forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			701 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			701 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass turns explicit null checks of the form
 | |
| //
 | |
| //   test %r10, %r10
 | |
| //   je throw_npe
 | |
| //   movl (%r10), %esi
 | |
| //   ...
 | |
| //
 | |
| // to
 | |
| //
 | |
| //   faulting_load_op("movl (%r10), %esi", throw_npe)
 | |
| //   ...
 | |
| //
 | |
| // With the help of a runtime that understands the .fault_maps section,
 | |
| // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
 | |
| // a page fault.
 | |
| // Store and LoadStore are also supported.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/MemoryLocation.h"
 | |
| #include "llvm/CodeGen/FaultMaps.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/MC/MCInstrDesc.h"
 | |
| #include "llvm/MC/MCRegisterInfo.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetOpcodes.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<int> PageSize("imp-null-check-page-size",
 | |
|                              cl::desc("The page size of the target in bytes"),
 | |
|                              cl::init(4096));
 | |
| 
 | |
| static cl::opt<unsigned> MaxInstsToConsider(
 | |
|     "imp-null-max-insts-to-consider",
 | |
|     cl::desc("The max number of instructions to consider hoisting loads over "
 | |
|              "(the algorithm is quadratic over this number)"),
 | |
|     cl::init(8));
 | |
| 
 | |
| #define DEBUG_TYPE "implicit-null-checks"
 | |
| 
 | |
| STATISTIC(NumImplicitNullChecks,
 | |
|           "Number of explicit null checks made implicit");
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class ImplicitNullChecks : public MachineFunctionPass {
 | |
|   /// Return true if \c computeDependence can process \p MI.
 | |
|   static bool canHandle(const MachineInstr *MI);
 | |
| 
 | |
|   /// Helper function for \c computeDependence.  Return true if \p A
 | |
|   /// and \p B do not have any dependences between them, and can be
 | |
|   /// re-ordered without changing program semantics.
 | |
|   bool canReorder(const MachineInstr *A, const MachineInstr *B);
 | |
| 
 | |
|   /// A data type for representing the result computed by \c
 | |
|   /// computeDependence.  States whether it is okay to reorder the
 | |
|   /// instruction passed to \c computeDependence with at most one
 | |
|   /// depednency.
 | |
|   struct DependenceResult {
 | |
|     /// Can we actually re-order \p MI with \p Insts (see \c
 | |
|     /// computeDependence).
 | |
|     bool CanReorder;
 | |
| 
 | |
|     /// If non-None, then an instruction in \p Insts that also must be
 | |
|     /// hoisted.
 | |
|     Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence;
 | |
| 
 | |
|     /*implicit*/ DependenceResult(
 | |
|         bool CanReorder,
 | |
|         Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence)
 | |
|         : CanReorder(CanReorder), PotentialDependence(PotentialDependence) {
 | |
|       assert((!PotentialDependence || CanReorder) &&
 | |
|              "!CanReorder && PotentialDependence.hasValue() not allowed!");
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// Compute a result for the following question: can \p MI be
 | |
|   /// re-ordered from after \p Insts to before it.
 | |
|   ///
 | |
|   /// \c canHandle should return true for all instructions in \p
 | |
|   /// Insts.
 | |
|   DependenceResult computeDependence(const MachineInstr *MI,
 | |
|                                      ArrayRef<MachineInstr *> Insts);
 | |
| 
 | |
|   /// Represents one null check that can be made implicit.
 | |
|   class NullCheck {
 | |
|     // The memory operation the null check can be folded into.
 | |
|     MachineInstr *MemOperation;
 | |
| 
 | |
|     // The instruction actually doing the null check (Ptr != 0).
 | |
|     MachineInstr *CheckOperation;
 | |
| 
 | |
|     // The block the check resides in.
 | |
|     MachineBasicBlock *CheckBlock;
 | |
| 
 | |
|     // The block branched to if the pointer is non-null.
 | |
|     MachineBasicBlock *NotNullSucc;
 | |
| 
 | |
|     // The block branched to if the pointer is null.
 | |
|     MachineBasicBlock *NullSucc;
 | |
| 
 | |
|     // If this is non-null, then MemOperation has a dependency on on this
 | |
|     // instruction; and it needs to be hoisted to execute before MemOperation.
 | |
|     MachineInstr *OnlyDependency;
 | |
| 
 | |
|   public:
 | |
|     explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
 | |
|                        MachineBasicBlock *checkBlock,
 | |
|                        MachineBasicBlock *notNullSucc,
 | |
|                        MachineBasicBlock *nullSucc,
 | |
|                        MachineInstr *onlyDependency)
 | |
|         : MemOperation(memOperation), CheckOperation(checkOperation),
 | |
|           CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
 | |
|           OnlyDependency(onlyDependency) {}
 | |
| 
 | |
|     MachineInstr *getMemOperation() const { return MemOperation; }
 | |
| 
 | |
|     MachineInstr *getCheckOperation() const { return CheckOperation; }
 | |
| 
 | |
|     MachineBasicBlock *getCheckBlock() const { return CheckBlock; }
 | |
| 
 | |
|     MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }
 | |
| 
 | |
|     MachineBasicBlock *getNullSucc() const { return NullSucc; }
 | |
| 
 | |
|     MachineInstr *getOnlyDependency() const { return OnlyDependency; }
 | |
|   };
 | |
| 
 | |
|   const TargetInstrInfo *TII = nullptr;
 | |
|   const TargetRegisterInfo *TRI = nullptr;
 | |
|   AliasAnalysis *AA = nullptr;
 | |
|   MachineFrameInfo *MFI = nullptr;
 | |
| 
 | |
|   bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
 | |
|                                  SmallVectorImpl<NullCheck> &NullCheckList);
 | |
|   MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB,
 | |
|                                     MachineBasicBlock *HandlerMBB);
 | |
|   void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
 | |
| 
 | |
|   enum AliasResult {
 | |
|     AR_NoAlias,
 | |
|     AR_MayAlias,
 | |
|     AR_WillAliasEverything
 | |
|   };
 | |
| 
 | |
|   /// Returns AR_NoAlias if \p MI memory operation does not alias with
 | |
|   /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if
 | |
|   /// they may alias and any further memory operation may alias with \p PrevMI.
 | |
|   AliasResult areMemoryOpsAliased(MachineInstr &MI, MachineInstr *PrevMI);
 | |
| 
 | |
|   enum SuitabilityResult {
 | |
|     SR_Suitable,
 | |
|     SR_Unsuitable,
 | |
|     SR_Impossible
 | |
|   };
 | |
| 
 | |
|   /// Return SR_Suitable if \p MI a memory operation that can be used to
 | |
|   /// implicitly null check the value in \p PointerReg, SR_Unsuitable if
 | |
|   /// \p MI cannot be used to null check and SR_Impossible if there is
 | |
|   /// no sense to continue lookup due to any other instruction will not be able
 | |
|   /// to be used. \p PrevInsts is the set of instruction seen since
 | |
|   /// the explicit null check on \p PointerReg.
 | |
|   SuitabilityResult isSuitableMemoryOp(MachineInstr &MI, unsigned PointerReg,
 | |
|                                        ArrayRef<MachineInstr *> PrevInsts);
 | |
| 
 | |
|   /// Return true if \p FaultingMI can be hoisted from after the the
 | |
|   /// instructions in \p InstsSeenSoFar to before them.  Set \p Dependence to a
 | |
|   /// non-null value if we also need to (and legally can) hoist a depedency.
 | |
|   bool canHoistInst(MachineInstr *FaultingMI, unsigned PointerReg,
 | |
|                     ArrayRef<MachineInstr *> InstsSeenSoFar,
 | |
|                     MachineBasicBlock *NullSucc, MachineInstr *&Dependence);
 | |
| 
 | |
| public:
 | |
|   static char ID;
 | |
| 
 | |
|   ImplicitNullChecks() : MachineFunctionPass(ID) {
 | |
|     initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<AAResultsWrapperPass>();
 | |
|     MachineFunctionPass::getAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
|   MachineFunctionProperties getRequiredProperties() const override {
 | |
|     return MachineFunctionProperties().set(
 | |
|         MachineFunctionProperties::Property::NoVRegs);
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| bool ImplicitNullChecks::canHandle(const MachineInstr *MI) {
 | |
|   if (MI->isCall() || MI->hasUnmodeledSideEffects())
 | |
|     return false;
 | |
|   auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); };
 | |
|   (void)IsRegMask;
 | |
| 
 | |
|   assert(!llvm::any_of(MI->operands(), IsRegMask) &&
 | |
|          "Calls were filtered out above!");
 | |
| 
 | |
|   auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); };
 | |
|   return llvm::all_of(MI->memoperands(), IsUnordered);
 | |
| }
 | |
| 
 | |
| ImplicitNullChecks::DependenceResult
 | |
| ImplicitNullChecks::computeDependence(const MachineInstr *MI,
 | |
|                                       ArrayRef<MachineInstr *> Block) {
 | |
|   assert(llvm::all_of(Block, canHandle) && "Check this first!");
 | |
|   assert(!is_contained(Block, MI) && "Block must be exclusive of MI!");
 | |
| 
 | |
|   Optional<ArrayRef<MachineInstr *>::iterator> Dep;
 | |
| 
 | |
|   for (auto I = Block.begin(), E = Block.end(); I != E; ++I) {
 | |
|     if (canReorder(*I, MI))
 | |
|       continue;
 | |
| 
 | |
|     if (Dep == None) {
 | |
|       // Found one possible dependency, keep track of it.
 | |
|       Dep = I;
 | |
|     } else {
 | |
|       // We found two dependencies, so bail out.
 | |
|       return {false, None};
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return {true, Dep};
 | |
| }
 | |
| 
 | |
| bool ImplicitNullChecks::canReorder(const MachineInstr *A,
 | |
|                                     const MachineInstr *B) {
 | |
|   assert(canHandle(A) && canHandle(B) && "Precondition!");
 | |
| 
 | |
|   // canHandle makes sure that we _can_ correctly analyze the dependencies
 | |
|   // between A and B here -- for instance, we should not be dealing with heap
 | |
|   // load-store dependencies here.
 | |
| 
 | |
|   for (auto MOA : A->operands()) {
 | |
|     if (!(MOA.isReg() && MOA.getReg()))
 | |
|       continue;
 | |
| 
 | |
|     unsigned RegA = MOA.getReg();
 | |
|     for (auto MOB : B->operands()) {
 | |
|       if (!(MOB.isReg() && MOB.getReg()))
 | |
|         continue;
 | |
| 
 | |
|       unsigned RegB = MOB.getReg();
 | |
| 
 | |
|       if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef()))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
 | |
|   TII = MF.getSubtarget().getInstrInfo();
 | |
|   TRI = MF.getRegInfo().getTargetRegisterInfo();
 | |
|   MFI = &MF.getFrameInfo();
 | |
|   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
| 
 | |
|   SmallVector<NullCheck, 16> NullCheckList;
 | |
| 
 | |
|   for (auto &MBB : MF)
 | |
|     analyzeBlockForNullChecks(MBB, NullCheckList);
 | |
| 
 | |
|   if (!NullCheckList.empty())
 | |
|     rewriteNullChecks(NullCheckList);
 | |
| 
 | |
|   return !NullCheckList.empty();
 | |
| }
 | |
| 
 | |
| // Return true if any register aliasing \p Reg is live-in into \p MBB.
 | |
| static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
 | |
|                            MachineBasicBlock *MBB, unsigned Reg) {
 | |
|   for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
 | |
|        ++AR)
 | |
|     if (MBB->isLiveIn(*AR))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| ImplicitNullChecks::AliasResult
 | |
| ImplicitNullChecks::areMemoryOpsAliased(MachineInstr &MI,
 | |
|                                         MachineInstr *PrevMI) {
 | |
|   // If it is not memory access, skip the check.
 | |
|   if (!(PrevMI->mayStore() || PrevMI->mayLoad()))
 | |
|     return AR_NoAlias;
 | |
|   // Load-Load may alias
 | |
|   if (!(MI.mayStore() || PrevMI->mayStore()))
 | |
|     return AR_NoAlias;
 | |
|   // We lost info, conservatively alias. If it was store then no sense to
 | |
|   // continue because we won't be able to check against it further.
 | |
|   if (MI.memoperands_empty())
 | |
|     return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias;
 | |
|   if (PrevMI->memoperands_empty())
 | |
|     return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias;
 | |
| 
 | |
|   for (MachineMemOperand *MMO1 : MI.memoperands()) {
 | |
|     // MMO1 should have a value due it comes from operation we'd like to use
 | |
|     // as implicit null check.
 | |
|     assert(MMO1->getValue() && "MMO1 should have a Value!");
 | |
|     for (MachineMemOperand *MMO2 : PrevMI->memoperands()) {
 | |
|       if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) {
 | |
|         if (PSV->mayAlias(MFI))
 | |
|           return AR_MayAlias;
 | |
|         continue;
 | |
|       }
 | |
|       llvm::AliasResult AAResult = AA->alias(
 | |
|           MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize,
 | |
|                          MMO1->getAAInfo()),
 | |
|           MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize,
 | |
|                          MMO2->getAAInfo()));
 | |
|       if (AAResult != NoAlias)
 | |
|         return AR_MayAlias;
 | |
|     }
 | |
|   }
 | |
|   return AR_NoAlias;
 | |
| }
 | |
| 
 | |
| ImplicitNullChecks::SuitabilityResult
 | |
| ImplicitNullChecks::isSuitableMemoryOp(MachineInstr &MI, unsigned PointerReg,
 | |
|                                        ArrayRef<MachineInstr *> PrevInsts) {
 | |
|   int64_t Offset;
 | |
|   unsigned BaseReg;
 | |
| 
 | |
|   if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI) ||
 | |
|       BaseReg != PointerReg)
 | |
|     return SR_Unsuitable;
 | |
| 
 | |
|   // We want the mem access to be issued at a sane offset from PointerReg,
 | |
|   // so that if PointerReg is null then the access reliably page faults.
 | |
|   if (!((MI.mayLoad() || MI.mayStore()) && !MI.isPredicable() &&
 | |
|         Offset < PageSize))
 | |
|     return SR_Unsuitable;
 | |
| 
 | |
|   // Finally, check whether the current memory access aliases with previous one.
 | |
|   for (auto *PrevMI : PrevInsts) {
 | |
|     AliasResult AR = areMemoryOpsAliased(MI, PrevMI);
 | |
|     if (AR == AR_WillAliasEverything)
 | |
|       return SR_Impossible;
 | |
|     if (AR == AR_MayAlias)
 | |
|       return SR_Unsuitable;
 | |
|   }
 | |
|   return SR_Suitable;
 | |
| }
 | |
| 
 | |
| bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI,
 | |
|                                       unsigned PointerReg,
 | |
|                                       ArrayRef<MachineInstr *> InstsSeenSoFar,
 | |
|                                       MachineBasicBlock *NullSucc,
 | |
|                                       MachineInstr *&Dependence) {
 | |
|   auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar);
 | |
|   if (!DepResult.CanReorder)
 | |
|     return false;
 | |
| 
 | |
|   if (!DepResult.PotentialDependence) {
 | |
|     Dependence = nullptr;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   auto DependenceItr = *DepResult.PotentialDependence;
 | |
|   auto *DependenceMI = *DependenceItr;
 | |
| 
 | |
|   // We don't want to reason about speculating loads.  Note -- at this point
 | |
|   // we should have already filtered out all of the other non-speculatable
 | |
|   // things, like calls and stores.
 | |
|   // We also do not want to hoist stores because it might change the memory
 | |
|   // while the FaultingMI may result in faulting.
 | |
|   assert(canHandle(DependenceMI) && "Should never have reached here!");
 | |
|   if (DependenceMI->mayLoadOrStore())
 | |
|     return false;
 | |
| 
 | |
|   for (auto &DependenceMO : DependenceMI->operands()) {
 | |
|     if (!(DependenceMO.isReg() && DependenceMO.getReg()))
 | |
|       continue;
 | |
| 
 | |
|     // Make sure that we won't clobber any live ins to the sibling block by
 | |
|     // hoisting Dependency.  For instance, we can't hoist INST to before the
 | |
|     // null check (even if it safe, and does not violate any dependencies in
 | |
|     // the non_null_block) if %rdx is live in to _null_block.
 | |
|     //
 | |
|     //    test %rcx, %rcx
 | |
|     //    je _null_block
 | |
|     //  _non_null_block:
 | |
|     //    %rdx<def> = INST
 | |
|     //    ...
 | |
|     //
 | |
|     // This restriction does not apply to the faulting load inst because in
 | |
|     // case the pointer loaded from is in the null page, the load will not
 | |
|     // semantically execute, and affect machine state.  That is, if the load
 | |
|     // was loading into %rax and it faults, the value of %rax should stay the
 | |
|     // same as it would have been had the load not have executed and we'd have
 | |
|     // branched to NullSucc directly.
 | |
|     if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg()))
 | |
|       return false;
 | |
| 
 | |
|     // The Dependency can't be re-defining the base register -- then we won't
 | |
|     // get the memory operation on the address we want.  This is already
 | |
|     // checked in \c IsSuitableMemoryOp.
 | |
|     assert(!(DependenceMO.isDef() &&
 | |
|              TRI->regsOverlap(DependenceMO.getReg(), PointerReg)) &&
 | |
|            "Should have been checked before!");
 | |
|   }
 | |
| 
 | |
|   auto DepDepResult =
 | |
|       computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr});
 | |
| 
 | |
|   if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence)
 | |
|     return false;
 | |
| 
 | |
|   Dependence = DependenceMI;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Analyze MBB to check if its terminating branch can be turned into an
 | |
| /// implicit null check.  If yes, append a description of the said null check to
 | |
| /// NullCheckList and return true, else return false.
 | |
| bool ImplicitNullChecks::analyzeBlockForNullChecks(
 | |
|     MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
 | |
|   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
 | |
| 
 | |
|   MDNode *BranchMD = nullptr;
 | |
|   if (auto *BB = MBB.getBasicBlock())
 | |
|     BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
 | |
| 
 | |
|   if (!BranchMD)
 | |
|     return false;
 | |
| 
 | |
|   MachineBranchPredicate MBP;
 | |
| 
 | |
|   if (TII->analyzeBranchPredicate(MBB, MBP, true))
 | |
|     return false;
 | |
| 
 | |
|   // Is the predicate comparing an integer to zero?
 | |
|   if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
 | |
|         (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
 | |
|          MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
 | |
|     return false;
 | |
| 
 | |
|   // If we cannot erase the test instruction itself, then making the null check
 | |
|   // implicit does not buy us much.
 | |
|   if (!MBP.SingleUseCondition)
 | |
|     return false;
 | |
| 
 | |
|   MachineBasicBlock *NotNullSucc, *NullSucc;
 | |
| 
 | |
|   if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
 | |
|     NotNullSucc = MBP.TrueDest;
 | |
|     NullSucc = MBP.FalseDest;
 | |
|   } else {
 | |
|     NotNullSucc = MBP.FalseDest;
 | |
|     NullSucc = MBP.TrueDest;
 | |
|   }
 | |
| 
 | |
|   // We handle the simplest case for now.  We can potentially do better by using
 | |
|   // the machine dominator tree.
 | |
|   if (NotNullSucc->pred_size() != 1)
 | |
|     return false;
 | |
| 
 | |
|   // Starting with a code fragment like:
 | |
|   //
 | |
|   //   test %RAX, %RAX
 | |
|   //   jne LblNotNull
 | |
|   //
 | |
|   //  LblNull:
 | |
|   //   callq throw_NullPointerException
 | |
|   //
 | |
|   //  LblNotNull:
 | |
|   //   Inst0
 | |
|   //   Inst1
 | |
|   //   ...
 | |
|   //   Def = Load (%RAX + <offset>)
 | |
|   //   ...
 | |
|   //
 | |
|   //
 | |
|   // we want to end up with
 | |
|   //
 | |
|   //   Def = FaultingLoad (%RAX + <offset>), LblNull
 | |
|   //   jmp LblNotNull ;; explicit or fallthrough
 | |
|   //
 | |
|   //  LblNotNull:
 | |
|   //   Inst0
 | |
|   //   Inst1
 | |
|   //   ...
 | |
|   //
 | |
|   //  LblNull:
 | |
|   //   callq throw_NullPointerException
 | |
|   //
 | |
|   //
 | |
|   // To see why this is legal, consider the two possibilities:
 | |
|   //
 | |
|   //  1. %RAX is null: since we constrain <offset> to be less than PageSize, the
 | |
|   //     load instruction dereferences the null page, causing a segmentation
 | |
|   //     fault.
 | |
|   //
 | |
|   //  2. %RAX is not null: in this case we know that the load cannot fault, as
 | |
|   //     otherwise the load would've faulted in the original program too and the
 | |
|   //     original program would've been undefined.
 | |
|   //
 | |
|   // This reasoning cannot be extended to justify hoisting through arbitrary
 | |
|   // control flow.  For instance, in the example below (in pseudo-C)
 | |
|   //
 | |
|   //    if (ptr == null) { throw_npe(); unreachable; }
 | |
|   //    if (some_cond) { return 42; }
 | |
|   //    v = ptr->field;  // LD
 | |
|   //    ...
 | |
|   //
 | |
|   // we cannot (without code duplication) use the load marked "LD" to null check
 | |
|   // ptr -- clause (2) above does not apply in this case.  In the above program
 | |
|   // the safety of ptr->field can be dependent on some_cond; and, for instance,
 | |
|   // ptr could be some non-null invalid reference that never gets loaded from
 | |
|   // because some_cond is always true.
 | |
| 
 | |
|   const unsigned PointerReg = MBP.LHS.getReg();
 | |
| 
 | |
|   SmallVector<MachineInstr *, 8> InstsSeenSoFar;
 | |
| 
 | |
|   for (auto &MI : *NotNullSucc) {
 | |
|     if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider)
 | |
|       return false;
 | |
| 
 | |
|     MachineInstr *Dependence;
 | |
|     SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar);
 | |
|     if (SR == SR_Impossible)
 | |
|       return false;
 | |
|     if (SR == SR_Suitable &&
 | |
|         canHoistInst(&MI, PointerReg, InstsSeenSoFar, NullSucc, Dependence)) {
 | |
|       NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
 | |
|                                  NullSucc, Dependence);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // If MI re-defines the PointerReg then we cannot move further.
 | |
|     if (llvm::any_of(MI.operands(), [&](MachineOperand &MO) {
 | |
|           return MO.isReg() && MO.getReg() && MO.isDef() &&
 | |
|                  TRI->regsOverlap(MO.getReg(), PointerReg);
 | |
|         }))
 | |
|       return false;
 | |
|     InstsSeenSoFar.push_back(&MI);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Wrap a machine instruction, MI, into a FAULTING machine instruction.
 | |
| /// The FAULTING instruction does the same load/store as MI
 | |
| /// (defining the same register), and branches to HandlerMBB if the mem access
 | |
| /// faults.  The FAULTING instruction is inserted at the end of MBB.
 | |
| MachineInstr *ImplicitNullChecks::insertFaultingInstr(
 | |
|     MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) {
 | |
|   const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
 | |
|                                  // all targets.
 | |
| 
 | |
|   DebugLoc DL;
 | |
|   unsigned NumDefs = MI->getDesc().getNumDefs();
 | |
|   assert(NumDefs <= 1 && "other cases unhandled!");
 | |
| 
 | |
|   unsigned DefReg = NoRegister;
 | |
|   if (NumDefs != 0) {
 | |
|     DefReg = MI->defs().begin()->getReg();
 | |
|     assert(std::distance(MI->defs().begin(), MI->defs().end()) == 1 &&
 | |
|            "expected exactly one def!");
 | |
|   }
 | |
| 
 | |
|   FaultMaps::FaultKind FK;
 | |
|   if (MI->mayLoad())
 | |
|     FK =
 | |
|         MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad;
 | |
|   else
 | |
|     FK = FaultMaps::FaultingStore;
 | |
| 
 | |
|   auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg)
 | |
|                  .addImm(FK)
 | |
|                  .addMBB(HandlerMBB)
 | |
|                  .addImm(MI->getOpcode());
 | |
| 
 | |
|   for (auto &MO : MI->uses()) {
 | |
|     if (MO.isReg()) {
 | |
|       MachineOperand NewMO = MO;
 | |
|       if (MO.isUse()) {
 | |
|         NewMO.setIsKill(false);
 | |
|       } else {
 | |
|         assert(MO.isDef() && "Expected def or use");
 | |
|         NewMO.setIsDead(false);
 | |
|       }
 | |
|       MIB.add(NewMO);
 | |
|     } else {
 | |
|       MIB.add(MO);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MIB.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
 | |
| 
 | |
|   return MIB;
 | |
| }
 | |
| 
 | |
| /// Rewrite the null checks in NullCheckList into implicit null checks.
 | |
| void ImplicitNullChecks::rewriteNullChecks(
 | |
|     ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
 | |
|   DebugLoc DL;
 | |
| 
 | |
|   for (auto &NC : NullCheckList) {
 | |
|     // Remove the conditional branch dependent on the null check.
 | |
|     unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock());
 | |
|     (void)BranchesRemoved;
 | |
|     assert(BranchesRemoved > 0 && "expected at least one branch!");
 | |
| 
 | |
|     if (auto *DepMI = NC.getOnlyDependency()) {
 | |
|       DepMI->removeFromParent();
 | |
|       NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
 | |
|     }
 | |
| 
 | |
|     // Insert a faulting instruction where the conditional branch was
 | |
|     // originally. We check earlier ensures that this bit of code motion
 | |
|     // is legal.  We do not touch the successors list for any basic block
 | |
|     // since we haven't changed control flow, we've just made it implicit.
 | |
|     MachineInstr *FaultingInstr = insertFaultingInstr(
 | |
|         NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
 | |
|     // Now the values defined by MemOperation, if any, are live-in of
 | |
|     // the block of MemOperation.
 | |
|     // The original operation may define implicit-defs alongside
 | |
|     // the value.
 | |
|     MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
 | |
|     for (const MachineOperand &MO : FaultingInstr->operands()) {
 | |
|       if (!MO.isReg() || !MO.isDef())
 | |
|         continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (!Reg || MBB->isLiveIn(Reg))
 | |
|         continue;
 | |
|       MBB->addLiveIn(Reg);
 | |
|     }
 | |
| 
 | |
|     if (auto *DepMI = NC.getOnlyDependency()) {
 | |
|       for (auto &MO : DepMI->operands()) {
 | |
|         if (!MO.isReg() || !MO.getReg() || !MO.isDef())
 | |
|           continue;
 | |
|         if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
 | |
|           NC.getNotNullSucc()->addLiveIn(MO.getReg());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     NC.getMemOperation()->eraseFromParent();
 | |
|     NC.getCheckOperation()->eraseFromParent();
 | |
| 
 | |
|     // Insert an *unconditional* branch to not-null successor.
 | |
|     TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
 | |
|                       /*Cond=*/None, DL);
 | |
| 
 | |
|     NumImplicitNullChecks++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| char ImplicitNullChecks::ID = 0;
 | |
| 
 | |
| char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE,
 | |
|                       "Implicit null checks", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | |
| INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE,
 | |
|                     "Implicit null checks", false, false)
 |