forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			6785 lines
		
	
	
		
			253 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			6785 lines
		
	
	
		
			253 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass munges the code in the input function to better prepare it for
 | |
| // SelectionDAG-based code generation. This works around limitations in it's
 | |
| // basic-block-at-a-time approach. It should eventually be removed.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/PointerIntPair.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/BlockFrequencyInfo.h"
 | |
| #include "llvm/Analysis/BranchProbabilityInfo.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/Analysis/ProfileSummaryInfo.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/CodeGen/Analysis.h"
 | |
| #include "llvm/CodeGen/ISDOpcodes.h"
 | |
| #include "llvm/CodeGen/MachineValueType.h"
 | |
| #include "llvm/CodeGen/SelectionDAGNodes.h"
 | |
| #include "llvm/CodeGen/TargetPassConfig.h"
 | |
| #include "llvm/CodeGen/ValueTypes.h"
 | |
| #include "llvm/IR/Argument.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/MDBuilder.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/Statepoint.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Use.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/IR/ValueMap.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/BlockFrequency.h"
 | |
| #include "llvm/Support/BranchProbability.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/BypassSlowDivision.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
 | |
| #include "llvm/Transforms/Utils/ValueMapper.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <limits>
 | |
| #include <memory>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "codegenprepare"
 | |
| 
 | |
| STATISTIC(NumBlocksElim, "Number of blocks eliminated");
 | |
| STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
 | |
| STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
 | |
| STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
 | |
|                       "sunken Cmps");
 | |
| STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
 | |
|                        "of sunken Casts");
 | |
| STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
 | |
|                           "computations were sunk");
 | |
| STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
 | |
| STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
 | |
| STATISTIC(NumAndsAdded,
 | |
|           "Number of and mask instructions added to form ext loads");
 | |
| STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
 | |
| STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
 | |
| STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
 | |
| STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
 | |
| STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
 | |
| 
 | |
| STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
 | |
| STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
 | |
| STATISTIC(NumMemCmpGreaterThanMax,
 | |
|           "Number of memcmp calls with size greater than max size");
 | |
| STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
 | |
| 
 | |
| static cl::opt<bool> DisableBranchOpts(
 | |
|   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
 | |
|   cl::desc("Disable branch optimizations in CodeGenPrepare"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
 | |
|                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
 | |
| 
 | |
| static cl::opt<bool> DisableSelectToBranch(
 | |
|   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
 | |
|   cl::desc("Disable select to branch conversion."));
 | |
| 
 | |
| static cl::opt<bool> AddrSinkUsingGEPs(
 | |
|   "addr-sink-using-gep", cl::Hidden, cl::init(true),
 | |
|   cl::desc("Address sinking in CGP using GEPs."));
 | |
| 
 | |
| static cl::opt<bool> EnableAndCmpSinking(
 | |
|    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
 | |
|    cl::desc("Enable sinkinig and/cmp into branches."));
 | |
| 
 | |
| static cl::opt<bool> DisableStoreExtract(
 | |
|     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
 | |
|     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
 | |
| 
 | |
| static cl::opt<bool> StressStoreExtract(
 | |
|     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
 | |
|     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
 | |
| 
 | |
| static cl::opt<bool> DisableExtLdPromotion(
 | |
|     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
 | |
|     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
 | |
|              "CodeGenPrepare"));
 | |
| 
 | |
| static cl::opt<bool> StressExtLdPromotion(
 | |
|     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
 | |
|     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
 | |
|              "optimization in CodeGenPrepare"));
 | |
| 
 | |
| static cl::opt<bool> DisablePreheaderProtect(
 | |
|     "disable-preheader-prot", cl::Hidden, cl::init(false),
 | |
|     cl::desc("Disable protection against removing loop preheaders"));
 | |
| 
 | |
| static cl::opt<bool> ProfileGuidedSectionPrefix(
 | |
|     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
 | |
|     cl::desc("Use profile info to add section prefix for hot/cold functions"));
 | |
| 
 | |
| static cl::opt<unsigned> FreqRatioToSkipMerge(
 | |
|     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
 | |
|     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
 | |
|              "(frequency of destination block) is greater than this ratio"));
 | |
| 
 | |
| static cl::opt<bool> ForceSplitStore(
 | |
|     "force-split-store", cl::Hidden, cl::init(false),
 | |
|     cl::desc("Force store splitting no matter what the target query says."));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
 | |
|     cl::desc("Enable merging of redundant sexts when one is dominating"
 | |
|     " the other."), cl::init(true));
 | |
| 
 | |
| static cl::opt<unsigned> MemCmpNumLoadsPerBlock(
 | |
|     "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
 | |
|     cl::desc("The number of loads per basic block for inline expansion of "
 | |
|              "memcmp that is only being compared against zero."));
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
 | |
| using TypeIsSExt = PointerIntPair<Type *, 1, bool>;
 | |
| using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
 | |
| using SExts = SmallVector<Instruction *, 16>;
 | |
| using ValueToSExts = DenseMap<Value *, SExts>;
 | |
| 
 | |
| class TypePromotionTransaction;
 | |
| 
 | |
|   class CodeGenPrepare : public FunctionPass {
 | |
|     const TargetMachine *TM = nullptr;
 | |
|     const TargetSubtargetInfo *SubtargetInfo;
 | |
|     const TargetLowering *TLI = nullptr;
 | |
|     const TargetRegisterInfo *TRI;
 | |
|     const TargetTransformInfo *TTI = nullptr;
 | |
|     const TargetLibraryInfo *TLInfo;
 | |
|     const LoopInfo *LI;
 | |
|     std::unique_ptr<BlockFrequencyInfo> BFI;
 | |
|     std::unique_ptr<BranchProbabilityInfo> BPI;
 | |
| 
 | |
|     /// As we scan instructions optimizing them, this is the next instruction
 | |
|     /// to optimize. Transforms that can invalidate this should update it.
 | |
|     BasicBlock::iterator CurInstIterator;
 | |
| 
 | |
|     /// Keeps track of non-local addresses that have been sunk into a block.
 | |
|     /// This allows us to avoid inserting duplicate code for blocks with
 | |
|     /// multiple load/stores of the same address.
 | |
|     ValueMap<Value*, Value*> SunkAddrs;
 | |
| 
 | |
|     /// Keeps track of all instructions inserted for the current function.
 | |
|     SetOfInstrs InsertedInsts;
 | |
| 
 | |
|     /// Keeps track of the type of the related instruction before their
 | |
|     /// promotion for the current function.
 | |
|     InstrToOrigTy PromotedInsts;
 | |
| 
 | |
|     /// Keep track of instructions removed during promotion.
 | |
|     SetOfInstrs RemovedInsts;
 | |
| 
 | |
|     /// Keep track of sext chains based on their initial value.
 | |
|     DenseMap<Value *, Instruction *> SeenChainsForSExt;
 | |
| 
 | |
|     /// Keep track of SExt promoted.
 | |
|     ValueToSExts ValToSExtendedUses;
 | |
| 
 | |
|     /// True if CFG is modified in any way.
 | |
|     bool ModifiedDT;
 | |
| 
 | |
|     /// True if optimizing for size.
 | |
|     bool OptSize;
 | |
| 
 | |
|     /// DataLayout for the Function being processed.
 | |
|     const DataLayout *DL = nullptr;
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
| 
 | |
|     CodeGenPrepare() : FunctionPass(ID) {
 | |
|       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &F) override;
 | |
| 
 | |
|     StringRef getPassName() const override { return "CodeGen Prepare"; }
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       // FIXME: When we can selectively preserve passes, preserve the domtree.
 | |
|       AU.addRequired<ProfileSummaryInfoWrapperPass>();
 | |
|       AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
|       AU.addRequired<TargetTransformInfoWrapperPass>();
 | |
|       AU.addRequired<LoopInfoWrapperPass>();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     bool eliminateFallThrough(Function &F);
 | |
|     bool eliminateMostlyEmptyBlocks(Function &F);
 | |
|     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
 | |
|     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
 | |
|     void eliminateMostlyEmptyBlock(BasicBlock *BB);
 | |
|     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
 | |
|                                        bool isPreheader);
 | |
|     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
 | |
|     bool optimizeInst(Instruction *I, bool &ModifiedDT);
 | |
|     bool optimizeMemoryInst(Instruction *I, Value *Addr,
 | |
|                             Type *AccessTy, unsigned AS);
 | |
|     bool optimizeInlineAsmInst(CallInst *CS);
 | |
|     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
 | |
|     bool optimizeExt(Instruction *&I);
 | |
|     bool optimizeExtUses(Instruction *I);
 | |
|     bool optimizeLoadExt(LoadInst *I);
 | |
|     bool optimizeSelectInst(SelectInst *SI);
 | |
|     bool optimizeShuffleVectorInst(ShuffleVectorInst *SI);
 | |
|     bool optimizeSwitchInst(SwitchInst *CI);
 | |
|     bool optimizeExtractElementInst(Instruction *Inst);
 | |
|     bool dupRetToEnableTailCallOpts(BasicBlock *BB);
 | |
|     bool placeDbgValues(Function &F);
 | |
|     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
 | |
|                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
 | |
|     bool tryToPromoteExts(TypePromotionTransaction &TPT,
 | |
|                           const SmallVectorImpl<Instruction *> &Exts,
 | |
|                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
 | |
|                           unsigned CreatedInstsCost = 0);
 | |
|     bool mergeSExts(Function &F);
 | |
|     bool performAddressTypePromotion(
 | |
|         Instruction *&Inst,
 | |
|         bool AllowPromotionWithoutCommonHeader,
 | |
|         bool HasPromoted, TypePromotionTransaction &TPT,
 | |
|         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
 | |
|     bool splitBranchCondition(Function &F);
 | |
|     bool simplifyOffsetableRelocate(Instruction &I);
 | |
|     bool splitIndirectCriticalEdges(Function &F);
 | |
|   };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char CodeGenPrepare::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
 | |
|                       "Optimize for code generation", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
 | |
|                     "Optimize for code generation", false, false)
 | |
| 
 | |
| FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
 | |
| 
 | |
| bool CodeGenPrepare::runOnFunction(Function &F) {
 | |
|   if (skipFunction(F))
 | |
|     return false;
 | |
| 
 | |
|   DL = &F.getParent()->getDataLayout();
 | |
| 
 | |
|   bool EverMadeChange = false;
 | |
|   // Clear per function information.
 | |
|   InsertedInsts.clear();
 | |
|   PromotedInsts.clear();
 | |
|   BFI.reset();
 | |
|   BPI.reset();
 | |
| 
 | |
|   ModifiedDT = false;
 | |
|   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
 | |
|     TM = &TPC->getTM<TargetMachine>();
 | |
|     SubtargetInfo = TM->getSubtargetImpl(F);
 | |
|     TLI = SubtargetInfo->getTargetLowering();
 | |
|     TRI = SubtargetInfo->getRegisterInfo();
 | |
|   }
 | |
|   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | |
|   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | |
|   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|   OptSize = F.optForSize();
 | |
| 
 | |
|   if (ProfileGuidedSectionPrefix) {
 | |
|     ProfileSummaryInfo *PSI =
 | |
|         getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
 | |
|     if (PSI->isFunctionHotInCallGraph(&F))
 | |
|       F.setSectionPrefix(".hot");
 | |
|     else if (PSI->isFunctionColdInCallGraph(&F))
 | |
|       F.setSectionPrefix(".unlikely");
 | |
|   }
 | |
| 
 | |
|   /// This optimization identifies DIV instructions that can be
 | |
|   /// profitably bypassed and carried out with a shorter, faster divide.
 | |
|   if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
 | |
|     const DenseMap<unsigned int, unsigned int> &BypassWidths =
 | |
|        TLI->getBypassSlowDivWidths();
 | |
|     BasicBlock* BB = &*F.begin();
 | |
|     while (BB != nullptr) {
 | |
|       // bypassSlowDivision may create new BBs, but we don't want to reapply the
 | |
|       // optimization to those blocks.
 | |
|       BasicBlock* Next = BB->getNextNode();
 | |
|       EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
 | |
|       BB = Next;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Eliminate blocks that contain only PHI nodes and an
 | |
|   // unconditional branch.
 | |
|   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
 | |
| 
 | |
|   // llvm.dbg.value is far away from the value then iSel may not be able
 | |
|   // handle it properly. iSel will drop llvm.dbg.value if it can not
 | |
|   // find a node corresponding to the value.
 | |
|   EverMadeChange |= placeDbgValues(F);
 | |
| 
 | |
|   if (!DisableBranchOpts)
 | |
|     EverMadeChange |= splitBranchCondition(F);
 | |
| 
 | |
|   // Split some critical edges where one of the sources is an indirect branch,
 | |
|   // to help generate sane code for PHIs involving such edges.
 | |
|   EverMadeChange |= splitIndirectCriticalEdges(F);
 | |
| 
 | |
|   bool MadeChange = true;
 | |
|   while (MadeChange) {
 | |
|     MadeChange = false;
 | |
|     SeenChainsForSExt.clear();
 | |
|     ValToSExtendedUses.clear();
 | |
|     RemovedInsts.clear();
 | |
|     for (Function::iterator I = F.begin(); I != F.end(); ) {
 | |
|       BasicBlock *BB = &*I++;
 | |
|       bool ModifiedDTOnIteration = false;
 | |
|       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
 | |
| 
 | |
|       // Restart BB iteration if the dominator tree of the Function was changed
 | |
|       if (ModifiedDTOnIteration)
 | |
|         break;
 | |
|     }
 | |
|     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
 | |
|       MadeChange |= mergeSExts(F);
 | |
| 
 | |
|     // Really free removed instructions during promotion.
 | |
|     for (Instruction *I : RemovedInsts)
 | |
|       I->deleteValue();
 | |
| 
 | |
|     EverMadeChange |= MadeChange;
 | |
|   }
 | |
| 
 | |
|   SunkAddrs.clear();
 | |
| 
 | |
|   if (!DisableBranchOpts) {
 | |
|     MadeChange = false;
 | |
|     SmallPtrSet<BasicBlock*, 8> WorkList;
 | |
|     for (BasicBlock &BB : F) {
 | |
|       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
 | |
|       MadeChange |= ConstantFoldTerminator(&BB, true);
 | |
|       if (!MadeChange) continue;
 | |
| 
 | |
|       for (SmallVectorImpl<BasicBlock*>::iterator
 | |
|              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
 | |
|         if (pred_begin(*II) == pred_end(*II))
 | |
|           WorkList.insert(*II);
 | |
|     }
 | |
| 
 | |
|     // Delete the dead blocks and any of their dead successors.
 | |
|     MadeChange |= !WorkList.empty();
 | |
|     while (!WorkList.empty()) {
 | |
|       BasicBlock *BB = *WorkList.begin();
 | |
|       WorkList.erase(BB);
 | |
|       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
 | |
| 
 | |
|       DeleteDeadBlock(BB);
 | |
| 
 | |
|       for (SmallVectorImpl<BasicBlock*>::iterator
 | |
|              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
 | |
|         if (pred_begin(*II) == pred_end(*II))
 | |
|           WorkList.insert(*II);
 | |
|     }
 | |
| 
 | |
|     // Merge pairs of basic blocks with unconditional branches, connected by
 | |
|     // a single edge.
 | |
|     if (EverMadeChange || MadeChange)
 | |
|       MadeChange |= eliminateFallThrough(F);
 | |
| 
 | |
|     EverMadeChange |= MadeChange;
 | |
|   }
 | |
| 
 | |
|   if (!DisableGCOpts) {
 | |
|     SmallVector<Instruction *, 2> Statepoints;
 | |
|     for (BasicBlock &BB : F)
 | |
|       for (Instruction &I : BB)
 | |
|         if (isStatepoint(I))
 | |
|           Statepoints.push_back(&I);
 | |
|     for (auto &I : Statepoints)
 | |
|       EverMadeChange |= simplifyOffsetableRelocate(*I);
 | |
|   }
 | |
| 
 | |
|   return EverMadeChange;
 | |
| }
 | |
| 
 | |
| /// Merge basic blocks which are connected by a single edge, where one of the
 | |
| /// basic blocks has a single successor pointing to the other basic block,
 | |
| /// which has a single predecessor.
 | |
| bool CodeGenPrepare::eliminateFallThrough(Function &F) {
 | |
|   bool Changed = false;
 | |
|   // Scan all of the blocks in the function, except for the entry block.
 | |
|   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
 | |
|     BasicBlock *BB = &*I++;
 | |
|     // If the destination block has a single pred, then this is a trivial
 | |
|     // edge, just collapse it.
 | |
|     BasicBlock *SinglePred = BB->getSinglePredecessor();
 | |
| 
 | |
|     // Don't merge if BB's address is taken.
 | |
|     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
 | |
| 
 | |
|     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
 | |
|     if (Term && !Term->isConditional()) {
 | |
|       Changed = true;
 | |
|       DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
 | |
|       // Remember if SinglePred was the entry block of the function.
 | |
|       // If so, we will need to move BB back to the entry position.
 | |
|       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
 | |
|       MergeBasicBlockIntoOnlyPred(BB, nullptr);
 | |
| 
 | |
|       if (isEntry && BB != &BB->getParent()->getEntryBlock())
 | |
|         BB->moveBefore(&BB->getParent()->getEntryBlock());
 | |
| 
 | |
|       // We have erased a block. Update the iterator.
 | |
|       I = BB->getIterator();
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// Find a destination block from BB if BB is mergeable empty block.
 | |
| BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
 | |
|   // If this block doesn't end with an uncond branch, ignore it.
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | |
|   if (!BI || !BI->isUnconditional())
 | |
|     return nullptr;
 | |
| 
 | |
|   // If the instruction before the branch (skipping debug info) isn't a phi
 | |
|   // node, then other stuff is happening here.
 | |
|   BasicBlock::iterator BBI = BI->getIterator();
 | |
|   if (BBI != BB->begin()) {
 | |
|     --BBI;
 | |
|     while (isa<DbgInfoIntrinsic>(BBI)) {
 | |
|       if (BBI == BB->begin())
 | |
|         break;
 | |
|       --BBI;
 | |
|     }
 | |
|     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Do not break infinite loops.
 | |
|   BasicBlock *DestBB = BI->getSuccessor(0);
 | |
|   if (DestBB == BB)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (!canMergeBlocks(BB, DestBB))
 | |
|     DestBB = nullptr;
 | |
| 
 | |
|   return DestBB;
 | |
| }
 | |
| 
 | |
| // Return the unique indirectbr predecessor of a block. This may return null
 | |
| // even if such a predecessor exists, if it's not useful for splitting.
 | |
| // If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
 | |
| // predecessors of BB.
 | |
| static BasicBlock *
 | |
| findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
 | |
|   // If the block doesn't have any PHIs, we don't care about it, since there's
 | |
|   // no point in splitting it.
 | |
|   PHINode *PN = dyn_cast<PHINode>(BB->begin());
 | |
|   if (!PN)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Verify we have exactly one IBR predecessor.
 | |
|   // Conservatively bail out if one of the other predecessors is not a "regular"
 | |
|   // terminator (that is, not a switch or a br).
 | |
|   BasicBlock *IBB = nullptr;
 | |
|   for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) {
 | |
|     BasicBlock *PredBB = PN->getIncomingBlock(Pred);
 | |
|     TerminatorInst *PredTerm = PredBB->getTerminator();
 | |
|     switch (PredTerm->getOpcode()) {
 | |
|     case Instruction::IndirectBr:
 | |
|       if (IBB)
 | |
|         return nullptr;
 | |
|       IBB = PredBB;
 | |
|       break;
 | |
|     case Instruction::Br:
 | |
|     case Instruction::Switch:
 | |
|       OtherPreds.push_back(PredBB);
 | |
|       continue;
 | |
|     default:
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return IBB;
 | |
| }
 | |
| 
 | |
| // Split critical edges where the source of the edge is an indirectbr
 | |
| // instruction. This isn't always possible, but we can handle some easy cases.
 | |
| // This is useful because MI is unable to split such critical edges,
 | |
| // which means it will not be able to sink instructions along those edges.
 | |
| // This is especially painful for indirect branches with many successors, where
 | |
| // we end up having to prepare all outgoing values in the origin block.
 | |
| //
 | |
| // Our normal algorithm for splitting critical edges requires us to update
 | |
| // the outgoing edges of the edge origin block, but for an indirectbr this
 | |
| // is hard, since it would require finding and updating the block addresses
 | |
| // the indirect branch uses. But if a block only has a single indirectbr
 | |
| // predecessor, with the others being regular branches, we can do it in a
 | |
| // different way.
 | |
| // Say we have A -> D, B -> D, I -> D where only I -> D is an indirectbr.
 | |
| // We can split D into D0 and D1, where D0 contains only the PHIs from D,
 | |
| // and D1 is the D block body. We can then duplicate D0 as D0A and D0B, and
 | |
| // create the following structure:
 | |
| // A -> D0A, B -> D0A, I -> D0B, D0A -> D1, D0B -> D1
 | |
| bool CodeGenPrepare::splitIndirectCriticalEdges(Function &F) {
 | |
|   // Check whether the function has any indirectbrs, and collect which blocks
 | |
|   // they may jump to. Since most functions don't have indirect branches,
 | |
|   // this lowers the common case's overhead to O(Blocks) instead of O(Edges).
 | |
|   SmallSetVector<BasicBlock *, 16> Targets;
 | |
|   for (auto &BB : F) {
 | |
|     auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
 | |
|     if (!IBI)
 | |
|       continue;
 | |
| 
 | |
|     for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
 | |
|       Targets.insert(IBI->getSuccessor(Succ));
 | |
|   }
 | |
| 
 | |
|   if (Targets.empty())
 | |
|     return false;
 | |
| 
 | |
|   bool Changed = false;
 | |
|   for (BasicBlock *Target : Targets) {
 | |
|     SmallVector<BasicBlock *, 16> OtherPreds;
 | |
|     BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
 | |
|     // If we did not found an indirectbr, or the indirectbr is the only
 | |
|     // incoming edge, this isn't the kind of edge we're looking for.
 | |
|     if (!IBRPred || OtherPreds.empty())
 | |
|       continue;
 | |
| 
 | |
|     // Don't even think about ehpads/landingpads.
 | |
|     Instruction *FirstNonPHI = Target->getFirstNonPHI();
 | |
|     if (FirstNonPHI->isEHPad() || Target->isLandingPad())
 | |
|       continue;
 | |
| 
 | |
|     BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
 | |
|     // It's possible Target was its own successor through an indirectbr.
 | |
|     // In this case, the indirectbr now comes from BodyBlock.
 | |
|     if (IBRPred == Target)
 | |
|       IBRPred = BodyBlock;
 | |
| 
 | |
|     // At this point Target only has PHIs, and BodyBlock has the rest of the
 | |
|     // block's body. Create a copy of Target that will be used by the "direct"
 | |
|     // preds.
 | |
|     ValueToValueMapTy VMap;
 | |
|     BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
 | |
| 
 | |
|     for (BasicBlock *Pred : OtherPreds) {
 | |
|       // If the target is a loop to itself, then the terminator of the split
 | |
|       // block needs to be updated.
 | |
|       if (Pred == Target)
 | |
|         BodyBlock->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
 | |
|       else
 | |
|         Pred->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
 | |
|     }
 | |
| 
 | |
|     // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
 | |
|     // they are clones, so the number of PHIs are the same.
 | |
|     // (a) Remove the edge coming from IBRPred from the "Direct" PHI
 | |
|     // (b) Leave that as the only edge in the "Indirect" PHI.
 | |
|     // (c) Merge the two in the body block.
 | |
|     BasicBlock::iterator Indirect = Target->begin(),
 | |
|                          End = Target->getFirstNonPHI()->getIterator();
 | |
|     BasicBlock::iterator Direct = DirectSucc->begin();
 | |
|     BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
 | |
| 
 | |
|     assert(&*End == Target->getTerminator() &&
 | |
|            "Block was expected to only contain PHIs");
 | |
| 
 | |
|     while (Indirect != End) {
 | |
|       PHINode *DirPHI = cast<PHINode>(Direct);
 | |
|       PHINode *IndPHI = cast<PHINode>(Indirect);
 | |
| 
 | |
|       // Now, clean up - the direct block shouldn't get the indirect value,
 | |
|       // and vice versa.
 | |
|       DirPHI->removeIncomingValue(IBRPred);
 | |
|       Direct++;
 | |
| 
 | |
|       // Advance the pointer here, to avoid invalidation issues when the old
 | |
|       // PHI is erased.
 | |
|       Indirect++;
 | |
| 
 | |
|       PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
 | |
|       NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
 | |
|                              IBRPred);
 | |
| 
 | |
|       // Create a PHI in the body block, to merge the direct and indirect
 | |
|       // predecessors.
 | |
|       PHINode *MergePHI =
 | |
|           PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
 | |
|       MergePHI->addIncoming(NewIndPHI, Target);
 | |
|       MergePHI->addIncoming(DirPHI, DirectSucc);
 | |
| 
 | |
|       IndPHI->replaceAllUsesWith(MergePHI);
 | |
|       IndPHI->eraseFromParent();
 | |
|     }
 | |
| 
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
 | |
| /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
 | |
| /// edges in ways that are non-optimal for isel. Start by eliminating these
 | |
| /// blocks so we can split them the way we want them.
 | |
| bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
 | |
|   SmallPtrSet<BasicBlock *, 16> Preheaders;
 | |
|   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
 | |
|   while (!LoopList.empty()) {
 | |
|     Loop *L = LoopList.pop_back_val();
 | |
|     LoopList.insert(LoopList.end(), L->begin(), L->end());
 | |
|     if (BasicBlock *Preheader = L->getLoopPreheader())
 | |
|       Preheaders.insert(Preheader);
 | |
|   }
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   // Note that this intentionally skips the entry block.
 | |
|   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
 | |
|     BasicBlock *BB = &*I++;
 | |
|     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
 | |
|     if (!DestBB ||
 | |
|         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
 | |
|       continue;
 | |
| 
 | |
|     eliminateMostlyEmptyBlock(BB);
 | |
|     MadeChange = true;
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
 | |
|                                                    BasicBlock *DestBB,
 | |
|                                                    bool isPreheader) {
 | |
|   // Do not delete loop preheaders if doing so would create a critical edge.
 | |
|   // Loop preheaders can be good locations to spill registers. If the
 | |
|   // preheader is deleted and we create a critical edge, registers may be
 | |
|   // spilled in the loop body instead.
 | |
|   if (!DisablePreheaderProtect && isPreheader &&
 | |
|       !(BB->getSinglePredecessor() &&
 | |
|         BB->getSinglePredecessor()->getSingleSuccessor()))
 | |
|     return false;
 | |
| 
 | |
|   // Try to skip merging if the unique predecessor of BB is terminated by a
 | |
|   // switch or indirect branch instruction, and BB is used as an incoming block
 | |
|   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
 | |
|   // add COPY instructions in the predecessor of BB instead of BB (if it is not
 | |
|   // merged). Note that the critical edge created by merging such blocks wont be
 | |
|   // split in MachineSink because the jump table is not analyzable. By keeping
 | |
|   // such empty block (BB), ISel will place COPY instructions in BB, not in the
 | |
|   // predecessor of BB.
 | |
|   BasicBlock *Pred = BB->getUniquePredecessor();
 | |
|   if (!Pred ||
 | |
|       !(isa<SwitchInst>(Pred->getTerminator()) ||
 | |
|         isa<IndirectBrInst>(Pred->getTerminator())))
 | |
|     return true;
 | |
| 
 | |
|   if (BB->getTerminator() != BB->getFirstNonPHI())
 | |
|     return true;
 | |
| 
 | |
|   // We use a simple cost heuristic which determine skipping merging is
 | |
|   // profitable if the cost of skipping merging is less than the cost of
 | |
|   // merging : Cost(skipping merging) < Cost(merging BB), where the
 | |
|   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
 | |
|   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
 | |
|   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
 | |
|   //   Freq(Pred) / Freq(BB) > 2.
 | |
|   // Note that if there are multiple empty blocks sharing the same incoming
 | |
|   // value for the PHIs in the DestBB, we consider them together. In such
 | |
|   // case, Cost(merging BB) will be the sum of their frequencies.
 | |
| 
 | |
|   if (!isa<PHINode>(DestBB->begin()))
 | |
|     return true;
 | |
| 
 | |
|   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
 | |
| 
 | |
|   // Find all other incoming blocks from which incoming values of all PHIs in
 | |
|   // DestBB are the same as the ones from BB.
 | |
|   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
 | |
|        ++PI) {
 | |
|     BasicBlock *DestBBPred = *PI;
 | |
|     if (DestBBPred == BB)
 | |
|       continue;
 | |
| 
 | |
|     bool HasAllSameValue = true;
 | |
|     BasicBlock::const_iterator DestBBI = DestBB->begin();
 | |
|     while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) {
 | |
|       if (DestPN->getIncomingValueForBlock(BB) !=
 | |
|           DestPN->getIncomingValueForBlock(DestBBPred)) {
 | |
|         HasAllSameValue = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (HasAllSameValue)
 | |
|       SameIncomingValueBBs.insert(DestBBPred);
 | |
|   }
 | |
| 
 | |
|   // See if all BB's incoming values are same as the value from Pred. In this
 | |
|   // case, no reason to skip merging because COPYs are expected to be place in
 | |
|   // Pred already.
 | |
|   if (SameIncomingValueBBs.count(Pred))
 | |
|     return true;
 | |
| 
 | |
|   if (!BFI) {
 | |
|     Function &F = *BB->getParent();
 | |
|     LoopInfo LI{DominatorTree(F)};
 | |
|     BPI.reset(new BranchProbabilityInfo(F, LI));
 | |
|     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
 | |
|   }
 | |
| 
 | |
|   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
 | |
|   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
 | |
| 
 | |
|   for (auto SameValueBB : SameIncomingValueBBs)
 | |
|     if (SameValueBB->getUniquePredecessor() == Pred &&
 | |
|         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
 | |
|       BBFreq += BFI->getBlockFreq(SameValueBB);
 | |
| 
 | |
|   return PredFreq.getFrequency() <=
 | |
|          BBFreq.getFrequency() * FreqRatioToSkipMerge;
 | |
| }
 | |
| 
 | |
| /// Return true if we can merge BB into DestBB if there is a single
 | |
| /// unconditional branch between them, and BB contains no other non-phi
 | |
| /// instructions.
 | |
| bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
 | |
|                                     const BasicBlock *DestBB) const {
 | |
|   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
 | |
|   // the successor.  If there are more complex condition (e.g. preheaders),
 | |
|   // don't mess around with them.
 | |
|   BasicBlock::const_iterator BBI = BB->begin();
 | |
|   while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
 | |
|     for (const User *U : PN->users()) {
 | |
|       const Instruction *UI = cast<Instruction>(U);
 | |
|       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
 | |
|         return false;
 | |
|       // If User is inside DestBB block and it is a PHINode then check
 | |
|       // incoming value. If incoming value is not from BB then this is
 | |
|       // a complex condition (e.g. preheaders) we want to avoid here.
 | |
|       if (UI->getParent() == DestBB) {
 | |
|         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
 | |
|           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
 | |
|             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
 | |
|             if (Insn && Insn->getParent() == BB &&
 | |
|                 Insn->getParent() != UPN->getIncomingBlock(I))
 | |
|               return false;
 | |
|           }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
 | |
|   // and DestBB may have conflicting incoming values for the block.  If so, we
 | |
|   // can't merge the block.
 | |
|   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
 | |
|   if (!DestBBPN) return true;  // no conflict.
 | |
| 
 | |
|   // Collect the preds of BB.
 | |
|   SmallPtrSet<const BasicBlock*, 16> BBPreds;
 | |
|   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
 | |
|     // It is faster to get preds from a PHI than with pred_iterator.
 | |
|     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
 | |
|       BBPreds.insert(BBPN->getIncomingBlock(i));
 | |
|   } else {
 | |
|     BBPreds.insert(pred_begin(BB), pred_end(BB));
 | |
|   }
 | |
| 
 | |
|   // Walk the preds of DestBB.
 | |
|   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
 | |
|     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
 | |
|     if (BBPreds.count(Pred)) {   // Common predecessor?
 | |
|       BBI = DestBB->begin();
 | |
|       while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
 | |
|         const Value *V1 = PN->getIncomingValueForBlock(Pred);
 | |
|         const Value *V2 = PN->getIncomingValueForBlock(BB);
 | |
| 
 | |
|         // If V2 is a phi node in BB, look up what the mapped value will be.
 | |
|         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
 | |
|           if (V2PN->getParent() == BB)
 | |
|             V2 = V2PN->getIncomingValueForBlock(Pred);
 | |
| 
 | |
|         // If there is a conflict, bail out.
 | |
|         if (V1 != V2) return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Eliminate a basic block that has only phi's and an unconditional branch in
 | |
| /// it.
 | |
| void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
 | |
|   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
 | |
|   BasicBlock *DestBB = BI->getSuccessor(0);
 | |
| 
 | |
|   DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
 | |
| 
 | |
|   // If the destination block has a single pred, then this is a trivial edge,
 | |
|   // just collapse it.
 | |
|   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
 | |
|     if (SinglePred != DestBB) {
 | |
|       // Remember if SinglePred was the entry block of the function.  If so, we
 | |
|       // will need to move BB back to the entry position.
 | |
|       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
 | |
|       MergeBasicBlockIntoOnlyPred(DestBB, nullptr);
 | |
| 
 | |
|       if (isEntry && BB != &BB->getParent()->getEntryBlock())
 | |
|         BB->moveBefore(&BB->getParent()->getEntryBlock());
 | |
| 
 | |
|       DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
 | |
|   // to handle the new incoming edges it is about to have.
 | |
|   PHINode *PN;
 | |
|   for (BasicBlock::iterator BBI = DestBB->begin();
 | |
|        (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
 | |
|     // Remove the incoming value for BB, and remember it.
 | |
|     Value *InVal = PN->removeIncomingValue(BB, false);
 | |
| 
 | |
|     // Two options: either the InVal is a phi node defined in BB or it is some
 | |
|     // value that dominates BB.
 | |
|     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
 | |
|     if (InValPhi && InValPhi->getParent() == BB) {
 | |
|       // Add all of the input values of the input PHI as inputs of this phi.
 | |
|       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
 | |
|         PN->addIncoming(InValPhi->getIncomingValue(i),
 | |
|                         InValPhi->getIncomingBlock(i));
 | |
|     } else {
 | |
|       // Otherwise, add one instance of the dominating value for each edge that
 | |
|       // we will be adding.
 | |
|       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
 | |
|         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
 | |
|           PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
 | |
|       } else {
 | |
|         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | |
|           PN->addIncoming(InVal, *PI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The PHIs are now updated, change everything that refers to BB to use
 | |
|   // DestBB and remove BB.
 | |
|   BB->replaceAllUsesWith(DestBB);
 | |
|   BB->eraseFromParent();
 | |
|   ++NumBlocksElim;
 | |
| 
 | |
|   DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
 | |
| }
 | |
| 
 | |
| // Computes a map of base pointer relocation instructions to corresponding
 | |
| // derived pointer relocation instructions given a vector of all relocate calls
 | |
| static void computeBaseDerivedRelocateMap(
 | |
|     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
 | |
|     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
 | |
|         &RelocateInstMap) {
 | |
|   // Collect information in two maps: one primarily for locating the base object
 | |
|   // while filling the second map; the second map is the final structure holding
 | |
|   // a mapping between Base and corresponding Derived relocate calls
 | |
|   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
 | |
|   for (auto *ThisRelocate : AllRelocateCalls) {
 | |
|     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
 | |
|                             ThisRelocate->getDerivedPtrIndex());
 | |
|     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
 | |
|   }
 | |
|   for (auto &Item : RelocateIdxMap) {
 | |
|     std::pair<unsigned, unsigned> Key = Item.first;
 | |
|     if (Key.first == Key.second)
 | |
|       // Base relocation: nothing to insert
 | |
|       continue;
 | |
| 
 | |
|     GCRelocateInst *I = Item.second;
 | |
|     auto BaseKey = std::make_pair(Key.first, Key.first);
 | |
| 
 | |
|     // We're iterating over RelocateIdxMap so we cannot modify it.
 | |
|     auto MaybeBase = RelocateIdxMap.find(BaseKey);
 | |
|     if (MaybeBase == RelocateIdxMap.end())
 | |
|       // TODO: We might want to insert a new base object relocate and gep off
 | |
|       // that, if there are enough derived object relocates.
 | |
|       continue;
 | |
| 
 | |
|     RelocateInstMap[MaybeBase->second].push_back(I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Accepts a GEP and extracts the operands into a vector provided they're all
 | |
| // small integer constants
 | |
| static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
 | |
|                                           SmallVectorImpl<Value *> &OffsetV) {
 | |
|   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
 | |
|     // Only accept small constant integer operands
 | |
|     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
 | |
|     if (!Op || Op->getZExtValue() > 20)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
 | |
|     OffsetV.push_back(GEP->getOperand(i));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
 | |
| // replace, computes a replacement, and affects it.
 | |
| static bool
 | |
| simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
 | |
|                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
 | |
|   bool MadeChange = false;
 | |
|   // We must ensure the relocation of derived pointer is defined after
 | |
|   // relocation of base pointer. If we find a relocation corresponding to base
 | |
|   // defined earlier than relocation of base then we move relocation of base
 | |
|   // right before found relocation. We consider only relocation in the same
 | |
|   // basic block as relocation of base. Relocations from other basic block will
 | |
|   // be skipped by optimization and we do not care about them.
 | |
|   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
 | |
|        &*R != RelocatedBase; ++R)
 | |
|     if (auto RI = dyn_cast<GCRelocateInst>(R))
 | |
|       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
 | |
|         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
 | |
|           RelocatedBase->moveBefore(RI);
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|   for (GCRelocateInst *ToReplace : Targets) {
 | |
|     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
 | |
|            "Not relocating a derived object of the original base object");
 | |
|     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
 | |
|       // A duplicate relocate call. TODO: coalesce duplicates.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (RelocatedBase->getParent() != ToReplace->getParent()) {
 | |
|       // Base and derived relocates are in different basic blocks.
 | |
|       // In this case transform is only valid when base dominates derived
 | |
|       // relocate. However it would be too expensive to check dominance
 | |
|       // for each such relocate, so we skip the whole transformation.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     Value *Base = ToReplace->getBasePtr();
 | |
|     auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
 | |
|     if (!Derived || Derived->getPointerOperand() != Base)
 | |
|       continue;
 | |
| 
 | |
|     SmallVector<Value *, 2> OffsetV;
 | |
|     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
 | |
|       continue;
 | |
| 
 | |
|     // Create a Builder and replace the target callsite with a gep
 | |
|     assert(RelocatedBase->getNextNode() &&
 | |
|            "Should always have one since it's not a terminator");
 | |
| 
 | |
|     // Insert after RelocatedBase
 | |
|     IRBuilder<> Builder(RelocatedBase->getNextNode());
 | |
|     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
 | |
| 
 | |
|     // If gc_relocate does not match the actual type, cast it to the right type.
 | |
|     // In theory, there must be a bitcast after gc_relocate if the type does not
 | |
|     // match, and we should reuse it to get the derived pointer. But it could be
 | |
|     // cases like this:
 | |
|     // bb1:
 | |
|     //  ...
 | |
|     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
 | |
|     //  br label %merge
 | |
|     //
 | |
|     // bb2:
 | |
|     //  ...
 | |
|     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
 | |
|     //  br label %merge
 | |
|     //
 | |
|     // merge:
 | |
|     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
 | |
|     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
 | |
|     //
 | |
|     // In this case, we can not find the bitcast any more. So we insert a new bitcast
 | |
|     // no matter there is already one or not. In this way, we can handle all cases, and
 | |
|     // the extra bitcast should be optimized away in later passes.
 | |
|     Value *ActualRelocatedBase = RelocatedBase;
 | |
|     if (RelocatedBase->getType() != Base->getType()) {
 | |
|       ActualRelocatedBase =
 | |
|           Builder.CreateBitCast(RelocatedBase, Base->getType());
 | |
|     }
 | |
|     Value *Replacement = Builder.CreateGEP(
 | |
|         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
 | |
|     Replacement->takeName(ToReplace);
 | |
|     // If the newly generated derived pointer's type does not match the original derived
 | |
|     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
 | |
|     Value *ActualReplacement = Replacement;
 | |
|     if (Replacement->getType() != ToReplace->getType()) {
 | |
|       ActualReplacement =
 | |
|           Builder.CreateBitCast(Replacement, ToReplace->getType());
 | |
|     }
 | |
|     ToReplace->replaceAllUsesWith(ActualReplacement);
 | |
|     ToReplace->eraseFromParent();
 | |
| 
 | |
|     MadeChange = true;
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| // Turns this:
 | |
| //
 | |
| // %base = ...
 | |
| // %ptr = gep %base + 15
 | |
| // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
 | |
| // %base' = relocate(%tok, i32 4, i32 4)
 | |
| // %ptr' = relocate(%tok, i32 4, i32 5)
 | |
| // %val = load %ptr'
 | |
| //
 | |
| // into this:
 | |
| //
 | |
| // %base = ...
 | |
| // %ptr = gep %base + 15
 | |
| // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
 | |
| // %base' = gc.relocate(%tok, i32 4, i32 4)
 | |
| // %ptr' = gep %base' + 15
 | |
| // %val = load %ptr'
 | |
| bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
 | |
|   bool MadeChange = false;
 | |
|   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
 | |
| 
 | |
|   for (auto *U : I.users())
 | |
|     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
 | |
|       // Collect all the relocate calls associated with a statepoint
 | |
|       AllRelocateCalls.push_back(Relocate);
 | |
| 
 | |
|   // We need atleast one base pointer relocation + one derived pointer
 | |
|   // relocation to mangle
 | |
|   if (AllRelocateCalls.size() < 2)
 | |
|     return false;
 | |
| 
 | |
|   // RelocateInstMap is a mapping from the base relocate instruction to the
 | |
|   // corresponding derived relocate instructions
 | |
|   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
 | |
|   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
 | |
|   if (RelocateInstMap.empty())
 | |
|     return false;
 | |
| 
 | |
|   for (auto &Item : RelocateInstMap)
 | |
|     // Item.first is the RelocatedBase to offset against
 | |
|     // Item.second is the vector of Targets to replace
 | |
|     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// SinkCast - Sink the specified cast instruction into its user blocks
 | |
| static bool SinkCast(CastInst *CI) {
 | |
|   BasicBlock *DefBB = CI->getParent();
 | |
| 
 | |
|   /// InsertedCasts - Only insert a cast in each block once.
 | |
|   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
 | |
|        UI != E; ) {
 | |
|     Use &TheUse = UI.getUse();
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
| 
 | |
|     // Figure out which BB this cast is used in.  For PHI's this is the
 | |
|     // appropriate predecessor block.
 | |
|     BasicBlock *UserBB = User->getParent();
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(User)) {
 | |
|       UserBB = PN->getIncomingBlock(TheUse);
 | |
|     }
 | |
| 
 | |
|     // Preincrement use iterator so we don't invalidate it.
 | |
|     ++UI;
 | |
| 
 | |
|     // The first insertion point of a block containing an EH pad is after the
 | |
|     // pad.  If the pad is the user, we cannot sink the cast past the pad.
 | |
|     if (User->isEHPad())
 | |
|       continue;
 | |
| 
 | |
|     // If the block selected to receive the cast is an EH pad that does not
 | |
|     // allow non-PHI instructions before the terminator, we can't sink the
 | |
|     // cast.
 | |
|     if (UserBB->getTerminator()->isEHPad())
 | |
|       continue;
 | |
| 
 | |
|     // If this user is in the same block as the cast, don't change the cast.
 | |
|     if (UserBB == DefBB) continue;
 | |
| 
 | |
|     // If we have already inserted a cast into this block, use it.
 | |
|     CastInst *&InsertedCast = InsertedCasts[UserBB];
 | |
| 
 | |
|     if (!InsertedCast) {
 | |
|       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
 | |
|       assert(InsertPt != UserBB->end());
 | |
|       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
 | |
|                                       CI->getType(), "", &*InsertPt);
 | |
|     }
 | |
| 
 | |
|     // Replace a use of the cast with a use of the new cast.
 | |
|     TheUse = InsertedCast;
 | |
|     MadeChange = true;
 | |
|     ++NumCastUses;
 | |
|   }
 | |
| 
 | |
|   // If we removed all uses, nuke the cast.
 | |
|   if (CI->use_empty()) {
 | |
|     CI->eraseFromParent();
 | |
|     MadeChange = true;
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// If the specified cast instruction is a noop copy (e.g. it's casting from
 | |
| /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
 | |
| /// reduce the number of virtual registers that must be created and coalesced.
 | |
| ///
 | |
| /// Return true if any changes are made.
 | |
| static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
 | |
|                                        const DataLayout &DL) {
 | |
|   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
 | |
|   // than sinking only nop casts, but is helpful on some platforms.
 | |
|   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
 | |
|     if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(),
 | |
|                                   ASC->getDestAddressSpace()))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // If this is a noop copy,
 | |
|   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
 | |
|   EVT DstVT = TLI.getValueType(DL, CI->getType());
 | |
| 
 | |
|   // This is an fp<->int conversion?
 | |
|   if (SrcVT.isInteger() != DstVT.isInteger())
 | |
|     return false;
 | |
| 
 | |
|   // If this is an extension, it will be a zero or sign extension, which
 | |
|   // isn't a noop.
 | |
|   if (SrcVT.bitsLT(DstVT)) return false;
 | |
| 
 | |
|   // If these values will be promoted, find out what they will be promoted
 | |
|   // to.  This helps us consider truncates on PPC as noop copies when they
 | |
|   // are.
 | |
|   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
 | |
|       TargetLowering::TypePromoteInteger)
 | |
|     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
 | |
|   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
 | |
|       TargetLowering::TypePromoteInteger)
 | |
|     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
 | |
| 
 | |
|   // If, after promotion, these are the same types, this is a noop copy.
 | |
|   if (SrcVT != DstVT)
 | |
|     return false;
 | |
| 
 | |
|   return SinkCast(CI);
 | |
| }
 | |
| 
 | |
| /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if
 | |
| /// possible.
 | |
| ///
 | |
| /// Return true if any changes were made.
 | |
| static bool CombineUAddWithOverflow(CmpInst *CI) {
 | |
|   Value *A, *B;
 | |
|   Instruction *AddI;
 | |
|   if (!match(CI,
 | |
|              m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
 | |
|     return false;
 | |
| 
 | |
|   Type *Ty = AddI->getType();
 | |
|   if (!isa<IntegerType>(Ty))
 | |
|     return false;
 | |
| 
 | |
|   // We don't want to move around uses of condition values this late, so we we
 | |
|   // check if it is legal to create the call to the intrinsic in the basic
 | |
|   // block containing the icmp:
 | |
| 
 | |
|   if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
 | |
|   // for now:
 | |
|   if (AddI->hasOneUse())
 | |
|     assert(*AddI->user_begin() == CI && "expected!");
 | |
| #endif
 | |
| 
 | |
|   Module *M = CI->getModule();
 | |
|   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
 | |
| 
 | |
|   auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
 | |
| 
 | |
|   auto *UAddWithOverflow =
 | |
|       CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
 | |
|   auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
 | |
|   auto *Overflow =
 | |
|       ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
 | |
| 
 | |
|   CI->replaceAllUsesWith(Overflow);
 | |
|   AddI->replaceAllUsesWith(UAdd);
 | |
|   CI->eraseFromParent();
 | |
|   AddI->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Sink the given CmpInst into user blocks to reduce the number of virtual
 | |
| /// registers that must be created and coalesced. This is a clear win except on
 | |
| /// targets with multiple condition code registers (PowerPC), where it might
 | |
| /// lose; some adjustment may be wanted there.
 | |
| ///
 | |
| /// Return true if any changes are made.
 | |
| static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
 | |
|   BasicBlock *DefBB = CI->getParent();
 | |
| 
 | |
|   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
 | |
|   if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI))
 | |
|     return false;
 | |
| 
 | |
|   // Only insert a cmp in each block once.
 | |
|   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
 | |
|        UI != E; ) {
 | |
|     Use &TheUse = UI.getUse();
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
| 
 | |
|     // Preincrement use iterator so we don't invalidate it.
 | |
|     ++UI;
 | |
| 
 | |
|     // Don't bother for PHI nodes.
 | |
|     if (isa<PHINode>(User))
 | |
|       continue;
 | |
| 
 | |
|     // Figure out which BB this cmp is used in.
 | |
|     BasicBlock *UserBB = User->getParent();
 | |
| 
 | |
|     // If this user is in the same block as the cmp, don't change the cmp.
 | |
|     if (UserBB == DefBB) continue;
 | |
| 
 | |
|     // If we have already inserted a cmp into this block, use it.
 | |
|     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
 | |
| 
 | |
|     if (!InsertedCmp) {
 | |
|       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
 | |
|       assert(InsertPt != UserBB->end());
 | |
|       InsertedCmp =
 | |
|           CmpInst::Create(CI->getOpcode(), CI->getPredicate(),
 | |
|                           CI->getOperand(0), CI->getOperand(1), "", &*InsertPt);
 | |
|       // Propagate the debug info.
 | |
|       InsertedCmp->setDebugLoc(CI->getDebugLoc());
 | |
|     }
 | |
| 
 | |
|     // Replace a use of the cmp with a use of the new cmp.
 | |
|     TheUse = InsertedCmp;
 | |
|     MadeChange = true;
 | |
|     ++NumCmpUses;
 | |
|   }
 | |
| 
 | |
|   // If we removed all uses, nuke the cmp.
 | |
|   if (CI->use_empty()) {
 | |
|     CI->eraseFromParent();
 | |
|     MadeChange = true;
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
 | |
|   if (SinkCmpExpression(CI, TLI))
 | |
|     return true;
 | |
| 
 | |
|   if (CombineUAddWithOverflow(CI))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Duplicate and sink the given 'and' instruction into user blocks where it is
 | |
| /// used in a compare to allow isel to generate better code for targets where
 | |
| /// this operation can be combined.
 | |
| ///
 | |
| /// Return true if any changes are made.
 | |
| static bool sinkAndCmp0Expression(Instruction *AndI,
 | |
|                                   const TargetLowering &TLI,
 | |
|                                   SetOfInstrs &InsertedInsts) {
 | |
|   // Double-check that we're not trying to optimize an instruction that was
 | |
|   // already optimized by some other part of this pass.
 | |
|   assert(!InsertedInsts.count(AndI) &&
 | |
|          "Attempting to optimize already optimized and instruction");
 | |
|   (void) InsertedInsts;
 | |
| 
 | |
|   // Nothing to do for single use in same basic block.
 | |
|   if (AndI->hasOneUse() &&
 | |
|       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
 | |
|     return false;
 | |
| 
 | |
|   // Try to avoid cases where sinking/duplicating is likely to increase register
 | |
|   // pressure.
 | |
|   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
 | |
|       !isa<ConstantInt>(AndI->getOperand(1)) &&
 | |
|       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   for (auto *U : AndI->users()) {
 | |
|     Instruction *User = cast<Instruction>(U);
 | |
| 
 | |
|     // Only sink for and mask feeding icmp with 0.
 | |
|     if (!isa<ICmpInst>(User))
 | |
|       return false;
 | |
| 
 | |
|     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
 | |
|     if (!CmpC || !CmpC->isZero())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
 | |
|   DEBUG(AndI->getParent()->dump());
 | |
| 
 | |
|   // Push the 'and' into the same block as the icmp 0.  There should only be
 | |
|   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
 | |
|   // others, so we don't need to keep track of which BBs we insert into.
 | |
|   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
 | |
|        UI != E; ) {
 | |
|     Use &TheUse = UI.getUse();
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
| 
 | |
|     // Preincrement use iterator so we don't invalidate it.
 | |
|     ++UI;
 | |
| 
 | |
|     DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
 | |
| 
 | |
|     // Keep the 'and' in the same place if the use is already in the same block.
 | |
|     Instruction *InsertPt =
 | |
|         User->getParent() == AndI->getParent() ? AndI : User;
 | |
|     Instruction *InsertedAnd =
 | |
|         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
 | |
|                                AndI->getOperand(1), "", InsertPt);
 | |
|     // Propagate the debug info.
 | |
|     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
 | |
| 
 | |
|     // Replace a use of the 'and' with a use of the new 'and'.
 | |
|     TheUse = InsertedAnd;
 | |
|     ++NumAndUses;
 | |
|     DEBUG(User->getParent()->dump());
 | |
|   }
 | |
| 
 | |
|   // We removed all uses, nuke the and.
 | |
|   AndI->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Check if the candidates could be combined with a shift instruction, which
 | |
| /// includes:
 | |
| /// 1. Truncate instruction
 | |
| /// 2. And instruction and the imm is a mask of the low bits:
 | |
| /// imm & (imm+1) == 0
 | |
| static bool isExtractBitsCandidateUse(Instruction *User) {
 | |
|   if (!isa<TruncInst>(User)) {
 | |
|     if (User->getOpcode() != Instruction::And ||
 | |
|         !isa<ConstantInt>(User->getOperand(1)))
 | |
|       return false;
 | |
| 
 | |
|     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
 | |
| 
 | |
|     if ((Cimm & (Cimm + 1)).getBoolValue())
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Sink both shift and truncate instruction to the use of truncate's BB.
 | |
| static bool
 | |
| SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
 | |
|                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
 | |
|                      const TargetLowering &TLI, const DataLayout &DL) {
 | |
|   BasicBlock *UserBB = User->getParent();
 | |
|   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
 | |
|   TruncInst *TruncI = dyn_cast<TruncInst>(User);
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   for (Value::user_iterator TruncUI = TruncI->user_begin(),
 | |
|                             TruncE = TruncI->user_end();
 | |
|        TruncUI != TruncE;) {
 | |
| 
 | |
|     Use &TruncTheUse = TruncUI.getUse();
 | |
|     Instruction *TruncUser = cast<Instruction>(*TruncUI);
 | |
|     // Preincrement use iterator so we don't invalidate it.
 | |
| 
 | |
|     ++TruncUI;
 | |
| 
 | |
|     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
 | |
|     if (!ISDOpcode)
 | |
|       continue;
 | |
| 
 | |
|     // If the use is actually a legal node, there will not be an
 | |
|     // implicit truncate.
 | |
|     // FIXME: always querying the result type is just an
 | |
|     // approximation; some nodes' legality is determined by the
 | |
|     // operand or other means. There's no good way to find out though.
 | |
|     if (TLI.isOperationLegalOrCustom(
 | |
|             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
 | |
|       continue;
 | |
| 
 | |
|     // Don't bother for PHI nodes.
 | |
|     if (isa<PHINode>(TruncUser))
 | |
|       continue;
 | |
| 
 | |
|     BasicBlock *TruncUserBB = TruncUser->getParent();
 | |
| 
 | |
|     if (UserBB == TruncUserBB)
 | |
|       continue;
 | |
| 
 | |
|     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
 | |
|     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
 | |
| 
 | |
|     if (!InsertedShift && !InsertedTrunc) {
 | |
|       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
 | |
|       assert(InsertPt != TruncUserBB->end());
 | |
|       // Sink the shift
 | |
|       if (ShiftI->getOpcode() == Instruction::AShr)
 | |
|         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
 | |
|                                                    "", &*InsertPt);
 | |
|       else
 | |
|         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
 | |
|                                                    "", &*InsertPt);
 | |
| 
 | |
|       // Sink the trunc
 | |
|       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
 | |
|       TruncInsertPt++;
 | |
|       assert(TruncInsertPt != TruncUserBB->end());
 | |
| 
 | |
|       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
 | |
|                                        TruncI->getType(), "", &*TruncInsertPt);
 | |
| 
 | |
|       MadeChange = true;
 | |
| 
 | |
|       TruncTheUse = InsertedTrunc;
 | |
|     }
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// Sink the shift *right* instruction into user blocks if the uses could
 | |
| /// potentially be combined with this shift instruction and generate BitExtract
 | |
| /// instruction. It will only be applied if the architecture supports BitExtract
 | |
| /// instruction. Here is an example:
 | |
| /// BB1:
 | |
| ///   %x.extract.shift = lshr i64 %arg1, 32
 | |
| /// BB2:
 | |
| ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
 | |
| /// ==>
 | |
| ///
 | |
| /// BB2:
 | |
| ///   %x.extract.shift.1 = lshr i64 %arg1, 32
 | |
| ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
 | |
| ///
 | |
| /// CodeGen will recoginze the pattern in BB2 and generate BitExtract
 | |
| /// instruction.
 | |
| /// Return true if any changes are made.
 | |
| static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
 | |
|                                 const TargetLowering &TLI,
 | |
|                                 const DataLayout &DL) {
 | |
|   BasicBlock *DefBB = ShiftI->getParent();
 | |
| 
 | |
|   /// Only insert instructions in each block once.
 | |
|   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
 | |
| 
 | |
|   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
 | |
|        UI != E;) {
 | |
|     Use &TheUse = UI.getUse();
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
|     // Preincrement use iterator so we don't invalidate it.
 | |
|     ++UI;
 | |
| 
 | |
|     // Don't bother for PHI nodes.
 | |
|     if (isa<PHINode>(User))
 | |
|       continue;
 | |
| 
 | |
|     if (!isExtractBitsCandidateUse(User))
 | |
|       continue;
 | |
| 
 | |
|     BasicBlock *UserBB = User->getParent();
 | |
| 
 | |
|     if (UserBB == DefBB) {
 | |
|       // If the shift and truncate instruction are in the same BB. The use of
 | |
|       // the truncate(TruncUse) may still introduce another truncate if not
 | |
|       // legal. In this case, we would like to sink both shift and truncate
 | |
|       // instruction to the BB of TruncUse.
 | |
|       // for example:
 | |
|       // BB1:
 | |
|       // i64 shift.result = lshr i64 opnd, imm
 | |
|       // trunc.result = trunc shift.result to i16
 | |
|       //
 | |
|       // BB2:
 | |
|       //   ----> We will have an implicit truncate here if the architecture does
 | |
|       //   not have i16 compare.
 | |
|       // cmp i16 trunc.result, opnd2
 | |
|       //
 | |
|       if (isa<TruncInst>(User) && shiftIsLegal
 | |
|           // If the type of the truncate is legal, no trucate will be
 | |
|           // introduced in other basic blocks.
 | |
|           &&
 | |
|           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
 | |
|         MadeChange =
 | |
|             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
|     // If we have already inserted a shift into this block, use it.
 | |
|     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
 | |
| 
 | |
|     if (!InsertedShift) {
 | |
|       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
 | |
|       assert(InsertPt != UserBB->end());
 | |
| 
 | |
|       if (ShiftI->getOpcode() == Instruction::AShr)
 | |
|         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
 | |
|                                                    "", &*InsertPt);
 | |
|       else
 | |
|         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
 | |
|                                                    "", &*InsertPt);
 | |
| 
 | |
|       MadeChange = true;
 | |
|     }
 | |
| 
 | |
|     // Replace a use of the shift with a use of the new shift.
 | |
|     TheUse = InsertedShift;
 | |
|   }
 | |
| 
 | |
|   // If we removed all uses, nuke the shift.
 | |
|   if (ShiftI->use_empty())
 | |
|     ShiftI->eraseFromParent();
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// If counting leading or trailing zeros is an expensive operation and a zero
 | |
| /// input is defined, add a check for zero to avoid calling the intrinsic.
 | |
| ///
 | |
| /// We want to transform:
 | |
| ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
 | |
| ///
 | |
| /// into:
 | |
| ///   entry:
 | |
| ///     %cmpz = icmp eq i64 %A, 0
 | |
| ///     br i1 %cmpz, label %cond.end, label %cond.false
 | |
| ///   cond.false:
 | |
| ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
 | |
| ///     br label %cond.end
 | |
| ///   cond.end:
 | |
| ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
 | |
| ///
 | |
| /// If the transform is performed, return true and set ModifiedDT to true.
 | |
| static bool despeculateCountZeros(IntrinsicInst *CountZeros,
 | |
|                                   const TargetLowering *TLI,
 | |
|                                   const DataLayout *DL,
 | |
|                                   bool &ModifiedDT) {
 | |
|   if (!TLI || !DL)
 | |
|     return false;
 | |
| 
 | |
|   // If a zero input is undefined, it doesn't make sense to despeculate that.
 | |
|   if (match(CountZeros->getOperand(1), m_One()))
 | |
|     return false;
 | |
| 
 | |
|   // If it's cheap to speculate, there's nothing to do.
 | |
|   auto IntrinsicID = CountZeros->getIntrinsicID();
 | |
|   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
 | |
|       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
 | |
|     return false;
 | |
| 
 | |
|   // Only handle legal scalar cases. Anything else requires too much work.
 | |
|   Type *Ty = CountZeros->getType();
 | |
|   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
 | |
|   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
 | |
|     return false;
 | |
| 
 | |
|   // The intrinsic will be sunk behind a compare against zero and branch.
 | |
|   BasicBlock *StartBlock = CountZeros->getParent();
 | |
|   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
 | |
| 
 | |
|   // Create another block after the count zero intrinsic. A PHI will be added
 | |
|   // in this block to select the result of the intrinsic or the bit-width
 | |
|   // constant if the input to the intrinsic is zero.
 | |
|   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
 | |
|   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
 | |
| 
 | |
|   // Set up a builder to create a compare, conditional branch, and PHI.
 | |
|   IRBuilder<> Builder(CountZeros->getContext());
 | |
|   Builder.SetInsertPoint(StartBlock->getTerminator());
 | |
|   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
 | |
| 
 | |
|   // Replace the unconditional branch that was created by the first split with
 | |
|   // a compare against zero and a conditional branch.
 | |
|   Value *Zero = Constant::getNullValue(Ty);
 | |
|   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
 | |
|   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
 | |
|   StartBlock->getTerminator()->eraseFromParent();
 | |
| 
 | |
|   // Create a PHI in the end block to select either the output of the intrinsic
 | |
|   // or the bit width of the operand.
 | |
|   Builder.SetInsertPoint(&EndBlock->front());
 | |
|   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
 | |
|   CountZeros->replaceAllUsesWith(PN);
 | |
|   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
 | |
|   PN->addIncoming(BitWidth, StartBlock);
 | |
|   PN->addIncoming(CountZeros, CallBlock);
 | |
| 
 | |
|   // We are explicitly handling the zero case, so we can set the intrinsic's
 | |
|   // undefined zero argument to 'true'. This will also prevent reprocessing the
 | |
|   // intrinsic; we only despeculate when a zero input is defined.
 | |
|   CountZeros->setArgOperand(1, Builder.getTrue());
 | |
|   ModifiedDT = true;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // This class provides helper functions to expand a memcmp library call into an
 | |
| // inline expansion.
 | |
| class MemCmpExpansion {
 | |
|   struct ResultBlock {
 | |
|     BasicBlock *BB = nullptr;
 | |
|     PHINode *PhiSrc1 = nullptr;
 | |
|     PHINode *PhiSrc2 = nullptr;
 | |
| 
 | |
|     ResultBlock() = default;
 | |
|   };
 | |
| 
 | |
|   CallInst *CI;
 | |
|   ResultBlock ResBlock;
 | |
|   unsigned MaxLoadSize;
 | |
|   unsigned NumBlocks;
 | |
|   unsigned NumBlocksNonOneByte;
 | |
|   unsigned NumLoadsPerBlock;
 | |
|   std::vector<BasicBlock *> LoadCmpBlocks;
 | |
|   BasicBlock *EndBlock;
 | |
|   PHINode *PhiRes;
 | |
|   bool IsUsedForZeroCmp;
 | |
|   const DataLayout &DL;
 | |
|   IRBuilder<> Builder;
 | |
| 
 | |
|   unsigned calculateNumBlocks(unsigned Size);
 | |
|   void createLoadCmpBlocks();
 | |
|   void createResultBlock();
 | |
|   void setupResultBlockPHINodes();
 | |
|   void setupEndBlockPHINodes();
 | |
|   void emitLoadCompareBlock(unsigned Index, unsigned LoadSize,
 | |
|                             unsigned GEPIndex);
 | |
|   Value *getCompareLoadPairs(unsigned Index, unsigned Size,
 | |
|                              unsigned &NumBytesProcessed);
 | |
|   void emitLoadCompareBlockMultipleLoads(unsigned Index, unsigned Size,
 | |
|                                          unsigned &NumBytesProcessed);
 | |
|   void emitLoadCompareByteBlock(unsigned Index, unsigned GEPIndex);
 | |
|   void emitMemCmpResultBlock();
 | |
|   Value *getMemCmpExpansionZeroCase(unsigned Size);
 | |
|   Value *getMemCmpEqZeroOneBlock(unsigned Size);
 | |
|   Value *getMemCmpOneBlock(unsigned Size);
 | |
|   unsigned getLoadSize(unsigned Size);
 | |
|   unsigned getNumLoads(unsigned Size);
 | |
| 
 | |
| public:
 | |
|   MemCmpExpansion(CallInst *CI, uint64_t Size, unsigned MaxLoadSize,
 | |
|                   unsigned NumLoadsPerBlock, const DataLayout &DL);
 | |
| 
 | |
|   Value *getMemCmpExpansion(uint64_t Size);
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| // Initialize the basic block structure required for expansion of memcmp call
 | |
| // with given maximum load size and memcmp size parameter.
 | |
| // This structure includes:
 | |
| // 1. A list of load compare blocks - LoadCmpBlocks.
 | |
| // 2. An EndBlock, split from original instruction point, which is the block to
 | |
| // return from.
 | |
| // 3. ResultBlock, block to branch to for early exit when a
 | |
| // LoadCmpBlock finds a difference.
 | |
| MemCmpExpansion::MemCmpExpansion(CallInst *CI, uint64_t Size,
 | |
|                                  unsigned MaxLoadSize, unsigned LoadsPerBlock,
 | |
|                                  const DataLayout &TheDataLayout)
 | |
|     : CI(CI), MaxLoadSize(MaxLoadSize), NumLoadsPerBlock(LoadsPerBlock),
 | |
|       DL(TheDataLayout), Builder(CI) {
 | |
|   // A memcmp with zero-comparison with only one block of load and compare does
 | |
|   // not need to set up any extra blocks. This case could be handled in the DAG,
 | |
|   // but since we have all of the machinery to flexibly expand any memcpy here,
 | |
|   // we choose to handle this case too to avoid fragmented lowering.
 | |
|   IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI);
 | |
|   NumBlocks = calculateNumBlocks(Size);
 | |
|   if ((!IsUsedForZeroCmp && NumLoadsPerBlock != 1) || NumBlocks != 1) {
 | |
|     BasicBlock *StartBlock = CI->getParent();
 | |
|     EndBlock = StartBlock->splitBasicBlock(CI, "endblock");
 | |
|     setupEndBlockPHINodes();
 | |
|     createResultBlock();
 | |
| 
 | |
|     // If return value of memcmp is not used in a zero equality, we need to
 | |
|     // calculate which source was larger. The calculation requires the
 | |
|     // two loaded source values of each load compare block.
 | |
|     // These will be saved in the phi nodes created by setupResultBlockPHINodes.
 | |
|     if (!IsUsedForZeroCmp)
 | |
|       setupResultBlockPHINodes();
 | |
| 
 | |
|     // Create the number of required load compare basic blocks.
 | |
|     createLoadCmpBlocks();
 | |
| 
 | |
|     // Update the terminator added by splitBasicBlock to branch to the first
 | |
|     // LoadCmpBlock.
 | |
|     StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
 | |
|   }
 | |
| 
 | |
|   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
 | |
| }
 | |
| 
 | |
| void MemCmpExpansion::createLoadCmpBlocks() {
 | |
|   for (unsigned i = 0; i < NumBlocks; i++) {
 | |
|     BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
 | |
|                                         EndBlock->getParent(), EndBlock);
 | |
|     LoadCmpBlocks.push_back(BB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MemCmpExpansion::createResultBlock() {
 | |
|   ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
 | |
|                                    EndBlock->getParent(), EndBlock);
 | |
| }
 | |
| 
 | |
| // This function creates the IR instructions for loading and comparing 1 byte.
 | |
| // It loads 1 byte from each source of the memcmp parameters with the given
 | |
| // GEPIndex. It then subtracts the two loaded values and adds this result to the
 | |
| // final phi node for selecting the memcmp result.
 | |
| void MemCmpExpansion::emitLoadCompareByteBlock(unsigned Index,
 | |
|                                                unsigned GEPIndex) {
 | |
|   Value *Source1 = CI->getArgOperand(0);
 | |
|   Value *Source2 = CI->getArgOperand(1);
 | |
| 
 | |
|   Builder.SetInsertPoint(LoadCmpBlocks[Index]);
 | |
|   Type *LoadSizeType = Type::getInt8Ty(CI->getContext());
 | |
|   // Cast source to LoadSizeType*.
 | |
|   if (Source1->getType() != LoadSizeType)
 | |
|     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
 | |
|   if (Source2->getType() != LoadSizeType)
 | |
|     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
 | |
| 
 | |
|   // Get the base address using the GEPIndex.
 | |
|   if (GEPIndex != 0) {
 | |
|     Source1 = Builder.CreateGEP(LoadSizeType, Source1,
 | |
|                                 ConstantInt::get(LoadSizeType, GEPIndex));
 | |
|     Source2 = Builder.CreateGEP(LoadSizeType, Source2,
 | |
|                                 ConstantInt::get(LoadSizeType, GEPIndex));
 | |
|   }
 | |
| 
 | |
|   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
 | |
|   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
 | |
| 
 | |
|   LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext()));
 | |
|   LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext()));
 | |
|   Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2);
 | |
| 
 | |
|   PhiRes->addIncoming(Diff, LoadCmpBlocks[Index]);
 | |
| 
 | |
|   if (Index < (LoadCmpBlocks.size() - 1)) {
 | |
|     // Early exit branch if difference found to EndBlock. Otherwise, continue to
 | |
|     // next LoadCmpBlock,
 | |
|     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
 | |
|                                     ConstantInt::get(Diff->getType(), 0));
 | |
|     BranchInst *CmpBr =
 | |
|         BranchInst::Create(EndBlock, LoadCmpBlocks[Index + 1], Cmp);
 | |
|     Builder.Insert(CmpBr);
 | |
|   } else {
 | |
|     // The last block has an unconditional branch to EndBlock.
 | |
|     BranchInst *CmpBr = BranchInst::Create(EndBlock);
 | |
|     Builder.Insert(CmpBr);
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned MemCmpExpansion::getNumLoads(unsigned Size) {
 | |
|   return (Size / MaxLoadSize) + countPopulation(Size % MaxLoadSize);
 | |
| }
 | |
| 
 | |
| unsigned MemCmpExpansion::getLoadSize(unsigned Size) {
 | |
|   return MinAlign(PowerOf2Floor(Size), MaxLoadSize);
 | |
| }
 | |
| 
 | |
| /// Generate an equality comparison for one or more pairs of loaded values.
 | |
| /// This is used in the case where the memcmp() call is compared equal or not
 | |
| /// equal to zero.
 | |
| Value *MemCmpExpansion::getCompareLoadPairs(unsigned Index, unsigned Size,
 | |
|                                             unsigned &NumBytesProcessed) {
 | |
|   std::vector<Value *> XorList, OrList;
 | |
|   Value *Diff;
 | |
| 
 | |
|   unsigned RemainingBytes = Size - NumBytesProcessed;
 | |
|   unsigned NumLoadsRemaining = getNumLoads(RemainingBytes);
 | |
|   unsigned NumLoads = std::min(NumLoadsRemaining, NumLoadsPerBlock);
 | |
| 
 | |
|   // For a single-block expansion, start inserting before the memcmp call.
 | |
|   if (LoadCmpBlocks.empty())
 | |
|     Builder.SetInsertPoint(CI);
 | |
|   else
 | |
|     Builder.SetInsertPoint(LoadCmpBlocks[Index]);
 | |
| 
 | |
|   Value *Cmp = nullptr;
 | |
|   for (unsigned i = 0; i < NumLoads; ++i) {
 | |
|     unsigned LoadSize = getLoadSize(RemainingBytes);
 | |
|     unsigned GEPIndex = NumBytesProcessed / LoadSize;
 | |
|     NumBytesProcessed += LoadSize;
 | |
|     RemainingBytes -= LoadSize;
 | |
| 
 | |
|     Type *LoadSizeType = IntegerType::get(CI->getContext(), LoadSize * 8);
 | |
|     Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
 | |
|     assert(LoadSize <= MaxLoadSize && "Unexpected load type");
 | |
| 
 | |
|     Value *Source1 = CI->getArgOperand(0);
 | |
|     Value *Source2 = CI->getArgOperand(1);
 | |
| 
 | |
|     // Cast source to LoadSizeType*.
 | |
|     if (Source1->getType() != LoadSizeType)
 | |
|       Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
 | |
|     if (Source2->getType() != LoadSizeType)
 | |
|       Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
 | |
| 
 | |
|     // Get the base address using the GEPIndex.
 | |
|     if (GEPIndex != 0) {
 | |
|       Source1 = Builder.CreateGEP(LoadSizeType, Source1,
 | |
|                                   ConstantInt::get(LoadSizeType, GEPIndex));
 | |
|       Source2 = Builder.CreateGEP(LoadSizeType, Source2,
 | |
|                                   ConstantInt::get(LoadSizeType, GEPIndex));
 | |
|     }
 | |
| 
 | |
|     // Get a constant or load a value for each source address.
 | |
|     Value *LoadSrc1 = nullptr;
 | |
|     if (auto *Source1C = dyn_cast<Constant>(Source1))
 | |
|       LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL);
 | |
|     if (!LoadSrc1)
 | |
|       LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
 | |
| 
 | |
|     Value *LoadSrc2 = nullptr;
 | |
|     if (auto *Source2C = dyn_cast<Constant>(Source2))
 | |
|       LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL);
 | |
|     if (!LoadSrc2)
 | |
|       LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
 | |
| 
 | |
|     if (NumLoads != 1) {
 | |
|       if (LoadSizeType != MaxLoadType) {
 | |
|         LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
 | |
|         LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
 | |
|       }
 | |
|       // If we have multiple loads per block, we need to generate a composite
 | |
|       // comparison using xor+or.
 | |
|       Diff = Builder.CreateXor(LoadSrc1, LoadSrc2);
 | |
|       Diff = Builder.CreateZExt(Diff, MaxLoadType);
 | |
|       XorList.push_back(Diff);
 | |
|     } else {
 | |
|       // If there's only one load per block, we just compare the loaded values.
 | |
|       Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
 | |
|     std::vector<Value *> OutList;
 | |
|     for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
 | |
|       Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
 | |
|       OutList.push_back(Or);
 | |
|     }
 | |
|     if (InList.size() % 2 != 0)
 | |
|       OutList.push_back(InList.back());
 | |
|     return OutList;
 | |
|   };
 | |
| 
 | |
|   if (!Cmp) {
 | |
|     // Pairwise OR the XOR results.
 | |
|     OrList = pairWiseOr(XorList);
 | |
| 
 | |
|     // Pairwise OR the OR results until one result left.
 | |
|     while (OrList.size() != 1) {
 | |
|       OrList = pairWiseOr(OrList);
 | |
|     }
 | |
|     Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
 | |
|   }
 | |
| 
 | |
|   return Cmp;
 | |
| }
 | |
| 
 | |
| void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(
 | |
|     unsigned Index, unsigned Size, unsigned &NumBytesProcessed) {
 | |
|   Value *Cmp = getCompareLoadPairs(Index, Size, NumBytesProcessed);
 | |
| 
 | |
|   BasicBlock *NextBB = (Index == (LoadCmpBlocks.size() - 1))
 | |
|                            ? EndBlock
 | |
|                            : LoadCmpBlocks[Index + 1];
 | |
|   // Early exit branch if difference found to ResultBlock. Otherwise,
 | |
|   // continue to next LoadCmpBlock or EndBlock.
 | |
|   BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
 | |
|   Builder.Insert(CmpBr);
 | |
| 
 | |
|   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
 | |
|   // since early exit to ResultBlock was not taken (no difference was found in
 | |
|   // any of the bytes).
 | |
|   if (Index == LoadCmpBlocks.size() - 1) {
 | |
|     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
 | |
|     PhiRes->addIncoming(Zero, LoadCmpBlocks[Index]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // This function creates the IR intructions for loading and comparing using the
 | |
| // given LoadSize. It loads the number of bytes specified by LoadSize from each
 | |
| // source of the memcmp parameters. It then does a subtract to see if there was
 | |
| // a difference in the loaded values. If a difference is found, it branches
 | |
| // with an early exit to the ResultBlock for calculating which source was
 | |
| // larger. Otherwise, it falls through to the either the next LoadCmpBlock or
 | |
| // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
 | |
| // a special case through emitLoadCompareByteBlock. The special handling can
 | |
| // simply subtract the loaded values and add it to the result phi node.
 | |
| void MemCmpExpansion::emitLoadCompareBlock(unsigned Index, unsigned LoadSize,
 | |
|                                            unsigned GEPIndex) {
 | |
|   if (LoadSize == 1) {
 | |
|     MemCmpExpansion::emitLoadCompareByteBlock(Index, GEPIndex);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Type *LoadSizeType = IntegerType::get(CI->getContext(), LoadSize * 8);
 | |
|   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
 | |
|   assert(LoadSize <= MaxLoadSize && "Unexpected load type");
 | |
| 
 | |
|   Value *Source1 = CI->getArgOperand(0);
 | |
|   Value *Source2 = CI->getArgOperand(1);
 | |
| 
 | |
|   Builder.SetInsertPoint(LoadCmpBlocks[Index]);
 | |
|   // Cast source to LoadSizeType*.
 | |
|   if (Source1->getType() != LoadSizeType)
 | |
|     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
 | |
|   if (Source2->getType() != LoadSizeType)
 | |
|     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
 | |
| 
 | |
|   // Get the base address using the GEPIndex.
 | |
|   if (GEPIndex != 0) {
 | |
|     Source1 = Builder.CreateGEP(LoadSizeType, Source1,
 | |
|                                 ConstantInt::get(LoadSizeType, GEPIndex));
 | |
|     Source2 = Builder.CreateGEP(LoadSizeType, Source2,
 | |
|                                 ConstantInt::get(LoadSizeType, GEPIndex));
 | |
|   }
 | |
| 
 | |
|   // Load LoadSizeType from the base address.
 | |
|   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
 | |
|   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
 | |
| 
 | |
|   if (DL.isLittleEndian()) {
 | |
|     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
 | |
|                                                 Intrinsic::bswap, LoadSizeType);
 | |
|     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
 | |
|     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
 | |
|   }
 | |
| 
 | |
|   if (LoadSizeType != MaxLoadType) {
 | |
|     LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
 | |
|     LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
 | |
|   }
 | |
| 
 | |
|   // Add the loaded values to the phi nodes for calculating memcmp result only
 | |
|   // if result is not used in a zero equality.
 | |
|   if (!IsUsedForZeroCmp) {
 | |
|     ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[Index]);
 | |
|     ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[Index]);
 | |
|   }
 | |
| 
 | |
|   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2);
 | |
|   BasicBlock *NextBB = (Index == (LoadCmpBlocks.size() - 1))
 | |
|                            ? EndBlock
 | |
|                            : LoadCmpBlocks[Index + 1];
 | |
|   // Early exit branch if difference found to ResultBlock. Otherwise, continue
 | |
|   // to next LoadCmpBlock or EndBlock.
 | |
|   BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
 | |
|   Builder.Insert(CmpBr);
 | |
| 
 | |
|   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
 | |
|   // since early exit to ResultBlock was not taken (no difference was found in
 | |
|   // any of the bytes).
 | |
|   if (Index == LoadCmpBlocks.size() - 1) {
 | |
|     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
 | |
|     PhiRes->addIncoming(Zero, LoadCmpBlocks[Index]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // This function populates the ResultBlock with a sequence to calculate the
 | |
| // memcmp result. It compares the two loaded source values and returns -1 if
 | |
| // src1 < src2 and 1 if src1 > src2.
 | |
| void MemCmpExpansion::emitMemCmpResultBlock() {
 | |
|   // Special case: if memcmp result is used in a zero equality, result does not
 | |
|   // need to be calculated and can simply return 1.
 | |
|   if (IsUsedForZeroCmp) {
 | |
|     BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
 | |
|     Builder.SetInsertPoint(ResBlock.BB, InsertPt);
 | |
|     Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
 | |
|     PhiRes->addIncoming(Res, ResBlock.BB);
 | |
|     BranchInst *NewBr = BranchInst::Create(EndBlock);
 | |
|     Builder.Insert(NewBr);
 | |
|     return;
 | |
|   }
 | |
|   BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
 | |
|   Builder.SetInsertPoint(ResBlock.BB, InsertPt);
 | |
| 
 | |
|   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
 | |
|                                   ResBlock.PhiSrc2);
 | |
| 
 | |
|   Value *Res =
 | |
|       Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
 | |
|                            ConstantInt::get(Builder.getInt32Ty(), 1));
 | |
| 
 | |
|   BranchInst *NewBr = BranchInst::Create(EndBlock);
 | |
|   Builder.Insert(NewBr);
 | |
|   PhiRes->addIncoming(Res, ResBlock.BB);
 | |
| }
 | |
| 
 | |
| unsigned MemCmpExpansion::calculateNumBlocks(unsigned Size) {
 | |
|   unsigned NumBlocks = 0;
 | |
|   bool HaveOneByteLoad = false;
 | |
|   unsigned RemainingSize = Size;
 | |
|   unsigned LoadSize = MaxLoadSize;
 | |
|   while (RemainingSize) {
 | |
|     if (LoadSize == 1)
 | |
|       HaveOneByteLoad = true;
 | |
|     NumBlocks += RemainingSize / LoadSize;
 | |
|     RemainingSize = RemainingSize % LoadSize;
 | |
|     LoadSize = LoadSize / 2;
 | |
|   }
 | |
|   NumBlocksNonOneByte = HaveOneByteLoad ? (NumBlocks - 1) : NumBlocks;
 | |
| 
 | |
|   if (IsUsedForZeroCmp)
 | |
|     NumBlocks = NumBlocks / NumLoadsPerBlock +
 | |
|                 (NumBlocks % NumLoadsPerBlock != 0 ? 1 : 0);
 | |
| 
 | |
|   return NumBlocks;
 | |
| }
 | |
| 
 | |
| void MemCmpExpansion::setupResultBlockPHINodes() {
 | |
|   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
 | |
|   Builder.SetInsertPoint(ResBlock.BB);
 | |
|   ResBlock.PhiSrc1 =
 | |
|       Builder.CreatePHI(MaxLoadType, NumBlocksNonOneByte, "phi.src1");
 | |
|   ResBlock.PhiSrc2 =
 | |
|       Builder.CreatePHI(MaxLoadType, NumBlocksNonOneByte, "phi.src2");
 | |
| }
 | |
| 
 | |
| void MemCmpExpansion::setupEndBlockPHINodes() {
 | |
|   Builder.SetInsertPoint(&EndBlock->front());
 | |
|   PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
 | |
| }
 | |
| 
 | |
| Value *MemCmpExpansion::getMemCmpExpansionZeroCase(unsigned Size) {
 | |
|   unsigned NumBytesProcessed = 0;
 | |
|   // This loop populates each of the LoadCmpBlocks with the IR sequence to
 | |
|   // handle multiple loads per block.
 | |
|   for (unsigned i = 0; i < NumBlocks; ++i)
 | |
|     emitLoadCompareBlockMultipleLoads(i, Size, NumBytesProcessed);
 | |
| 
 | |
|   emitMemCmpResultBlock();
 | |
|   return PhiRes;
 | |
| }
 | |
| 
 | |
| /// A memcmp expansion that compares equality with 0 and only has one block of
 | |
| /// load and compare can bypass the compare, branch, and phi IR that is required
 | |
| /// in the general case.
 | |
| Value *MemCmpExpansion::getMemCmpEqZeroOneBlock(unsigned Size) {
 | |
|   unsigned NumBytesProcessed = 0;
 | |
|   Value *Cmp = getCompareLoadPairs(0, Size, NumBytesProcessed);
 | |
|   return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
 | |
| }
 | |
| 
 | |
| /// A memcmp expansion that only has one block of load and compare can bypass
 | |
| /// the compare, branch, and phi IR that is required in the general case.
 | |
| Value *MemCmpExpansion::getMemCmpOneBlock(unsigned Size) {
 | |
|   assert(NumLoadsPerBlock == 1 && "Only handles one load pair per block");
 | |
| 
 | |
|   Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
 | |
|   Value *Source1 = CI->getArgOperand(0);
 | |
|   Value *Source2 = CI->getArgOperand(1);
 | |
| 
 | |
|   // Cast source to LoadSizeType*.
 | |
|   if (Source1->getType() != LoadSizeType)
 | |
|     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
 | |
|   if (Source2->getType() != LoadSizeType)
 | |
|     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
 | |
| 
 | |
|   // Load LoadSizeType from the base address.
 | |
|   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
 | |
|   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
 | |
| 
 | |
|   if (DL.isLittleEndian() && Size != 1) {
 | |
|     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
 | |
|                                                 Intrinsic::bswap, LoadSizeType);
 | |
|     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
 | |
|     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
 | |
|   }
 | |
| 
 | |
|   if (Size < 4) {
 | |
|     // The i8 and i16 cases don't need compares. We zext the loaded values and
 | |
|     // subtract them to get the suitable negative, zero, or positive i32 result.
 | |
|     LoadSrc1 = Builder.CreateZExt(LoadSrc1, Builder.getInt32Ty());
 | |
|     LoadSrc2 = Builder.CreateZExt(LoadSrc2, Builder.getInt32Ty());
 | |
|     return Builder.CreateSub(LoadSrc1, LoadSrc2);
 | |
|   }
 | |
| 
 | |
|   // The result of memcmp is negative, zero, or positive, so produce that by
 | |
|   // subtracting 2 extended compare bits: sub (ugt, ult).
 | |
|   // If a target prefers to use selects to get -1/0/1, they should be able
 | |
|   // to transform this later. The inverse transform (going from selects to math)
 | |
|   // may not be possible in the DAG because the selects got converted into
 | |
|   // branches before we got there.
 | |
|   Value *CmpUGT = Builder.CreateICmpUGT(LoadSrc1, LoadSrc2);
 | |
|   Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2);
 | |
|   Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
 | |
|   Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
 | |
|   return Builder.CreateSub(ZextUGT, ZextULT);
 | |
| }
 | |
| 
 | |
| // This function expands the memcmp call into an inline expansion and returns
 | |
| // the memcmp result.
 | |
| Value *MemCmpExpansion::getMemCmpExpansion(uint64_t Size) {
 | |
|   if (IsUsedForZeroCmp)
 | |
|     return NumBlocks == 1 ? getMemCmpEqZeroOneBlock(Size) :
 | |
|                             getMemCmpExpansionZeroCase(Size);
 | |
| 
 | |
|   // TODO: Handle more than one load pair per block in getMemCmpOneBlock().
 | |
|   if (NumBlocks == 1 && NumLoadsPerBlock == 1)
 | |
|     return getMemCmpOneBlock(Size);
 | |
| 
 | |
|   // This loop calls emitLoadCompareBlock for comparing Size bytes of the two
 | |
|   // memcmp sources. It starts with loading using the maximum load size set by
 | |
|   // the target. It processes any remaining bytes using a load size which is the
 | |
|   // next smallest power of 2.
 | |
|   unsigned LoadSize = MaxLoadSize;
 | |
|   unsigned NumBytesToBeProcessed = Size;
 | |
|   unsigned Index = 0;
 | |
|   while (NumBytesToBeProcessed) {
 | |
|     // Calculate how many blocks we can create with the current load size.
 | |
|     unsigned NumBlocks = NumBytesToBeProcessed / LoadSize;
 | |
|     unsigned GEPIndex = (Size - NumBytesToBeProcessed) / LoadSize;
 | |
|     NumBytesToBeProcessed = NumBytesToBeProcessed % LoadSize;
 | |
| 
 | |
|     // For each NumBlocks, populate the instruction sequence for loading and
 | |
|     // comparing LoadSize bytes.
 | |
|     while (NumBlocks--) {
 | |
|       emitLoadCompareBlock(Index, LoadSize, GEPIndex);
 | |
|       Index++;
 | |
|       GEPIndex++;
 | |
|     }
 | |
|     // Get the next LoadSize to use.
 | |
|     LoadSize = LoadSize / 2;
 | |
|   }
 | |
| 
 | |
|   emitMemCmpResultBlock();
 | |
|   return PhiRes;
 | |
| }
 | |
| 
 | |
| // This function checks to see if an expansion of memcmp can be generated.
 | |
| // It checks for constant compare size that is less than the max inline size.
 | |
| // If an expansion cannot occur, returns false to leave as a library call.
 | |
| // Otherwise, the library call is replaced with a new IR instruction sequence.
 | |
| /// We want to transform:
 | |
| /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
 | |
| /// To:
 | |
| /// loadbb:
 | |
| ///  %0 = bitcast i32* %buffer2 to i8*
 | |
| ///  %1 = bitcast i32* %buffer1 to i8*
 | |
| ///  %2 = bitcast i8* %1 to i64*
 | |
| ///  %3 = bitcast i8* %0 to i64*
 | |
| ///  %4 = load i64, i64* %2
 | |
| ///  %5 = load i64, i64* %3
 | |
| ///  %6 = call i64 @llvm.bswap.i64(i64 %4)
 | |
| ///  %7 = call i64 @llvm.bswap.i64(i64 %5)
 | |
| ///  %8 = sub i64 %6, %7
 | |
| ///  %9 = icmp ne i64 %8, 0
 | |
| ///  br i1 %9, label %res_block, label %loadbb1
 | |
| /// res_block:                                        ; preds = %loadbb2,
 | |
| /// %loadbb1, %loadbb
 | |
| ///  %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
 | |
| ///  %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
 | |
| ///  %10 = icmp ult i64 %phi.src1, %phi.src2
 | |
| ///  %11 = select i1 %10, i32 -1, i32 1
 | |
| ///  br label %endblock
 | |
| /// loadbb1:                                          ; preds = %loadbb
 | |
| ///  %12 = bitcast i32* %buffer2 to i8*
 | |
| ///  %13 = bitcast i32* %buffer1 to i8*
 | |
| ///  %14 = bitcast i8* %13 to i32*
 | |
| ///  %15 = bitcast i8* %12 to i32*
 | |
| ///  %16 = getelementptr i32, i32* %14, i32 2
 | |
| ///  %17 = getelementptr i32, i32* %15, i32 2
 | |
| ///  %18 = load i32, i32* %16
 | |
| ///  %19 = load i32, i32* %17
 | |
| ///  %20 = call i32 @llvm.bswap.i32(i32 %18)
 | |
| ///  %21 = call i32 @llvm.bswap.i32(i32 %19)
 | |
| ///  %22 = zext i32 %20 to i64
 | |
| ///  %23 = zext i32 %21 to i64
 | |
| ///  %24 = sub i64 %22, %23
 | |
| ///  %25 = icmp ne i64 %24, 0
 | |
| ///  br i1 %25, label %res_block, label %loadbb2
 | |
| /// loadbb2:                                          ; preds = %loadbb1
 | |
| ///  %26 = bitcast i32* %buffer2 to i8*
 | |
| ///  %27 = bitcast i32* %buffer1 to i8*
 | |
| ///  %28 = bitcast i8* %27 to i16*
 | |
| ///  %29 = bitcast i8* %26 to i16*
 | |
| ///  %30 = getelementptr i16, i16* %28, i16 6
 | |
| ///  %31 = getelementptr i16, i16* %29, i16 6
 | |
| ///  %32 = load i16, i16* %30
 | |
| ///  %33 = load i16, i16* %31
 | |
| ///  %34 = call i16 @llvm.bswap.i16(i16 %32)
 | |
| ///  %35 = call i16 @llvm.bswap.i16(i16 %33)
 | |
| ///  %36 = zext i16 %34 to i64
 | |
| ///  %37 = zext i16 %35 to i64
 | |
| ///  %38 = sub i64 %36, %37
 | |
| ///  %39 = icmp ne i64 %38, 0
 | |
| ///  br i1 %39, label %res_block, label %loadbb3
 | |
| /// loadbb3:                                          ; preds = %loadbb2
 | |
| ///  %40 = bitcast i32* %buffer2 to i8*
 | |
| ///  %41 = bitcast i32* %buffer1 to i8*
 | |
| ///  %42 = getelementptr i8, i8* %41, i8 14
 | |
| ///  %43 = getelementptr i8, i8* %40, i8 14
 | |
| ///  %44 = load i8, i8* %42
 | |
| ///  %45 = load i8, i8* %43
 | |
| ///  %46 = zext i8 %44 to i32
 | |
| ///  %47 = zext i8 %45 to i32
 | |
| ///  %48 = sub i32 %46, %47
 | |
| ///  br label %endblock
 | |
| /// endblock:                                         ; preds = %res_block,
 | |
| /// %loadbb3
 | |
| ///  %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
 | |
| ///  ret i32 %phi.res
 | |
| static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
 | |
|                          const TargetLowering *TLI, const DataLayout *DL) {
 | |
|   NumMemCmpCalls++;
 | |
| 
 | |
|   // TTI call to check if target would like to expand memcmp. Also, get the
 | |
|   // MaxLoadSize.
 | |
|   unsigned MaxLoadSize;
 | |
|   if (!TTI->expandMemCmp(CI, MaxLoadSize))
 | |
|     return false;
 | |
| 
 | |
|   // Early exit from expansion if -Oz.
 | |
|   if (CI->getFunction()->optForMinSize())
 | |
|     return false;
 | |
| 
 | |
|   // Early exit from expansion if size is not a constant.
 | |
|   ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
 | |
|   if (!SizeCast) {
 | |
|     NumMemCmpNotConstant++;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Scale the max size down if the target can load more bytes than we need.
 | |
|   uint64_t SizeVal = SizeCast->getZExtValue();
 | |
|   if (MaxLoadSize > SizeVal)
 | |
|     MaxLoadSize = 1 << SizeCast->getValue().logBase2();
 | |
| 
 | |
|   // Calculate how many load pairs are needed for the constant size.
 | |
|   unsigned NumLoads = 0;
 | |
|   unsigned RemainingSize = SizeVal;
 | |
|   unsigned LoadSize = MaxLoadSize;
 | |
|   while (RemainingSize) {
 | |
|     NumLoads += RemainingSize / LoadSize;
 | |
|     RemainingSize = RemainingSize % LoadSize;
 | |
|     LoadSize = LoadSize / 2;
 | |
|   }
 | |
| 
 | |
|   // Don't expand if this will require more loads than desired by the target.
 | |
|   if (NumLoads > TLI->getMaxExpandSizeMemcmp(CI->getFunction()->optForSize())) {
 | |
|     NumMemCmpGreaterThanMax++;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   NumMemCmpInlined++;
 | |
| 
 | |
|   // MemCmpHelper object creates and sets up basic blocks required for
 | |
|   // expanding memcmp with size SizeVal.
 | |
|   unsigned NumLoadsPerBlock = MemCmpNumLoadsPerBlock;
 | |
|   MemCmpExpansion MemCmpHelper(CI, SizeVal, MaxLoadSize, NumLoadsPerBlock, *DL);
 | |
| 
 | |
|   Value *Res = MemCmpHelper.getMemCmpExpansion(SizeVal);
 | |
| 
 | |
|   // Replace call with result of expansion and erase call.
 | |
|   CI->replaceAllUsesWith(Res);
 | |
|   CI->eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
 | |
|   BasicBlock *BB = CI->getParent();
 | |
| 
 | |
|   // Lower inline assembly if we can.
 | |
|   // If we found an inline asm expession, and if the target knows how to
 | |
|   // lower it to normal LLVM code, do so now.
 | |
|   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
 | |
|     if (TLI->ExpandInlineAsm(CI)) {
 | |
|       // Avoid invalidating the iterator.
 | |
|       CurInstIterator = BB->begin();
 | |
|       // Avoid processing instructions out of order, which could cause
 | |
|       // reuse before a value is defined.
 | |
|       SunkAddrs.clear();
 | |
|       return true;
 | |
|     }
 | |
|     // Sink address computing for memory operands into the block.
 | |
|     if (optimizeInlineAsmInst(CI))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // Align the pointer arguments to this call if the target thinks it's a good
 | |
|   // idea
 | |
|   unsigned MinSize, PrefAlign;
 | |
|   if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
 | |
|     for (auto &Arg : CI->arg_operands()) {
 | |
|       // We want to align both objects whose address is used directly and
 | |
|       // objects whose address is used in casts and GEPs, though it only makes
 | |
|       // sense for GEPs if the offset is a multiple of the desired alignment and
 | |
|       // if size - offset meets the size threshold.
 | |
|       if (!Arg->getType()->isPointerTy())
 | |
|         continue;
 | |
|       APInt Offset(DL->getPointerSizeInBits(
 | |
|                        cast<PointerType>(Arg->getType())->getAddressSpace()),
 | |
|                    0);
 | |
|       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
 | |
|       uint64_t Offset2 = Offset.getLimitedValue();
 | |
|       if ((Offset2 & (PrefAlign-1)) != 0)
 | |
|         continue;
 | |
|       AllocaInst *AI;
 | |
|       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
 | |
|           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
 | |
|         AI->setAlignment(PrefAlign);
 | |
|       // Global variables can only be aligned if they are defined in this
 | |
|       // object (i.e. they are uniquely initialized in this object), and
 | |
|       // over-aligning global variables that have an explicit section is
 | |
|       // forbidden.
 | |
|       GlobalVariable *GV;
 | |
|       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
 | |
|           GV->getPointerAlignment(*DL) < PrefAlign &&
 | |
|           DL->getTypeAllocSize(GV->getValueType()) >=
 | |
|               MinSize + Offset2)
 | |
|         GV->setAlignment(PrefAlign);
 | |
|     }
 | |
|     // If this is a memcpy (or similar) then we may be able to improve the
 | |
|     // alignment
 | |
|     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
 | |
|       unsigned Align = getKnownAlignment(MI->getDest(), *DL);
 | |
|       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
 | |
|         Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL));
 | |
|       if (Align > MI->getAlignment())
 | |
|         MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we have a cold call site, try to sink addressing computation into the
 | |
|   // cold block.  This interacts with our handling for loads and stores to
 | |
|   // ensure that we can fold all uses of a potential addressing computation
 | |
|   // into their uses.  TODO: generalize this to work over profiling data
 | |
|   if (!OptSize && CI->hasFnAttr(Attribute::Cold))
 | |
|     for (auto &Arg : CI->arg_operands()) {
 | |
|       if (!Arg->getType()->isPointerTy())
 | |
|         continue;
 | |
|       unsigned AS = Arg->getType()->getPointerAddressSpace();
 | |
|       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
 | |
|     }
 | |
| 
 | |
|   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
 | |
|   if (II) {
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     default: break;
 | |
|     case Intrinsic::objectsize: {
 | |
|       // Lower all uses of llvm.objectsize.*
 | |
|       ConstantInt *RetVal =
 | |
|           lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true);
 | |
|       // Substituting this can cause recursive simplifications, which can
 | |
|       // invalidate our iterator.  Use a WeakTrackingVH to hold onto it in case
 | |
|       // this
 | |
|       // happens.
 | |
|       Value *CurValue = &*CurInstIterator;
 | |
|       WeakTrackingVH IterHandle(CurValue);
 | |
| 
 | |
|       replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
 | |
| 
 | |
|       // If the iterator instruction was recursively deleted, start over at the
 | |
|       // start of the block.
 | |
|       if (IterHandle != CurValue) {
 | |
|         CurInstIterator = BB->begin();
 | |
|         SunkAddrs.clear();
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
|     case Intrinsic::aarch64_stlxr:
 | |
|     case Intrinsic::aarch64_stxr: {
 | |
|       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
 | |
|       if (!ExtVal || !ExtVal->hasOneUse() ||
 | |
|           ExtVal->getParent() == CI->getParent())
 | |
|         return false;
 | |
|       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
 | |
|       ExtVal->moveBefore(CI);
 | |
|       // Mark this instruction as "inserted by CGP", so that other
 | |
|       // optimizations don't touch it.
 | |
|       InsertedInsts.insert(ExtVal);
 | |
|       return true;
 | |
|     }
 | |
|     case Intrinsic::invariant_group_barrier:
 | |
|       II->replaceAllUsesWith(II->getArgOperand(0));
 | |
|       II->eraseFromParent();
 | |
|       return true;
 | |
| 
 | |
|     case Intrinsic::cttz:
 | |
|     case Intrinsic::ctlz:
 | |
|       // If counting zeros is expensive, try to avoid it.
 | |
|       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
 | |
|     }
 | |
| 
 | |
|     if (TLI) {
 | |
|       SmallVector<Value*, 2> PtrOps;
 | |
|       Type *AccessTy;
 | |
|       if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
 | |
|         while (!PtrOps.empty()) {
 | |
|           Value *PtrVal = PtrOps.pop_back_val();
 | |
|           unsigned AS = PtrVal->getType()->getPointerAddressSpace();
 | |
|           if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // From here on out we're working with named functions.
 | |
|   if (!CI->getCalledFunction()) return false;
 | |
| 
 | |
|   // Lower all default uses of _chk calls.  This is very similar
 | |
|   // to what InstCombineCalls does, but here we are only lowering calls
 | |
|   // to fortified library functions (e.g. __memcpy_chk) that have the default
 | |
|   // "don't know" as the objectsize.  Anything else should be left alone.
 | |
|   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
 | |
|   if (Value *V = Simplifier.optimizeCall(CI)) {
 | |
|     CI->replaceAllUsesWith(V);
 | |
|     CI->eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   LibFunc Func;
 | |
|   if (TLInfo->getLibFunc(ImmutableCallSite(CI), Func) &&
 | |
|       Func == LibFunc_memcmp && expandMemCmp(CI, TTI, TLI, DL)) {
 | |
|     ModifiedDT = true;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Look for opportunities to duplicate return instructions to the predecessor
 | |
| /// to enable tail call optimizations. The case it is currently looking for is:
 | |
| /// @code
 | |
| /// bb0:
 | |
| ///   %tmp0 = tail call i32 @f0()
 | |
| ///   br label %return
 | |
| /// bb1:
 | |
| ///   %tmp1 = tail call i32 @f1()
 | |
| ///   br label %return
 | |
| /// bb2:
 | |
| ///   %tmp2 = tail call i32 @f2()
 | |
| ///   br label %return
 | |
| /// return:
 | |
| ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
 | |
| ///   ret i32 %retval
 | |
| /// @endcode
 | |
| ///
 | |
| /// =>
 | |
| ///
 | |
| /// @code
 | |
| /// bb0:
 | |
| ///   %tmp0 = tail call i32 @f0()
 | |
| ///   ret i32 %tmp0
 | |
| /// bb1:
 | |
| ///   %tmp1 = tail call i32 @f1()
 | |
| ///   ret i32 %tmp1
 | |
| /// bb2:
 | |
| ///   %tmp2 = tail call i32 @f2()
 | |
| ///   ret i32 %tmp2
 | |
| /// @endcode
 | |
| bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
 | |
|   if (!TLI)
 | |
|     return false;
 | |
| 
 | |
|   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
 | |
|   if (!RetI)
 | |
|     return false;
 | |
| 
 | |
|   PHINode *PN = nullptr;
 | |
|   BitCastInst *BCI = nullptr;
 | |
|   Value *V = RetI->getReturnValue();
 | |
|   if (V) {
 | |
|     BCI = dyn_cast<BitCastInst>(V);
 | |
|     if (BCI)
 | |
|       V = BCI->getOperand(0);
 | |
| 
 | |
|     PN = dyn_cast<PHINode>(V);
 | |
|     if (!PN)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (PN && PN->getParent() != BB)
 | |
|     return false;
 | |
| 
 | |
|   // Make sure there are no instructions between the PHI and return, or that the
 | |
|   // return is the first instruction in the block.
 | |
|   if (PN) {
 | |
|     BasicBlock::iterator BI = BB->begin();
 | |
|     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
 | |
|     if (&*BI == BCI)
 | |
|       // Also skip over the bitcast.
 | |
|       ++BI;
 | |
|     if (&*BI != RetI)
 | |
|       return false;
 | |
|   } else {
 | |
|     BasicBlock::iterator BI = BB->begin();
 | |
|     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
 | |
|     if (&*BI != RetI)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
 | |
|   /// call.
 | |
|   const Function *F = BB->getParent();
 | |
|   SmallVector<CallInst*, 4> TailCalls;
 | |
|   if (PN) {
 | |
|     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
 | |
|       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
 | |
|       // Make sure the phi value is indeed produced by the tail call.
 | |
|       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
 | |
|           TLI->mayBeEmittedAsTailCall(CI) &&
 | |
|           attributesPermitTailCall(F, CI, RetI, *TLI))
 | |
|         TailCalls.push_back(CI);
 | |
|     }
 | |
|   } else {
 | |
|     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
 | |
|     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
 | |
|       if (!VisitedBBs.insert(*PI).second)
 | |
|         continue;
 | |
| 
 | |
|       BasicBlock::InstListType &InstList = (*PI)->getInstList();
 | |
|       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
 | |
|       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
 | |
|       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
 | |
|       if (RI == RE)
 | |
|         continue;
 | |
| 
 | |
|       CallInst *CI = dyn_cast<CallInst>(&*RI);
 | |
|       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
 | |
|           attributesPermitTailCall(F, CI, RetI, *TLI))
 | |
|         TailCalls.push_back(CI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool Changed = false;
 | |
|   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
 | |
|     CallInst *CI = TailCalls[i];
 | |
|     CallSite CS(CI);
 | |
| 
 | |
|     // Conservatively require the attributes of the call to match those of the
 | |
|     // return. Ignore noalias because it doesn't affect the call sequence.
 | |
|     AttributeList CalleeAttrs = CS.getAttributes();
 | |
|     if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex)
 | |
|             .removeAttribute(Attribute::NoAlias) !=
 | |
|         AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex)
 | |
|             .removeAttribute(Attribute::NoAlias))
 | |
|       continue;
 | |
| 
 | |
|     // Make sure the call instruction is followed by an unconditional branch to
 | |
|     // the return block.
 | |
|     BasicBlock *CallBB = CI->getParent();
 | |
|     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
 | |
|     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
 | |
|       continue;
 | |
| 
 | |
|     // Duplicate the return into CallBB.
 | |
|     (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB);
 | |
|     ModifiedDT = Changed = true;
 | |
|     ++NumRetsDup;
 | |
|   }
 | |
| 
 | |
|   // If we eliminated all predecessors of the block, delete the block now.
 | |
|   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
 | |
|     BB->eraseFromParent();
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Memory Optimization
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// This is an extended version of TargetLowering::AddrMode
 | |
| /// which holds actual Value*'s for register values.
 | |
| struct ExtAddrMode : public TargetLowering::AddrMode {
 | |
|   Value *BaseReg = nullptr;
 | |
|   Value *ScaledReg = nullptr;
 | |
| 
 | |
|   ExtAddrMode() = default;
 | |
| 
 | |
|   void print(raw_ostream &OS) const;
 | |
|   void dump() const;
 | |
| 
 | |
|   bool operator==(const ExtAddrMode& O) const {
 | |
|     return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
 | |
|            (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
 | |
|            (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
 | |
|   AM.print(OS);
 | |
|   return OS;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| void ExtAddrMode::print(raw_ostream &OS) const {
 | |
|   bool NeedPlus = false;
 | |
|   OS << "[";
 | |
|   if (BaseGV) {
 | |
|     OS << (NeedPlus ? " + " : "")
 | |
|        << "GV:";
 | |
|     BaseGV->printAsOperand(OS, /*PrintType=*/false);
 | |
|     NeedPlus = true;
 | |
|   }
 | |
| 
 | |
|   if (BaseOffs) {
 | |
|     OS << (NeedPlus ? " + " : "")
 | |
|        << BaseOffs;
 | |
|     NeedPlus = true;
 | |
|   }
 | |
| 
 | |
|   if (BaseReg) {
 | |
|     OS << (NeedPlus ? " + " : "")
 | |
|        << "Base:";
 | |
|     BaseReg->printAsOperand(OS, /*PrintType=*/false);
 | |
|     NeedPlus = true;
 | |
|   }
 | |
|   if (Scale) {
 | |
|     OS << (NeedPlus ? " + " : "")
 | |
|        << Scale << "*";
 | |
|     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
 | |
|   }
 | |
| 
 | |
|   OS << ']';
 | |
| }
 | |
| 
 | |
| LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
 | |
|   print(dbgs());
 | |
|   dbgs() << '\n';
 | |
| }
 | |
| #endif
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// \brief This class provides transaction based operation on the IR.
 | |
| /// Every change made through this class is recorded in the internal state and
 | |
| /// can be undone (rollback) until commit is called.
 | |
| class TypePromotionTransaction {
 | |
|   /// \brief This represents the common interface of the individual transaction.
 | |
|   /// Each class implements the logic for doing one specific modification on
 | |
|   /// the IR via the TypePromotionTransaction.
 | |
|   class TypePromotionAction {
 | |
|   protected:
 | |
|     /// The Instruction modified.
 | |
|     Instruction *Inst;
 | |
| 
 | |
|   public:
 | |
|     /// \brief Constructor of the action.
 | |
|     /// The constructor performs the related action on the IR.
 | |
|     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
 | |
| 
 | |
|     virtual ~TypePromotionAction() = default;
 | |
| 
 | |
|     /// \brief Undo the modification done by this action.
 | |
|     /// When this method is called, the IR must be in the same state as it was
 | |
|     /// before this action was applied.
 | |
|     /// \pre Undoing the action works if and only if the IR is in the exact same
 | |
|     /// state as it was directly after this action was applied.
 | |
|     virtual void undo() = 0;
 | |
| 
 | |
|     /// \brief Advocate every change made by this action.
 | |
|     /// When the results on the IR of the action are to be kept, it is important
 | |
|     /// to call this function, otherwise hidden information may be kept forever.
 | |
|     virtual void commit() {
 | |
|       // Nothing to be done, this action is not doing anything.
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// \brief Utility to remember the position of an instruction.
 | |
|   class InsertionHandler {
 | |
|     /// Position of an instruction.
 | |
|     /// Either an instruction:
 | |
|     /// - Is the first in a basic block: BB is used.
 | |
|     /// - Has a previous instructon: PrevInst is used.
 | |
|     union {
 | |
|       Instruction *PrevInst;
 | |
|       BasicBlock *BB;
 | |
|     } Point;
 | |
| 
 | |
|     /// Remember whether or not the instruction had a previous instruction.
 | |
|     bool HasPrevInstruction;
 | |
| 
 | |
|   public:
 | |
|     /// \brief Record the position of \p Inst.
 | |
|     InsertionHandler(Instruction *Inst) {
 | |
|       BasicBlock::iterator It = Inst->getIterator();
 | |
|       HasPrevInstruction = (It != (Inst->getParent()->begin()));
 | |
|       if (HasPrevInstruction)
 | |
|         Point.PrevInst = &*--It;
 | |
|       else
 | |
|         Point.BB = Inst->getParent();
 | |
|     }
 | |
| 
 | |
|     /// \brief Insert \p Inst at the recorded position.
 | |
|     void insert(Instruction *Inst) {
 | |
|       if (HasPrevInstruction) {
 | |
|         if (Inst->getParent())
 | |
|           Inst->removeFromParent();
 | |
|         Inst->insertAfter(Point.PrevInst);
 | |
|       } else {
 | |
|         Instruction *Position = &*Point.BB->getFirstInsertionPt();
 | |
|         if (Inst->getParent())
 | |
|           Inst->moveBefore(Position);
 | |
|         else
 | |
|           Inst->insertBefore(Position);
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// \brief Move an instruction before another.
 | |
|   class InstructionMoveBefore : public TypePromotionAction {
 | |
|     /// Original position of the instruction.
 | |
|     InsertionHandler Position;
 | |
| 
 | |
|   public:
 | |
|     /// \brief Move \p Inst before \p Before.
 | |
|     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
 | |
|         : TypePromotionAction(Inst), Position(Inst) {
 | |
|       DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
 | |
|       Inst->moveBefore(Before);
 | |
|     }
 | |
| 
 | |
|     /// \brief Move the instruction back to its original position.
 | |
|     void undo() override {
 | |
|       DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
 | |
|       Position.insert(Inst);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// \brief Set the operand of an instruction with a new value.
 | |
|   class OperandSetter : public TypePromotionAction {
 | |
|     /// Original operand of the instruction.
 | |
|     Value *Origin;
 | |
| 
 | |
|     /// Index of the modified instruction.
 | |
|     unsigned Idx;
 | |
| 
 | |
|   public:
 | |
|     /// \brief Set \p Idx operand of \p Inst with \p NewVal.
 | |
|     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
 | |
|         : TypePromotionAction(Inst), Idx(Idx) {
 | |
|       DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
 | |
|                    << "for:" << *Inst << "\n"
 | |
|                    << "with:" << *NewVal << "\n");
 | |
|       Origin = Inst->getOperand(Idx);
 | |
|       Inst->setOperand(Idx, NewVal);
 | |
|     }
 | |
| 
 | |
|     /// \brief Restore the original value of the instruction.
 | |
|     void undo() override {
 | |
|       DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
 | |
|                    << "for: " << *Inst << "\n"
 | |
|                    << "with: " << *Origin << "\n");
 | |
|       Inst->setOperand(Idx, Origin);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// \brief Hide the operands of an instruction.
 | |
|   /// Do as if this instruction was not using any of its operands.
 | |
|   class OperandsHider : public TypePromotionAction {
 | |
|     /// The list of original operands.
 | |
|     SmallVector<Value *, 4> OriginalValues;
 | |
| 
 | |
|   public:
 | |
|     /// \brief Remove \p Inst from the uses of the operands of \p Inst.
 | |
|     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
 | |
|       DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
 | |
|       unsigned NumOpnds = Inst->getNumOperands();
 | |
|       OriginalValues.reserve(NumOpnds);
 | |
|       for (unsigned It = 0; It < NumOpnds; ++It) {
 | |
|         // Save the current operand.
 | |
|         Value *Val = Inst->getOperand(It);
 | |
|         OriginalValues.push_back(Val);
 | |
|         // Set a dummy one.
 | |
|         // We could use OperandSetter here, but that would imply an overhead
 | |
|         // that we are not willing to pay.
 | |
|         Inst->setOperand(It, UndefValue::get(Val->getType()));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// \brief Restore the original list of uses.
 | |
|     void undo() override {
 | |
|       DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
 | |
|       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
 | |
|         Inst->setOperand(It, OriginalValues[It]);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// \brief Build a truncate instruction.
 | |
|   class TruncBuilder : public TypePromotionAction {
 | |
|     Value *Val;
 | |
| 
 | |
|   public:
 | |
|     /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
 | |
|     /// result.
 | |
|     /// trunc Opnd to Ty.
 | |
|     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
 | |
|       IRBuilder<> Builder(Opnd);
 | |
|       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
 | |
|       DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
 | |
|     }
 | |
| 
 | |
|     /// \brief Get the built value.
 | |
|     Value *getBuiltValue() { return Val; }
 | |
| 
 | |
|     /// \brief Remove the built instruction.
 | |
|     void undo() override {
 | |
|       DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
 | |
|       if (Instruction *IVal = dyn_cast<Instruction>(Val))
 | |
|         IVal->eraseFromParent();
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// \brief Build a sign extension instruction.
 | |
|   class SExtBuilder : public TypePromotionAction {
 | |
|     Value *Val;
 | |
| 
 | |
|   public:
 | |
|     /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
 | |
|     /// result.
 | |
|     /// sext Opnd to Ty.
 | |
|     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
 | |
|         : TypePromotionAction(InsertPt) {
 | |
|       IRBuilder<> Builder(InsertPt);
 | |
|       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
 | |
|       DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
 | |
|     }
 | |
| 
 | |
|     /// \brief Get the built value.
 | |
|     Value *getBuiltValue() { return Val; }
 | |
| 
 | |
|     /// \brief Remove the built instruction.
 | |
|     void undo() override {
 | |
|       DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
 | |
|       if (Instruction *IVal = dyn_cast<Instruction>(Val))
 | |
|         IVal->eraseFromParent();
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// \brief Build a zero extension instruction.
 | |
|   class ZExtBuilder : public TypePromotionAction {
 | |
|     Value *Val;
 | |
| 
 | |
|   public:
 | |
|     /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty
 | |
|     /// result.
 | |
|     /// zext Opnd to Ty.
 | |
|     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
 | |
|         : TypePromotionAction(InsertPt) {
 | |
|       IRBuilder<> Builder(InsertPt);
 | |
|       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
 | |
|       DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
 | |
|     }
 | |
| 
 | |
|     /// \brief Get the built value.
 | |
|     Value *getBuiltValue() { return Val; }
 | |
| 
 | |
|     /// \brief Remove the built instruction.
 | |
|     void undo() override {
 | |
|       DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
 | |
|       if (Instruction *IVal = dyn_cast<Instruction>(Val))
 | |
|         IVal->eraseFromParent();
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// \brief Mutate an instruction to another type.
 | |
|   class TypeMutator : public TypePromotionAction {
 | |
|     /// Record the original type.
 | |
|     Type *OrigTy;
 | |
| 
 | |
|   public:
 | |
|     /// \brief Mutate the type of \p Inst into \p NewTy.
 | |
|     TypeMutator(Instruction *Inst, Type *NewTy)
 | |
|         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
 | |
|       DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
 | |
|                    << "\n");
 | |
|       Inst->mutateType(NewTy);
 | |
|     }
 | |
| 
 | |
|     /// \brief Mutate the instruction back to its original type.
 | |
|     void undo() override {
 | |
|       DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
 | |
|                    << "\n");
 | |
|       Inst->mutateType(OrigTy);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// \brief Replace the uses of an instruction by another instruction.
 | |
|   class UsesReplacer : public TypePromotionAction {
 | |
|     /// Helper structure to keep track of the replaced uses.
 | |
|     struct InstructionAndIdx {
 | |
|       /// The instruction using the instruction.
 | |
|       Instruction *Inst;
 | |
| 
 | |
|       /// The index where this instruction is used for Inst.
 | |
|       unsigned Idx;
 | |
| 
 | |
|       InstructionAndIdx(Instruction *Inst, unsigned Idx)
 | |
|           : Inst(Inst), Idx(Idx) {}
 | |
|     };
 | |
| 
 | |
|     /// Keep track of the original uses (pair Instruction, Index).
 | |
|     SmallVector<InstructionAndIdx, 4> OriginalUses;
 | |
| 
 | |
|     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
 | |
| 
 | |
|   public:
 | |
|     /// \brief Replace all the use of \p Inst by \p New.
 | |
|     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
 | |
|       DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
 | |
|                    << "\n");
 | |
|       // Record the original uses.
 | |
|       for (Use &U : Inst->uses()) {
 | |
|         Instruction *UserI = cast<Instruction>(U.getUser());
 | |
|         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
 | |
|       }
 | |
|       // Now, we can replace the uses.
 | |
|       Inst->replaceAllUsesWith(New);
 | |
|     }
 | |
| 
 | |
|     /// \brief Reassign the original uses of Inst to Inst.
 | |
|     void undo() override {
 | |
|       DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
 | |
|       for (use_iterator UseIt = OriginalUses.begin(),
 | |
|                         EndIt = OriginalUses.end();
 | |
|            UseIt != EndIt; ++UseIt) {
 | |
|         UseIt->Inst->setOperand(UseIt->Idx, Inst);
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// \brief Remove an instruction from the IR.
 | |
|   class InstructionRemover : public TypePromotionAction {
 | |
|     /// Original position of the instruction.
 | |
|     InsertionHandler Inserter;
 | |
| 
 | |
|     /// Helper structure to hide all the link to the instruction. In other
 | |
|     /// words, this helps to do as if the instruction was removed.
 | |
|     OperandsHider Hider;
 | |
| 
 | |
|     /// Keep track of the uses replaced, if any.
 | |
|     UsesReplacer *Replacer = nullptr;
 | |
| 
 | |
|     /// Keep track of instructions removed.
 | |
|     SetOfInstrs &RemovedInsts;
 | |
| 
 | |
|   public:
 | |
|     /// \brief Remove all reference of \p Inst and optinally replace all its
 | |
|     /// uses with New.
 | |
|     /// \p RemovedInsts Keep track of the instructions removed by this Action.
 | |
|     /// \pre If !Inst->use_empty(), then New != nullptr
 | |
|     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
 | |
|                        Value *New = nullptr)
 | |
|         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
 | |
|           RemovedInsts(RemovedInsts) {
 | |
|       if (New)
 | |
|         Replacer = new UsesReplacer(Inst, New);
 | |
|       DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
 | |
|       RemovedInsts.insert(Inst);
 | |
|       /// The instructions removed here will be freed after completing
 | |
|       /// optimizeBlock() for all blocks as we need to keep track of the
 | |
|       /// removed instructions during promotion.
 | |
|       Inst->removeFromParent();
 | |
|     }
 | |
| 
 | |
|     ~InstructionRemover() override { delete Replacer; }
 | |
| 
 | |
|     /// \brief Resurrect the instruction and reassign it to the proper uses if
 | |
|     /// new value was provided when build this action.
 | |
|     void undo() override {
 | |
|       DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
 | |
|       Inserter.insert(Inst);
 | |
|       if (Replacer)
 | |
|         Replacer->undo();
 | |
|       Hider.undo();
 | |
|       RemovedInsts.erase(Inst);
 | |
|     }
 | |
|   };
 | |
| 
 | |
| public:
 | |
|   /// Restoration point.
 | |
|   /// The restoration point is a pointer to an action instead of an iterator
 | |
|   /// because the iterator may be invalidated but not the pointer.
 | |
|   using ConstRestorationPt = const TypePromotionAction *;
 | |
| 
 | |
|   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
 | |
|       : RemovedInsts(RemovedInsts) {}
 | |
| 
 | |
|   /// Advocate every changes made in that transaction.
 | |
|   void commit();
 | |
| 
 | |
|   /// Undo all the changes made after the given point.
 | |
|   void rollback(ConstRestorationPt Point);
 | |
| 
 | |
|   /// Get the current restoration point.
 | |
|   ConstRestorationPt getRestorationPoint() const;
 | |
| 
 | |
|   /// \name API for IR modification with state keeping to support rollback.
 | |
|   /// @{
 | |
|   /// Same as Instruction::setOperand.
 | |
|   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
 | |
| 
 | |
|   /// Same as Instruction::eraseFromParent.
 | |
|   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
 | |
| 
 | |
|   /// Same as Value::replaceAllUsesWith.
 | |
|   void replaceAllUsesWith(Instruction *Inst, Value *New);
 | |
| 
 | |
|   /// Same as Value::mutateType.
 | |
|   void mutateType(Instruction *Inst, Type *NewTy);
 | |
| 
 | |
|   /// Same as IRBuilder::createTrunc.
 | |
|   Value *createTrunc(Instruction *Opnd, Type *Ty);
 | |
| 
 | |
|   /// Same as IRBuilder::createSExt.
 | |
|   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
 | |
| 
 | |
|   /// Same as IRBuilder::createZExt.
 | |
|   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
 | |
| 
 | |
|   /// Same as Instruction::moveBefore.
 | |
|   void moveBefore(Instruction *Inst, Instruction *Before);
 | |
|   /// @}
 | |
| 
 | |
| private:
 | |
|   /// The ordered list of actions made so far.
 | |
|   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
 | |
| 
 | |
|   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
 | |
| 
 | |
|   SetOfInstrs &RemovedInsts;
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
 | |
|                                           Value *NewVal) {
 | |
|   Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>(
 | |
|       Inst, Idx, NewVal));
 | |
| }
 | |
| 
 | |
| void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
 | |
|                                                 Value *NewVal) {
 | |
|   Actions.push_back(
 | |
|       llvm::make_unique<TypePromotionTransaction::InstructionRemover>(
 | |
|           Inst, RemovedInsts, NewVal));
 | |
| }
 | |
| 
 | |
| void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
 | |
|                                                   Value *New) {
 | |
|   Actions.push_back(
 | |
|       llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
 | |
| }
 | |
| 
 | |
| void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
 | |
|   Actions.push_back(
 | |
|       llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
 | |
| }
 | |
| 
 | |
| Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
 | |
|                                              Type *Ty) {
 | |
|   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
 | |
|   Value *Val = Ptr->getBuiltValue();
 | |
|   Actions.push_back(std::move(Ptr));
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| Value *TypePromotionTransaction::createSExt(Instruction *Inst,
 | |
|                                             Value *Opnd, Type *Ty) {
 | |
|   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
 | |
|   Value *Val = Ptr->getBuiltValue();
 | |
|   Actions.push_back(std::move(Ptr));
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| Value *TypePromotionTransaction::createZExt(Instruction *Inst,
 | |
|                                             Value *Opnd, Type *Ty) {
 | |
|   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
 | |
|   Value *Val = Ptr->getBuiltValue();
 | |
|   Actions.push_back(std::move(Ptr));
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| void TypePromotionTransaction::moveBefore(Instruction *Inst,
 | |
|                                           Instruction *Before) {
 | |
|   Actions.push_back(
 | |
|       llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
 | |
|           Inst, Before));
 | |
| }
 | |
| 
 | |
| TypePromotionTransaction::ConstRestorationPt
 | |
| TypePromotionTransaction::getRestorationPoint() const {
 | |
|   return !Actions.empty() ? Actions.back().get() : nullptr;
 | |
| }
 | |
| 
 | |
| void TypePromotionTransaction::commit() {
 | |
|   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
 | |
|        ++It)
 | |
|     (*It)->commit();
 | |
|   Actions.clear();
 | |
| }
 | |
| 
 | |
| void TypePromotionTransaction::rollback(
 | |
|     TypePromotionTransaction::ConstRestorationPt Point) {
 | |
|   while (!Actions.empty() && Point != Actions.back().get()) {
 | |
|     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
 | |
|     Curr->undo();
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// \brief A helper class for matching addressing modes.
 | |
| ///
 | |
| /// This encapsulates the logic for matching the target-legal addressing modes.
 | |
| class AddressingModeMatcher {
 | |
|   SmallVectorImpl<Instruction*> &AddrModeInsts;
 | |
|   const TargetLowering &TLI;
 | |
|   const TargetRegisterInfo &TRI;
 | |
|   const DataLayout &DL;
 | |
| 
 | |
|   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
 | |
|   /// the memory instruction that we're computing this address for.
 | |
|   Type *AccessTy;
 | |
|   unsigned AddrSpace;
 | |
|   Instruction *MemoryInst;
 | |
| 
 | |
|   /// This is the addressing mode that we're building up. This is
 | |
|   /// part of the return value of this addressing mode matching stuff.
 | |
|   ExtAddrMode &AddrMode;
 | |
| 
 | |
|   /// The instructions inserted by other CodeGenPrepare optimizations.
 | |
|   const SetOfInstrs &InsertedInsts;
 | |
| 
 | |
|   /// A map from the instructions to their type before promotion.
 | |
|   InstrToOrigTy &PromotedInsts;
 | |
| 
 | |
|   /// The ongoing transaction where every action should be registered.
 | |
|   TypePromotionTransaction &TPT;
 | |
| 
 | |
|   /// This is set to true when we should not do profitability checks.
 | |
|   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
 | |
|   bool IgnoreProfitability;
 | |
| 
 | |
|   AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI,
 | |
|                         const TargetLowering &TLI,
 | |
|                         const TargetRegisterInfo &TRI,
 | |
|                         Type *AT, unsigned AS,
 | |
|                         Instruction *MI, ExtAddrMode &AM,
 | |
|                         const SetOfInstrs &InsertedInsts,
 | |
|                         InstrToOrigTy &PromotedInsts,
 | |
|                         TypePromotionTransaction &TPT)
 | |
|       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
 | |
|         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
 | |
|         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
 | |
|         PromotedInsts(PromotedInsts), TPT(TPT) {
 | |
|     IgnoreProfitability = false;
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   /// Find the maximal addressing mode that a load/store of V can fold,
 | |
|   /// give an access type of AccessTy.  This returns a list of involved
 | |
|   /// instructions in AddrModeInsts.
 | |
|   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
 | |
|   /// optimizations.
 | |
|   /// \p PromotedInsts maps the instructions to their type before promotion.
 | |
|   /// \p The ongoing transaction where every action should be registered.
 | |
|   static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS,
 | |
|                            Instruction *MemoryInst,
 | |
|                            SmallVectorImpl<Instruction*> &AddrModeInsts,
 | |
|                            const TargetLowering &TLI,
 | |
|                            const TargetRegisterInfo &TRI,
 | |
|                            const SetOfInstrs &InsertedInsts,
 | |
|                            InstrToOrigTy &PromotedInsts,
 | |
|                            TypePromotionTransaction &TPT) {
 | |
|     ExtAddrMode Result;
 | |
| 
 | |
|     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI,
 | |
|                                          AccessTy, AS,
 | |
|                                          MemoryInst, Result, InsertedInsts,
 | |
|                                          PromotedInsts, TPT).matchAddr(V, 0);
 | |
|     (void)Success; assert(Success && "Couldn't select *anything*?");
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
 | |
|   bool matchAddr(Value *V, unsigned Depth);
 | |
|   bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
 | |
|                           bool *MovedAway = nullptr);
 | |
|   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
 | |
|                                             ExtAddrMode &AMBefore,
 | |
|                                             ExtAddrMode &AMAfter);
 | |
|   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
 | |
|   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
 | |
|                              Value *PromotedOperand) const;
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Try adding ScaleReg*Scale to the current addressing mode.
 | |
| /// Return true and update AddrMode if this addr mode is legal for the target,
 | |
| /// false if not.
 | |
| bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
 | |
|                                              unsigned Depth) {
 | |
|   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
 | |
|   // mode.  Just process that directly.
 | |
|   if (Scale == 1)
 | |
|     return matchAddr(ScaleReg, Depth);
 | |
| 
 | |
|   // If the scale is 0, it takes nothing to add this.
 | |
|   if (Scale == 0)
 | |
|     return true;
 | |
| 
 | |
|   // If we already have a scale of this value, we can add to it, otherwise, we
 | |
|   // need an available scale field.
 | |
|   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
 | |
|     return false;
 | |
| 
 | |
|   ExtAddrMode TestAddrMode = AddrMode;
 | |
| 
 | |
|   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
 | |
|   // [A+B + A*7] -> [B+A*8].
 | |
|   TestAddrMode.Scale += Scale;
 | |
|   TestAddrMode.ScaledReg = ScaleReg;
 | |
| 
 | |
|   // If the new address isn't legal, bail out.
 | |
|   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
 | |
|     return false;
 | |
| 
 | |
|   // It was legal, so commit it.
 | |
|   AddrMode = TestAddrMode;
 | |
| 
 | |
|   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
 | |
|   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
 | |
|   // X*Scale + C*Scale to addr mode.
 | |
|   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
 | |
|   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
 | |
|       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
 | |
|     TestAddrMode.ScaledReg = AddLHS;
 | |
|     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
 | |
| 
 | |
|     // If this addressing mode is legal, commit it and remember that we folded
 | |
|     // this instruction.
 | |
|     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
 | |
|       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
 | |
|       AddrMode = TestAddrMode;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, not (x+c)*scale, just return what we have.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// This is a little filter, which returns true if an addressing computation
 | |
| /// involving I might be folded into a load/store accessing it.
 | |
| /// This doesn't need to be perfect, but needs to accept at least
 | |
| /// the set of instructions that MatchOperationAddr can.
 | |
| static bool MightBeFoldableInst(Instruction *I) {
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::BitCast:
 | |
|   case Instruction::AddrSpaceCast:
 | |
|     // Don't touch identity bitcasts.
 | |
|     if (I->getType() == I->getOperand(0)->getType())
 | |
|       return false;
 | |
|     return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
 | |
|   case Instruction::PtrToInt:
 | |
|     // PtrToInt is always a noop, as we know that the int type is pointer sized.
 | |
|     return true;
 | |
|   case Instruction::IntToPtr:
 | |
|     // We know the input is intptr_t, so this is foldable.
 | |
|     return true;
 | |
|   case Instruction::Add:
 | |
|     return true;
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::Shl:
 | |
|     // Can only handle X*C and X << C.
 | |
|     return isa<ConstantInt>(I->getOperand(1));
 | |
|   case Instruction::GetElementPtr:
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Check whether or not \p Val is a legal instruction for \p TLI.
 | |
| /// \note \p Val is assumed to be the product of some type promotion.
 | |
| /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
 | |
| /// to be legal, as the non-promoted value would have had the same state.
 | |
| static bool isPromotedInstructionLegal(const TargetLowering &TLI,
 | |
|                                        const DataLayout &DL, Value *Val) {
 | |
|   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
 | |
|   if (!PromotedInst)
 | |
|     return false;
 | |
|   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
 | |
|   // If the ISDOpcode is undefined, it was undefined before the promotion.
 | |
|   if (!ISDOpcode)
 | |
|     return true;
 | |
|   // Otherwise, check if the promoted instruction is legal or not.
 | |
|   return TLI.isOperationLegalOrCustom(
 | |
|       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// \brief Hepler class to perform type promotion.
 | |
| class TypePromotionHelper {
 | |
|   /// \brief Utility function to check whether or not a sign or zero extension
 | |
|   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
 | |
|   /// either using the operands of \p Inst or promoting \p Inst.
 | |
|   /// The type of the extension is defined by \p IsSExt.
 | |
|   /// In other words, check if:
 | |
|   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
 | |
|   /// #1 Promotion applies:
 | |
|   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
 | |
|   /// #2 Operand reuses:
 | |
|   /// ext opnd1 to ConsideredExtType.
 | |
|   /// \p PromotedInsts maps the instructions to their type before promotion.
 | |
|   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
 | |
|                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
 | |
| 
 | |
|   /// \brief Utility function to determine if \p OpIdx should be promoted when
 | |
|   /// promoting \p Inst.
 | |
|   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
 | |
|     return !(isa<SelectInst>(Inst) && OpIdx == 0);
 | |
|   }
 | |
| 
 | |
|   /// \brief Utility function to promote the operand of \p Ext when this
 | |
|   /// operand is a promotable trunc or sext or zext.
 | |
|   /// \p PromotedInsts maps the instructions to their type before promotion.
 | |
|   /// \p CreatedInstsCost[out] contains the cost of all instructions
 | |
|   /// created to promote the operand of Ext.
 | |
|   /// Newly added extensions are inserted in \p Exts.
 | |
|   /// Newly added truncates are inserted in \p Truncs.
 | |
|   /// Should never be called directly.
 | |
|   /// \return The promoted value which is used instead of Ext.
 | |
|   static Value *promoteOperandForTruncAndAnyExt(
 | |
|       Instruction *Ext, TypePromotionTransaction &TPT,
 | |
|       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
 | |
|       SmallVectorImpl<Instruction *> *Exts,
 | |
|       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
 | |
| 
 | |
|   /// \brief Utility function to promote the operand of \p Ext when this
 | |
|   /// operand is promotable and is not a supported trunc or sext.
 | |
|   /// \p PromotedInsts maps the instructions to their type before promotion.
 | |
|   /// \p CreatedInstsCost[out] contains the cost of all the instructions
 | |
|   /// created to promote the operand of Ext.
 | |
|   /// Newly added extensions are inserted in \p Exts.
 | |
|   /// Newly added truncates are inserted in \p Truncs.
 | |
|   /// Should never be called directly.
 | |
|   /// \return The promoted value which is used instead of Ext.
 | |
|   static Value *promoteOperandForOther(Instruction *Ext,
 | |
|                                        TypePromotionTransaction &TPT,
 | |
|                                        InstrToOrigTy &PromotedInsts,
 | |
|                                        unsigned &CreatedInstsCost,
 | |
|                                        SmallVectorImpl<Instruction *> *Exts,
 | |
|                                        SmallVectorImpl<Instruction *> *Truncs,
 | |
|                                        const TargetLowering &TLI, bool IsSExt);
 | |
| 
 | |
|   /// \see promoteOperandForOther.
 | |
|   static Value *signExtendOperandForOther(
 | |
|       Instruction *Ext, TypePromotionTransaction &TPT,
 | |
|       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
 | |
|       SmallVectorImpl<Instruction *> *Exts,
 | |
|       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
 | |
|     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
 | |
|                                   Exts, Truncs, TLI, true);
 | |
|   }
 | |
| 
 | |
|   /// \see promoteOperandForOther.
 | |
|   static Value *zeroExtendOperandForOther(
 | |
|       Instruction *Ext, TypePromotionTransaction &TPT,
 | |
|       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
 | |
|       SmallVectorImpl<Instruction *> *Exts,
 | |
|       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
 | |
|     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
 | |
|                                   Exts, Truncs, TLI, false);
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   /// Type for the utility function that promotes the operand of Ext.
 | |
|   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
 | |
|                             InstrToOrigTy &PromotedInsts,
 | |
|                             unsigned &CreatedInstsCost,
 | |
|                             SmallVectorImpl<Instruction *> *Exts,
 | |
|                             SmallVectorImpl<Instruction *> *Truncs,
 | |
|                             const TargetLowering &TLI);
 | |
| 
 | |
|   /// \brief Given a sign/zero extend instruction \p Ext, return the approriate
 | |
|   /// action to promote the operand of \p Ext instead of using Ext.
 | |
|   /// \return NULL if no promotable action is possible with the current
 | |
|   /// sign extension.
 | |
|   /// \p InsertedInsts keeps track of all the instructions inserted by the
 | |
|   /// other CodeGenPrepare optimizations. This information is important
 | |
|   /// because we do not want to promote these instructions as CodeGenPrepare
 | |
|   /// will reinsert them later. Thus creating an infinite loop: create/remove.
 | |
|   /// \p PromotedInsts maps the instructions to their type before promotion.
 | |
|   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
 | |
|                           const TargetLowering &TLI,
 | |
|                           const InstrToOrigTy &PromotedInsts);
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
 | |
|                                         Type *ConsideredExtType,
 | |
|                                         const InstrToOrigTy &PromotedInsts,
 | |
|                                         bool IsSExt) {
 | |
|   // The promotion helper does not know how to deal with vector types yet.
 | |
|   // To be able to fix that, we would need to fix the places where we
 | |
|   // statically extend, e.g., constants and such.
 | |
|   if (Inst->getType()->isVectorTy())
 | |
|     return false;
 | |
| 
 | |
|   // We can always get through zext.
 | |
|   if (isa<ZExtInst>(Inst))
 | |
|     return true;
 | |
| 
 | |
|   // sext(sext) is ok too.
 | |
|   if (IsSExt && isa<SExtInst>(Inst))
 | |
|     return true;
 | |
| 
 | |
|   // We can get through binary operator, if it is legal. In other words, the
 | |
|   // binary operator must have a nuw or nsw flag.
 | |
|   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
 | |
|   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
 | |
|       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
 | |
|        (IsSExt && BinOp->hasNoSignedWrap())))
 | |
|     return true;
 | |
| 
 | |
|   // Check if we can do the following simplification.
 | |
|   // ext(trunc(opnd)) --> ext(opnd)
 | |
|   if (!isa<TruncInst>(Inst))
 | |
|     return false;
 | |
| 
 | |
|   Value *OpndVal = Inst->getOperand(0);
 | |
|   // Check if we can use this operand in the extension.
 | |
|   // If the type is larger than the result type of the extension, we cannot.
 | |
|   if (!OpndVal->getType()->isIntegerTy() ||
 | |
|       OpndVal->getType()->getIntegerBitWidth() >
 | |
|           ConsideredExtType->getIntegerBitWidth())
 | |
|     return false;
 | |
| 
 | |
|   // If the operand of the truncate is not an instruction, we will not have
 | |
|   // any information on the dropped bits.
 | |
|   // (Actually we could for constant but it is not worth the extra logic).
 | |
|   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
 | |
|   if (!Opnd)
 | |
|     return false;
 | |
| 
 | |
|   // Check if the source of the type is narrow enough.
 | |
|   // I.e., check that trunc just drops extended bits of the same kind of
 | |
|   // the extension.
 | |
|   // #1 get the type of the operand and check the kind of the extended bits.
 | |
|   const Type *OpndType;
 | |
|   InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
 | |
|   if (It != PromotedInsts.end() && It->second.getInt() == IsSExt)
 | |
|     OpndType = It->second.getPointer();
 | |
|   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
 | |
|     OpndType = Opnd->getOperand(0)->getType();
 | |
|   else
 | |
|     return false;
 | |
| 
 | |
|   // #2 check that the truncate just drops extended bits.
 | |
|   return Inst->getType()->getIntegerBitWidth() >=
 | |
|          OpndType->getIntegerBitWidth();
 | |
| }
 | |
| 
 | |
| TypePromotionHelper::Action TypePromotionHelper::getAction(
 | |
|     Instruction *Ext, const SetOfInstrs &InsertedInsts,
 | |
|     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
 | |
|   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
 | |
|          "Unexpected instruction type");
 | |
|   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
 | |
|   Type *ExtTy = Ext->getType();
 | |
|   bool IsSExt = isa<SExtInst>(Ext);
 | |
|   // If the operand of the extension is not an instruction, we cannot
 | |
|   // get through.
 | |
|   // If it, check we can get through.
 | |
|   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Do not promote if the operand has been added by codegenprepare.
 | |
|   // Otherwise, it means we are undoing an optimization that is likely to be
 | |
|   // redone, thus causing potential infinite loop.
 | |
|   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
 | |
|     return nullptr;
 | |
| 
 | |
|   // SExt or Trunc instructions.
 | |
|   // Return the related handler.
 | |
|   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
 | |
|       isa<ZExtInst>(ExtOpnd))
 | |
|     return promoteOperandForTruncAndAnyExt;
 | |
| 
 | |
|   // Regular instruction.
 | |
|   // Abort early if we will have to insert non-free instructions.
 | |
|   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
 | |
|     return nullptr;
 | |
|   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
 | |
| }
 | |
| 
 | |
| Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
 | |
|     Instruction *SExt, TypePromotionTransaction &TPT,
 | |
|     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
 | |
|     SmallVectorImpl<Instruction *> *Exts,
 | |
|     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
 | |
|   // By construction, the operand of SExt is an instruction. Otherwise we cannot
 | |
|   // get through it and this method should not be called.
 | |
|   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
 | |
|   Value *ExtVal = SExt;
 | |
|   bool HasMergedNonFreeExt = false;
 | |
|   if (isa<ZExtInst>(SExtOpnd)) {
 | |
|     // Replace s|zext(zext(opnd))
 | |
|     // => zext(opnd).
 | |
|     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
 | |
|     Value *ZExt =
 | |
|         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
 | |
|     TPT.replaceAllUsesWith(SExt, ZExt);
 | |
|     TPT.eraseInstruction(SExt);
 | |
|     ExtVal = ZExt;
 | |
|   } else {
 | |
|     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
 | |
|     // => z|sext(opnd).
 | |
|     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
 | |
|   }
 | |
|   CreatedInstsCost = 0;
 | |
| 
 | |
|   // Remove dead code.
 | |
|   if (SExtOpnd->use_empty())
 | |
|     TPT.eraseInstruction(SExtOpnd);
 | |
| 
 | |
|   // Check if the extension is still needed.
 | |
|   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
 | |
|   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
 | |
|     if (ExtInst) {
 | |
|       if (Exts)
 | |
|         Exts->push_back(ExtInst);
 | |
|       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
 | |
|     }
 | |
|     return ExtVal;
 | |
|   }
 | |
| 
 | |
|   // At this point we have: ext ty opnd to ty.
 | |
|   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
 | |
|   Value *NextVal = ExtInst->getOperand(0);
 | |
|   TPT.eraseInstruction(ExtInst, NextVal);
 | |
|   return NextVal;
 | |
| }
 | |
| 
 | |
| Value *TypePromotionHelper::promoteOperandForOther(
 | |
|     Instruction *Ext, TypePromotionTransaction &TPT,
 | |
|     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
 | |
|     SmallVectorImpl<Instruction *> *Exts,
 | |
|     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
 | |
|     bool IsSExt) {
 | |
|   // By construction, the operand of Ext is an instruction. Otherwise we cannot
 | |
|   // get through it and this method should not be called.
 | |
|   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
 | |
|   CreatedInstsCost = 0;
 | |
|   if (!ExtOpnd->hasOneUse()) {
 | |
|     // ExtOpnd will be promoted.
 | |
|     // All its uses, but Ext, will need to use a truncated value of the
 | |
|     // promoted version.
 | |
|     // Create the truncate now.
 | |
|     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
 | |
|     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
 | |
|       // Insert it just after the definition.
 | |
|       ITrunc->moveAfter(ExtOpnd);
 | |
|       if (Truncs)
 | |
|         Truncs->push_back(ITrunc);
 | |
|     }
 | |
| 
 | |
|     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
 | |
|     // Restore the operand of Ext (which has been replaced by the previous call
 | |
|     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
 | |
|     TPT.setOperand(Ext, 0, ExtOpnd);
 | |
|   }
 | |
| 
 | |
|   // Get through the Instruction:
 | |
|   // 1. Update its type.
 | |
|   // 2. Replace the uses of Ext by Inst.
 | |
|   // 3. Extend each operand that needs to be extended.
 | |
| 
 | |
|   // Remember the original type of the instruction before promotion.
 | |
|   // This is useful to know that the high bits are sign extended bits.
 | |
|   PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>(
 | |
|       ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt)));
 | |
|   // Step #1.
 | |
|   TPT.mutateType(ExtOpnd, Ext->getType());
 | |
|   // Step #2.
 | |
|   TPT.replaceAllUsesWith(Ext, ExtOpnd);
 | |
|   // Step #3.
 | |
|   Instruction *ExtForOpnd = Ext;
 | |
| 
 | |
|   DEBUG(dbgs() << "Propagate Ext to operands\n");
 | |
|   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
 | |
|        ++OpIdx) {
 | |
|     DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
 | |
|     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
 | |
|         !shouldExtOperand(ExtOpnd, OpIdx)) {
 | |
|       DEBUG(dbgs() << "No need to propagate\n");
 | |
|       continue;
 | |
|     }
 | |
|     // Check if we can statically extend the operand.
 | |
|     Value *Opnd = ExtOpnd->getOperand(OpIdx);
 | |
|     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
 | |
|       DEBUG(dbgs() << "Statically extend\n");
 | |
|       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
 | |
|       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
 | |
|                             : Cst->getValue().zext(BitWidth);
 | |
|       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
 | |
|       continue;
 | |
|     }
 | |
|     // UndefValue are typed, so we have to statically sign extend them.
 | |
|     if (isa<UndefValue>(Opnd)) {
 | |
|       DEBUG(dbgs() << "Statically extend\n");
 | |
|       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise we have to explicity sign extend the operand.
 | |
|     // Check if Ext was reused to extend an operand.
 | |
|     if (!ExtForOpnd) {
 | |
|       // If yes, create a new one.
 | |
|       DEBUG(dbgs() << "More operands to ext\n");
 | |
|       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
 | |
|         : TPT.createZExt(Ext, Opnd, Ext->getType());
 | |
|       if (!isa<Instruction>(ValForExtOpnd)) {
 | |
|         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
 | |
|         continue;
 | |
|       }
 | |
|       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
 | |
|     }
 | |
|     if (Exts)
 | |
|       Exts->push_back(ExtForOpnd);
 | |
|     TPT.setOperand(ExtForOpnd, 0, Opnd);
 | |
| 
 | |
|     // Move the sign extension before the insertion point.
 | |
|     TPT.moveBefore(ExtForOpnd, ExtOpnd);
 | |
|     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
 | |
|     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
 | |
|     // If more sext are required, new instructions will have to be created.
 | |
|     ExtForOpnd = nullptr;
 | |
|   }
 | |
|   if (ExtForOpnd == Ext) {
 | |
|     DEBUG(dbgs() << "Extension is useless now\n");
 | |
|     TPT.eraseInstruction(Ext);
 | |
|   }
 | |
|   return ExtOpnd;
 | |
| }
 | |
| 
 | |
| /// Check whether or not promoting an instruction to a wider type is profitable.
 | |
| /// \p NewCost gives the cost of extension instructions created by the
 | |
| /// promotion.
 | |
| /// \p OldCost gives the cost of extension instructions before the promotion
 | |
| /// plus the number of instructions that have been
 | |
| /// matched in the addressing mode the promotion.
 | |
| /// \p PromotedOperand is the value that has been promoted.
 | |
| /// \return True if the promotion is profitable, false otherwise.
 | |
| bool AddressingModeMatcher::isPromotionProfitable(
 | |
|     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
 | |
|   DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n');
 | |
|   // The cost of the new extensions is greater than the cost of the
 | |
|   // old extension plus what we folded.
 | |
|   // This is not profitable.
 | |
|   if (NewCost > OldCost)
 | |
|     return false;
 | |
|   if (NewCost < OldCost)
 | |
|     return true;
 | |
|   // The promotion is neutral but it may help folding the sign extension in
 | |
|   // loads for instance.
 | |
|   // Check that we did not create an illegal instruction.
 | |
|   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
 | |
| }
 | |
| 
 | |
| /// Given an instruction or constant expr, see if we can fold the operation
 | |
| /// into the addressing mode. If so, update the addressing mode and return
 | |
| /// true, otherwise return false without modifying AddrMode.
 | |
| /// If \p MovedAway is not NULL, it contains the information of whether or
 | |
| /// not AddrInst has to be folded into the addressing mode on success.
 | |
| /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
 | |
| /// because it has been moved away.
 | |
| /// Thus AddrInst must not be added in the matched instructions.
 | |
| /// This state can happen when AddrInst is a sext, since it may be moved away.
 | |
| /// Therefore, AddrInst may not be valid when MovedAway is true and it must
 | |
| /// not be referenced anymore.
 | |
| bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
 | |
|                                                unsigned Depth,
 | |
|                                                bool *MovedAway) {
 | |
|   // Avoid exponential behavior on extremely deep expression trees.
 | |
|   if (Depth >= 5) return false;
 | |
| 
 | |
|   // By default, all matched instructions stay in place.
 | |
|   if (MovedAway)
 | |
|     *MovedAway = false;
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   case Instruction::PtrToInt:
 | |
|     // PtrToInt is always a noop, as we know that the int type is pointer sized.
 | |
|     return matchAddr(AddrInst->getOperand(0), Depth);
 | |
|   case Instruction::IntToPtr: {
 | |
|     auto AS = AddrInst->getType()->getPointerAddressSpace();
 | |
|     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
 | |
|     // This inttoptr is a no-op if the integer type is pointer sized.
 | |
|     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
 | |
|       return matchAddr(AddrInst->getOperand(0), Depth);
 | |
|     return false;
 | |
|   }
 | |
|   case Instruction::BitCast:
 | |
|     // BitCast is always a noop, and we can handle it as long as it is
 | |
|     // int->int or pointer->pointer (we don't want int<->fp or something).
 | |
|     if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
 | |
|          AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
 | |
|         // Don't touch identity bitcasts.  These were probably put here by LSR,
 | |
|         // and we don't want to mess around with them.  Assume it knows what it
 | |
|         // is doing.
 | |
|         AddrInst->getOperand(0)->getType() != AddrInst->getType())
 | |
|       return matchAddr(AddrInst->getOperand(0), Depth);
 | |
|     return false;
 | |
|   case Instruction::AddrSpaceCast: {
 | |
|     unsigned SrcAS
 | |
|       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
 | |
|     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
 | |
|     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
 | |
|       return matchAddr(AddrInst->getOperand(0), Depth);
 | |
|     return false;
 | |
|   }
 | |
|   case Instruction::Add: {
 | |
|     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
 | |
|     ExtAddrMode BackupAddrMode = AddrMode;
 | |
|     unsigned OldSize = AddrModeInsts.size();
 | |
|     // Start a transaction at this point.
 | |
|     // The LHS may match but not the RHS.
 | |
|     // Therefore, we need a higher level restoration point to undo partially
 | |
|     // matched operation.
 | |
|     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | |
|         TPT.getRestorationPoint();
 | |
| 
 | |
|     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
 | |
|         matchAddr(AddrInst->getOperand(0), Depth+1))
 | |
|       return true;
 | |
| 
 | |
|     // Restore the old addr mode info.
 | |
|     AddrMode = BackupAddrMode;
 | |
|     AddrModeInsts.resize(OldSize);
 | |
|     TPT.rollback(LastKnownGood);
 | |
| 
 | |
|     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
 | |
|     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
 | |
|         matchAddr(AddrInst->getOperand(1), Depth+1))
 | |
|       return true;
 | |
| 
 | |
|     // Otherwise we definitely can't merge the ADD in.
 | |
|     AddrMode = BackupAddrMode;
 | |
|     AddrModeInsts.resize(OldSize);
 | |
|     TPT.rollback(LastKnownGood);
 | |
|     break;
 | |
|   }
 | |
|   //case Instruction::Or:
 | |
|   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
 | |
|   //break;
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::Shl: {
 | |
|     // Can only handle X*C and X << C.
 | |
|     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
 | |
|     if (!RHS)
 | |
|       return false;
 | |
|     int64_t Scale = RHS->getSExtValue();
 | |
|     if (Opcode == Instruction::Shl)
 | |
|       Scale = 1LL << Scale;
 | |
| 
 | |
|     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
 | |
|   }
 | |
|   case Instruction::GetElementPtr: {
 | |
|     // Scan the GEP.  We check it if it contains constant offsets and at most
 | |
|     // one variable offset.
 | |
|     int VariableOperand = -1;
 | |
|     unsigned VariableScale = 0;
 | |
| 
 | |
|     int64_t ConstantOffset = 0;
 | |
|     gep_type_iterator GTI = gep_type_begin(AddrInst);
 | |
|     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
 | |
|       if (StructType *STy = GTI.getStructTypeOrNull()) {
 | |
|         const StructLayout *SL = DL.getStructLayout(STy);
 | |
|         unsigned Idx =
 | |
|           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
 | |
|         ConstantOffset += SL->getElementOffset(Idx);
 | |
|       } else {
 | |
|         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
 | |
|         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
 | |
|           ConstantOffset += CI->getSExtValue()*TypeSize;
 | |
|         } else if (TypeSize) {  // Scales of zero don't do anything.
 | |
|           // We only allow one variable index at the moment.
 | |
|           if (VariableOperand != -1)
 | |
|             return false;
 | |
| 
 | |
|           // Remember the variable index.
 | |
|           VariableOperand = i;
 | |
|           VariableScale = TypeSize;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // A common case is for the GEP to only do a constant offset.  In this case,
 | |
|     // just add it to the disp field and check validity.
 | |
|     if (VariableOperand == -1) {
 | |
|       AddrMode.BaseOffs += ConstantOffset;
 | |
|       if (ConstantOffset == 0 ||
 | |
|           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
 | |
|         // Check to see if we can fold the base pointer in too.
 | |
|         if (matchAddr(AddrInst->getOperand(0), Depth+1))
 | |
|           return true;
 | |
|       }
 | |
|       AddrMode.BaseOffs -= ConstantOffset;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Save the valid addressing mode in case we can't match.
 | |
|     ExtAddrMode BackupAddrMode = AddrMode;
 | |
|     unsigned OldSize = AddrModeInsts.size();
 | |
| 
 | |
|     // See if the scale and offset amount is valid for this target.
 | |
|     AddrMode.BaseOffs += ConstantOffset;
 | |
| 
 | |
|     // Match the base operand of the GEP.
 | |
|     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
 | |
|       // If it couldn't be matched, just stuff the value in a register.
 | |
|       if (AddrMode.HasBaseReg) {
 | |
|         AddrMode = BackupAddrMode;
 | |
|         AddrModeInsts.resize(OldSize);
 | |
|         return false;
 | |
|       }
 | |
|       AddrMode.HasBaseReg = true;
 | |
|       AddrMode.BaseReg = AddrInst->getOperand(0);
 | |
|     }
 | |
| 
 | |
|     // Match the remaining variable portion of the GEP.
 | |
|     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
 | |
|                           Depth)) {
 | |
|       // If it couldn't be matched, try stuffing the base into a register
 | |
|       // instead of matching it, and retrying the match of the scale.
 | |
|       AddrMode = BackupAddrMode;
 | |
|       AddrModeInsts.resize(OldSize);
 | |
|       if (AddrMode.HasBaseReg)
 | |
|         return false;
 | |
|       AddrMode.HasBaseReg = true;
 | |
|       AddrMode.BaseReg = AddrInst->getOperand(0);
 | |
|       AddrMode.BaseOffs += ConstantOffset;
 | |
|       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
 | |
|                             VariableScale, Depth)) {
 | |
|         // If even that didn't work, bail.
 | |
|         AddrMode = BackupAddrMode;
 | |
|         AddrModeInsts.resize(OldSize);
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::ZExt: {
 | |
|     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
 | |
|     if (!Ext)
 | |
|       return false;
 | |
| 
 | |
|     // Try to move this ext out of the way of the addressing mode.
 | |
|     // Ask for a method for doing so.
 | |
|     TypePromotionHelper::Action TPH =
 | |
|         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
 | |
|     if (!TPH)
 | |
|       return false;
 | |
| 
 | |
|     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | |
|         TPT.getRestorationPoint();
 | |
|     unsigned CreatedInstsCost = 0;
 | |
|     unsigned ExtCost = !TLI.isExtFree(Ext);
 | |
|     Value *PromotedOperand =
 | |
|         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
 | |
|     // SExt has been moved away.
 | |
|     // Thus either it will be rematched later in the recursive calls or it is
 | |
|     // gone. Anyway, we must not fold it into the addressing mode at this point.
 | |
|     // E.g.,
 | |
|     // op = add opnd, 1
 | |
|     // idx = ext op
 | |
|     // addr = gep base, idx
 | |
|     // is now:
 | |
|     // promotedOpnd = ext opnd            <- no match here
 | |
|     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
 | |
|     // addr = gep base, op                <- match
 | |
|     if (MovedAway)
 | |
|       *MovedAway = true;
 | |
| 
 | |
|     assert(PromotedOperand &&
 | |
|            "TypePromotionHelper should have filtered out those cases");
 | |
| 
 | |
|     ExtAddrMode BackupAddrMode = AddrMode;
 | |
|     unsigned OldSize = AddrModeInsts.size();
 | |
| 
 | |
|     if (!matchAddr(PromotedOperand, Depth) ||
 | |
|         // The total of the new cost is equal to the cost of the created
 | |
|         // instructions.
 | |
|         // The total of the old cost is equal to the cost of the extension plus
 | |
|         // what we have saved in the addressing mode.
 | |
|         !isPromotionProfitable(CreatedInstsCost,
 | |
|                                ExtCost + (AddrModeInsts.size() - OldSize),
 | |
|                                PromotedOperand)) {
 | |
|       AddrMode = BackupAddrMode;
 | |
|       AddrModeInsts.resize(OldSize);
 | |
|       DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
 | |
|       TPT.rollback(LastKnownGood);
 | |
|       return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// If we can, try to add the value of 'Addr' into the current addressing mode.
 | |
| /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
 | |
| /// unmodified. This assumes that Addr is either a pointer type or intptr_t
 | |
| /// for the target.
 | |
| ///
 | |
| bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
 | |
|   // Start a transaction at this point that we will rollback if the matching
 | |
|   // fails.
 | |
|   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | |
|       TPT.getRestorationPoint();
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
 | |
|     // Fold in immediates if legal for the target.
 | |
|     AddrMode.BaseOffs += CI->getSExtValue();
 | |
|     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
 | |
|       return true;
 | |
|     AddrMode.BaseOffs -= CI->getSExtValue();
 | |
|   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
 | |
|     // If this is a global variable, try to fold it into the addressing mode.
 | |
|     if (!AddrMode.BaseGV) {
 | |
|       AddrMode.BaseGV = GV;
 | |
|       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
 | |
|         return true;
 | |
|       AddrMode.BaseGV = nullptr;
 | |
|     }
 | |
|   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
 | |
|     ExtAddrMode BackupAddrMode = AddrMode;
 | |
|     unsigned OldSize = AddrModeInsts.size();
 | |
| 
 | |
|     // Check to see if it is possible to fold this operation.
 | |
|     bool MovedAway = false;
 | |
|     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
 | |
|       // This instruction may have been moved away. If so, there is nothing
 | |
|       // to check here.
 | |
|       if (MovedAway)
 | |
|         return true;
 | |
|       // Okay, it's possible to fold this.  Check to see if it is actually
 | |
|       // *profitable* to do so.  We use a simple cost model to avoid increasing
 | |
|       // register pressure too much.
 | |
|       if (I->hasOneUse() ||
 | |
|           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
 | |
|         AddrModeInsts.push_back(I);
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       // It isn't profitable to do this, roll back.
 | |
|       //cerr << "NOT FOLDING: " << *I;
 | |
|       AddrMode = BackupAddrMode;
 | |
|       AddrModeInsts.resize(OldSize);
 | |
|       TPT.rollback(LastKnownGood);
 | |
|     }
 | |
|   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
 | |
|     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
 | |
|       return true;
 | |
|     TPT.rollback(LastKnownGood);
 | |
|   } else if (isa<ConstantPointerNull>(Addr)) {
 | |
|     // Null pointer gets folded without affecting the addressing mode.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Worse case, the target should support [reg] addressing modes. :)
 | |
|   if (!AddrMode.HasBaseReg) {
 | |
|     AddrMode.HasBaseReg = true;
 | |
|     AddrMode.BaseReg = Addr;
 | |
|     // Still check for legality in case the target supports [imm] but not [i+r].
 | |
|     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
 | |
|       return true;
 | |
|     AddrMode.HasBaseReg = false;
 | |
|     AddrMode.BaseReg = nullptr;
 | |
|   }
 | |
| 
 | |
|   // If the base register is already taken, see if we can do [r+r].
 | |
|   if (AddrMode.Scale == 0) {
 | |
|     AddrMode.Scale = 1;
 | |
|     AddrMode.ScaledReg = Addr;
 | |
|     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
 | |
|       return true;
 | |
|     AddrMode.Scale = 0;
 | |
|     AddrMode.ScaledReg = nullptr;
 | |
|   }
 | |
|   // Couldn't match.
 | |
|   TPT.rollback(LastKnownGood);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Check to see if all uses of OpVal by the specified inline asm call are due
 | |
| /// to memory operands. If so, return true, otherwise return false.
 | |
| static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
 | |
|                                     const TargetLowering &TLI,
 | |
|                                     const TargetRegisterInfo &TRI) {
 | |
|   const Function *F = CI->getFunction();
 | |
|   TargetLowering::AsmOperandInfoVector TargetConstraints =
 | |
|       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
 | |
|                             ImmutableCallSite(CI));
 | |
| 
 | |
|   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
 | |
|     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
 | |
| 
 | |
|     // Compute the constraint code and ConstraintType to use.
 | |
|     TLI.ComputeConstraintToUse(OpInfo, SDValue());
 | |
| 
 | |
|     // If this asm operand is our Value*, and if it isn't an indirect memory
 | |
|     // operand, we can't fold it!
 | |
|     if (OpInfo.CallOperandVal == OpVal &&
 | |
|         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
 | |
|          !OpInfo.isIndirect))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Max number of memory uses to look at before aborting the search to conserve
 | |
| // compile time.
 | |
| static constexpr int MaxMemoryUsesToScan = 20;
 | |
| 
 | |
| /// Recursively walk all the uses of I until we find a memory use.
 | |
| /// If we find an obviously non-foldable instruction, return true.
 | |
| /// Add the ultimately found memory instructions to MemoryUses.
 | |
| static bool FindAllMemoryUses(
 | |
|     Instruction *I,
 | |
|     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
 | |
|     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
 | |
|     const TargetRegisterInfo &TRI, int SeenInsts = 0) {
 | |
|   // If we already considered this instruction, we're done.
 | |
|   if (!ConsideredInsts.insert(I).second)
 | |
|     return false;
 | |
| 
 | |
|   // If this is an obviously unfoldable instruction, bail out.
 | |
|   if (!MightBeFoldableInst(I))
 | |
|     return true;
 | |
| 
 | |
|   const bool OptSize = I->getFunction()->optForSize();
 | |
| 
 | |
|   // Loop over all the uses, recursively processing them.
 | |
|   for (Use &U : I->uses()) {
 | |
|     // Conservatively return true if we're seeing a large number or a deep chain
 | |
|     // of users. This avoids excessive compilation times in pathological cases.
 | |
|     if (SeenInsts++ >= MaxMemoryUsesToScan)
 | |
|       return true;
 | |
| 
 | |
|     Instruction *UserI = cast<Instruction>(U.getUser());
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
 | |
|       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
 | |
|       unsigned opNo = U.getOperandNo();
 | |
|       if (opNo != StoreInst::getPointerOperandIndex())
 | |
|         return true; // Storing addr, not into addr.
 | |
|       MemoryUses.push_back(std::make_pair(SI, opNo));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
 | |
|       unsigned opNo = U.getOperandNo();
 | |
|       if (opNo != AtomicRMWInst::getPointerOperandIndex())
 | |
|         return true; // Storing addr, not into addr.
 | |
|       MemoryUses.push_back(std::make_pair(RMW, opNo));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
 | |
|       unsigned opNo = U.getOperandNo();
 | |
|       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
 | |
|         return true; // Storing addr, not into addr.
 | |
|       MemoryUses.push_back(std::make_pair(CmpX, opNo));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
 | |
|       // If this is a cold call, we can sink the addressing calculation into
 | |
|       // the cold path.  See optimizeCallInst
 | |
|       if (!OptSize && CI->hasFnAttr(Attribute::Cold))
 | |
|         continue;
 | |
| 
 | |
|       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
 | |
|       if (!IA) return true;
 | |
| 
 | |
|       // If this is a memory operand, we're cool, otherwise bail out.
 | |
|       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
 | |
|         return true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
 | |
|                           SeenInsts))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Return true if Val is already known to be live at the use site that we're
 | |
| /// folding it into. If so, there is no cost to include it in the addressing
 | |
| /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
 | |
| /// instruction already.
 | |
| bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
 | |
|                                                    Value *KnownLive2) {
 | |
|   // If Val is either of the known-live values, we know it is live!
 | |
|   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
 | |
|     return true;
 | |
| 
 | |
|   // All values other than instructions and arguments (e.g. constants) are live.
 | |
|   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
 | |
| 
 | |
|   // If Val is a constant sized alloca in the entry block, it is live, this is
 | |
|   // true because it is just a reference to the stack/frame pointer, which is
 | |
|   // live for the whole function.
 | |
|   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
 | |
|     if (AI->isStaticAlloca())
 | |
|       return true;
 | |
| 
 | |
|   // Check to see if this value is already used in the memory instruction's
 | |
|   // block.  If so, it's already live into the block at the very least, so we
 | |
|   // can reasonably fold it.
 | |
|   return Val->isUsedInBasicBlock(MemoryInst->getParent());
 | |
| }
 | |
| 
 | |
| /// It is possible for the addressing mode of the machine to fold the specified
 | |
| /// instruction into a load or store that ultimately uses it.
 | |
| /// However, the specified instruction has multiple uses.
 | |
| /// Given this, it may actually increase register pressure to fold it
 | |
| /// into the load. For example, consider this code:
 | |
| ///
 | |
| ///     X = ...
 | |
| ///     Y = X+1
 | |
| ///     use(Y)   -> nonload/store
 | |
| ///     Z = Y+1
 | |
| ///     load Z
 | |
| ///
 | |
| /// In this case, Y has multiple uses, and can be folded into the load of Z
 | |
| /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
 | |
| /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
 | |
| /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
 | |
| /// number of computations either.
 | |
| ///
 | |
| /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
 | |
| /// X was live across 'load Z' for other reasons, we actually *would* want to
 | |
| /// fold the addressing mode in the Z case.  This would make Y die earlier.
 | |
| bool AddressingModeMatcher::
 | |
| isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
 | |
|                                      ExtAddrMode &AMAfter) {
 | |
|   if (IgnoreProfitability) return true;
 | |
| 
 | |
|   // AMBefore is the addressing mode before this instruction was folded into it,
 | |
|   // and AMAfter is the addressing mode after the instruction was folded.  Get
 | |
|   // the set of registers referenced by AMAfter and subtract out those
 | |
|   // referenced by AMBefore: this is the set of values which folding in this
 | |
|   // address extends the lifetime of.
 | |
|   //
 | |
|   // Note that there are only two potential values being referenced here,
 | |
|   // BaseReg and ScaleReg (global addresses are always available, as are any
 | |
|   // folded immediates).
 | |
|   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
 | |
| 
 | |
|   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
 | |
|   // lifetime wasn't extended by adding this instruction.
 | |
|   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
 | |
|     BaseReg = nullptr;
 | |
|   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
 | |
|     ScaledReg = nullptr;
 | |
| 
 | |
|   // If folding this instruction (and it's subexprs) didn't extend any live
 | |
|   // ranges, we're ok with it.
 | |
|   if (!BaseReg && !ScaledReg)
 | |
|     return true;
 | |
| 
 | |
|   // If all uses of this instruction can have the address mode sunk into them,
 | |
|   // we can remove the addressing mode and effectively trade one live register
 | |
|   // for another (at worst.)  In this context, folding an addressing mode into
 | |
|   // the use is just a particularly nice way of sinking it.
 | |
|   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
 | |
|   SmallPtrSet<Instruction*, 16> ConsideredInsts;
 | |
|   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
 | |
|     return false;  // Has a non-memory, non-foldable use!
 | |
| 
 | |
|   // Now that we know that all uses of this instruction are part of a chain of
 | |
|   // computation involving only operations that could theoretically be folded
 | |
|   // into a memory use, loop over each of these memory operation uses and see
 | |
|   // if they could  *actually* fold the instruction.  The assumption is that
 | |
|   // addressing modes are cheap and that duplicating the computation involved
 | |
|   // many times is worthwhile, even on a fastpath. For sinking candidates
 | |
|   // (i.e. cold call sites), this serves as a way to prevent excessive code
 | |
|   // growth since most architectures have some reasonable small and fast way to
 | |
|   // compute an effective address.  (i.e LEA on x86)
 | |
|   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
 | |
|   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
 | |
|     Instruction *User = MemoryUses[i].first;
 | |
|     unsigned OpNo = MemoryUses[i].second;
 | |
| 
 | |
|     // Get the access type of this use.  If the use isn't a pointer, we don't
 | |
|     // know what it accesses.
 | |
|     Value *Address = User->getOperand(OpNo);
 | |
|     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
 | |
|     if (!AddrTy)
 | |
|       return false;
 | |
|     Type *AddressAccessTy = AddrTy->getElementType();
 | |
|     unsigned AS = AddrTy->getAddressSpace();
 | |
| 
 | |
|     // Do a match against the root of this address, ignoring profitability. This
 | |
|     // will tell us if the addressing mode for the memory operation will
 | |
|     // *actually* cover the shared instruction.
 | |
|     ExtAddrMode Result;
 | |
|     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | |
|         TPT.getRestorationPoint();
 | |
|     AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI,
 | |
|                                   AddressAccessTy, AS,
 | |
|                                   MemoryInst, Result, InsertedInsts,
 | |
|                                   PromotedInsts, TPT);
 | |
|     Matcher.IgnoreProfitability = true;
 | |
|     bool Success = Matcher.matchAddr(Address, 0);
 | |
|     (void)Success; assert(Success && "Couldn't select *anything*?");
 | |
| 
 | |
|     // The match was to check the profitability, the changes made are not
 | |
|     // part of the original matcher. Therefore, they should be dropped
 | |
|     // otherwise the original matcher will not present the right state.
 | |
|     TPT.rollback(LastKnownGood);
 | |
| 
 | |
|     // If the match didn't cover I, then it won't be shared by it.
 | |
|     if (!is_contained(MatchedAddrModeInsts, I))
 | |
|       return false;
 | |
| 
 | |
|     MatchedAddrModeInsts.clear();
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Return true if the specified values are defined in a
 | |
| /// different basic block than BB.
 | |
| static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     return I->getParent() != BB;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Sink addressing mode computation immediate before MemoryInst if doing so
 | |
| /// can be done without increasing register pressure.  The need for the
 | |
| /// register pressure constraint means this can end up being an all or nothing
 | |
| /// decision for all uses of the same addressing computation.
 | |
| ///
 | |
| /// Load and Store Instructions often have addressing modes that can do
 | |
| /// significant amounts of computation. As such, instruction selection will try
 | |
| /// to get the load or store to do as much computation as possible for the
 | |
| /// program. The problem is that isel can only see within a single block. As
 | |
| /// such, we sink as much legal addressing mode work into the block as possible.
 | |
| ///
 | |
| /// This method is used to optimize both load/store and inline asms with memory
 | |
| /// operands.  It's also used to sink addressing computations feeding into cold
 | |
| /// call sites into their (cold) basic block.
 | |
| ///
 | |
| /// The motivation for handling sinking into cold blocks is that doing so can
 | |
| /// both enable other address mode sinking (by satisfying the register pressure
 | |
| /// constraint above), and reduce register pressure globally (by removing the
 | |
| /// addressing mode computation from the fast path entirely.).
 | |
| bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
 | |
|                                         Type *AccessTy, unsigned AddrSpace) {
 | |
|   Value *Repl = Addr;
 | |
| 
 | |
|   // Try to collapse single-value PHI nodes.  This is necessary to undo
 | |
|   // unprofitable PRE transformations.
 | |
|   SmallVector<Value*, 8> worklist;
 | |
|   SmallPtrSet<Value*, 16> Visited;
 | |
|   worklist.push_back(Addr);
 | |
| 
 | |
|   // Use a worklist to iteratively look through PHI nodes, and ensure that
 | |
|   // the addressing mode obtained from the non-PHI roots of the graph
 | |
|   // are equivalent.
 | |
|   bool AddrModeFound = false;
 | |
|   bool PhiSeen = false;
 | |
|   SmallVector<Instruction*, 16> AddrModeInsts;
 | |
|   ExtAddrMode AddrMode;
 | |
|   TypePromotionTransaction TPT(RemovedInsts);
 | |
|   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | |
|       TPT.getRestorationPoint();
 | |
|   while (!worklist.empty()) {
 | |
|     Value *V = worklist.back();
 | |
|     worklist.pop_back();
 | |
| 
 | |
|     // We allow traversing cyclic Phi nodes.
 | |
|     // In case of success after this loop we ensure that traversing through
 | |
|     // Phi nodes ends up with all cases to compute address of the form
 | |
|     //    BaseGV + Base + Scale * Index + Offset
 | |
|     // where Scale and Offset are constans and BaseGV, Base and Index
 | |
|     // are exactly the same Values in all cases.
 | |
|     // It means that BaseGV, Scale and Offset dominate our memory instruction
 | |
|     // and have the same value as they had in address computation represented
 | |
|     // as Phi. So we can safely sink address computation to memory instruction.
 | |
|     if (!Visited.insert(V).second)
 | |
|       continue;
 | |
| 
 | |
|     // For a PHI node, push all of its incoming values.
 | |
|     if (PHINode *P = dyn_cast<PHINode>(V)) {
 | |
|       for (Value *IncValue : P->incoming_values())
 | |
|         worklist.push_back(IncValue);
 | |
|       PhiSeen = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // For non-PHIs, determine the addressing mode being computed.  Note that
 | |
|     // the result may differ depending on what other uses our candidate
 | |
|     // addressing instructions might have.
 | |
|     AddrModeInsts.clear();
 | |
|     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
 | |
|         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
 | |
|         InsertedInsts, PromotedInsts, TPT);
 | |
| 
 | |
|     if (!AddrModeFound) {
 | |
|       AddrModeFound = true;
 | |
|       AddrMode = NewAddrMode;
 | |
|       continue;
 | |
|     }
 | |
|     if (NewAddrMode == AddrMode)
 | |
|       continue;
 | |
| 
 | |
|     AddrModeFound = false;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // If the addressing mode couldn't be determined, or if multiple different
 | |
|   // ones were determined, bail out now.
 | |
|   if (!AddrModeFound) {
 | |
|     TPT.rollback(LastKnownGood);
 | |
|     return false;
 | |
|   }
 | |
|   TPT.commit();
 | |
| 
 | |
|   // If all the instructions matched are already in this BB, don't do anything.
 | |
|   // If we saw Phi node then it is not local definitely.
 | |
|   if (!PhiSeen && none_of(AddrModeInsts, [&](Value *V) {
 | |
|         return IsNonLocalValue(V, MemoryInst->getParent());
 | |
|                   })) {
 | |
|     DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Insert this computation right after this user.  Since our caller is
 | |
|   // scanning from the top of the BB to the bottom, reuse of the expr are
 | |
|   // guaranteed to happen later.
 | |
|   IRBuilder<> Builder(MemoryInst);
 | |
| 
 | |
|   // Now that we determined the addressing expression we want to use and know
 | |
|   // that we have to sink it into this block.  Check to see if we have already
 | |
|   // done this for some other load/store instr in this block.  If so, reuse the
 | |
|   // computation.
 | |
|   Value *&SunkAddr = SunkAddrs[Addr];
 | |
|   if (SunkAddr) {
 | |
|     DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
 | |
|                  << *MemoryInst << "\n");
 | |
|     if (SunkAddr->getType() != Addr->getType())
 | |
|       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
 | |
|   } else if (AddrSinkUsingGEPs ||
 | |
|              (!AddrSinkUsingGEPs.getNumOccurrences() && TM &&
 | |
|               SubtargetInfo->useAA())) {
 | |
|     // By default, we use the GEP-based method when AA is used later. This
 | |
|     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
 | |
|     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
 | |
|                  << *MemoryInst << "\n");
 | |
|     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
 | |
|     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
 | |
| 
 | |
|     // First, find the pointer.
 | |
|     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
 | |
|       ResultPtr = AddrMode.BaseReg;
 | |
|       AddrMode.BaseReg = nullptr;
 | |
|     }
 | |
| 
 | |
|     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
 | |
|       // We can't add more than one pointer together, nor can we scale a
 | |
|       // pointer (both of which seem meaningless).
 | |
|       if (ResultPtr || AddrMode.Scale != 1)
 | |
|         return false;
 | |
| 
 | |
|       ResultPtr = AddrMode.ScaledReg;
 | |
|       AddrMode.Scale = 0;
 | |
|     }
 | |
| 
 | |
|     // It is only safe to sign extend the BaseReg if we know that the math
 | |
|     // required to create it did not overflow before we extend it. Since
 | |
|     // the original IR value was tossed in favor of a constant back when
 | |
|     // the AddrMode was created we need to bail out gracefully if widths
 | |
|     // do not match instead of extending it.
 | |
|     //
 | |
|     // (See below for code to add the scale.)
 | |
|     if (AddrMode.Scale) {
 | |
|       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
 | |
|       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
 | |
|           cast<IntegerType>(ScaledRegTy)->getBitWidth())
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (AddrMode.BaseGV) {
 | |
|       if (ResultPtr)
 | |
|         return false;
 | |
| 
 | |
|       ResultPtr = AddrMode.BaseGV;
 | |
|     }
 | |
| 
 | |
|     // If the real base value actually came from an inttoptr, then the matcher
 | |
|     // will look through it and provide only the integer value. In that case,
 | |
|     // use it here.
 | |
|     if (!DL->isNonIntegralPointerType(Addr->getType())) {
 | |
|       if (!ResultPtr && AddrMode.BaseReg) {
 | |
|         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
 | |
|                                            "sunkaddr");
 | |
|         AddrMode.BaseReg = nullptr;
 | |
|       } else if (!ResultPtr && AddrMode.Scale == 1) {
 | |
|         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
 | |
|                                            "sunkaddr");
 | |
|         AddrMode.Scale = 0;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!ResultPtr &&
 | |
|         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
 | |
|       SunkAddr = Constant::getNullValue(Addr->getType());
 | |
|     } else if (!ResultPtr) {
 | |
|       return false;
 | |
|     } else {
 | |
|       Type *I8PtrTy =
 | |
|           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
 | |
|       Type *I8Ty = Builder.getInt8Ty();
 | |
| 
 | |
|       // Start with the base register. Do this first so that subsequent address
 | |
|       // matching finds it last, which will prevent it from trying to match it
 | |
|       // as the scaled value in case it happens to be a mul. That would be
 | |
|       // problematic if we've sunk a different mul for the scale, because then
 | |
|       // we'd end up sinking both muls.
 | |
|       if (AddrMode.BaseReg) {
 | |
|         Value *V = AddrMode.BaseReg;
 | |
|         if (V->getType() != IntPtrTy)
 | |
|           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
 | |
| 
 | |
|         ResultIndex = V;
 | |
|       }
 | |
| 
 | |
|       // Add the scale value.
 | |
|       if (AddrMode.Scale) {
 | |
|         Value *V = AddrMode.ScaledReg;
 | |
|         if (V->getType() == IntPtrTy) {
 | |
|           // done.
 | |
|         } else {
 | |
|           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
 | |
|                  cast<IntegerType>(V->getType())->getBitWidth() &&
 | |
|                  "We can't transform if ScaledReg is too narrow");
 | |
|           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
 | |
|         }
 | |
| 
 | |
|         if (AddrMode.Scale != 1)
 | |
|           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
 | |
|                                 "sunkaddr");
 | |
|         if (ResultIndex)
 | |
|           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
 | |
|         else
 | |
|           ResultIndex = V;
 | |
|       }
 | |
| 
 | |
|       // Add in the Base Offset if present.
 | |
|       if (AddrMode.BaseOffs) {
 | |
|         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
 | |
|         if (ResultIndex) {
 | |
|           // We need to add this separately from the scale above to help with
 | |
|           // SDAG consecutive load/store merging.
 | |
|           if (ResultPtr->getType() != I8PtrTy)
 | |
|             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
 | |
|           ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
 | |
|         }
 | |
| 
 | |
|         ResultIndex = V;
 | |
|       }
 | |
| 
 | |
|       if (!ResultIndex) {
 | |
|         SunkAddr = ResultPtr;
 | |
|       } else {
 | |
|         if (ResultPtr->getType() != I8PtrTy)
 | |
|           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
 | |
|         SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
 | |
|       }
 | |
| 
 | |
|       if (SunkAddr->getType() != Addr->getType())
 | |
|         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
 | |
|     }
 | |
|   } else {
 | |
|     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
 | |
|     // non-integral pointers, so in that case bail out now.
 | |
|     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
 | |
|     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
 | |
|     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
 | |
|     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
 | |
|     if (DL->isNonIntegralPointerType(Addr->getType()) ||
 | |
|         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
 | |
|         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
 | |
|         (AddrMode.BaseGV &&
 | |
|          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
 | |
|       return false;
 | |
| 
 | |
|     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
 | |
|                  << *MemoryInst << "\n");
 | |
|     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
 | |
|     Value *Result = nullptr;
 | |
| 
 | |
|     // Start with the base register. Do this first so that subsequent address
 | |
|     // matching finds it last, which will prevent it from trying to match it
 | |
|     // as the scaled value in case it happens to be a mul. That would be
 | |
|     // problematic if we've sunk a different mul for the scale, because then
 | |
|     // we'd end up sinking both muls.
 | |
|     if (AddrMode.BaseReg) {
 | |
|       Value *V = AddrMode.BaseReg;
 | |
|       if (V->getType()->isPointerTy())
 | |
|         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
 | |
|       if (V->getType() != IntPtrTy)
 | |
|         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
 | |
|       Result = V;
 | |
|     }
 | |
| 
 | |
|     // Add the scale value.
 | |
|     if (AddrMode.Scale) {
 | |
|       Value *V = AddrMode.ScaledReg;
 | |
|       if (V->getType() == IntPtrTy) {
 | |
|         // done.
 | |
|       } else if (V->getType()->isPointerTy()) {
 | |
|         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
 | |
|       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
 | |
|                  cast<IntegerType>(V->getType())->getBitWidth()) {
 | |
|         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
 | |
|       } else {
 | |
|         // It is only safe to sign extend the BaseReg if we know that the math
 | |
|         // required to create it did not overflow before we extend it. Since
 | |
|         // the original IR value was tossed in favor of a constant back when
 | |
|         // the AddrMode was created we need to bail out gracefully if widths
 | |
|         // do not match instead of extending it.
 | |
|         Instruction *I = dyn_cast_or_null<Instruction>(Result);
 | |
|         if (I && (Result != AddrMode.BaseReg))
 | |
|           I->eraseFromParent();
 | |
|         return false;
 | |
|       }
 | |
|       if (AddrMode.Scale != 1)
 | |
|         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
 | |
|                               "sunkaddr");
 | |
|       if (Result)
 | |
|         Result = Builder.CreateAdd(Result, V, "sunkaddr");
 | |
|       else
 | |
|         Result = V;
 | |
|     }
 | |
| 
 | |
|     // Add in the BaseGV if present.
 | |
|     if (AddrMode.BaseGV) {
 | |
|       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
 | |
|       if (Result)
 | |
|         Result = Builder.CreateAdd(Result, V, "sunkaddr");
 | |
|       else
 | |
|         Result = V;
 | |
|     }
 | |
| 
 | |
|     // Add in the Base Offset if present.
 | |
|     if (AddrMode.BaseOffs) {
 | |
|       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
 | |
|       if (Result)
 | |
|         Result = Builder.CreateAdd(Result, V, "sunkaddr");
 | |
|       else
 | |
|         Result = V;
 | |
|     }
 | |
| 
 | |
|     if (!Result)
 | |
|       SunkAddr = Constant::getNullValue(Addr->getType());
 | |
|     else
 | |
|       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
 | |
|   }
 | |
| 
 | |
|   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
 | |
| 
 | |
|   // If we have no uses, recursively delete the value and all dead instructions
 | |
|   // using it.
 | |
|   if (Repl->use_empty()) {
 | |
|     // This can cause recursive deletion, which can invalidate our iterator.
 | |
|     // Use a WeakTrackingVH to hold onto it in case this happens.
 | |
|     Value *CurValue = &*CurInstIterator;
 | |
|     WeakTrackingVH IterHandle(CurValue);
 | |
|     BasicBlock *BB = CurInstIterator->getParent();
 | |
| 
 | |
|     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
 | |
| 
 | |
|     if (IterHandle != CurValue) {
 | |
|       // If the iterator instruction was recursively deleted, start over at the
 | |
|       // start of the block.
 | |
|       CurInstIterator = BB->begin();
 | |
|       SunkAddrs.clear();
 | |
|     }
 | |
|   }
 | |
|   ++NumMemoryInsts;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// If there are any memory operands, use OptimizeMemoryInst to sink their
 | |
| /// address computing into the block when possible / profitable.
 | |
| bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   const TargetRegisterInfo *TRI =
 | |
|       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
 | |
|   TargetLowering::AsmOperandInfoVector TargetConstraints =
 | |
|       TLI->ParseConstraints(*DL, TRI, CS);
 | |
|   unsigned ArgNo = 0;
 | |
|   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
 | |
|     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
 | |
| 
 | |
|     // Compute the constraint code and ConstraintType to use.
 | |
|     TLI->ComputeConstraintToUse(OpInfo, SDValue());
 | |
| 
 | |
|     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
 | |
|         OpInfo.isIndirect) {
 | |
|       Value *OpVal = CS->getArgOperand(ArgNo++);
 | |
|       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
 | |
|     } else if (OpInfo.Type == InlineAsm::isInput)
 | |
|       ArgNo++;
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// \brief Check if all the uses of \p Val are equivalent (or free) zero or
 | |
| /// sign extensions.
 | |
| static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
 | |
|   assert(!Val->use_empty() && "Input must have at least one use");
 | |
|   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
 | |
|   bool IsSExt = isa<SExtInst>(FirstUser);
 | |
|   Type *ExtTy = FirstUser->getType();
 | |
|   for (const User *U : Val->users()) {
 | |
|     const Instruction *UI = cast<Instruction>(U);
 | |
|     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
 | |
|       return false;
 | |
|     Type *CurTy = UI->getType();
 | |
|     // Same input and output types: Same instruction after CSE.
 | |
|     if (CurTy == ExtTy)
 | |
|       continue;
 | |
| 
 | |
|     // If IsSExt is true, we are in this situation:
 | |
|     // a = Val
 | |
|     // b = sext ty1 a to ty2
 | |
|     // c = sext ty1 a to ty3
 | |
|     // Assuming ty2 is shorter than ty3, this could be turned into:
 | |
|     // a = Val
 | |
|     // b = sext ty1 a to ty2
 | |
|     // c = sext ty2 b to ty3
 | |
|     // However, the last sext is not free.
 | |
|     if (IsSExt)
 | |
|       return false;
 | |
| 
 | |
|     // This is a ZExt, maybe this is free to extend from one type to another.
 | |
|     // In that case, we would not account for a different use.
 | |
|     Type *NarrowTy;
 | |
|     Type *LargeTy;
 | |
|     if (ExtTy->getScalarType()->getIntegerBitWidth() >
 | |
|         CurTy->getScalarType()->getIntegerBitWidth()) {
 | |
|       NarrowTy = CurTy;
 | |
|       LargeTy = ExtTy;
 | |
|     } else {
 | |
|       NarrowTy = ExtTy;
 | |
|       LargeTy = CurTy;
 | |
|     }
 | |
| 
 | |
|     if (!TLI.isZExtFree(NarrowTy, LargeTy))
 | |
|       return false;
 | |
|   }
 | |
|   // All uses are the same or can be derived from one another for free.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Try to speculatively promote extensions in \p Exts and continue
 | |
| /// promoting through newly promoted operands recursively as far as doing so is
 | |
| /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
 | |
| /// When some promotion happened, \p TPT contains the proper state to revert
 | |
| /// them.
 | |
| ///
 | |
| /// \return true if some promotion happened, false otherwise.
 | |
| bool CodeGenPrepare::tryToPromoteExts(
 | |
|     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
 | |
|     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
 | |
|     unsigned CreatedInstsCost) {
 | |
|   bool Promoted = false;
 | |
| 
 | |
|   // Iterate over all the extensions to try to promote them.
 | |
|   for (auto I : Exts) {
 | |
|     // Early check if we directly have ext(load).
 | |
|     if (isa<LoadInst>(I->getOperand(0))) {
 | |
|       ProfitablyMovedExts.push_back(I);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Check whether or not we want to do any promotion.  The reason we have
 | |
|     // this check inside the for loop is to catch the case where an extension
 | |
|     // is directly fed by a load because in such case the extension can be moved
 | |
|     // up without any promotion on its operands.
 | |
|     if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
 | |
|       return false;
 | |
| 
 | |
|     // Get the action to perform the promotion.
 | |
|     TypePromotionHelper::Action TPH =
 | |
|         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
 | |
|     // Check if we can promote.
 | |
|     if (!TPH) {
 | |
|       // Save the current extension as we cannot move up through its operand.
 | |
|       ProfitablyMovedExts.push_back(I);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Save the current state.
 | |
|     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | |
|         TPT.getRestorationPoint();
 | |
|     SmallVector<Instruction *, 4> NewExts;
 | |
|     unsigned NewCreatedInstsCost = 0;
 | |
|     unsigned ExtCost = !TLI->isExtFree(I);
 | |
|     // Promote.
 | |
|     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
 | |
|                              &NewExts, nullptr, *TLI);
 | |
|     assert(PromotedVal &&
 | |
|            "TypePromotionHelper should have filtered out those cases");
 | |
| 
 | |
|     // We would be able to merge only one extension in a load.
 | |
|     // Therefore, if we have more than 1 new extension we heuristically
 | |
|     // cut this search path, because it means we degrade the code quality.
 | |
|     // With exactly 2, the transformation is neutral, because we will merge
 | |
|     // one extension but leave one. However, we optimistically keep going,
 | |
|     // because the new extension may be removed too.
 | |
|     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
 | |
|     // FIXME: It would be possible to propagate a negative value instead of
 | |
|     // conservatively ceiling it to 0.
 | |
|     TotalCreatedInstsCost =
 | |
|         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
 | |
|     if (!StressExtLdPromotion &&
 | |
|         (TotalCreatedInstsCost > 1 ||
 | |
|          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
 | |
|       // This promotion is not profitable, rollback to the previous state, and
 | |
|       // save the current extension in ProfitablyMovedExts as the latest
 | |
|       // speculative promotion turned out to be unprofitable.
 | |
|       TPT.rollback(LastKnownGood);
 | |
|       ProfitablyMovedExts.push_back(I);
 | |
|       continue;
 | |
|     }
 | |
|     // Continue promoting NewExts as far as doing so is profitable.
 | |
|     SmallVector<Instruction *, 2> NewlyMovedExts;
 | |
|     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
 | |
|     bool NewPromoted = false;
 | |
|     for (auto ExtInst : NewlyMovedExts) {
 | |
|       Instruction *MovedExt = cast<Instruction>(ExtInst);
 | |
|       Value *ExtOperand = MovedExt->getOperand(0);
 | |
|       // If we have reached to a load, we need this extra profitability check
 | |
|       // as it could potentially be merged into an ext(load).
 | |
|       if (isa<LoadInst>(ExtOperand) &&
 | |
|           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
 | |
|             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
 | |
|         continue;
 | |
| 
 | |
|       ProfitablyMovedExts.push_back(MovedExt);
 | |
|       NewPromoted = true;
 | |
|     }
 | |
| 
 | |
|     // If none of speculative promotions for NewExts is profitable, rollback
 | |
|     // and save the current extension (I) as the last profitable extension.
 | |
|     if (!NewPromoted) {
 | |
|       TPT.rollback(LastKnownGood);
 | |
|       ProfitablyMovedExts.push_back(I);
 | |
|       continue;
 | |
|     }
 | |
|     // The promotion is profitable.
 | |
|     Promoted = true;
 | |
|   }
 | |
|   return Promoted;
 | |
| }
 | |
| 
 | |
| /// Merging redundant sexts when one is dominating the other.
 | |
| bool CodeGenPrepare::mergeSExts(Function &F) {
 | |
|   DominatorTree DT(F);
 | |
|   bool Changed = false;
 | |
|   for (auto &Entry : ValToSExtendedUses) {
 | |
|     SExts &Insts = Entry.second;
 | |
|     SExts CurPts;
 | |
|     for (Instruction *Inst : Insts) {
 | |
|       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
 | |
|           Inst->getOperand(0) != Entry.first)
 | |
|         continue;
 | |
|       bool inserted = false;
 | |
|       for (auto &Pt : CurPts) {
 | |
|         if (DT.dominates(Inst, Pt)) {
 | |
|           Pt->replaceAllUsesWith(Inst);
 | |
|           RemovedInsts.insert(Pt);
 | |
|           Pt->removeFromParent();
 | |
|           Pt = Inst;
 | |
|           inserted = true;
 | |
|           Changed = true;
 | |
|           break;
 | |
|         }
 | |
|         if (!DT.dominates(Pt, Inst))
 | |
|           // Give up if we need to merge in a common dominator as the
 | |
|           // expermients show it is not profitable.
 | |
|           continue;
 | |
|         Inst->replaceAllUsesWith(Pt);
 | |
|         RemovedInsts.insert(Inst);
 | |
|         Inst->removeFromParent();
 | |
|         inserted = true;
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|       if (!inserted)
 | |
|         CurPts.push_back(Inst);
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// Return true, if an ext(load) can be formed from an extension in
 | |
| /// \p MovedExts.
 | |
| bool CodeGenPrepare::canFormExtLd(
 | |
|     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
 | |
|     Instruction *&Inst, bool HasPromoted) {
 | |
|   for (auto *MovedExtInst : MovedExts) {
 | |
|     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
 | |
|       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
 | |
|       Inst = MovedExtInst;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!LI)
 | |
|     return false;
 | |
| 
 | |
|   // If they're already in the same block, there's nothing to do.
 | |
|   // Make the cheap checks first if we did not promote.
 | |
|   // If we promoted, we need to check if it is indeed profitable.
 | |
|   if (!HasPromoted && LI->getParent() == Inst->getParent())
 | |
|     return false;
 | |
| 
 | |
|   return TLI->isExtLoad(LI, Inst, *DL);
 | |
| }
 | |
| 
 | |
| /// Move a zext or sext fed by a load into the same basic block as the load,
 | |
| /// unless conditions are unfavorable. This allows SelectionDAG to fold the
 | |
| /// extend into the load.
 | |
| ///
 | |
| /// E.g.,
 | |
| /// \code
 | |
| /// %ld = load i32* %addr
 | |
| /// %add = add nuw i32 %ld, 4
 | |
| /// %zext = zext i32 %add to i64
 | |
| // \endcode
 | |
| /// =>
 | |
| /// \code
 | |
| /// %ld = load i32* %addr
 | |
| /// %zext = zext i32 %ld to i64
 | |
| /// %add = add nuw i64 %zext, 4
 | |
| /// \encode
 | |
| /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
 | |
| /// allow us to match zext(load i32*) to i64.
 | |
| ///
 | |
| /// Also, try to promote the computations used to obtain a sign extended
 | |
| /// value used into memory accesses.
 | |
| /// E.g.,
 | |
| /// \code
 | |
| /// a = add nsw i32 b, 3
 | |
| /// d = sext i32 a to i64
 | |
| /// e = getelementptr ..., i64 d
 | |
| /// \endcode
 | |
| /// =>
 | |
| /// \code
 | |
| /// f = sext i32 b to i64
 | |
| /// a = add nsw i64 f, 3
 | |
| /// e = getelementptr ..., i64 a
 | |
| /// \endcode
 | |
| ///
 | |
| /// \p Inst[in/out] the extension may be modified during the process if some
 | |
| /// promotions apply.
 | |
| bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
 | |
|   // ExtLoad formation and address type promotion infrastructure requires TLI to
 | |
|   // be effective.
 | |
|   if (!TLI)
 | |
|     return false;
 | |
| 
 | |
|   bool AllowPromotionWithoutCommonHeader = false;
 | |
|   /// See if it is an interesting sext operations for the address type
 | |
|   /// promotion before trying to promote it, e.g., the ones with the right
 | |
|   /// type and used in memory accesses.
 | |
|   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
 | |
|       *Inst, AllowPromotionWithoutCommonHeader);
 | |
|   TypePromotionTransaction TPT(RemovedInsts);
 | |
|   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | |
|       TPT.getRestorationPoint();
 | |
|   SmallVector<Instruction *, 1> Exts;
 | |
|   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
 | |
|   Exts.push_back(Inst);
 | |
| 
 | |
|   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
 | |
| 
 | |
|   // Look for a load being extended.
 | |
|   LoadInst *LI = nullptr;
 | |
|   Instruction *ExtFedByLoad;
 | |
| 
 | |
|   // Try to promote a chain of computation if it allows to form an extended
 | |
|   // load.
 | |
|   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
 | |
|     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
 | |
|     TPT.commit();
 | |
|     // Move the extend into the same block as the load
 | |
|     ExtFedByLoad->moveAfter(LI);
 | |
|     // CGP does not check if the zext would be speculatively executed when moved
 | |
|     // to the same basic block as the load. Preserving its original location
 | |
|     // would pessimize the debugging experience, as well as negatively impact
 | |
|     // the quality of sample pgo. We don't want to use "line 0" as that has a
 | |
|     // size cost in the line-table section and logically the zext can be seen as
 | |
|     // part of the load. Therefore we conservatively reuse the same debug
 | |
|     // location for the load and the zext.
 | |
|     ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
 | |
|     ++NumExtsMoved;
 | |
|     Inst = ExtFedByLoad;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Continue promoting SExts if known as considerable depending on targets.
 | |
|   if (ATPConsiderable &&
 | |
|       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
 | |
|                                   HasPromoted, TPT, SpeculativelyMovedExts))
 | |
|     return true;
 | |
| 
 | |
|   TPT.rollback(LastKnownGood);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Perform address type promotion if doing so is profitable.
 | |
| // If AllowPromotionWithoutCommonHeader == false, we should find other sext
 | |
| // instructions that sign extended the same initial value. However, if
 | |
| // AllowPromotionWithoutCommonHeader == true, we expect promoting the
 | |
| // extension is just profitable.
 | |
| bool CodeGenPrepare::performAddressTypePromotion(
 | |
|     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
 | |
|     bool HasPromoted, TypePromotionTransaction &TPT,
 | |
|     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
 | |
|   bool Promoted = false;
 | |
|   SmallPtrSet<Instruction *, 1> UnhandledExts;
 | |
|   bool AllSeenFirst = true;
 | |
|   for (auto I : SpeculativelyMovedExts) {
 | |
|     Value *HeadOfChain = I->getOperand(0);
 | |
|     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
 | |
|         SeenChainsForSExt.find(HeadOfChain);
 | |
|     // If there is an unhandled SExt which has the same header, try to promote
 | |
|     // it as well.
 | |
|     if (AlreadySeen != SeenChainsForSExt.end()) {
 | |
|       if (AlreadySeen->second != nullptr)
 | |
|         UnhandledExts.insert(AlreadySeen->second);
 | |
|       AllSeenFirst = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
 | |
|                         SpeculativelyMovedExts.size() == 1)) {
 | |
|     TPT.commit();
 | |
|     if (HasPromoted)
 | |
|       Promoted = true;
 | |
|     for (auto I : SpeculativelyMovedExts) {
 | |
|       Value *HeadOfChain = I->getOperand(0);
 | |
|       SeenChainsForSExt[HeadOfChain] = nullptr;
 | |
|       ValToSExtendedUses[HeadOfChain].push_back(I);
 | |
|     }
 | |
|     // Update Inst as promotion happen.
 | |
|     Inst = SpeculativelyMovedExts.pop_back_val();
 | |
|   } else {
 | |
|     // This is the first chain visited from the header, keep the current chain
 | |
|     // as unhandled. Defer to promote this until we encounter another SExt
 | |
|     // chain derived from the same header.
 | |
|     for (auto I : SpeculativelyMovedExts) {
 | |
|       Value *HeadOfChain = I->getOperand(0);
 | |
|       SeenChainsForSExt[HeadOfChain] = Inst;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!AllSeenFirst && !UnhandledExts.empty())
 | |
|     for (auto VisitedSExt : UnhandledExts) {
 | |
|       if (RemovedInsts.count(VisitedSExt))
 | |
|         continue;
 | |
|       TypePromotionTransaction TPT(RemovedInsts);
 | |
|       SmallVector<Instruction *, 1> Exts;
 | |
|       SmallVector<Instruction *, 2> Chains;
 | |
|       Exts.push_back(VisitedSExt);
 | |
|       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
 | |
|       TPT.commit();
 | |
|       if (HasPromoted)
 | |
|         Promoted = true;
 | |
|       for (auto I : Chains) {
 | |
|         Value *HeadOfChain = I->getOperand(0);
 | |
|         // Mark this as handled.
 | |
|         SeenChainsForSExt[HeadOfChain] = nullptr;
 | |
|         ValToSExtendedUses[HeadOfChain].push_back(I);
 | |
|       }
 | |
|     }
 | |
|   return Promoted;
 | |
| }
 | |
| 
 | |
| bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
 | |
|   BasicBlock *DefBB = I->getParent();
 | |
| 
 | |
|   // If the result of a {s|z}ext and its source are both live out, rewrite all
 | |
|   // other uses of the source with result of extension.
 | |
|   Value *Src = I->getOperand(0);
 | |
|   if (Src->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   // Only do this xform if truncating is free.
 | |
|   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
 | |
|     return false;
 | |
| 
 | |
|   // Only safe to perform the optimization if the source is also defined in
 | |
|   // this block.
 | |
|   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
 | |
|     return false;
 | |
| 
 | |
|   bool DefIsLiveOut = false;
 | |
|   for (User *U : I->users()) {
 | |
|     Instruction *UI = cast<Instruction>(U);
 | |
| 
 | |
|     // Figure out which BB this ext is used in.
 | |
|     BasicBlock *UserBB = UI->getParent();
 | |
|     if (UserBB == DefBB) continue;
 | |
|     DefIsLiveOut = true;
 | |
|     break;
 | |
|   }
 | |
|   if (!DefIsLiveOut)
 | |
|     return false;
 | |
| 
 | |
|   // Make sure none of the uses are PHI nodes.
 | |
|   for (User *U : Src->users()) {
 | |
|     Instruction *UI = cast<Instruction>(U);
 | |
|     BasicBlock *UserBB = UI->getParent();
 | |
|     if (UserBB == DefBB) continue;
 | |
|     // Be conservative. We don't want this xform to end up introducing
 | |
|     // reloads just before load / store instructions.
 | |
|     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // InsertedTruncs - Only insert one trunc in each block once.
 | |
|   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   for (Use &U : Src->uses()) {
 | |
|     Instruction *User = cast<Instruction>(U.getUser());
 | |
| 
 | |
|     // Figure out which BB this ext is used in.
 | |
|     BasicBlock *UserBB = User->getParent();
 | |
|     if (UserBB == DefBB) continue;
 | |
| 
 | |
|     // Both src and def are live in this block. Rewrite the use.
 | |
|     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
 | |
| 
 | |
|     if (!InsertedTrunc) {
 | |
|       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
 | |
|       assert(InsertPt != UserBB->end());
 | |
|       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
 | |
|       InsertedInsts.insert(InsertedTrunc);
 | |
|     }
 | |
| 
 | |
|     // Replace a use of the {s|z}ext source with a use of the result.
 | |
|     U = InsertedTrunc;
 | |
|     ++NumExtUses;
 | |
|     MadeChange = true;
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
 | |
| // just after the load if the target can fold this into one extload instruction,
 | |
| // with the hope of eliminating some of the other later "and" instructions using
 | |
| // the loaded value.  "and"s that are made trivially redundant by the insertion
 | |
| // of the new "and" are removed by this function, while others (e.g. those whose
 | |
| // path from the load goes through a phi) are left for isel to potentially
 | |
| // remove.
 | |
| //
 | |
| // For example:
 | |
| //
 | |
| // b0:
 | |
| //   x = load i32
 | |
| //   ...
 | |
| // b1:
 | |
| //   y = and x, 0xff
 | |
| //   z = use y
 | |
| //
 | |
| // becomes:
 | |
| //
 | |
| // b0:
 | |
| //   x = load i32
 | |
| //   x' = and x, 0xff
 | |
| //   ...
 | |
| // b1:
 | |
| //   z = use x'
 | |
| //
 | |
| // whereas:
 | |
| //
 | |
| // b0:
 | |
| //   x1 = load i32
 | |
| //   ...
 | |
| // b1:
 | |
| //   x2 = load i32
 | |
| //   ...
 | |
| // b2:
 | |
| //   x = phi x1, x2
 | |
| //   y = and x, 0xff
 | |
| //
 | |
| // becomes (after a call to optimizeLoadExt for each load):
 | |
| //
 | |
| // b0:
 | |
| //   x1 = load i32
 | |
| //   x1' = and x1, 0xff
 | |
| //   ...
 | |
| // b1:
 | |
| //   x2 = load i32
 | |
| //   x2' = and x2, 0xff
 | |
| //   ...
 | |
| // b2:
 | |
| //   x = phi x1', x2'
 | |
| //   y = and x, 0xff
 | |
| bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
 | |
|   if (!Load->isSimple() ||
 | |
|       !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy()))
 | |
|     return false;
 | |
| 
 | |
|   // Skip loads we've already transformed.
 | |
|   if (Load->hasOneUse() &&
 | |
|       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
 | |
|     return false;
 | |
| 
 | |
|   // Look at all uses of Load, looking through phis, to determine how many bits
 | |
|   // of the loaded value are needed.
 | |
|   SmallVector<Instruction *, 8> WorkList;
 | |
|   SmallPtrSet<Instruction *, 16> Visited;
 | |
|   SmallVector<Instruction *, 8> AndsToMaybeRemove;
 | |
|   for (auto *U : Load->users())
 | |
|     WorkList.push_back(cast<Instruction>(U));
 | |
| 
 | |
|   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
 | |
|   unsigned BitWidth = LoadResultVT.getSizeInBits();
 | |
|   APInt DemandBits(BitWidth, 0);
 | |
|   APInt WidestAndBits(BitWidth, 0);
 | |
| 
 | |
|   while (!WorkList.empty()) {
 | |
|     Instruction *I = WorkList.back();
 | |
|     WorkList.pop_back();
 | |
| 
 | |
|     // Break use-def graph loops.
 | |
|     if (!Visited.insert(I).second)
 | |
|       continue;
 | |
| 
 | |
|     // For a PHI node, push all of its users.
 | |
|     if (auto *Phi = dyn_cast<PHINode>(I)) {
 | |
|       for (auto *U : Phi->users())
 | |
|         WorkList.push_back(cast<Instruction>(U));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     switch (I->getOpcode()) {
 | |
|     case Instruction::And: {
 | |
|       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
 | |
|       if (!AndC)
 | |
|         return false;
 | |
|       APInt AndBits = AndC->getValue();
 | |
|       DemandBits |= AndBits;
 | |
|       // Keep track of the widest and mask we see.
 | |
|       if (AndBits.ugt(WidestAndBits))
 | |
|         WidestAndBits = AndBits;
 | |
|       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
 | |
|         AndsToMaybeRemove.push_back(I);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case Instruction::Shl: {
 | |
|       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
 | |
|       if (!ShlC)
 | |
|         return false;
 | |
|       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
 | |
|       DemandBits.setLowBits(BitWidth - ShiftAmt);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case Instruction::Trunc: {
 | |
|       EVT TruncVT = TLI->getValueType(*DL, I->getType());
 | |
|       unsigned TruncBitWidth = TruncVT.getSizeInBits();
 | |
|       DemandBits.setLowBits(TruncBitWidth);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   uint32_t ActiveBits = DemandBits.getActiveBits();
 | |
|   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
 | |
|   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
 | |
|   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
 | |
|   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
 | |
|   // followed by an AND.
 | |
|   // TODO: Look into removing this restriction by fixing backends to either
 | |
|   // return false for isLoadExtLegal for i1 or have them select this pattern to
 | |
|   // a single instruction.
 | |
|   //
 | |
|   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
 | |
|   // mask, since these are the only ands that will be removed by isel.
 | |
|   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
 | |
|       WidestAndBits != DemandBits)
 | |
|     return false;
 | |
| 
 | |
|   LLVMContext &Ctx = Load->getType()->getContext();
 | |
|   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
 | |
|   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
 | |
| 
 | |
|   // Reject cases that won't be matched as extloads.
 | |
|   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
 | |
|       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
 | |
|     return false;
 | |
| 
 | |
|   IRBuilder<> Builder(Load->getNextNode());
 | |
|   auto *NewAnd = dyn_cast<Instruction>(
 | |
|       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
 | |
|   // Mark this instruction as "inserted by CGP", so that other
 | |
|   // optimizations don't touch it.
 | |
|   InsertedInsts.insert(NewAnd);
 | |
| 
 | |
|   // Replace all uses of load with new and (except for the use of load in the
 | |
|   // new and itself).
 | |
|   Load->replaceAllUsesWith(NewAnd);
 | |
|   NewAnd->setOperand(0, Load);
 | |
| 
 | |
|   // Remove any and instructions that are now redundant.
 | |
|   for (auto *And : AndsToMaybeRemove)
 | |
|     // Check that the and mask is the same as the one we decided to put on the
 | |
|     // new and.
 | |
|     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
 | |
|       And->replaceAllUsesWith(NewAnd);
 | |
|       if (&*CurInstIterator == And)
 | |
|         CurInstIterator = std::next(And->getIterator());
 | |
|       And->eraseFromParent();
 | |
|       ++NumAndUses;
 | |
|     }
 | |
| 
 | |
|   ++NumAndsAdded;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Check if V (an operand of a select instruction) is an expensive instruction
 | |
| /// that is only used once.
 | |
| static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
 | |
|   auto *I = dyn_cast<Instruction>(V);
 | |
|   // If it's safe to speculatively execute, then it should not have side
 | |
|   // effects; therefore, it's safe to sink and possibly *not* execute.
 | |
|   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
 | |
|          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
 | |
| }
 | |
| 
 | |
| /// Returns true if a SelectInst should be turned into an explicit branch.
 | |
| static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
 | |
|                                                 const TargetLowering *TLI,
 | |
|                                                 SelectInst *SI) {
 | |
|   // If even a predictable select is cheap, then a branch can't be cheaper.
 | |
|   if (!TLI->isPredictableSelectExpensive())
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: This should use the same heuristics as IfConversion to determine
 | |
|   // whether a select is better represented as a branch.
 | |
| 
 | |
|   // If metadata tells us that the select condition is obviously predictable,
 | |
|   // then we want to replace the select with a branch.
 | |
|   uint64_t TrueWeight, FalseWeight;
 | |
|   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
 | |
|     uint64_t Max = std::max(TrueWeight, FalseWeight);
 | |
|     uint64_t Sum = TrueWeight + FalseWeight;
 | |
|     if (Sum != 0) {
 | |
|       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
 | |
|       if (Probability > TLI->getPredictableBranchThreshold())
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
 | |
| 
 | |
|   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
 | |
|   // comparison condition. If the compare has more than one use, there's
 | |
|   // probably another cmov or setcc around, so it's not worth emitting a branch.
 | |
|   if (!Cmp || !Cmp->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   // If either operand of the select is expensive and only needed on one side
 | |
|   // of the select, we should form a branch.
 | |
|   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
 | |
|       sinkSelectOperand(TTI, SI->getFalseValue()))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// If \p isTrue is true, return the true value of \p SI, otherwise return
 | |
| /// false value of \p SI. If the true/false value of \p SI is defined by any
 | |
| /// select instructions in \p Selects, look through the defining select
 | |
| /// instruction until the true/false value is not defined in \p Selects.
 | |
| static Value *getTrueOrFalseValue(
 | |
|     SelectInst *SI, bool isTrue,
 | |
|     const SmallPtrSet<const Instruction *, 2> &Selects) {
 | |
|   Value *V;
 | |
| 
 | |
|   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
 | |
|        DefSI = dyn_cast<SelectInst>(V)) {
 | |
|     assert(DefSI->getCondition() == SI->getCondition() &&
 | |
|            "The condition of DefSI does not match with SI");
 | |
|     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// If we have a SelectInst that will likely profit from branch prediction,
 | |
| /// turn it into a branch.
 | |
| bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
 | |
|   // Find all consecutive select instructions that share the same condition.
 | |
|   SmallVector<SelectInst *, 2> ASI;
 | |
|   ASI.push_back(SI);
 | |
|   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
 | |
|        It != SI->getParent()->end(); ++It) {
 | |
|     SelectInst *I = dyn_cast<SelectInst>(&*It);
 | |
|     if (I && SI->getCondition() == I->getCondition()) {
 | |
|       ASI.push_back(I);
 | |
|     } else {
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SelectInst *LastSI = ASI.back();
 | |
|   // Increment the current iterator to skip all the rest of select instructions
 | |
|   // because they will be either "not lowered" or "all lowered" to branch.
 | |
|   CurInstIterator = std::next(LastSI->getIterator());
 | |
| 
 | |
|   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
 | |
| 
 | |
|   // Can we convert the 'select' to CF ?
 | |
|   if (DisableSelectToBranch || OptSize || !TLI || VectorCond ||
 | |
|       SI->getMetadata(LLVMContext::MD_unpredictable))
 | |
|     return false;
 | |
| 
 | |
|   TargetLowering::SelectSupportKind SelectKind;
 | |
|   if (VectorCond)
 | |
|     SelectKind = TargetLowering::VectorMaskSelect;
 | |
|   else if (SI->getType()->isVectorTy())
 | |
|     SelectKind = TargetLowering::ScalarCondVectorVal;
 | |
|   else
 | |
|     SelectKind = TargetLowering::ScalarValSelect;
 | |
| 
 | |
|   if (TLI->isSelectSupported(SelectKind) &&
 | |
|       !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
 | |
|     return false;
 | |
| 
 | |
|   ModifiedDT = true;
 | |
| 
 | |
|   // Transform a sequence like this:
 | |
|   //    start:
 | |
|   //       %cmp = cmp uge i32 %a, %b
 | |
|   //       %sel = select i1 %cmp, i32 %c, i32 %d
 | |
|   //
 | |
|   // Into:
 | |
|   //    start:
 | |
|   //       %cmp = cmp uge i32 %a, %b
 | |
|   //       br i1 %cmp, label %select.true, label %select.false
 | |
|   //    select.true:
 | |
|   //       br label %select.end
 | |
|   //    select.false:
 | |
|   //       br label %select.end
 | |
|   //    select.end:
 | |
|   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
 | |
|   //
 | |
|   // In addition, we may sink instructions that produce %c or %d from
 | |
|   // the entry block into the destination(s) of the new branch.
 | |
|   // If the true or false blocks do not contain a sunken instruction, that
 | |
|   // block and its branch may be optimized away. In that case, one side of the
 | |
|   // first branch will point directly to select.end, and the corresponding PHI
 | |
|   // predecessor block will be the start block.
 | |
| 
 | |
|   // First, we split the block containing the select into 2 blocks.
 | |
|   BasicBlock *StartBlock = SI->getParent();
 | |
|   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
 | |
|   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
 | |
| 
 | |
|   // Delete the unconditional branch that was just created by the split.
 | |
|   StartBlock->getTerminator()->eraseFromParent();
 | |
| 
 | |
|   // These are the new basic blocks for the conditional branch.
 | |
|   // At least one will become an actual new basic block.
 | |
|   BasicBlock *TrueBlock = nullptr;
 | |
|   BasicBlock *FalseBlock = nullptr;
 | |
|   BranchInst *TrueBranch = nullptr;
 | |
|   BranchInst *FalseBranch = nullptr;
 | |
| 
 | |
|   // Sink expensive instructions into the conditional blocks to avoid executing
 | |
|   // them speculatively.
 | |
|   for (SelectInst *SI : ASI) {
 | |
|     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
 | |
|       if (TrueBlock == nullptr) {
 | |
|         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
 | |
|                                        EndBlock->getParent(), EndBlock);
 | |
|         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
 | |
|       }
 | |
|       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
 | |
|       TrueInst->moveBefore(TrueBranch);
 | |
|     }
 | |
|     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
 | |
|       if (FalseBlock == nullptr) {
 | |
|         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
 | |
|                                         EndBlock->getParent(), EndBlock);
 | |
|         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
 | |
|       }
 | |
|       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
 | |
|       FalseInst->moveBefore(FalseBranch);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there was nothing to sink, then arbitrarily choose the 'false' side
 | |
|   // for a new input value to the PHI.
 | |
|   if (TrueBlock == FalseBlock) {
 | |
|     assert(TrueBlock == nullptr &&
 | |
|            "Unexpected basic block transform while optimizing select");
 | |
| 
 | |
|     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
 | |
|                                     EndBlock->getParent(), EndBlock);
 | |
|     BranchInst::Create(EndBlock, FalseBlock);
 | |
|   }
 | |
| 
 | |
|   // Insert the real conditional branch based on the original condition.
 | |
|   // If we did not create a new block for one of the 'true' or 'false' paths
 | |
|   // of the condition, it means that side of the branch goes to the end block
 | |
|   // directly and the path originates from the start block from the point of
 | |
|   // view of the new PHI.
 | |
|   BasicBlock *TT, *FT;
 | |
|   if (TrueBlock == nullptr) {
 | |
|     TT = EndBlock;
 | |
|     FT = FalseBlock;
 | |
|     TrueBlock = StartBlock;
 | |
|   } else if (FalseBlock == nullptr) {
 | |
|     TT = TrueBlock;
 | |
|     FT = EndBlock;
 | |
|     FalseBlock = StartBlock;
 | |
|   } else {
 | |
|     TT = TrueBlock;
 | |
|     FT = FalseBlock;
 | |
|   }
 | |
|   IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
 | |
| 
 | |
|   SmallPtrSet<const Instruction *, 2> INS;
 | |
|   INS.insert(ASI.begin(), ASI.end());
 | |
|   // Use reverse iterator because later select may use the value of the
 | |
|   // earlier select, and we need to propagate value through earlier select
 | |
|   // to get the PHI operand.
 | |
|   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
 | |
|     SelectInst *SI = *It;
 | |
|     // The select itself is replaced with a PHI Node.
 | |
|     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
 | |
|     PN->takeName(SI);
 | |
|     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
 | |
|     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
 | |
| 
 | |
|     SI->replaceAllUsesWith(PN);
 | |
|     SI->eraseFromParent();
 | |
|     INS.erase(SI);
 | |
|     ++NumSelectsExpanded;
 | |
|   }
 | |
| 
 | |
|   // Instruct OptimizeBlock to skip to the next block.
 | |
|   CurInstIterator = StartBlock->end();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
 | |
|   SmallVector<int, 16> Mask(SVI->getShuffleMask());
 | |
|   int SplatElem = -1;
 | |
|   for (unsigned i = 0; i < Mask.size(); ++i) {
 | |
|     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
 | |
|       return false;
 | |
|     SplatElem = Mask[i];
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Some targets have expensive vector shifts if the lanes aren't all the same
 | |
| /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
 | |
| /// it's often worth sinking a shufflevector splat down to its use so that
 | |
| /// codegen can spot all lanes are identical.
 | |
| bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
 | |
|   BasicBlock *DefBB = SVI->getParent();
 | |
| 
 | |
|   // Only do this xform if variable vector shifts are particularly expensive.
 | |
|   if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
 | |
|     return false;
 | |
| 
 | |
|   // We only expect better codegen by sinking a shuffle if we can recognise a
 | |
|   // constant splat.
 | |
|   if (!isBroadcastShuffle(SVI))
 | |
|     return false;
 | |
| 
 | |
|   // InsertedShuffles - Only insert a shuffle in each block once.
 | |
|   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   for (User *U : SVI->users()) {
 | |
|     Instruction *UI = cast<Instruction>(U);
 | |
| 
 | |
|     // Figure out which BB this ext is used in.
 | |
|     BasicBlock *UserBB = UI->getParent();
 | |
|     if (UserBB == DefBB) continue;
 | |
| 
 | |
|     // For now only apply this when the splat is used by a shift instruction.
 | |
|     if (!UI->isShift()) continue;
 | |
| 
 | |
|     // Everything checks out, sink the shuffle if the user's block doesn't
 | |
|     // already have a copy.
 | |
|     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
 | |
| 
 | |
|     if (!InsertedShuffle) {
 | |
|       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
 | |
|       assert(InsertPt != UserBB->end());
 | |
|       InsertedShuffle =
 | |
|           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
 | |
|                                 SVI->getOperand(2), "", &*InsertPt);
 | |
|     }
 | |
| 
 | |
|     UI->replaceUsesOfWith(SVI, InsertedShuffle);
 | |
|     MadeChange = true;
 | |
|   }
 | |
| 
 | |
|   // If we removed all uses, nuke the shuffle.
 | |
|   if (SVI->use_empty()) {
 | |
|     SVI->eraseFromParent();
 | |
|     MadeChange = true;
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
 | |
|   if (!TLI || !DL)
 | |
|     return false;
 | |
| 
 | |
|   Value *Cond = SI->getCondition();
 | |
|   Type *OldType = Cond->getType();
 | |
|   LLVMContext &Context = Cond->getContext();
 | |
|   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
 | |
|   unsigned RegWidth = RegType.getSizeInBits();
 | |
| 
 | |
|   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
 | |
|     return false;
 | |
| 
 | |
|   // If the register width is greater than the type width, expand the condition
 | |
|   // of the switch instruction and each case constant to the width of the
 | |
|   // register. By widening the type of the switch condition, subsequent
 | |
|   // comparisons (for case comparisons) will not need to be extended to the
 | |
|   // preferred register width, so we will potentially eliminate N-1 extends,
 | |
|   // where N is the number of cases in the switch.
 | |
|   auto *NewType = Type::getIntNTy(Context, RegWidth);
 | |
| 
 | |
|   // Zero-extend the switch condition and case constants unless the switch
 | |
|   // condition is a function argument that is already being sign-extended.
 | |
|   // In that case, we can avoid an unnecessary mask/extension by sign-extending
 | |
|   // everything instead.
 | |
|   Instruction::CastOps ExtType = Instruction::ZExt;
 | |
|   if (auto *Arg = dyn_cast<Argument>(Cond))
 | |
|     if (Arg->hasSExtAttr())
 | |
|       ExtType = Instruction::SExt;
 | |
| 
 | |
|   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
 | |
|   ExtInst->insertBefore(SI);
 | |
|   SI->setCondition(ExtInst);
 | |
|   for (auto Case : SI->cases()) {
 | |
|     APInt NarrowConst = Case.getCaseValue()->getValue();
 | |
|     APInt WideConst = (ExtType == Instruction::ZExt) ?
 | |
|                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
 | |
|     Case.setValue(ConstantInt::get(Context, WideConst));
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// \brief Helper class to promote a scalar operation to a vector one.
 | |
| /// This class is used to move downward extractelement transition.
 | |
| /// E.g.,
 | |
| /// a = vector_op <2 x i32>
 | |
| /// b = extractelement <2 x i32> a, i32 0
 | |
| /// c = scalar_op b
 | |
| /// store c
 | |
| ///
 | |
| /// =>
 | |
| /// a = vector_op <2 x i32>
 | |
| /// c = vector_op a (equivalent to scalar_op on the related lane)
 | |
| /// * d = extractelement <2 x i32> c, i32 0
 | |
| /// * store d
 | |
| /// Assuming both extractelement and store can be combine, we get rid of the
 | |
| /// transition.
 | |
| class VectorPromoteHelper {
 | |
|   /// DataLayout associated with the current module.
 | |
|   const DataLayout &DL;
 | |
| 
 | |
|   /// Used to perform some checks on the legality of vector operations.
 | |
|   const TargetLowering &TLI;
 | |
| 
 | |
|   /// Used to estimated the cost of the promoted chain.
 | |
|   const TargetTransformInfo &TTI;
 | |
| 
 | |
|   /// The transition being moved downwards.
 | |
|   Instruction *Transition;
 | |
| 
 | |
|   /// The sequence of instructions to be promoted.
 | |
|   SmallVector<Instruction *, 4> InstsToBePromoted;
 | |
| 
 | |
|   /// Cost of combining a store and an extract.
 | |
|   unsigned StoreExtractCombineCost;
 | |
| 
 | |
|   /// Instruction that will be combined with the transition.
 | |
|   Instruction *CombineInst = nullptr;
 | |
| 
 | |
|   /// \brief The instruction that represents the current end of the transition.
 | |
|   /// Since we are faking the promotion until we reach the end of the chain
 | |
|   /// of computation, we need a way to get the current end of the transition.
 | |
|   Instruction *getEndOfTransition() const {
 | |
|     if (InstsToBePromoted.empty())
 | |
|       return Transition;
 | |
|     return InstsToBePromoted.back();
 | |
|   }
 | |
| 
 | |
|   /// \brief Return the index of the original value in the transition.
 | |
|   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
 | |
|   /// c, is at index 0.
 | |
|   unsigned getTransitionOriginalValueIdx() const {
 | |
|     assert(isa<ExtractElementInst>(Transition) &&
 | |
|            "Other kind of transitions are not supported yet");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /// \brief Return the index of the index in the transition.
 | |
|   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
 | |
|   /// is at index 1.
 | |
|   unsigned getTransitionIdx() const {
 | |
|     assert(isa<ExtractElementInst>(Transition) &&
 | |
|            "Other kind of transitions are not supported yet");
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   /// \brief Get the type of the transition.
 | |
|   /// This is the type of the original value.
 | |
|   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
 | |
|   /// transition is <2 x i32>.
 | |
|   Type *getTransitionType() const {
 | |
|     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
 | |
|   }
 | |
| 
 | |
|   /// \brief Promote \p ToBePromoted by moving \p Def downward through.
 | |
|   /// I.e., we have the following sequence:
 | |
|   /// Def = Transition <ty1> a to <ty2>
 | |
|   /// b = ToBePromoted <ty2> Def, ...
 | |
|   /// =>
 | |
|   /// b = ToBePromoted <ty1> a, ...
 | |
|   /// Def = Transition <ty1> ToBePromoted to <ty2>
 | |
|   void promoteImpl(Instruction *ToBePromoted);
 | |
| 
 | |
|   /// \brief Check whether or not it is profitable to promote all the
 | |
|   /// instructions enqueued to be promoted.
 | |
|   bool isProfitableToPromote() {
 | |
|     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
 | |
|     unsigned Index = isa<ConstantInt>(ValIdx)
 | |
|                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
 | |
|                          : -1;
 | |
|     Type *PromotedType = getTransitionType();
 | |
| 
 | |
|     StoreInst *ST = cast<StoreInst>(CombineInst);
 | |
|     unsigned AS = ST->getPointerAddressSpace();
 | |
|     unsigned Align = ST->getAlignment();
 | |
|     // Check if this store is supported.
 | |
|     if (!TLI.allowsMisalignedMemoryAccesses(
 | |
|             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
 | |
|             Align)) {
 | |
|       // If this is not supported, there is no way we can combine
 | |
|       // the extract with the store.
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // The scalar chain of computation has to pay for the transition
 | |
|     // scalar to vector.
 | |
|     // The vector chain has to account for the combining cost.
 | |
|     uint64_t ScalarCost =
 | |
|         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
 | |
|     uint64_t VectorCost = StoreExtractCombineCost;
 | |
|     for (const auto &Inst : InstsToBePromoted) {
 | |
|       // Compute the cost.
 | |
|       // By construction, all instructions being promoted are arithmetic ones.
 | |
|       // Moreover, one argument is a constant that can be viewed as a splat
 | |
|       // constant.
 | |
|       Value *Arg0 = Inst->getOperand(0);
 | |
|       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
 | |
|                             isa<ConstantFP>(Arg0);
 | |
|       TargetTransformInfo::OperandValueKind Arg0OVK =
 | |
|           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
 | |
|                          : TargetTransformInfo::OK_AnyValue;
 | |
|       TargetTransformInfo::OperandValueKind Arg1OVK =
 | |
|           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
 | |
|                           : TargetTransformInfo::OK_AnyValue;
 | |
|       ScalarCost += TTI.getArithmeticInstrCost(
 | |
|           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
 | |
|       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
 | |
|                                                Arg0OVK, Arg1OVK);
 | |
|     }
 | |
|     DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
 | |
|                  << ScalarCost << "\nVector: " << VectorCost << '\n');
 | |
|     return ScalarCost > VectorCost;
 | |
|   }
 | |
| 
 | |
|   /// \brief Generate a constant vector with \p Val with the same
 | |
|   /// number of elements as the transition.
 | |
|   /// \p UseSplat defines whether or not \p Val should be replicated
 | |
|   /// across the whole vector.
 | |
|   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
 | |
|   /// otherwise we generate a vector with as many undef as possible:
 | |
|   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
 | |
|   /// used at the index of the extract.
 | |
|   Value *getConstantVector(Constant *Val, bool UseSplat) const {
 | |
|     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
 | |
|     if (!UseSplat) {
 | |
|       // If we cannot determine where the constant must be, we have to
 | |
|       // use a splat constant.
 | |
|       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
 | |
|       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
 | |
|         ExtractIdx = CstVal->getSExtValue();
 | |
|       else
 | |
|         UseSplat = true;
 | |
|     }
 | |
| 
 | |
|     unsigned End = getTransitionType()->getVectorNumElements();
 | |
|     if (UseSplat)
 | |
|       return ConstantVector::getSplat(End, Val);
 | |
| 
 | |
|     SmallVector<Constant *, 4> ConstVec;
 | |
|     UndefValue *UndefVal = UndefValue::get(Val->getType());
 | |
|     for (unsigned Idx = 0; Idx != End; ++Idx) {
 | |
|       if (Idx == ExtractIdx)
 | |
|         ConstVec.push_back(Val);
 | |
|       else
 | |
|         ConstVec.push_back(UndefVal);
 | |
|     }
 | |
|     return ConstantVector::get(ConstVec);
 | |
|   }
 | |
| 
 | |
|   /// \brief Check if promoting to a vector type an operand at \p OperandIdx
 | |
|   /// in \p Use can trigger undefined behavior.
 | |
|   static bool canCauseUndefinedBehavior(const Instruction *Use,
 | |
|                                         unsigned OperandIdx) {
 | |
|     // This is not safe to introduce undef when the operand is on
 | |
|     // the right hand side of a division-like instruction.
 | |
|     if (OperandIdx != 1)
 | |
|       return false;
 | |
|     switch (Use->getOpcode()) {
 | |
|     default:
 | |
|       return false;
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::URem:
 | |
|       return true;
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::FRem:
 | |
|       return !Use->hasNoNaNs();
 | |
|     }
 | |
|     llvm_unreachable(nullptr);
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
 | |
|                       const TargetTransformInfo &TTI, Instruction *Transition,
 | |
|                       unsigned CombineCost)
 | |
|       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
 | |
|         StoreExtractCombineCost(CombineCost) {
 | |
|     assert(Transition && "Do not know how to promote null");
 | |
|   }
 | |
| 
 | |
|   /// \brief Check if we can promote \p ToBePromoted to \p Type.
 | |
|   bool canPromote(const Instruction *ToBePromoted) const {
 | |
|     // We could support CastInst too.
 | |
|     return isa<BinaryOperator>(ToBePromoted);
 | |
|   }
 | |
| 
 | |
|   /// \brief Check if it is profitable to promote \p ToBePromoted
 | |
|   /// by moving downward the transition through.
 | |
|   bool shouldPromote(const Instruction *ToBePromoted) const {
 | |
|     // Promote only if all the operands can be statically expanded.
 | |
|     // Indeed, we do not want to introduce any new kind of transitions.
 | |
|     for (const Use &U : ToBePromoted->operands()) {
 | |
|       const Value *Val = U.get();
 | |
|       if (Val == getEndOfTransition()) {
 | |
|         // If the use is a division and the transition is on the rhs,
 | |
|         // we cannot promote the operation, otherwise we may create a
 | |
|         // division by zero.
 | |
|         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
 | |
|           return false;
 | |
|         continue;
 | |
|       }
 | |
|       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
 | |
|           !isa<ConstantFP>(Val))
 | |
|         return false;
 | |
|     }
 | |
|     // Check that the resulting operation is legal.
 | |
|     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
 | |
|     if (!ISDOpcode)
 | |
|       return false;
 | |
|     return StressStoreExtract ||
 | |
|            TLI.isOperationLegalOrCustom(
 | |
|                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
 | |
|   }
 | |
| 
 | |
|   /// \brief Check whether or not \p Use can be combined
 | |
|   /// with the transition.
 | |
|   /// I.e., is it possible to do Use(Transition) => AnotherUse?
 | |
|   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
 | |
| 
 | |
|   /// \brief Record \p ToBePromoted as part of the chain to be promoted.
 | |
|   void enqueueForPromotion(Instruction *ToBePromoted) {
 | |
|     InstsToBePromoted.push_back(ToBePromoted);
 | |
|   }
 | |
| 
 | |
|   /// \brief Set the instruction that will be combined with the transition.
 | |
|   void recordCombineInstruction(Instruction *ToBeCombined) {
 | |
|     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
 | |
|     CombineInst = ToBeCombined;
 | |
|   }
 | |
| 
 | |
|   /// \brief Promote all the instructions enqueued for promotion if it is
 | |
|   /// is profitable.
 | |
|   /// \return True if the promotion happened, false otherwise.
 | |
|   bool promote() {
 | |
|     // Check if there is something to promote.
 | |
|     // Right now, if we do not have anything to combine with,
 | |
|     // we assume the promotion is not profitable.
 | |
|     if (InstsToBePromoted.empty() || !CombineInst)
 | |
|       return false;
 | |
| 
 | |
|     // Check cost.
 | |
|     if (!StressStoreExtract && !isProfitableToPromote())
 | |
|       return false;
 | |
| 
 | |
|     // Promote.
 | |
|     for (auto &ToBePromoted : InstsToBePromoted)
 | |
|       promoteImpl(ToBePromoted);
 | |
|     InstsToBePromoted.clear();
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
 | |
|   // At this point, we know that all the operands of ToBePromoted but Def
 | |
|   // can be statically promoted.
 | |
|   // For Def, we need to use its parameter in ToBePromoted:
 | |
|   // b = ToBePromoted ty1 a
 | |
|   // Def = Transition ty1 b to ty2
 | |
|   // Move the transition down.
 | |
|   // 1. Replace all uses of the promoted operation by the transition.
 | |
|   // = ... b => = ... Def.
 | |
|   assert(ToBePromoted->getType() == Transition->getType() &&
 | |
|          "The type of the result of the transition does not match "
 | |
|          "the final type");
 | |
|   ToBePromoted->replaceAllUsesWith(Transition);
 | |
|   // 2. Update the type of the uses.
 | |
|   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
 | |
|   Type *TransitionTy = getTransitionType();
 | |
|   ToBePromoted->mutateType(TransitionTy);
 | |
|   // 3. Update all the operands of the promoted operation with promoted
 | |
|   // operands.
 | |
|   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
 | |
|   for (Use &U : ToBePromoted->operands()) {
 | |
|     Value *Val = U.get();
 | |
|     Value *NewVal = nullptr;
 | |
|     if (Val == Transition)
 | |
|       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
 | |
|     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
 | |
|              isa<ConstantFP>(Val)) {
 | |
|       // Use a splat constant if it is not safe to use undef.
 | |
|       NewVal = getConstantVector(
 | |
|           cast<Constant>(Val),
 | |
|           isa<UndefValue>(Val) ||
 | |
|               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
 | |
|     } else
 | |
|       llvm_unreachable("Did you modified shouldPromote and forgot to update "
 | |
|                        "this?");
 | |
|     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
 | |
|   }
 | |
|   Transition->moveAfter(ToBePromoted);
 | |
|   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
 | |
| }
 | |
| 
 | |
| /// Some targets can do store(extractelement) with one instruction.
 | |
| /// Try to push the extractelement towards the stores when the target
 | |
| /// has this feature and this is profitable.
 | |
| bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
 | |
|   unsigned CombineCost = std::numeric_limits<unsigned>::max();
 | |
|   if (DisableStoreExtract || !TLI ||
 | |
|       (!StressStoreExtract &&
 | |
|        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
 | |
|                                        Inst->getOperand(1), CombineCost)))
 | |
|     return false;
 | |
| 
 | |
|   // At this point we know that Inst is a vector to scalar transition.
 | |
|   // Try to move it down the def-use chain, until:
 | |
|   // - We can combine the transition with its single use
 | |
|   //   => we got rid of the transition.
 | |
|   // - We escape the current basic block
 | |
|   //   => we would need to check that we are moving it at a cheaper place and
 | |
|   //      we do not do that for now.
 | |
|   BasicBlock *Parent = Inst->getParent();
 | |
|   DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
 | |
|   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
 | |
|   // If the transition has more than one use, assume this is not going to be
 | |
|   // beneficial.
 | |
|   while (Inst->hasOneUse()) {
 | |
|     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
 | |
|     DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
 | |
| 
 | |
|     if (ToBePromoted->getParent() != Parent) {
 | |
|       DEBUG(dbgs() << "Instruction to promote is in a different block ("
 | |
|                    << ToBePromoted->getParent()->getName()
 | |
|                    << ") than the transition (" << Parent->getName() << ").\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (VPH.canCombine(ToBePromoted)) {
 | |
|       DEBUG(dbgs() << "Assume " << *Inst << '\n'
 | |
|                    << "will be combined with: " << *ToBePromoted << '\n');
 | |
|       VPH.recordCombineInstruction(ToBePromoted);
 | |
|       bool Changed = VPH.promote();
 | |
|       NumStoreExtractExposed += Changed;
 | |
|       return Changed;
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "Try promoting.\n");
 | |
|     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
 | |
|       return false;
 | |
| 
 | |
|     DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
 | |
| 
 | |
|     VPH.enqueueForPromotion(ToBePromoted);
 | |
|     Inst = ToBePromoted;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// For the instruction sequence of store below, F and I values
 | |
| /// are bundled together as an i64 value before being stored into memory.
 | |
| /// Sometimes it is more efficent to generate separate stores for F and I,
 | |
| /// which can remove the bitwise instructions or sink them to colder places.
 | |
| ///
 | |
| ///   (store (or (zext (bitcast F to i32) to i64),
 | |
| ///              (shl (zext I to i64), 32)), addr)  -->
 | |
| ///   (store F, addr) and (store I, addr+4)
 | |
| ///
 | |
| /// Similarly, splitting for other merged store can also be beneficial, like:
 | |
| /// For pair of {i32, i32}, i64 store --> two i32 stores.
 | |
| /// For pair of {i32, i16}, i64 store --> two i32 stores.
 | |
| /// For pair of {i16, i16}, i32 store --> two i16 stores.
 | |
| /// For pair of {i16, i8},  i32 store --> two i16 stores.
 | |
| /// For pair of {i8, i8},   i16 store --> two i8 stores.
 | |
| ///
 | |
| /// We allow each target to determine specifically which kind of splitting is
 | |
| /// supported.
 | |
| ///
 | |
| /// The store patterns are commonly seen from the simple code snippet below
 | |
| /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
 | |
| ///   void goo(const std::pair<int, float> &);
 | |
| ///   hoo() {
 | |
| ///     ...
 | |
| ///     goo(std::make_pair(tmp, ftmp));
 | |
| ///     ...
 | |
| ///   }
 | |
| ///
 | |
| /// Although we already have similar splitting in DAG Combine, we duplicate
 | |
| /// it in CodeGenPrepare to catch the case in which pattern is across
 | |
| /// multiple BBs. The logic in DAG Combine is kept to catch case generated
 | |
| /// during code expansion.
 | |
| static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
 | |
|                                 const TargetLowering &TLI) {
 | |
|   // Handle simple but common cases only.
 | |
|   Type *StoreType = SI.getValueOperand()->getType();
 | |
|   if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) ||
 | |
|       DL.getTypeSizeInBits(StoreType) == 0)
 | |
|     return false;
 | |
| 
 | |
|   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
 | |
|   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
 | |
|   if (DL.getTypeStoreSizeInBits(SplitStoreType) !=
 | |
|       DL.getTypeSizeInBits(SplitStoreType))
 | |
|     return false;
 | |
| 
 | |
|   // Match the following patterns:
 | |
|   // (store (or (zext LValue to i64),
 | |
|   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
 | |
|   //  or
 | |
|   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
 | |
|   //            (zext LValue to i64),
 | |
|   // Expect both operands of OR and the first operand of SHL have only
 | |
|   // one use.
 | |
|   Value *LValue, *HValue;
 | |
|   if (!match(SI.getValueOperand(),
 | |
|              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
 | |
|                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
 | |
|                                    m_SpecificInt(HalfValBitSize))))))
 | |
|     return false;
 | |
| 
 | |
|   // Check LValue and HValue are int with size less or equal than 32.
 | |
|   if (!LValue->getType()->isIntegerTy() ||
 | |
|       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
 | |
|       !HValue->getType()->isIntegerTy() ||
 | |
|       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
 | |
|     return false;
 | |
| 
 | |
|   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
 | |
|   // as the input of target query.
 | |
|   auto *LBC = dyn_cast<BitCastInst>(LValue);
 | |
|   auto *HBC = dyn_cast<BitCastInst>(HValue);
 | |
|   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
 | |
|                   : EVT::getEVT(LValue->getType());
 | |
|   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
 | |
|                    : EVT::getEVT(HValue->getType());
 | |
|   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
 | |
|     return false;
 | |
| 
 | |
|   // Start to split store.
 | |
|   IRBuilder<> Builder(SI.getContext());
 | |
|   Builder.SetInsertPoint(&SI);
 | |
| 
 | |
|   // If LValue/HValue is a bitcast in another BB, create a new one in current
 | |
|   // BB so it may be merged with the splitted stores by dag combiner.
 | |
|   if (LBC && LBC->getParent() != SI.getParent())
 | |
|     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
 | |
|   if (HBC && HBC->getParent() != SI.getParent())
 | |
|     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
 | |
| 
 | |
|   auto CreateSplitStore = [&](Value *V, bool Upper) {
 | |
|     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
 | |
|     Value *Addr = Builder.CreateBitCast(
 | |
|         SI.getOperand(1),
 | |
|         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
 | |
|     if (Upper)
 | |
|       Addr = Builder.CreateGEP(
 | |
|           SplitStoreType, Addr,
 | |
|           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
 | |
|     Builder.CreateAlignedStore(
 | |
|         V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
 | |
|   };
 | |
| 
 | |
|   CreateSplitStore(LValue, false);
 | |
|   CreateSplitStore(HValue, true);
 | |
| 
 | |
|   // Delete the old store.
 | |
|   SI.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Return true if the GEP has two operands, the first operand is of a sequential
 | |
| // type, and the second operand is a constant.
 | |
| static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
 | |
|   gep_type_iterator I = gep_type_begin(*GEP);
 | |
|   return GEP->getNumOperands() == 2 &&
 | |
|       I.isSequential() &&
 | |
|       isa<ConstantInt>(GEP->getOperand(1));
 | |
| }
 | |
| 
 | |
| // Try unmerging GEPs to reduce liveness interference (register pressure) across
 | |
| // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
 | |
| // reducing liveness interference across those edges benefits global register
 | |
| // allocation. Currently handles only certain cases.
 | |
| //
 | |
| // For example, unmerge %GEPI and %UGEPI as below.
 | |
| //
 | |
| // ---------- BEFORE ----------
 | |
| // SrcBlock:
 | |
| //   ...
 | |
| //   %GEPIOp = ...
 | |
| //   ...
 | |
| //   %GEPI = gep %GEPIOp, Idx
 | |
| //   ...
 | |
| //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
 | |
| //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
 | |
| //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
 | |
| //   %UGEPI)
 | |
| //
 | |
| // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
 | |
| // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
 | |
| // ...
 | |
| //
 | |
| // DstBi:
 | |
| //   ...
 | |
| //   %UGEPI = gep %GEPIOp, UIdx
 | |
| // ...
 | |
| // ---------------------------
 | |
| //
 | |
| // ---------- AFTER ----------
 | |
| // SrcBlock:
 | |
| //   ... (same as above)
 | |
| //    (* %GEPI is still alive on the indirectbr edges)
 | |
| //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
 | |
| //    unmerging)
 | |
| // ...
 | |
| //
 | |
| // DstBi:
 | |
| //   ...
 | |
| //   %UGEPI = gep %GEPI, (UIdx-Idx)
 | |
| //   ...
 | |
| // ---------------------------
 | |
| //
 | |
| // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
 | |
| // no longer alive on them.
 | |
| //
 | |
| // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
 | |
| // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
 | |
| // not to disable further simplications and optimizations as a result of GEP
 | |
| // merging.
 | |
| //
 | |
| // Note this unmerging may increase the length of the data flow critical path
 | |
| // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
 | |
| // between the register pressure and the length of data-flow critical
 | |
| // path. Restricting this to the uncommon IndirectBr case would minimize the
 | |
| // impact of potentially longer critical path, if any, and the impact on compile
 | |
| // time.
 | |
| static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
 | |
|                                              const TargetTransformInfo *TTI) {
 | |
|   BasicBlock *SrcBlock = GEPI->getParent();
 | |
|   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
 | |
|   // (non-IndirectBr) cases exit early here.
 | |
|   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
 | |
|     return false;
 | |
|   // Check that GEPI is a simple gep with a single constant index.
 | |
|   if (!GEPSequentialConstIndexed(GEPI))
 | |
|     return false;
 | |
|   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
 | |
|   // Check that GEPI is a cheap one.
 | |
|   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
 | |
|       > TargetTransformInfo::TCC_Basic)
 | |
|     return false;
 | |
|   Value *GEPIOp = GEPI->getOperand(0);
 | |
|   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
 | |
|   if (!isa<Instruction>(GEPIOp))
 | |
|     return false;
 | |
|   auto *GEPIOpI = cast<Instruction>(GEPIOp);
 | |
|   if (GEPIOpI->getParent() != SrcBlock)
 | |
|     return false;
 | |
|   // Check that GEP is used outside the block, meaning it's alive on the
 | |
|   // IndirectBr edge(s).
 | |
|   if (find_if(GEPI->users(), [&](User *Usr) {
 | |
|         if (auto *I = dyn_cast<Instruction>(Usr)) {
 | |
|           if (I->getParent() != SrcBlock) {
 | |
|             return true;
 | |
|           }
 | |
|         }
 | |
|         return false;
 | |
|       }) == GEPI->users().end())
 | |
|     return false;
 | |
|   // The second elements of the GEP chains to be unmerged.
 | |
|   std::vector<GetElementPtrInst *> UGEPIs;
 | |
|   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
 | |
|   // on IndirectBr edges.
 | |
|   for (User *Usr : GEPIOp->users()) {
 | |
|     if (Usr == GEPI) continue;
 | |
|     // Check if Usr is an Instruction. If not, give up.
 | |
|     if (!isa<Instruction>(Usr))
 | |
|       return false;
 | |
|     auto *UI = cast<Instruction>(Usr);
 | |
|     // Check if Usr in the same block as GEPIOp, which is fine, skip.
 | |
|     if (UI->getParent() == SrcBlock)
 | |
|       continue;
 | |
|     // Check if Usr is a GEP. If not, give up.
 | |
|     if (!isa<GetElementPtrInst>(Usr))
 | |
|       return false;
 | |
|     auto *UGEPI = cast<GetElementPtrInst>(Usr);
 | |
|     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
 | |
|     // the pointer operand to it. If so, record it in the vector. If not, give
 | |
|     // up.
 | |
|     if (!GEPSequentialConstIndexed(UGEPI))
 | |
|       return false;
 | |
|     if (UGEPI->getOperand(0) != GEPIOp)
 | |
|       return false;
 | |
|     if (GEPIIdx->getType() !=
 | |
|         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
 | |
|       return false;
 | |
|     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
 | |
|     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
 | |
|         > TargetTransformInfo::TCC_Basic)
 | |
|       return false;
 | |
|     UGEPIs.push_back(UGEPI);
 | |
|   }
 | |
|   if (UGEPIs.size() == 0)
 | |
|     return false;
 | |
|   // Check the materializing cost of (Uidx-Idx).
 | |
|   for (GetElementPtrInst *UGEPI : UGEPIs) {
 | |
|     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
 | |
|     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
 | |
|     unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
 | |
|     if (ImmCost > TargetTransformInfo::TCC_Basic)
 | |
|       return false;
 | |
|   }
 | |
|   // Now unmerge between GEPI and UGEPIs.
 | |
|   for (GetElementPtrInst *UGEPI : UGEPIs) {
 | |
|     UGEPI->setOperand(0, GEPI);
 | |
|     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
 | |
|     Constant *NewUGEPIIdx =
 | |
|         ConstantInt::get(GEPIIdx->getType(),
 | |
|                          UGEPIIdx->getValue() - GEPIIdx->getValue());
 | |
|     UGEPI->setOperand(1, NewUGEPIIdx);
 | |
|     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
 | |
|     // inbounds to avoid UB.
 | |
|     if (!GEPI->isInBounds()) {
 | |
|       UGEPI->setIsInBounds(false);
 | |
|     }
 | |
|   }
 | |
|   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
 | |
|   // alive on IndirectBr edges).
 | |
|   assert(find_if(GEPIOp->users(), [&](User *Usr) {
 | |
|         return cast<Instruction>(Usr)->getParent() != SrcBlock;
 | |
|       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
 | |
|   // Bail out if we inserted the instruction to prevent optimizations from
 | |
|   // stepping on each other's toes.
 | |
|   if (InsertedInsts.count(I))
 | |
|     return false;
 | |
| 
 | |
|   if (PHINode *P = dyn_cast<PHINode>(I)) {
 | |
|     // It is possible for very late stage optimizations (such as SimplifyCFG)
 | |
|     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
 | |
|     // trivial PHI, go ahead and zap it here.
 | |
|     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
 | |
|       P->replaceAllUsesWith(V);
 | |
|       P->eraseFromParent();
 | |
|       ++NumPHIsElim;
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(I)) {
 | |
|     // If the source of the cast is a constant, then this should have
 | |
|     // already been constant folded.  The only reason NOT to constant fold
 | |
|     // it is if something (e.g. LSR) was careful to place the constant
 | |
|     // evaluation in a block other than then one that uses it (e.g. to hoist
 | |
|     // the address of globals out of a loop).  If this is the case, we don't
 | |
|     // want to forward-subst the cast.
 | |
|     if (isa<Constant>(CI->getOperand(0)))
 | |
|       return false;
 | |
| 
 | |
|     if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
 | |
|       return true;
 | |
| 
 | |
|     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
 | |
|       /// Sink a zext or sext into its user blocks if the target type doesn't
 | |
|       /// fit in one register
 | |
|       if (TLI &&
 | |
|           TLI->getTypeAction(CI->getContext(),
 | |
|                              TLI->getValueType(*DL, CI->getType())) ==
 | |
|               TargetLowering::TypeExpandInteger) {
 | |
|         return SinkCast(CI);
 | |
|       } else {
 | |
|         bool MadeChange = optimizeExt(I);
 | |
|         return MadeChange | optimizeExtUses(I);
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (CmpInst *CI = dyn_cast<CmpInst>(I))
 | |
|     if (!TLI || !TLI->hasMultipleConditionRegisters())
 | |
|       return OptimizeCmpExpression(CI, TLI);
 | |
| 
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
 | |
|     if (TLI) {
 | |
|       bool Modified = optimizeLoadExt(LI);
 | |
|       unsigned AS = LI->getPointerAddressSpace();
 | |
|       Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
 | |
|       return Modified;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | |
|     if (TLI && splitMergedValStore(*SI, *DL, *TLI))
 | |
|       return true;
 | |
|     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
 | |
|     if (TLI) {
 | |
|       unsigned AS = SI->getPointerAddressSpace();
 | |
|       return optimizeMemoryInst(I, SI->getOperand(1),
 | |
|                                 SI->getOperand(0)->getType(), AS);
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
 | |
|       unsigned AS = RMW->getPointerAddressSpace();
 | |
|       return optimizeMemoryInst(I, RMW->getPointerOperand(),
 | |
|                                 RMW->getType(), AS);
 | |
|   }
 | |
| 
 | |
|   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
 | |
|       unsigned AS = CmpX->getPointerAddressSpace();
 | |
|       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
 | |
|                                 CmpX->getCompareOperand()->getType(), AS);
 | |
|   }
 | |
| 
 | |
|   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
 | |
| 
 | |
|   if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
 | |
|       EnableAndCmpSinking && TLI)
 | |
|     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
 | |
| 
 | |
|   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
 | |
|                 BinOp->getOpcode() == Instruction::LShr)) {
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
 | |
|     if (TLI && CI && TLI->hasExtractBitsInsn())
 | |
|       return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
 | |
|     if (GEPI->hasAllZeroIndices()) {
 | |
|       /// The GEP operand must be a pointer, so must its result -> BitCast
 | |
|       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
 | |
|                                         GEPI->getName(), GEPI);
 | |
|       GEPI->replaceAllUsesWith(NC);
 | |
|       GEPI->eraseFromParent();
 | |
|       ++NumGEPsElim;
 | |
|       optimizeInst(NC, ModifiedDT);
 | |
|       return true;
 | |
|     }
 | |
|     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (CallInst *CI = dyn_cast<CallInst>(I))
 | |
|     return optimizeCallInst(CI, ModifiedDT);
 | |
| 
 | |
|   if (SelectInst *SI = dyn_cast<SelectInst>(I))
 | |
|     return optimizeSelectInst(SI);
 | |
| 
 | |
|   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
 | |
|     return optimizeShuffleVectorInst(SVI);
 | |
| 
 | |
|   if (auto *Switch = dyn_cast<SwitchInst>(I))
 | |
|     return optimizeSwitchInst(Switch);
 | |
| 
 | |
|   if (isa<ExtractElementInst>(I))
 | |
|     return optimizeExtractElementInst(I);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Given an OR instruction, check to see if this is a bitreverse
 | |
| /// idiom. If so, insert the new intrinsic and return true.
 | |
| static bool makeBitReverse(Instruction &I, const DataLayout &DL,
 | |
|                            const TargetLowering &TLI) {
 | |
|   if (!I.getType()->isIntegerTy() ||
 | |
|       !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
 | |
|                                     TLI.getValueType(DL, I.getType(), true)))
 | |
|     return false;
 | |
| 
 | |
|   SmallVector<Instruction*, 4> Insts;
 | |
|   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
 | |
|     return false;
 | |
|   Instruction *LastInst = Insts.back();
 | |
|   I.replaceAllUsesWith(LastInst);
 | |
|   RecursivelyDeleteTriviallyDeadInstructions(&I);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // In this pass we look for GEP and cast instructions that are used
 | |
| // across basic blocks and rewrite them to improve basic-block-at-a-time
 | |
| // selection.
 | |
| bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
 | |
|   SunkAddrs.clear();
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   CurInstIterator = BB.begin();
 | |
|   while (CurInstIterator != BB.end()) {
 | |
|     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
 | |
|     if (ModifiedDT)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   bool MadeBitReverse = true;
 | |
|   while (TLI && MadeBitReverse) {
 | |
|     MadeBitReverse = false;
 | |
|     for (auto &I : reverse(BB)) {
 | |
|       if (makeBitReverse(I, *DL, *TLI)) {
 | |
|         MadeBitReverse = MadeChange = true;
 | |
|         ModifiedDT = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   MadeChange |= dupRetToEnableTailCallOpts(&BB);
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| // llvm.dbg.value is far away from the value then iSel may not be able
 | |
| // handle it properly. iSel will drop llvm.dbg.value if it can not
 | |
| // find a node corresponding to the value.
 | |
| bool CodeGenPrepare::placeDbgValues(Function &F) {
 | |
|   bool MadeChange = false;
 | |
|   for (BasicBlock &BB : F) {
 | |
|     Instruction *PrevNonDbgInst = nullptr;
 | |
|     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
 | |
|       Instruction *Insn = &*BI++;
 | |
|       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
 | |
|       // Leave dbg.values that refer to an alloca alone. These
 | |
|       // instrinsics describe the address of a variable (= the alloca)
 | |
|       // being taken.  They should not be moved next to the alloca
 | |
|       // (and to the beginning of the scope), but rather stay close to
 | |
|       // where said address is used.
 | |
|       if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
 | |
|         PrevNonDbgInst = Insn;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
 | |
|       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
 | |
|         // If VI is a phi in a block with an EHPad terminator, we can't insert
 | |
|         // after it.
 | |
|         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
 | |
|           continue;
 | |
|         DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
 | |
|         DVI->removeFromParent();
 | |
|         if (isa<PHINode>(VI))
 | |
|           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
 | |
|         else
 | |
|           DVI->insertAfter(VI);
 | |
|         MadeChange = true;
 | |
|         ++NumDbgValueMoved;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// \brief Scale down both weights to fit into uint32_t.
 | |
| static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
 | |
|   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
 | |
|   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
 | |
|   NewTrue = NewTrue / Scale;
 | |
|   NewFalse = NewFalse / Scale;
 | |
| }
 | |
| 
 | |
| /// \brief Some targets prefer to split a conditional branch like:
 | |
| /// \code
 | |
| ///   %0 = icmp ne i32 %a, 0
 | |
| ///   %1 = icmp ne i32 %b, 0
 | |
| ///   %or.cond = or i1 %0, %1
 | |
| ///   br i1 %or.cond, label %TrueBB, label %FalseBB
 | |
| /// \endcode
 | |
| /// into multiple branch instructions like:
 | |
| /// \code
 | |
| ///   bb1:
 | |
| ///     %0 = icmp ne i32 %a, 0
 | |
| ///     br i1 %0, label %TrueBB, label %bb2
 | |
| ///   bb2:
 | |
| ///     %1 = icmp ne i32 %b, 0
 | |
| ///     br i1 %1, label %TrueBB, label %FalseBB
 | |
| /// \endcode
 | |
| /// This usually allows instruction selection to do even further optimizations
 | |
| /// and combine the compare with the branch instruction. Currently this is
 | |
| /// applied for targets which have "cheap" jump instructions.
 | |
| ///
 | |
| /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
 | |
| ///
 | |
| bool CodeGenPrepare::splitBranchCondition(Function &F) {
 | |
|   if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
 | |
|     return false;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   for (auto &BB : F) {
 | |
|     // Does this BB end with the following?
 | |
|     //   %cond1 = icmp|fcmp|binary instruction ...
 | |
|     //   %cond2 = icmp|fcmp|binary instruction ...
 | |
|     //   %cond.or = or|and i1 %cond1, cond2
 | |
|     //   br i1 %cond.or label %dest1, label %dest2"
 | |
|     BinaryOperator *LogicOp;
 | |
|     BasicBlock *TBB, *FBB;
 | |
|     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
 | |
|       continue;
 | |
| 
 | |
|     auto *Br1 = cast<BranchInst>(BB.getTerminator());
 | |
|     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
 | |
|       continue;
 | |
| 
 | |
|     unsigned Opc;
 | |
|     Value *Cond1, *Cond2;
 | |
|     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
 | |
|                              m_OneUse(m_Value(Cond2)))))
 | |
|       Opc = Instruction::And;
 | |
|     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
 | |
|                                  m_OneUse(m_Value(Cond2)))))
 | |
|       Opc = Instruction::Or;
 | |
|     else
 | |
|       continue;
 | |
| 
 | |
|     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
 | |
|         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
 | |
|       continue;
 | |
| 
 | |
|     DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
 | |
| 
 | |
|     // Create a new BB.
 | |
|     auto TmpBB =
 | |
|         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
 | |
|                            BB.getParent(), BB.getNextNode());
 | |
| 
 | |
|     // Update original basic block by using the first condition directly by the
 | |
|     // branch instruction and removing the no longer needed and/or instruction.
 | |
|     Br1->setCondition(Cond1);
 | |
|     LogicOp->eraseFromParent();
 | |
| 
 | |
|     // Depending on the conditon we have to either replace the true or the false
 | |
|     // successor of the original branch instruction.
 | |
|     if (Opc == Instruction::And)
 | |
|       Br1->setSuccessor(0, TmpBB);
 | |
|     else
 | |
|       Br1->setSuccessor(1, TmpBB);
 | |
| 
 | |
|     // Fill in the new basic block.
 | |
|     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
 | |
|     if (auto *I = dyn_cast<Instruction>(Cond2)) {
 | |
|       I->removeFromParent();
 | |
|       I->insertBefore(Br2);
 | |
|     }
 | |
| 
 | |
|     // Update PHI nodes in both successors. The original BB needs to be
 | |
|     // replaced in one successor's PHI nodes, because the branch comes now from
 | |
|     // the newly generated BB (NewBB). In the other successor we need to add one
 | |
|     // incoming edge to the PHI nodes, because both branch instructions target
 | |
|     // now the same successor. Depending on the original branch condition
 | |
|     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
 | |
|     // we perform the correct update for the PHI nodes.
 | |
|     // This doesn't change the successor order of the just created branch
 | |
|     // instruction (or any other instruction).
 | |
|     if (Opc == Instruction::Or)
 | |
|       std::swap(TBB, FBB);
 | |
| 
 | |
|     // Replace the old BB with the new BB.
 | |
|     for (auto &I : *TBB) {
 | |
|       PHINode *PN = dyn_cast<PHINode>(&I);
 | |
|       if (!PN)
 | |
|         break;
 | |
|       int i;
 | |
|       while ((i = PN->getBasicBlockIndex(&BB)) >= 0)
 | |
|         PN->setIncomingBlock(i, TmpBB);
 | |
|     }
 | |
| 
 | |
|     // Add another incoming edge form the new BB.
 | |
|     for (auto &I : *FBB) {
 | |
|       PHINode *PN = dyn_cast<PHINode>(&I);
 | |
|       if (!PN)
 | |
|         break;
 | |
|       auto *Val = PN->getIncomingValueForBlock(&BB);
 | |
|       PN->addIncoming(Val, TmpBB);
 | |
|     }
 | |
| 
 | |
|     // Update the branch weights (from SelectionDAGBuilder::
 | |
|     // FindMergedConditions).
 | |
|     if (Opc == Instruction::Or) {
 | |
|       // Codegen X | Y as:
 | |
|       // BB1:
 | |
|       //   jmp_if_X TBB
 | |
|       //   jmp TmpBB
 | |
|       // TmpBB:
 | |
|       //   jmp_if_Y TBB
 | |
|       //   jmp FBB
 | |
|       //
 | |
| 
 | |
|       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
 | |
|       // The requirement is that
 | |
|       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
 | |
|       //     = TrueProb for orignal BB.
 | |
|       // Assuming the orignal weights are A and B, one choice is to set BB1's
 | |
|       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
 | |
|       // assumes that
 | |
|       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
 | |
|       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
 | |
|       // TmpBB, but the math is more complicated.
 | |
|       uint64_t TrueWeight, FalseWeight;
 | |
|       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
 | |
|         uint64_t NewTrueWeight = TrueWeight;
 | |
|         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
 | |
|         scaleWeights(NewTrueWeight, NewFalseWeight);
 | |
|         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
 | |
|                          .createBranchWeights(TrueWeight, FalseWeight));
 | |
| 
 | |
|         NewTrueWeight = TrueWeight;
 | |
|         NewFalseWeight = 2 * FalseWeight;
 | |
|         scaleWeights(NewTrueWeight, NewFalseWeight);
 | |
|         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
 | |
|                          .createBranchWeights(TrueWeight, FalseWeight));
 | |
|       }
 | |
|     } else {
 | |
|       // Codegen X & Y as:
 | |
|       // BB1:
 | |
|       //   jmp_if_X TmpBB
 | |
|       //   jmp FBB
 | |
|       // TmpBB:
 | |
|       //   jmp_if_Y TBB
 | |
|       //   jmp FBB
 | |
|       //
 | |
|       //  This requires creation of TmpBB after CurBB.
 | |
| 
 | |
|       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
 | |
|       // The requirement is that
 | |
|       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
 | |
|       //     = FalseProb for orignal BB.
 | |
|       // Assuming the orignal weights are A and B, one choice is to set BB1's
 | |
|       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
 | |
|       // assumes that
 | |
|       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
 | |
|       uint64_t TrueWeight, FalseWeight;
 | |
|       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
 | |
|         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
 | |
|         uint64_t NewFalseWeight = FalseWeight;
 | |
|         scaleWeights(NewTrueWeight, NewFalseWeight);
 | |
|         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
 | |
|                          .createBranchWeights(TrueWeight, FalseWeight));
 | |
| 
 | |
|         NewTrueWeight = 2 * TrueWeight;
 | |
|         NewFalseWeight = FalseWeight;
 | |
|         scaleWeights(NewTrueWeight, NewFalseWeight);
 | |
|         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
 | |
|                          .createBranchWeights(TrueWeight, FalseWeight));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Note: No point in getting fancy here, since the DT info is never
 | |
|     // available to CodeGenPrepare.
 | |
|     ModifiedDT = true;
 | |
| 
 | |
|     MadeChange = true;
 | |
| 
 | |
|     DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
 | |
|           TmpBB->dump());
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 |