoadToCmpXchg(LoadInst *LI);
 | |
|     StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
 | |
|     bool expandAtomicStore(StoreInst *SI);
 | |
|     bool tryExpandAtomicRMW(AtomicRMWInst *AI);
 | |
|     Value *
 | |
|     insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
 | |
|                       AtomicOrdering MemOpOrder,
 | |
|                       function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
 | |
|     void expandAtomicOpToLLSC(
 | |
|         Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder,
 | |
|         function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
 | |
|     void expandPartwordAtomicRMW(
 | |
|         AtomicRMWInst *I,
 | |
|         TargetLoweringBase::AtomicExpansionKind ExpansionKind);
 | |
|     void expandPartwordCmpXchg(AtomicCmpXchgInst *I);
 | |
| 
 | |
|     AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
 | |
|     static Value *insertRMWCmpXchgLoop(
 | |
|         IRBuilder<> &Builder, Type *ResultType, Value *Addr,
 | |
|         AtomicOrdering MemOpOrder,
 | |
|         function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
 | |
|         CreateCmpXchgInstFun CreateCmpXchg);
 | |
| 
 | |
|     bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
 | |
|     bool isIdempotentRMW(AtomicRMWInst *AI);
 | |
|     bool simplifyIdempotentRMW(AtomicRMWInst *AI);
 | |
| 
 | |
|     bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, unsigned Align,
 | |
|                                  Value *PointerOperand, Value *ValueOperand,
 | |
|                                  Value *CASExpected, AtomicOrdering Ordering,
 | |
|                                  AtomicOrdering Ordering2,
 | |
|                                  ArrayRef<RTLIB::Libcall> Libcalls);
 | |
|     void expandAtomicLoadToLibcall(LoadInst *LI);
 | |
|     void expandAtomicStoreToLibcall(StoreInst *LI);
 | |
|     void expandAtomicRMWToLibcall(AtomicRMWInst *I);
 | |
|     void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
 | |
| 
 | |
|     friend bool
 | |
|     llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
 | |
|                                    CreateCmpXchgInstFun CreateCmpXchg);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char AtomicExpand::ID = 0;
 | |
| char &llvm::AtomicExpandID = AtomicExpand::ID;
 | |
| INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions",
 | |
|                 false, false)
 | |
| 
 | |
| FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); }
 | |
| 
 | |
| namespace {
 | |
| // Helper functions to retrieve the size of atomic instructions.
 | |
| unsigned getAtomicOpSize(LoadInst *LI) {
 | |
|   const DataLayout &DL = LI->getModule()->getDataLayout();
 | |
|   return DL.getTypeStoreSize(LI->getType());
 | |
| }
 | |
| 
 | |
| unsigned getAtomicOpSize(StoreInst *SI) {
 | |
|   const DataLayout &DL = SI->getModule()->getDataLayout();
 | |
|   return DL.getTypeStoreSize(SI->getValueOperand()->getType());
 | |
| }
 | |
| 
 | |
| unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
 | |
|   const DataLayout &DL = RMWI->getModule()->getDataLayout();
 | |
|   return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
 | |
| }
 | |
| 
 | |
| unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
 | |
|   const DataLayout &DL = CASI->getModule()->getDataLayout();
 | |
|   return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
 | |
| }
 | |
| 
 | |
| // Helper functions to retrieve the alignment of atomic instructions.
 | |
| unsigned getAtomicOpAlign(LoadInst *LI) {
 | |
|   unsigned Align = LI->getAlignment();
 | |
|   // In the future, if this IR restriction is relaxed, we should
 | |
|   // return DataLayout::getABITypeAlignment when there's no align
 | |
|   // value.
 | |
|   assert(Align != 0 && "An atomic LoadInst always has an explicit alignment");
 | |
|   return Align;
 | |
| }
 | |
| 
 | |
| unsigned getAtomicOpAlign(StoreInst *SI) {
 | |
|   unsigned Align = SI->getAlignment();
 | |
|   // In the future, if this IR restriction is relaxed, we should
 | |
|   // return DataLayout::getABITypeAlignment when there's no align
 | |
|   // value.
 | |
|   assert(Align != 0 && "An atomic StoreInst always has an explicit alignment");
 | |
|   return Align;
 | |
| }
 | |
| 
 | |
| unsigned getAtomicOpAlign(AtomicRMWInst *RMWI) {
 | |
|   // TODO(PR27168): This instruction has no alignment attribute, but unlike the
 | |
|   // default alignment for load/store, the default here is to assume
 | |
|   // it has NATURAL alignment, not DataLayout-specified alignment.
 | |
|   const DataLayout &DL = RMWI->getModule()->getDataLayout();
 | |
|   return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
 | |
| }
 | |
| 
 | |
| unsigned getAtomicOpAlign(AtomicCmpXchgInst *CASI) {
 | |
|   // TODO(PR27168): same comment as above.
 | |
|   const DataLayout &DL = CASI->getModule()->getDataLayout();
 | |
|   return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
 | |
| }
 | |
| 
 | |
| // Determine if a particular atomic operation has a supported size,
 | |
| // and is of appropriate alignment, to be passed through for target
 | |
| // lowering. (Versus turning into a __atomic libcall)
 | |
| template <typename Inst>
 | |
| bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
 | |
|   unsigned Size = getAtomicOpSize(I);
 | |
|   unsigned Align = getAtomicOpAlign(I);
 | |
|   return Align >= Size && Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
 | |
| }
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| bool AtomicExpand::runOnFunction(Function &F) {
 | |
|   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
 | |
|   if (!TPC)
 | |
|     return false;
 | |
| 
 | |
|   auto &TM = TPC->getTM<TargetMachine>();
 | |
|   if (!TM.getSubtargetImpl(F)->enableAtomicExpand())
 | |
|     return false;
 | |
|   TLI = TM.getSubtargetImpl(F)->getTargetLowering();
 | |
| 
 | |
|   SmallVector<Instruction *, 1> AtomicInsts;
 | |
| 
 | |
|   // Changing control-flow while iterating through it is a bad idea, so gather a
 | |
|   // list of all atomic instructions before we start.
 | |
|   for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
 | |
|     Instruction *I = &*II;
 | |
|     if (I->isAtomic() && !isa<FenceInst>(I))
 | |
|       AtomicInsts.push_back(I);
 | |
|   }
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   for (auto I : AtomicInsts) {
 | |
|     auto LI = dyn_cast<LoadInst>(I);
 | |
|     auto SI = dyn_cast<StoreInst>(I);
 | |
|     auto RMWI = dyn_cast<AtomicRMWInst>(I);
 | |
|     auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
 | |
|     assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
 | |
| 
 | |
|     // If the Size/Alignment is not supported, replace with a libcall.
 | |
|     if (LI) {
 | |
|       if (!atomicSizeSupported(TLI, LI)) {
 | |
|         expandAtomicLoadToLibcall(LI);
 | |
|         MadeChange = true;
 | |
|         continue;
 | |
|       }
 | |
|     } else if (SI) {
 | |
|       if (!atomicSizeSupported(TLI, SI)) {
 | |
|         expandAtomicStoreToLibcall(SI);
 | |
|         MadeChange = true;
 | |
|         continue;
 | |
|       }
 | |
|     } else if (RMWI) {
 | |
|       if (!atomicSizeSupported(TLI, RMWI)) {
 | |
|         expandAtomicRMWToLibcall(RMWI);
 | |
|         MadeChange = true;
 | |
|         continue;
 | |
|       }
 | |
|     } else if (CASI) {
 | |
|       if (!atomicSizeSupported(TLI, CASI)) {
 | |
|         expandAtomicCASToLibcall(CASI);
 | |
|         MadeChange = true;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (TLI->shouldInsertFencesForAtomic(I)) {
 | |
|       auto FenceOrdering = AtomicOrdering::Monotonic;
 | |
|       if (LI && isAcquireOrStronger(LI->getOrdering())) {
 | |
|         FenceOrdering = LI->getOrdering();
 | |
|         LI->setOrdering(AtomicOrdering::Monotonic);
 | |
|       } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
 | |
|         FenceOrdering = SI->getOrdering();
 | |
|         SI->setOrdering(AtomicOrdering::Monotonic);
 | |
|       } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
 | |
|                           isAcquireOrStronger(RMWI->getOrdering()))) {
 | |
|         FenceOrdering = RMWI->getOrdering();
 | |
|         RMWI->setOrdering(AtomicOrdering::Monotonic);
 | |
|       } else if (CASI && !TLI->shouldExpandAtomicCmpXchgInIR(CASI) &&
 | |
|                  (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
 | |
|                   isAcquireOrStronger(CASI->getSuccessOrdering()))) {
 | |
|         // If a compare and swap is lowered to LL/SC, we can do smarter fence
 | |
|         // insertion, with a stronger one on the success path than on the
 | |
|         // failure path. As a result, fence insertion is directly done by
 | |
|         // expandAtomicCmpXchg in that case.
 | |
|         FenceOrdering = CASI->getSuccessOrdering();
 | |
|         CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
 | |
|         CASI->setFailureOrdering(AtomicOrdering::Monotonic);
 | |
|       }
 | |
| 
 | |
|       if (FenceOrdering != AtomicOrdering::Monotonic) {
 | |
|         MadeChange |= bracketInstWithFences(I, FenceOrdering);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (LI) {
 | |
|       if (LI->getType()->isFloatingPointTy()) {
 | |
|         // TODO: add a TLI hook to control this so that each target can
 | |
|         // convert to lowering the original type one at a time.
 | |
|         LI = convertAtomicLoadToIntegerType(LI);
 | |
|         assert(LI->getType()->isIntegerTy() && "invariant broken");
 | |
|         MadeChange = true;
 | |
|       }
 | |
| 
 | |
|       MadeChange |= tryExpandAtomicLoad(LI);
 | |
|     } else if (SI) {
 | |
|       if (SI->getValueOperand()->getType()->isFloatingPointTy()) {
 | |
|         // TODO: add a TLI hook to control this so that each target can
 | |
|         // convert to lowering the original type one at a time.
 | |
|         SI = convertAtomicStoreToIntegerType(SI);
 | |
|         assert(SI->getValueOperand()->getType()->isIntegerTy() &&
 | |
|                "invariant broken");
 | |
|         MadeChange = true;
 | |
|       }
 | |
| 
 | |
|       if (TLI->shouldExpandAtomicStoreInIR(SI))
 | |
|         MadeChange |= expandAtomicStore(SI);
 | |
|     } else if (RMWI) {
 | |
|       // There are two different ways of expanding RMW instructions:
 | |
|       // - into a load if it is idempotent
 | |
|       // - into a Cmpxchg/LL-SC loop otherwise
 | |
|       // we try them in that order.
 | |
| 
 | |
|       if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
 | |
|         MadeChange = true;
 | |
|       } else {
 | |
|         MadeChange |= tryExpandAtomicRMW(RMWI);
 | |
|       }
 | |
|     } else if (CASI) {
 | |
|       // TODO: when we're ready to make the change at the IR level, we can
 | |
|       // extend convertCmpXchgToInteger for floating point too.
 | |
|       assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() &&
 | |
|              "unimplemented - floating point not legal at IR level");
 | |
|       if (CASI->getCompareOperand()->getType()->isPointerTy() ) {
 | |
|         // TODO: add a TLI hook to control this so that each target can
 | |
|         // convert to lowering the original type one at a time.
 | |
|         CASI = convertCmpXchgToIntegerType(CASI);
 | |
|         assert(CASI->getCompareOperand()->getType()->isIntegerTy() &&
 | |
|                "invariant broken");
 | |
|         MadeChange = true;
 | |
|       }
 | |
| 
 | |
|       unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
 | |
|       unsigned ValueSize = getAtomicOpSize(CASI);
 | |
|       if (ValueSize < MinCASSize) {
 | |
|         assert(!TLI->shouldExpandAtomicCmpXchgInIR(CASI) &&
 | |
|                "MinCmpXchgSizeInBits not yet supported for LL/SC expansions.");
 | |
|         expandPartwordCmpXchg(CASI);
 | |
|       } else {
 | |
|         if (TLI->shouldExpandAtomicCmpXchgInIR(CASI))
 | |
|           MadeChange |= expandAtomicCmpXchg(CASI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) {
 | |
|   IRBuilder<> Builder(I);
 | |
| 
 | |
|   auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
 | |
| 
 | |
|   auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
 | |
|   // We have a guard here because not every atomic operation generates a
 | |
|   // trailing fence.
 | |
|   if (TrailingFence)
 | |
|     TrailingFence->moveAfter(I);
 | |
| 
 | |
|   return (LeadingFence || TrailingFence);
 | |
| }
 | |
| 
 | |
| /// Get the iX type with the same bitwidth as T.
 | |
| IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
 | |
|                                                        const DataLayout &DL) {
 | |
|   EVT VT = TLI->getValueType(DL, T);
 | |
|   unsigned BitWidth = VT.getStoreSizeInBits();
 | |
|   assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
 | |
|   return IntegerType::get(T->getContext(), BitWidth);
 | |
| }
 | |
| 
 | |
| /// Convert an atomic load of a non-integral type to an integer load of the
 | |
| /// equivalent bitwidth.  See the function comment on
 | |
| /// convertAtomicStoreToIntegerType for background.  
 | |
| LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
 | |
|   auto *M = LI->getModule();
 | |
|   Type *NewTy = getCorrespondingIntegerType(LI->getType(),
 | |
|                                             M->getDataLayout());
 | |
| 
 | |
|   IRBuilder<> Builder(LI);
 | |
|   
 | |
|   Value *Addr = LI->getPointerOperand();
 | |
|   Type *PT = PointerType::get(NewTy,
 | |
|                               Addr->getType()->getPointerAddressSpace());
 | |
|   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
 | |
|   
 | |
|   auto *NewLI = Builder.CreateLoad(NewAddr);
 | |
|   NewLI->setAlignment(LI->getAlignment());
 | |
|   NewLI->setVolatile(LI->isVolatile());
 | |
|   NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
 | |
|   DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
 | |
|   
 | |
|   Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
 | |
|   LI->replaceAllUsesWith(NewVal);
 | |
|   LI->eraseFromParent();
 | |
|   return NewLI;
 | |
| }
 | |
| 
 | |
| bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
 | |
|   switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
 | |
|   case TargetLoweringBase::AtomicExpansionKind::None:
 | |
|     return false;
 | |
|   case TargetLoweringBase::AtomicExpansionKind::LLSC:
 | |
|     expandAtomicOpToLLSC(
 | |
|         LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(),
 | |
|         [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; });
 | |
|     return true;
 | |
|   case TargetLoweringBase::AtomicExpansionKind::LLOnly:
 | |
|     return expandAtomicLoadToLL(LI);
 | |
|   case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
 | |
|     return expandAtomicLoadToCmpXchg(LI);
 | |
|   }
 | |
|   llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
 | |
| }
 | |
| 
 | |
| bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
 | |
|   IRBuilder<> Builder(LI);
 | |
| 
 | |
|   // On some architectures, load-linked instructions are atomic for larger
 | |
|   // sizes than normal loads. For example, the only 64-bit load guaranteed
 | |
|   // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
 | |
|   Value *Val =
 | |
|       TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering());
 | |
|   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
 | |
| 
 | |
|   LI->replaceAllUsesWith(Val);
 | |
|   LI->eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
 | |
|   IRBuilder<> Builder(LI);
 | |
|   AtomicOrdering Order = LI->getOrdering();
 | |
|   Value *Addr = LI->getPointerOperand();
 | |
|   Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
 | |
|   Constant *DummyVal = Constant::getNullValue(Ty);
 | |
| 
 | |
|   Value *Pair = Builder.CreateAtomicCmpXchg(
 | |
|       Addr, DummyVal, DummyVal, Order,
 | |
|       AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
 | |
|   Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
 | |
| 
 | |
|   LI->replaceAllUsesWith(Loaded);
 | |
|   LI->eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Convert an atomic store of a non-integral type to an integer store of the
 | |
| /// equivalent bitwidth.  We used to not support floating point or vector
 | |
| /// atomics in the IR at all.  The backends learned to deal with the bitcast
 | |
| /// idiom because that was the only way of expressing the notion of a atomic
 | |
| /// float or vector store.  The long term plan is to teach each backend to
 | |
| /// instruction select from the original atomic store, but as a migration
 | |
| /// mechanism, we convert back to the old format which the backends understand.
 | |
| /// Each backend will need individual work to recognize the new format.
 | |
| StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
 | |
|   IRBuilder<> Builder(SI);
 | |
|   auto *M = SI->getModule();
 | |
|   Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
 | |
|                                             M->getDataLayout());
 | |
|   Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
 | |
|   
 | |
|   Value *Addr = SI->getPointerOperand();
 | |
|   Type *PT = PointerType::get(NewTy,
 | |
|                               Addr->getType()->getPointerAddressSpace());
 | |
|   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
 | |
| 
 | |
|   StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr);
 | |
|   NewSI->setAlignment(SI->getAlignment());
 | |
|   NewSI->setVolatile(SI->isVolatile());
 | |
|   NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
 | |
|   DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
 | |
|   SI->eraseFromParent();
 | |
|   return NewSI;
 | |
| }
 | |
| 
 | |
| bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
 | |
|   // This function is only called on atomic stores that are too large to be
 | |
|   // atomic if implemented as a native store. So we replace them by an
 | |
|   // atomic swap, that can be implemented for example as a ldrex/strex on ARM
 | |
|   // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
 | |
|   // It is the responsibility of the target to only signal expansion via
 | |
|   // shouldExpandAtomicRMW in cases where this is required and possible.
 | |
|   IRBuilder<> Builder(SI);
 | |
|   AtomicRMWInst *AI =
 | |
|       Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
 | |
|                               SI->getValueOperand(), SI->getOrdering());
 | |
|   SI->eraseFromParent();
 | |
| 
 | |
|   // Now we have an appropriate swap instruction, lower it as usual.
 | |
|   return tryExpandAtomicRMW(AI);
 | |
| }
 | |
| 
 | |
| static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr,
 | |
|                                  Value *Loaded, Value *NewVal,
 | |
|                                  AtomicOrdering MemOpOrder,
 | |
|                                  Value *&Success, Value *&NewLoaded) {
 | |
|   Value* Pair = Builder.CreateAtomicCmpXchg(
 | |
|       Addr, Loaded, NewVal, MemOpOrder,
 | |
|       AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
 | |
|   Success = Builder.CreateExtractValue(Pair, 1, "success");
 | |
|   NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
 | |
| }
 | |
| 
 | |
| /// Emit IR to implement the given atomicrmw operation on values in registers,
 | |
| /// returning the new value.
 | |
| static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
 | |
|                               Value *Loaded, Value *Inc) {
 | |
|   Value *NewVal;
 | |
|   switch (Op) {
 | |
|   case AtomicRMWInst::Xchg:
 | |
|     return Inc;
 | |
|   case AtomicRMWInst::Add:
 | |
|     return Builder.CreateAdd(Loaded, Inc, "new");
 | |
|   case AtomicRMWInst::Sub:
 | |
|     return Builder.CreateSub(Loaded, Inc, "new");
 | |
|   case AtomicRMWInst::And:
 | |
|     return Builder.CreateAnd(Loaded, Inc, "new");
 | |
|   case AtomicRMWInst::Nand:
 | |
|     return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
 | |
|   case AtomicRMWInst::Or:
 | |
|     return Builder.CreateOr(Loaded, Inc, "new");
 | |
|   case AtomicRMWInst::Xor:
 | |
|     return Builder.CreateXor(Loaded, Inc, "new");
 | |
|   case AtomicRMWInst::Max:
 | |
|     NewVal = Builder.CreateICmpSGT(Loaded, Inc);
 | |
|     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
 | |
|   case AtomicRMWInst::Min:
 | |
|     NewVal = Builder.CreateICmpSLE(Loaded, Inc);
 | |
|     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
 | |
|   case AtomicRMWInst::UMax:
 | |
|     NewVal = Builder.CreateICmpUGT(Loaded, Inc);
 | |
|     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
 | |
|   case AtomicRMWInst::UMin:
 | |
|     NewVal = Builder.CreateICmpULE(Loaded, Inc);
 | |
|     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
 | |
|   default:
 | |
|     llvm_unreachable("Unknown atomic op");
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
 | |
|   switch (TLI->shouldExpandAtomicRMWInIR(AI)) {
 | |
|   case TargetLoweringBase::AtomicExpansionKind::None:
 | |
|     return false;
 | |
|   case TargetLoweringBase::AtomicExpansionKind::LLSC: {
 | |
|     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
 | |
|     unsigned ValueSize = getAtomicOpSize(AI);
 | |
|     if (ValueSize < MinCASSize) {
 | |
|       llvm_unreachable(
 | |
|           "MinCmpXchgSizeInBits not yet supported for LL/SC architectures.");
 | |
|     } else {
 | |
|       auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) {
 | |
|         return performAtomicOp(AI->getOperation(), Builder, Loaded,
 | |
|                                AI->getValOperand());
 | |
|       };
 | |
|       expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
 | |
|                            AI->getOrdering(), PerformOp);
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
 | |
|     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
 | |
|     unsigned ValueSize = getAtomicOpSize(AI);
 | |
|     if (ValueSize < MinCASSize) {
 | |
|       expandPartwordAtomicRMW(AI,
 | |
|                               TargetLoweringBase::AtomicExpansionKind::CmpXChg);
 | |
|     } else {
 | |
|       expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   default:
 | |
|     llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Result values from createMaskInstrs helper.
 | |
| struct PartwordMaskValues {
 | |
|   Type *WordType;
 | |
|   Type *ValueType;
 | |
|   Value *AlignedAddr;
 | |
|   Value *ShiftAmt;
 | |
|   Value *Mask;
 | |
|   Value *Inv_Mask;
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// This is a helper function which builds instructions to provide
 | |
| /// values necessary for partword atomic operations. It takes an
 | |
| /// incoming address, Addr, and ValueType, and constructs the address,
 | |
| /// shift-amounts and masks needed to work with a larger value of size
 | |
| /// WordSize.
 | |
| ///
 | |
| /// AlignedAddr: Addr rounded down to a multiple of WordSize
 | |
| ///
 | |
| /// ShiftAmt: Number of bits to right-shift a WordSize value loaded
 | |
| ///           from AlignAddr for it to have the same value as if
 | |
| ///           ValueType was loaded from Addr.
 | |
| ///
 | |
| /// Mask: Value to mask with the value loaded from AlignAddr to
 | |
| ///       include only the part that would've been loaded from Addr.
 | |
| ///
 | |
| /// Inv_Mask: The inverse of Mask.
 | |
| 
 | |
| static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I,
 | |
|                                            Type *ValueType, Value *Addr,
 | |
|                                            unsigned WordSize) {
 | |
|   PartwordMaskValues Ret;
 | |
| 
 | |
|   BasicBlock *BB = I->getParent();
 | |
|   Function *F = BB->getParent();
 | |
|   Module *M = I->getModule();
 | |
| 
 | |
|   LLVMContext &Ctx = F->getContext();
 | |
|   const DataLayout &DL = M->getDataLayout();
 | |
| 
 | |
|   unsigned ValueSize = DL.getTypeStoreSize(ValueType);
 | |
| 
 | |
|   assert(ValueSize < WordSize);
 | |
| 
 | |
|   Ret.ValueType = ValueType;
 | |
|   Ret.WordType = Type::getIntNTy(Ctx, WordSize * 8);
 | |
| 
 | |
|   Type *WordPtrType =
 | |
|       Ret.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace());
 | |
| 
 | |
|   Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx));
 | |
|   Ret.AlignedAddr = Builder.CreateIntToPtr(
 | |
|       Builder.CreateAnd(AddrInt, ~(uint64_t)(WordSize - 1)), WordPtrType,
 | |
|       "AlignedAddr");
 | |
| 
 | |
|   Value *PtrLSB = Builder.CreateAnd(AddrInt, WordSize - 1, "PtrLSB");
 | |
|   if (DL.isLittleEndian()) {
 | |
|     // turn bytes into bits
 | |
|     Ret.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
 | |
|   } else {
 | |
|     // turn bytes into bits, and count from the other side.
 | |
|     Ret.ShiftAmt =
 | |
|         Builder.CreateShl(Builder.CreateXor(PtrLSB, WordSize - ValueSize), 3);
 | |
|   }
 | |
| 
 | |
|   Ret.ShiftAmt = Builder.CreateTrunc(Ret.ShiftAmt, Ret.WordType, "ShiftAmt");
 | |
|   Ret.Mask = Builder.CreateShl(
 | |
|       ConstantInt::get(Ret.WordType, (1 << ValueSize * 8) - 1), Ret.ShiftAmt,
 | |
|       "Mask");
 | |
|   Ret.Inv_Mask = Builder.CreateNot(Ret.Mask, "Inv_Mask");
 | |
| 
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| /// Emit IR to implement a masked version of a given atomicrmw
 | |
| /// operation. (That is, only the bits under the Mask should be
 | |
| /// affected by the operation)
 | |
| static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
 | |
|                                     IRBuilder<> &Builder, Value *Loaded,
 | |
|                                     Value *Shifted_Inc, Value *Inc,
 | |
|                                     const PartwordMaskValues &PMV) {
 | |
|   switch (Op) {
 | |
|   case AtomicRMWInst::Xchg: {
 | |
|     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
 | |
|     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
 | |
|     return FinalVal;
 | |
|   }
 | |
|   case AtomicRMWInst::Or:
 | |
|   case AtomicRMWInst::Xor:
 | |
|     // Or/Xor won't affect any other bits, so can just be done
 | |
|     // directly.
 | |
|     return performAtomicOp(Op, Builder, Loaded, Shifted_Inc);
 | |
|   case AtomicRMWInst::Add:
 | |
|   case AtomicRMWInst::Sub:
 | |
|   case AtomicRMWInst::And:
 | |
|   case AtomicRMWInst::Nand: {
 | |
|     // The other arithmetic ops need to be masked into place.
 | |
|     Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc);
 | |
|     Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
 | |
|     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
 | |
|     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
 | |
|     return FinalVal;
 | |
|   }
 | |
|   case AtomicRMWInst::Max:
 | |
|   case AtomicRMWInst::Min:
 | |
|   case AtomicRMWInst::UMax:
 | |
|   case AtomicRMWInst::UMin: {
 | |
|     // Finally, comparison ops will operate on the full value, so
 | |
|     // truncate down to the original size, and expand out again after
 | |
|     // doing the operation.
 | |
|     Value *Loaded_Shiftdown = Builder.CreateTrunc(
 | |
|         Builder.CreateLShr(Loaded, PMV.ShiftAmt), PMV.ValueType);
 | |
|     Value *NewVal = performAtomicOp(Op, Builder, Loaded_Shiftdown, Inc);
 | |
|     Value *NewVal_Shiftup = Builder.CreateShl(
 | |
|         Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
 | |
|     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
 | |
|     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shiftup);
 | |
|     return FinalVal;
 | |
|   }
 | |
|   default:
 | |
|     llvm_unreachable("Unknown atomic op");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Expand a sub-word atomicrmw operation into an appropriate
 | |
| /// word-sized operation.
 | |
| ///
 | |
| /// It will create an LL/SC or cmpxchg loop, as appropriate, the same
 | |
| /// way as a typical atomicrmw expansion. The only difference here is
 | |
| /// that the operation inside of the loop must operate only upon a
 | |
| /// part of the value.
 | |
| void AtomicExpand::expandPartwordAtomicRMW(
 | |
|     AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
 | |
| 
 | |
|   assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg);
 | |
| 
 | |
|   AtomicOrdering MemOpOrder = AI->getOrdering();
 | |
| 
 | |
|   IRBuilder<> Builder(AI);
 | |
| 
 | |
|   PartwordMaskValues PMV =
 | |
|       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
 | |
|                        TLI->getMinCmpXchgSizeInBits() / 8);
 | |
| 
 | |
|   Value *ValOperand_Shifted =
 | |
|       Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
 | |
|                         PMV.ShiftAmt, "ValOperand_Shifted");
 | |
| 
 | |
|   auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) {
 | |
|     return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
 | |
|                                  ValOperand_Shifted, AI->getValOperand(), PMV);
 | |
|   };
 | |
| 
 | |
|   // TODO: When we're ready to support LLSC conversions too, use
 | |
|   // insertRMWLLSCLoop here for ExpansionKind==LLSC.
 | |
|   Value *OldResult =
 | |
|       insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder,
 | |
|                            PerformPartwordOp, createCmpXchgInstFun);
 | |
|   Value *FinalOldResult = Builder.CreateTrunc(
 | |
|       Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType);
 | |
|   AI->replaceAllUsesWith(FinalOldResult);
 | |
|   AI->eraseFromParent();
 | |
| }
 | |
| 
 | |
| void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
 | |
|   // The basic idea here is that we're expanding a cmpxchg of a
 | |
|   // smaller memory size up to a word-sized cmpxchg. To do this, we
 | |
|   // need to add a retry-loop for strong cmpxchg, so that
 | |
|   // modifications to other parts of the word don't cause a spurious
 | |
|   // failure.
 | |
| 
 | |
|   // This generates code like the following:
 | |
|   //     [[Setup mask values PMV.*]]
 | |
|   //     %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
 | |
|   //     %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
 | |
|   //     %InitLoaded = load i32* %addr
 | |
|   //     %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
 | |
|   //     br partword.cmpxchg.loop
 | |
|   // partword.cmpxchg.loop:
 | |
|   //     %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
 | |
|   //        [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
 | |
|   //     %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
 | |
|   //     %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
 | |
|   //     %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
 | |
|   //        i32 %FullWord_NewVal success_ordering failure_ordering
 | |
|   //     %OldVal = extractvalue { i32, i1 } %NewCI, 0
 | |
|   //     %Success = extractvalue { i32, i1 } %NewCI, 1
 | |
|   //     br i1 %Success, label %partword.cmpxchg.end,
 | |
|   //        label %partword.cmpxchg.failure
 | |
|   // partword.cmpxchg.failure:
 | |
|   //     %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
 | |
|   //     %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
 | |
|   //     br i1 %ShouldContinue, label %partword.cmpxchg.loop,
 | |
|   //         label %partword.cmpxchg.end
 | |
|   // partword.cmpxchg.end:
 | |
|   //    %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
 | |
|   //    %FinalOldVal = trunc i32 %tmp1 to i8
 | |
|   //    %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
 | |
|   //    %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
 | |
| 
 | |
|   Value *Addr = CI->getPointerOperand();
 | |
|   Value *Cmp = CI->getCompareOperand();
 | |
|   Value *NewVal = CI->getNewValOperand();
 | |
| 
 | |
|   BasicBlock *BB = CI->getParent();
 | |
|   Function *F = BB->getParent();
 | |
|   IRBuilder<> Builder(CI);
 | |
|   LLVMContext &Ctx = Builder.getContext();
 | |
| 
 | |
|   const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8;
 | |
| 
 | |
|   BasicBlock *EndBB =
 | |
|       BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
 | |
|   auto FailureBB =
 | |
|       BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
 | |
|   auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
 | |
| 
 | |
|   // The split call above "helpfully" added a branch at the end of BB
 | |
|   // (to the wrong place).
 | |
|   std::prev(BB->end())->eraseFromParent();
 | |
|   Builder.SetInsertPoint(BB);
 | |
| 
 | |
|   PartwordMaskValues PMV = createMaskInstrs(
 | |
|       Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize);
 | |
| 
 | |
|   // Shift the incoming values over, into the right location in the word.
 | |
|   Value *NewVal_Shifted =
 | |
|       Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
 | |
|   Value *Cmp_Shifted =
 | |
|       Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
 | |
| 
 | |
|   // Load the entire current word, and mask into place the expected and new
 | |
|   // values
 | |
|   LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
 | |
|   InitLoaded->setVolatile(CI->isVolatile());
 | |
|   Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
 | |
|   Builder.CreateBr(LoopBB);
 | |
| 
 | |
|   // partword.cmpxchg.loop:
 | |
|   Builder.SetInsertPoint(LoopBB);
 | |
|   PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
 | |
|   Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
 | |
| 
 | |
|   // Mask/Or the expected and new values into place in the loaded word.
 | |
|   Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
 | |
|   Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
 | |
|   AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
 | |
|       PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(),
 | |
|       CI->getFailureOrdering(), CI->getSyncScopeID());
 | |
|   NewCI->setVolatile(CI->isVolatile());
 | |
|   // When we're building a strong cmpxchg, we need a loop, so you
 | |
|   // might think we could use a weak cmpxchg inside. But, using strong
 | |
|   // allows the below comparison for ShouldContinue, and we're
 | |
|   // expecting the underlying cmpxchg to be a machine instruction,
 | |
|   // which is strong anyways.
 | |
|   NewCI->setWeak(CI->isWeak());
 | |
| 
 | |
|   Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
 | |
|   Value *Success = Builder.CreateExtractValue(NewCI, 1);
 | |
| 
 | |
|   if (CI->isWeak())
 | |
|     Builder.CreateBr(EndBB);
 | |
|   else
 | |
|     Builder.CreateCondBr(Success, EndBB, FailureBB);
 | |
| 
 | |
|   // partword.cmpxchg.failure:
 | |
|   Builder.SetInsertPoint(FailureBB);
 | |
|   // Upon failure, verify that the masked-out part of the loaded value
 | |
|   // has been modified.  If it didn't, abort the cmpxchg, since the
 | |
|   // masked-in part must've.
 | |
|   Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
 | |
|   Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
 | |
|   Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
 | |
| 
 | |
|   // Add the second value to the phi from above
 | |
|   Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
 | |
| 
 | |
|   // partword.cmpxchg.end:
 | |
|   Builder.SetInsertPoint(CI);
 | |
| 
 | |
|   Value *FinalOldVal = Builder.CreateTrunc(
 | |
|       Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType);
 | |
|   Value *Res = UndefValue::get(CI->getType());
 | |
|   Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
 | |
|   Res = Builder.CreateInsertValue(Res, Success, 1);
 | |
| 
 | |
|   CI->replaceAllUsesWith(Res);
 | |
|   CI->eraseFromParent();
 | |
| }
 | |
| 
 | |
| void AtomicExpand::expandAtomicOpToLLSC(
 | |
|     Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder,
 | |
|     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
 | |
|   IRBuilder<> Builder(I);
 | |
|   Value *Loaded =
 | |
|       insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp);
 | |
| 
 | |
|   I->replaceAllUsesWith(Loaded);
 | |
|   I->eraseFromParent();
 | |
| }
 | |
| 
 | |
| Value *AtomicExpand::insertRMWLLSCLoop(
 | |
|     IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
 | |
|     AtomicOrdering MemOpOrder,
 | |
|     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
 | |
|   LLVMContext &Ctx = Builder.getContext();
 | |
|   BasicBlock *BB = Builder.GetInsertBlock();
 | |
|   Function *F = BB->getParent();
 | |
| 
 | |
|   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
 | |
|   //
 | |
|   // The standard expansion we produce is:
 | |
|   //     [...]
 | |
|   // atomicrmw.start:
 | |
|   //     %loaded = @load.linked(%addr)
 | |
|   //     %new = some_op iN %loaded, %incr
 | |
|   //     %stored = @store_conditional(%new, %addr)
 | |
|   //     %try_again = icmp i32 ne %stored, 0
 | |
|   //     br i1 %try_again, label %loop, label %atomicrmw.end
 | |
|   // atomicrmw.end:
 | |
|   //     [...]
 | |
|   BasicBlock *ExitBB =
 | |
|       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
 | |
|   BasicBlock *LoopBB =  BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
 | |
| 
 | |
|   // The split call above "helpfully" added a branch at the end of BB (to the
 | |
|   // wrong place).
 | |
|   std::prev(BB->end())->eraseFromParent();
 | |
|   Builder.SetInsertPoint(BB);
 | |
|   Builder.CreateBr(LoopBB);
 | |
| 
 | |
|   // Start the main loop block now that we've taken care of the preliminaries.
 | |
|   Builder.SetInsertPoint(LoopBB);
 | |
|   Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
 | |
| 
 | |
|   Value *NewVal = PerformOp(Builder, Loaded);
 | |
| 
 | |
|   Value *StoreSuccess =
 | |
|       TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
 | |
|   Value *TryAgain = Builder.CreateICmpNE(
 | |
|       StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
 | |
|   Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
 | |
| 
 | |
|   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
 | |
|   return Loaded;
 | |
| }
 | |
| 
 | |
| /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
 | |
| /// the equivalent bitwidth.  We used to not support pointer cmpxchg in the
 | |
| /// IR.  As a migration step, we convert back to what use to be the standard
 | |
| /// way to represent a pointer cmpxchg so that we can update backends one by
 | |
| /// one. 
 | |
| AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
 | |
|   auto *M = CI->getModule();
 | |
|   Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
 | |
|                                             M->getDataLayout());
 | |
| 
 | |
|   IRBuilder<> Builder(CI);
 | |
|   
 | |
|   Value *Addr = CI->getPointerOperand();
 | |
|   Type *PT = PointerType::get(NewTy,
 | |
|                               Addr->getType()->getPointerAddressSpace());
 | |
|   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
 | |
| 
 | |
|   Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
 | |
|   Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
 | |
|   
 | |
|   
 | |
|   auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal,
 | |
|                                             CI->getSuccessOrdering(),
 | |
|                                             CI->getFailureOrdering(),
 | |
|                                             CI->getSyncScopeID());
 | |
|   NewCI->setVolatile(CI->isVolatile());
 | |
|   NewCI->setWeak(CI->isWeak());
 | |
|   DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
 | |
| 
 | |
|   Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
 | |
|   Value *Succ = Builder.CreateExtractValue(NewCI, 1);
 | |
| 
 | |
|   OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
 | |
| 
 | |
|   Value *Res = UndefValue::get(CI->getType());
 | |
|   Res = Builder.CreateInsertValue(Res, OldVal, 0);
 | |
|   Res = Builder.CreateInsertValue(Res, Succ, 1);
 | |
| 
 | |
|   CI->replaceAllUsesWith(Res);
 | |
|   CI->eraseFromParent();
 | |
|   return NewCI;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
 | |
|   AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
 | |
|   AtomicOrdering FailureOrder = CI->getFailureOrdering();
 | |
|   Value *Addr = CI->getPointerOperand();
 | |
|   BasicBlock *BB = CI->getParent();
 | |
|   Function *F = BB->getParent();
 | |
|   LLVMContext &Ctx = F->getContext();
 | |
|   // If shouldInsertFencesForAtomic() returns true, then the target does not
 | |
|   // want to deal with memory orders, and emitLeading/TrailingFence should take
 | |
|   // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
 | |
|   // should preserve the ordering.
 | |
|   bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
 | |
|   AtomicOrdering MemOpOrder =
 | |
|       ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder;
 | |
| 
 | |
|   // In implementations which use a barrier to achieve release semantics, we can
 | |
|   // delay emitting this barrier until we know a store is actually going to be
 | |
|   // attempted. The cost of this delay is that we need 2 copies of the block
 | |
|   // emitting the load-linked, affecting code size.
 | |
|   //
 | |
|   // Ideally, this logic would be unconditional except for the minsize check
 | |
|   // since in other cases the extra blocks naturally collapse down to the
 | |
|   // minimal loop. Unfortunately, this puts too much stress on later
 | |
|   // optimisations so we avoid emitting the extra logic in those cases too.
 | |
|   bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
 | |
|                            SuccessOrder != AtomicOrdering::Monotonic &&
 | |
|                            SuccessOrder != AtomicOrdering::Acquire &&
 | |
|                            !F->optForMinSize();
 | |
| 
 | |
|   // There's no overhead for sinking the release barrier in a weak cmpxchg, so
 | |
|   // do it even on minsize.
 | |
|   bool UseUnconditionalReleaseBarrier = F->optForMinSize() && !CI->isWeak();
 | |
| 
 | |
|   // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
 | |
|   //
 | |
|   // The full expansion we produce is:
 | |
|   //     [...]
 | |
|   // cmpxchg.start:
 | |
|   //     %unreleasedload = @load.linked(%addr)
 | |
|   //     %should_store = icmp eq %unreleasedload, %desired
 | |
|   //     br i1 %should_store, label %cmpxchg.fencedstore,
 | |
|   //                          label %cmpxchg.nostore
 | |
|   // cmpxchg.releasingstore:
 | |
|   //     fence?
 | |
|   //     br label cmpxchg.trystore
 | |
|   // cmpxchg.trystore:
 | |
|   //     %loaded.trystore = phi [%unreleasedload, %releasingstore],
 | |
|   //                            [%releasedload, %cmpxchg.releasedload]
 | |
|   //     %stored = @store_conditional(%new, %addr)
 | |
|   //     %success = icmp eq i32 %stored, 0
 | |
|   //     br i1 %success, label %cmpxchg.success,
 | |
|   //                     label %cmpxchg.releasedload/%cmpxchg.failure
 | |
|   // cmpxchg.releasedload:
 | |
|   //     %releasedload = @load.linked(%addr)
 | |
|   //     %should_store = icmp eq %releasedload, %desired
 | |
|   //     br i1 %should_store, label %cmpxchg.trystore,
 | |
|   //                          label %cmpxchg.failure
 | |
|   // cmpxchg.success:
 | |
|   //     fence?
 | |
|   //     br label %cmpxchg.end
 | |
|   // cmpxchg.nostore:
 | |
|   //     %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
 | |
|   //                           [%releasedload,
 | |
|   //                               %cmpxchg.releasedload/%cmpxchg.trystore]
 | |
|   //     @load_linked_fail_balance()?
 | |
|   //     br label %cmpxchg.failure
 | |
|   // cmpxchg.failure:
 | |
|   //     fence?
 | |
|   //     br label %cmpxchg.end
 | |
|   // cmpxchg.end:
 | |
|   //     %loaded = phi [%loaded.nostore, %cmpxchg.failure],
 | |
|   //                   [%loaded.trystore, %cmpxchg.trystore]
 | |
|   //     %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
 | |
|   //     %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
 | |
|   //     %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
 | |
|   //     [...]
 | |
|   BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
 | |
|   auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
 | |
|   auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
 | |
|   auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
 | |
|   auto ReleasedLoadBB =
 | |
|       BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
 | |
|   auto TryStoreBB =
 | |
|       BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
 | |
|   auto ReleasingStoreBB =
 | |
|       BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
 | |
|   auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
 | |
| 
 | |
|   // This grabs the DebugLoc from CI
 | |
|   IRBuilder<> Builder(CI);
 | |
| 
 | |
|   // The split call above "helpfully" added a branch at the end of BB (to the
 | |
|   // wrong place), but we might want a fence too. It's easiest to just remove
 | |
|   // the branch entirely.
 | |
|   std::prev(BB->end())->eraseFromParent();
 | |
|   Builder.SetInsertPoint(BB);
 | |
|   if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
 | |
|     TLI->emitLeadingFence(Builder, CI, SuccessOrder);
 | |
|   Builder.CreateBr(StartBB);
 | |
| 
 | |
|   // Start the main loop block now that we've taken care of the preliminaries.
 | |
|   Builder.SetInsertPoint(StartBB);
 | |
|   Value *UnreleasedLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
 | |
|   Value *ShouldStore = Builder.CreateICmpEQ(
 | |
|       UnreleasedLoad, CI->getCompareOperand(), "should_store");
 | |
| 
 | |
|   // If the cmpxchg doesn't actually need any ordering when it fails, we can
 | |
|   // jump straight past that fence instruction (if it exists).
 | |
|   Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
 | |
| 
 | |
|   Builder.SetInsertPoint(ReleasingStoreBB);
 | |
|   if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
 | |
|     TLI->emitLeadingFence(Builder, CI, SuccessOrder);
 | |
|   Builder.CreateBr(TryStoreBB);
 | |
| 
 | |
|   Builder.SetInsertPoint(TryStoreBB);
 | |
|   Value *StoreSuccess = TLI->emitStoreConditional(
 | |
|       Builder, CI->getNewValOperand(), Addr, MemOpOrder);
 | |
|   StoreSuccess = Builder.CreateICmpEQ(
 | |
|       StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
 | |
|   BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
 | |
|   Builder.CreateCondBr(StoreSuccess, SuccessBB,
 | |
|                        CI->isWeak() ? FailureBB : RetryBB);
 | |
| 
 | |
|   Builder.SetInsertPoint(ReleasedLoadBB);
 | |
|   Value *SecondLoad;
 | |
|   if (HasReleasedLoadBB) {
 | |
|     SecondLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
 | |
|     ShouldStore = Builder.CreateICmpEQ(SecondLoad, CI->getCompareOperand(),
 | |
|                                        "should_store");
 | |
| 
 | |
|     // If the cmpxchg doesn't actually need any ordering when it fails, we can
 | |
|     // jump straight past that fence instruction (if it exists).
 | |
|     Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
 | |
|   } else
 | |
|     Builder.CreateUnreachable();
 | |
| 
 | |
|   // Make sure later instructions don't get reordered with a fence if
 | |
|   // necessary.
 | |
|   Builder.SetInsertPoint(SuccessBB);
 | |
|   if (ShouldInsertFencesForAtomic)
 | |
|     TLI->emitTrailingFence(Builder, CI, SuccessOrder);
 | |
|   Builder.CreateBr(ExitBB);
 | |
| 
 | |
|   Builder.SetInsertPoint(NoStoreBB);
 | |
|   // In the failing case, where we don't execute the store-conditional, the
 | |
|   // target might want to balance out the load-linked with a dedicated
 | |
|   // instruction (e.g., on ARM, clearing the exclusive monitor).
 | |
|   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
 | |
|   Builder.CreateBr(FailureBB);
 | |
| 
 | |
|   Builder.SetInsertPoint(FailureBB);
 | |
|   if (ShouldInsertFencesForAtomic)
 | |
|     TLI->emitTrailingFence(Builder, CI, FailureOrder);
 | |
|   Builder.CreateBr(ExitBB);
 | |
| 
 | |
|   // Finally, we have control-flow based knowledge of whether the cmpxchg
 | |
|   // succeeded or not. We expose this to later passes by converting any
 | |
|   // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
 | |
|   // PHI.
 | |
|   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
 | |
|   PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2);
 | |
|   Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
 | |
|   Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
 | |
| 
 | |
|   // Setup the builder so we can create any PHIs we need.
 | |
|   Value *Loaded;
 | |
|   if (!HasReleasedLoadBB)
 | |
|     Loaded = UnreleasedLoad;
 | |
|   else {
 | |
|     Builder.SetInsertPoint(TryStoreBB, TryStoreBB->begin());
 | |
|     PHINode *TryStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
 | |
|     TryStoreLoaded->addIncoming(UnreleasedLoad, ReleasingStoreBB);
 | |
|     TryStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB);
 | |
| 
 | |
|     Builder.SetInsertPoint(NoStoreBB, NoStoreBB->begin());
 | |
|     PHINode *NoStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
 | |
|     NoStoreLoaded->addIncoming(UnreleasedLoad, StartBB);
 | |
|     NoStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB);
 | |
| 
 | |
|     Builder.SetInsertPoint(ExitBB, ++ExitBB->begin());
 | |
|     PHINode *ExitLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
 | |
|     ExitLoaded->addIncoming(TryStoreLoaded, SuccessBB);
 | |
|     ExitLoaded->addIncoming(NoStoreLoaded, FailureBB);
 | |
| 
 | |
|     Loaded = ExitLoaded;
 | |
|   }
 | |
| 
 | |
|   // Look for any users of the cmpxchg that are just comparing the loaded value
 | |
|   // against the desired one, and replace them with the CFG-derived version.
 | |
|   SmallVector<ExtractValueInst *, 2> PrunedInsts;
 | |
|   for (auto User : CI->users()) {
 | |
|     ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
 | |
|     if (!EV)
 | |
|       continue;
 | |
| 
 | |
|     assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
 | |
|            "weird extraction from { iN, i1 }");
 | |
| 
 | |
|     if (EV->getIndices()[0] == 0)
 | |
|       EV->replaceAllUsesWith(Loaded);
 | |
|     else
 | |
|       EV->replaceAllUsesWith(Success);
 | |
| 
 | |
|     PrunedInsts.push_back(EV);
 | |
|   }
 | |
| 
 | |
|   // We can remove the instructions now we're no longer iterating through them.
 | |
|   for (auto EV : PrunedInsts)
 | |
|     EV->eraseFromParent();
 | |
| 
 | |
|   if (!CI->use_empty()) {
 | |
|     // Some use of the full struct return that we don't understand has happened,
 | |
|     // so we've got to reconstruct it properly.
 | |
|     Value *Res;
 | |
|     Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
 | |
|     Res = Builder.CreateInsertValue(Res, Success, 1);
 | |
| 
 | |
|     CI->replaceAllUsesWith(Res);
 | |
|   }
 | |
| 
 | |
|   CI->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) {
 | |
|   auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
 | |
|   if(!C)
 | |
|     return false;
 | |
| 
 | |
|   AtomicRMWInst::BinOp Op = RMWI->getOperation();
 | |
|   switch(Op) {
 | |
|     case AtomicRMWInst::Add:
 | |
|     case AtomicRMWInst::Sub:
 | |
|     case AtomicRMWInst::Or:
 | |
|     case AtomicRMWInst::Xor:
 | |
|       return C->isZero();
 | |
|     case AtomicRMWInst::And:
 | |
|       return C->isMinusOne();
 | |
|     // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
 | |
|     default:
 | |
|       return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
 | |
|   if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
 | |
|     tryExpandAtomicLoad(ResultingLoad);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Value *AtomicExpand::insertRMWCmpXchgLoop(
 | |
|     IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
 | |
|     AtomicOrdering MemOpOrder,
 | |
|     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
 | |
|     CreateCmpXchgInstFun CreateCmpXchg) {
 | |
|   LLVMContext &Ctx = Builder.getContext();
 | |
|   BasicBlock *BB = Builder.GetInsertBlock();
 | |
|   Function *F = BB->getParent();
 | |
| 
 | |
|   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
 | |
|   //
 | |
|   // The standard expansion we produce is:
 | |
|   //     [...]
 | |
|   //     %init_loaded = load atomic iN* %addr
 | |
|   //     br label %loop
 | |
|   // loop:
 | |
|   //     %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
 | |
|   //     %new = some_op iN %loaded, %incr
 | |
|   //     %pair = cmpxchg iN* %addr, iN %loaded, iN %new
 | |
|   //     %new_loaded = extractvalue { iN, i1 } %pair, 0
 | |
|   //     %success = extractvalue { iN, i1 } %pair, 1
 | |
|   //     br i1 %success, label %atomicrmw.end, label %loop
 | |
|   // atomicrmw.end:
 | |
|   //     [...]
 | |
|   BasicBlock *ExitBB =
 | |
|       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
 | |
|   BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
 | |
| 
 | |
|   // The split call above "helpfully" added a branch at the end of BB (to the
 | |
|   // wrong place), but we want a load. It's easiest to just remove
 | |
|   // the branch entirely.
 | |
|   std::prev(BB->end())->eraseFromParent();
 | |
|   Builder.SetInsertPoint(BB);
 | |
|   LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr);
 | |
|   // Atomics require at least natural alignment.
 | |
|   InitLoaded->setAlignment(ResultTy->getPrimitiveSizeInBits() / 8);
 | |
|   Builder.CreateBr(LoopBB);
 | |
| 
 | |
|   // Start the main loop block now that we've taken care of the preliminaries.
 | |
|   Builder.SetInsertPoint(LoopBB);
 | |
|   PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
 | |
|   Loaded->addIncoming(InitLoaded, BB);
 | |
| 
 | |
|   Value *NewVal = PerformOp(Builder, Loaded);
 | |
| 
 | |
|   Value *NewLoaded = nullptr;
 | |
|   Value *Success = nullptr;
 | |
| 
 | |
|   CreateCmpXchg(Builder, Addr, Loaded, NewVal,
 | |
|                 MemOpOrder == AtomicOrdering::Unordered
 | |
|                     ? AtomicOrdering::Monotonic
 | |
|                     : MemOpOrder,
 | |
|                 Success, NewLoaded);
 | |
|   assert(Success && NewLoaded);
 | |
| 
 | |
|   Loaded->addIncoming(NewLoaded, LoopBB);
 | |
| 
 | |
|   Builder.CreateCondBr(Success, ExitBB, LoopBB);
 | |
| 
 | |
|   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
 | |
|   return NewLoaded;
 | |
| }
 | |
| 
 | |
| // Note: This function is exposed externally by AtomicExpandUtils.h
 | |
| bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
 | |
|                                     CreateCmpXchgInstFun CreateCmpXchg) {
 | |
|   IRBuilder<> Builder(AI);
 | |
|   Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
 | |
|       Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(),
 | |
|       [&](IRBuilder<> &Builder, Value *Loaded) {
 | |
|         return performAtomicOp(AI->getOperation(), Builder, Loaded,
 | |
|                                AI->getValOperand());
 | |
|       },
 | |
|       CreateCmpXchg);
 | |
| 
 | |
|   AI->replaceAllUsesWith(Loaded);
 | |
|   AI->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // In order to use one of the sized library calls such as
 | |
| // __atomic_fetch_add_4, the alignment must be sufficient, the size
 | |
| // must be one of the potentially-specialized sizes, and the value
 | |
| // type must actually exist in C on the target (otherwise, the
 | |
| // function wouldn't actually be defined.)
 | |
| static bool canUseSizedAtomicCall(unsigned Size, unsigned Align,
 | |
|                                   const DataLayout &DL) {
 | |
|   // TODO: "LargestSize" is an approximation for "largest type that
 | |
|   // you can express in C". It seems to be the case that int128 is
 | |
|   // supported on all 64-bit platforms, otherwise only up to 64-bit
 | |
|   // integers are supported. If we get this wrong, then we'll try to
 | |
|   // call a sized libcall that doesn't actually exist. There should
 | |
|   // really be some more reliable way in LLVM of determining integer
 | |
|   // sizes which are valid in the target's C ABI...
 | |
|   unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
 | |
|   return Align >= Size &&
 | |
|          (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
 | |
|          Size <= LargestSize;
 | |
| }
 | |
| 
 | |
| void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) {
 | |
|   static const RTLIB::Libcall Libcalls[6] = {
 | |
|       RTLIB::ATOMIC_LOAD,   RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
 | |
|       RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
 | |
|   unsigned Size = getAtomicOpSize(I);
 | |
|   unsigned Align = getAtomicOpAlign(I);
 | |
| 
 | |
|   bool expanded = expandAtomicOpToLibcall(
 | |
|       I, Size, Align, I->getPointerOperand(), nullptr, nullptr,
 | |
|       I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
 | |
|   (void)expanded;
 | |
|   assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Load");
 | |
| }
 | |
| 
 | |
| void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) {
 | |
|   static const RTLIB::Libcall Libcalls[6] = {
 | |
|       RTLIB::ATOMIC_STORE,   RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
 | |
|       RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
 | |
|   unsigned Size = getAtomicOpSize(I);
 | |
|   unsigned Align = getAtomicOpAlign(I);
 | |
| 
 | |
|   bool expanded = expandAtomicOpToLibcall(
 | |
|       I, Size, Align, I->getPointerOperand(), I->getValueOperand(), nullptr,
 | |
|       I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
 | |
|   (void)expanded;
 | |
|   assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Store");
 | |
| }
 | |
| 
 | |
| void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
 | |
|   static const RTLIB::Libcall Libcalls[6] = {
 | |
|       RTLIB::ATOMIC_COMPARE_EXCHANGE,   RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
 | |
|       RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
 | |
|       RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
 | |
|   unsigned Size = getAtomicOpSize(I);
 | |
|   unsigned Align = getAtomicOpAlign(I);
 | |
| 
 | |
|   bool expanded = expandAtomicOpToLibcall(
 | |
|       I, Size, Align, I->getPointerOperand(), I->getNewValOperand(),
 | |
|       I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
 | |
|       Libcalls);
 | |
|   (void)expanded;
 | |
|   assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor CAS");
 | |
| }
 | |
| 
 | |
| static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
 | |
|   static const RTLIB::Libcall LibcallsXchg[6] = {
 | |
|       RTLIB::ATOMIC_EXCHANGE,   RTLIB::ATOMIC_EXCHANGE_1,
 | |
|       RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
 | |
|       RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
 | |
|   static const RTLIB::Libcall LibcallsAdd[6] = {
 | |
|       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_ADD_1,
 | |
|       RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
 | |
|       RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
 | |
|   static const RTLIB::Libcall LibcallsSub[6] = {
 | |
|       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_SUB_1,
 | |
|       RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
 | |
|       RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
 | |
|   static const RTLIB::Libcall LibcallsAnd[6] = {
 | |
|       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_AND_1,
 | |
|       RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
 | |
|       RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
 | |
|   static const RTLIB::Libcall LibcallsOr[6] = {
 | |
|       RTLIB::UNKNOWN_LIBCALL,   RTLIB::ATOMIC_FETCH_OR_1,
 | |
|       RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
 | |
|       RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
 | |
|   static const RTLIB::Libcall LibcallsXor[6] = {
 | |
|       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_XOR_1,
 | |
|       RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
 | |
|       RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
 | |
|   static const RTLIB::Libcall LibcallsNand[6] = {
 | |
|       RTLIB::UNKNOWN_LIBCALL,     RTLIB::ATOMIC_FETCH_NAND_1,
 | |
|       RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
 | |
|       RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
 | |
| 
 | |
|   switch (Op) {
 | |
|   case AtomicRMWInst::BAD_BINOP:
 | |
|     llvm_unreachable("Should not have BAD_BINOP.");
 | |
|   case AtomicRMWInst::Xchg:
 | |
|     return makeArrayRef(LibcallsXchg);
 | |
|   case AtomicRMWInst::Add:
 | |
|     return makeArrayRef(LibcallsAdd);
 | |
|   case AtomicRMWInst::Sub:
 | |
|     return makeArrayRef(LibcallsSub);
 | |
|   case AtomicRMWInst::And:
 | |
|     return makeArrayRef(LibcallsAnd);
 | |
|   case AtomicRMWInst::Or:
 | |
|     return makeArrayRef(LibcallsOr);
 | |
|   case AtomicRMWInst::Xor:
 | |
|     return makeArrayRef(LibcallsXor);
 | |
|   case AtomicRMWInst::Nand:
 | |
|     return makeArrayRef(LibcallsNand);
 | |
|   case AtomicRMWInst::Max:
 | |
|   case AtomicRMWInst::Min:
 | |
|   case AtomicRMWInst::UMax:
 | |
|   case AtomicRMWInst::UMin:
 | |
|     // No atomic libcalls are available for max/min/umax/umin.
 | |
|     return {};
 | |
|   }
 | |
|   llvm_unreachable("Unexpected AtomicRMW operation.");
 | |
| }
 | |
| 
 | |
| void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
 | |
|   ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
 | |
| 
 | |
|   unsigned Size = getAtomicOpSize(I);
 | |
|   unsigned Align = getAtomicOpAlign(I);
 | |
| 
 | |
|   bool Success = false;
 | |
|   if (!Libcalls.empty())
 | |
|     Success = expandAtomicOpToLibcall(
 | |
|         I, Size, Align, I->getPointerOperand(), I->getValOperand(), nullptr,
 | |
|         I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
 | |
| 
 | |
|   // The expansion failed: either there were no libcalls at all for
 | |
|   // the operation (min/max), or there were only size-specialized
 | |
|   // libcalls (add/sub/etc) and we needed a generic. So, expand to a
 | |
|   // CAS libcall, via a CAS loop, instead.
 | |
|   if (!Success) {
 | |
|     expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr,
 | |
|                                        Value *Loaded, Value *NewVal,
 | |
|                                        AtomicOrdering MemOpOrder,
 | |
|                                        Value *&Success, Value *&NewLoaded) {
 | |
|       // Create the CAS instruction normally...
 | |
|       AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
 | |
|           Addr, Loaded, NewVal, MemOpOrder,
 | |
|           AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
 | |
|       Success = Builder.CreateExtractValue(Pair, 1, "success");
 | |
|       NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
 | |
| 
 | |
|       // ...and then expand the CAS into a libcall.
 | |
|       expandAtomicCASToLibcall(Pair);
 | |
|     });
 | |
|   }
 | |
| }
 | |
| 
 | |
| // A helper routine for the above expandAtomic*ToLibcall functions.
 | |
| //
 | |
| // 'Libcalls' contains an array of enum values for the particular
 | |
| // ATOMIC libcalls to be emitted. All of the other arguments besides
 | |
| // 'I' are extracted from the Instruction subclass by the
 | |
| // caller. Depending on the particular call, some will be null.
 | |
| bool AtomicExpand::expandAtomicOpToLibcall(
 | |
|     Instruction *I, unsigned Size, unsigned Align, Value *PointerOperand,
 | |
|     Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
 | |
|     AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
 | |
|   assert(Libcalls.size() == 6);
 | |
| 
 | |
|   LLVMContext &Ctx = I->getContext();
 | |
|   Module *M = I->getModule();
 | |
|   const DataLayout &DL = M->getDataLayout();
 | |
|   IRBuilder<> Builder(I);
 | |
|   IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
 | |
| 
 | |
|   bool UseSizedLibcall = canUseSizedAtomicCall(Size, Align, DL);
 | |
|   Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
 | |
| 
 | |
|   unsigned AllocaAlignment = DL.getPrefTypeAlignment(SizedIntTy);
 | |
| 
 | |
|   // TODO: the "order" argument type is "int", not int32. So
 | |
|   // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
 | |
|   ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
 | |
|   assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
 | |
|   Constant *OrderingVal =
 | |
|       ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
 | |
|   Constant *Ordering2Val = nullptr;
 | |
|   if (CASExpected) {
 | |
|     assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
 | |
|     Ordering2Val =
 | |
|         ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
 | |
|   }
 | |
|   bool HasResult = I->getType() != Type::getVoidTy(Ctx);
 | |
| 
 | |
|   RTLIB::Libcall RTLibType;
 | |
|   if (UseSizedLibcall) {
 | |
|     switch (Size) {
 | |
|     case 1: RTLibType = Libcalls[1]; break;
 | |
|     case 2: RTLibType = Libcalls[2]; break;
 | |
|     case 4: RTLibType = Libcalls[3]; break;
 | |
|     case 8: RTLibType = Libcalls[4]; break;
 | |
|     case 16: RTLibType = Libcalls[5]; break;
 | |
|     }
 | |
|   } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
 | |
|     RTLibType = Libcalls[0];
 | |
|   } else {
 | |
|     // Can't use sized function, and there's no generic for this
 | |
|     // operation, so give up.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Build up the function call. There's two kinds. First, the sized
 | |
|   // variants.  These calls are going to be one of the following (with
 | |
|   // N=1,2,4,8,16):
 | |
|   //  iN    __atomic_load_N(iN *ptr, int ordering)
 | |
|   //  void  __atomic_store_N(iN *ptr, iN val, int ordering)
 | |
|   //  iN    __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
 | |
|   //  bool  __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
 | |
|   //                                    int success_order, int failure_order)
 | |
|   //
 | |
|   // Note that these functions can be used for non-integer atomic
 | |
|   // operations, the values just need to be bitcast to integers on the
 | |
|   // way in and out.
 | |
|   //
 | |
|   // And, then, the generic variants. They look like the following:
 | |
|   //  void  __atomic_load(size_t size, void *ptr, void *ret, int ordering)
 | |
|   //  void  __atomic_store(size_t size, void *ptr, void *val, int ordering)
 | |
|   //  void  __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
 | |
|   //                          int ordering)
 | |
|   //  bool  __atomic_compare_exchange(size_t size, void *ptr, void *expected,
 | |
|   //                                  void *desired, int success_order,
 | |
|   //                                  int failure_order)
 | |
|   //
 | |
|   // The different signatures are built up depending on the
 | |
|   // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
 | |
|   // variables.
 | |
| 
 | |
|   AllocaInst *AllocaCASExpected = nullptr;
 | |
|   Value *AllocaCASExpected_i8 = nullptr;
 | |
|   AllocaInst *AllocaValue = nullptr;
 | |
|   Value *AllocaValue_i8 = nullptr;
 | |
|   AllocaInst *AllocaResult = nullptr;
 | |
|   Value *AllocaResult_i8 = nullptr;
 | |
| 
 | |
|   Type *ResultTy;
 | |
|   SmallVector<Value *, 6> Args;
 | |
|   AttributeList Attr;
 | |
| 
 | |
|   // 'size' argument.
 | |
|   if (!UseSizedLibcall) {
 | |
|     // Note, getIntPtrType is assumed equivalent to size_t.
 | |
|     Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
 | |
|   }
 | |
| 
 | |
|   // 'ptr' argument.
 | |
|   Value *PtrVal =
 | |
|       Builder.CreateBitCast(PointerOperand, Type::getInt8PtrTy(Ctx));
 | |
|   Args.push_back(PtrVal);
 | |
| 
 | |
|   // 'expected' argument, if present.
 | |
|   if (CASExpected) {
 | |
|     AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
 | |
|     AllocaCASExpected->setAlignment(AllocaAlignment);
 | |
|     AllocaCASExpected_i8 =
 | |
|         Builder.CreateBitCast(AllocaCASExpected, Type::getInt8PtrTy(Ctx));
 | |
|     Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64);
 | |
|     Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
 | |
|     Args.push_back(AllocaCASExpected_i8);
 | |
|   }
 | |
| 
 | |
|   // 'val' argument ('desired' for cas), if present.
 | |
|   if (ValueOperand) {
 | |
|     if (UseSizedLibcall) {
 | |
|       Value *IntValue =
 | |
|           Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
 | |
|       Args.push_back(IntValue);
 | |
|     } else {
 | |
|       AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
 | |
|       AllocaValue->setAlignment(AllocaAlignment);
 | |
|       AllocaValue_i8 =
 | |
|           Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx));
 | |
|       Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64);
 | |
|       Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
 | |
|       Args.push_back(AllocaValue_i8);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // 'ret' argument.
 | |
|   if (!CASExpected && HasResult && !UseSizedLibcall) {
 | |
|     AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
 | |
|     AllocaResult->setAlignment(AllocaAlignment);
 | |
|     AllocaResult_i8 =
 | |
|         Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx));
 | |
|     Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64);
 | |
|     Args.push_back(AllocaResult_i8);
 | |
|   }
 | |
| 
 | |
|   // 'ordering' ('success_order' for cas) argument.
 | |
|   Args.push_back(OrderingVal);
 | |
| 
 | |
|   // 'failure_order' argument, if present.
 | |
|   if (Ordering2Val)
 | |
|     Args.push_back(Ordering2Val);
 | |
| 
 | |
|   // Now, the return type.
 | |
|   if (CASExpected) {
 | |
|     ResultTy = Type::getInt1Ty(Ctx);
 | |
|     Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt);
 | |
|   } else if (HasResult && UseSizedLibcall)
 | |
|     ResultTy = SizedIntTy;
 | |
|   else
 | |
|     ResultTy = Type::getVoidTy(Ctx);
 | |
| 
 | |
|   // Done with setting up arguments and return types, create the call:
 | |
|   SmallVector<Type *, 6> ArgTys;
 | |
|   for (Value *Arg : Args)
 | |
|     ArgTys.push_back(Arg->getType());
 | |
|   FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
 | |
|   Constant *LibcallFn =
 | |
|       M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
 | |
|   CallInst *Call = Builder.CreateCall(LibcallFn, Args);
 | |
|   Call->setAttributes(Attr);
 | |
|   Value *Result = Call;
 | |
| 
 | |
|   // And then, extract the results...
 | |
|   if (ValueOperand && !UseSizedLibcall)
 | |
|     Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64);
 | |
| 
 | |
|   if (CASExpected) {
 | |
|     // The final result from the CAS is {load of 'expected' alloca, bool result
 | |
|     // from call}
 | |
|     Type *FinalResultTy = I->getType();
 | |
|     Value *V = UndefValue::get(FinalResultTy);
 | |
|     Value *ExpectedOut =
 | |
|         Builder.CreateAlignedLoad(AllocaCASExpected, AllocaAlignment);
 | |
|     Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64);
 | |
|     V = Builder.CreateInsertValue(V, ExpectedOut, 0);
 | |
|     V = Builder.CreateInsertValue(V, Result, 1);
 | |
|     I->replaceAllUsesWith(V);
 | |
|   } else if (HasResult) {
 | |
|     Value *V;
 | |
|     if (UseSizedLibcall)
 | |
|       V = Builder.CreateBitOrPointerCast(Result, I->getType());
 | |
|     else {
 | |
|       V = Builder.CreateAlignedLoad(AllocaResult, AllocaAlignment);
 | |
|       Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64);
 | |
|     }
 | |
|     I->replaceAllUsesWith(V);
 | |
|   }
 | |
|   I->eraseFromParent();
 | |
|   return true;
 | |
| }
 |