forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			8088 lines
		
	
	
		
			296 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			8088 lines
		
	
	
		
			296 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the SelectionDAG class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "SDNodeDbgValue.h"
 | |
| #include "llvm/ADT/APFloat.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/APSInt.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/FoldingSet.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/CodeGen/ISDOpcodes.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineValueType.h"
 | |
| #include "llvm/CodeGen/RuntimeLibcalls.h"
 | |
| #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
 | |
| #include "llvm/CodeGen/SelectionDAGNodes.h"
 | |
| #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
 | |
| #include "llvm/CodeGen/ValueTypes.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DebugInfoMetadata.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CodeGen.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include "llvm/Support/ManagedStatic.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/Mutex.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <cstdlib>
 | |
| #include <limits>
 | |
| #include <set>
 | |
| #include <string>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| /// makeVTList - Return an instance of the SDVTList struct initialized with the
 | |
| /// specified members.
 | |
| static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
 | |
|   SDVTList Res = {VTs, NumVTs};
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| // Default null implementations of the callbacks.
 | |
| void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
 | |
| void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
 | |
| 
 | |
| #define DEBUG_TYPE "selectiondag"
 | |
| 
 | |
| static void NewSDValueDbgMsg(SDValue V, StringRef Msg) {
 | |
|   DEBUG(
 | |
|     dbgs() << Msg;
 | |
|     V.dump();
 | |
|   );
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              ConstantFPSDNode Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isExactlyValue - We don't rely on operator== working on double values, as
 | |
| /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
 | |
| /// As such, this method can be used to do an exact bit-for-bit comparison of
 | |
| /// two floating point values.
 | |
| bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
 | |
|   return getValueAPF().bitwiseIsEqual(V);
 | |
| }
 | |
| 
 | |
| bool ConstantFPSDNode::isValueValidForType(EVT VT,
 | |
|                                            const APFloat& Val) {
 | |
|   assert(VT.isFloatingPoint() && "Can only convert between FP types");
 | |
| 
 | |
|   // convert modifies in place, so make a copy.
 | |
|   APFloat Val2 = APFloat(Val);
 | |
|   bool losesInfo;
 | |
|   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
 | |
|                       APFloat::rmNearestTiesToEven,
 | |
|                       &losesInfo);
 | |
|   return !losesInfo;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              ISD Namespace
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
 | |
|   auto *BV = dyn_cast<BuildVectorSDNode>(N);
 | |
|   if (!BV)
 | |
|     return false;
 | |
| 
 | |
|   APInt SplatUndef;
 | |
|   unsigned SplatBitSize;
 | |
|   bool HasUndefs;
 | |
|   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
 | |
|   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
 | |
|                              EltSize) &&
 | |
|          EltSize == SplatBitSize;
 | |
| }
 | |
| 
 | |
| // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
 | |
| // specializations of the more general isConstantSplatVector()?
 | |
| 
 | |
| bool ISD::isBuildVectorAllOnes(const SDNode *N) {
 | |
|   // Look through a bit convert.
 | |
|   while (N->getOpcode() == ISD::BITCAST)
 | |
|     N = N->getOperand(0).getNode();
 | |
| 
 | |
|   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
 | |
| 
 | |
|   unsigned i = 0, e = N->getNumOperands();
 | |
| 
 | |
|   // Skip over all of the undef values.
 | |
|   while (i != e && N->getOperand(i).isUndef())
 | |
|     ++i;
 | |
| 
 | |
|   // Do not accept an all-undef vector.
 | |
|   if (i == e) return false;
 | |
| 
 | |
|   // Do not accept build_vectors that aren't all constants or which have non-~0
 | |
|   // elements. We have to be a bit careful here, as the type of the constant
 | |
|   // may not be the same as the type of the vector elements due to type
 | |
|   // legalization (the elements are promoted to a legal type for the target and
 | |
|   // a vector of a type may be legal when the base element type is not).
 | |
|   // We only want to check enough bits to cover the vector elements, because
 | |
|   // we care if the resultant vector is all ones, not whether the individual
 | |
|   // constants are.
 | |
|   SDValue NotZero = N->getOperand(i);
 | |
|   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
 | |
|   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
 | |
|     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
 | |
|       return false;
 | |
|   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
 | |
|     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
 | |
|       return false;
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   // Okay, we have at least one ~0 value, check to see if the rest match or are
 | |
|   // undefs. Even with the above element type twiddling, this should be OK, as
 | |
|   // the same type legalization should have applied to all the elements.
 | |
|   for (++i; i != e; ++i)
 | |
|     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ISD::isBuildVectorAllZeros(const SDNode *N) {
 | |
|   // Look through a bit convert.
 | |
|   while (N->getOpcode() == ISD::BITCAST)
 | |
|     N = N->getOperand(0).getNode();
 | |
| 
 | |
|   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
 | |
| 
 | |
|   bool IsAllUndef = true;
 | |
|   for (const SDValue &Op : N->op_values()) {
 | |
|     if (Op.isUndef())
 | |
|       continue;
 | |
|     IsAllUndef = false;
 | |
|     // Do not accept build_vectors that aren't all constants or which have non-0
 | |
|     // elements. We have to be a bit careful here, as the type of the constant
 | |
|     // may not be the same as the type of the vector elements due to type
 | |
|     // legalization (the elements are promoted to a legal type for the target
 | |
|     // and a vector of a type may be legal when the base element type is not).
 | |
|     // We only want to check enough bits to cover the vector elements, because
 | |
|     // we care if the resultant vector is all zeros, not whether the individual
 | |
|     // constants are.
 | |
|     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
 | |
|     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
 | |
|       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
 | |
|         return false;
 | |
|     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
 | |
|       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
 | |
|         return false;
 | |
|     } else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Do not accept an all-undef vector.
 | |
|   if (IsAllUndef)
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
 | |
|   if (N->getOpcode() != ISD::BUILD_VECTOR)
 | |
|     return false;
 | |
| 
 | |
|   for (const SDValue &Op : N->op_values()) {
 | |
|     if (Op.isUndef())
 | |
|       continue;
 | |
|     if (!isa<ConstantSDNode>(Op))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
 | |
|   if (N->getOpcode() != ISD::BUILD_VECTOR)
 | |
|     return false;
 | |
| 
 | |
|   for (const SDValue &Op : N->op_values()) {
 | |
|     if (Op.isUndef())
 | |
|       continue;
 | |
|     if (!isa<ConstantFPSDNode>(Op))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ISD::allOperandsUndef(const SDNode *N) {
 | |
|   // Return false if the node has no operands.
 | |
|   // This is "logically inconsistent" with the definition of "all" but
 | |
|   // is probably the desired behavior.
 | |
|   if (N->getNumOperands() == 0)
 | |
|     return false;
 | |
| 
 | |
|   for (const SDValue &Op : N->op_values())
 | |
|     if (!Op.isUndef())
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
 | |
|   switch (ExtType) {
 | |
|   case ISD::EXTLOAD:
 | |
|     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
 | |
|   case ISD::SEXTLOAD:
 | |
|     return ISD::SIGN_EXTEND;
 | |
|   case ISD::ZEXTLOAD:
 | |
|     return ISD::ZERO_EXTEND;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid LoadExtType");
 | |
| }
 | |
| 
 | |
| ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
 | |
|   // To perform this operation, we just need to swap the L and G bits of the
 | |
|   // operation.
 | |
|   unsigned OldL = (Operation >> 2) & 1;
 | |
|   unsigned OldG = (Operation >> 1) & 1;
 | |
|   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
 | |
|                        (OldL << 1) |       // New G bit
 | |
|                        (OldG << 2));       // New L bit.
 | |
| }
 | |
| 
 | |
| ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
 | |
|   unsigned Operation = Op;
 | |
|   if (isInteger)
 | |
|     Operation ^= 7;   // Flip L, G, E bits, but not U.
 | |
|   else
 | |
|     Operation ^= 15;  // Flip all of the condition bits.
 | |
| 
 | |
|   if (Operation > ISD::SETTRUE2)
 | |
|     Operation &= ~8;  // Don't let N and U bits get set.
 | |
| 
 | |
|   return ISD::CondCode(Operation);
 | |
| }
 | |
| 
 | |
| /// For an integer comparison, return 1 if the comparison is a signed operation
 | |
| /// and 2 if the result is an unsigned comparison. Return zero if the operation
 | |
| /// does not depend on the sign of the input (setne and seteq).
 | |
| static int isSignedOp(ISD::CondCode Opcode) {
 | |
|   switch (Opcode) {
 | |
|   default: llvm_unreachable("Illegal integer setcc operation!");
 | |
|   case ISD::SETEQ:
 | |
|   case ISD::SETNE: return 0;
 | |
|   case ISD::SETLT:
 | |
|   case ISD::SETLE:
 | |
|   case ISD::SETGT:
 | |
|   case ISD::SETGE: return 1;
 | |
|   case ISD::SETULT:
 | |
|   case ISD::SETULE:
 | |
|   case ISD::SETUGT:
 | |
|   case ISD::SETUGE: return 2;
 | |
|   }
 | |
| }
 | |
| 
 | |
| ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
 | |
|                                        bool IsInteger) {
 | |
|   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
 | |
|     // Cannot fold a signed integer setcc with an unsigned integer setcc.
 | |
|     return ISD::SETCC_INVALID;
 | |
| 
 | |
|   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
 | |
| 
 | |
|   // If the N and U bits get set, then the resultant comparison DOES suddenly
 | |
|   // care about orderedness, and it is true when ordered.
 | |
|   if (Op > ISD::SETTRUE2)
 | |
|     Op &= ~16;     // Clear the U bit if the N bit is set.
 | |
| 
 | |
|   // Canonicalize illegal integer setcc's.
 | |
|   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
 | |
|     Op = ISD::SETNE;
 | |
| 
 | |
|   return ISD::CondCode(Op);
 | |
| }
 | |
| 
 | |
| ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
 | |
|                                         bool IsInteger) {
 | |
|   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
 | |
|     // Cannot fold a signed setcc with an unsigned setcc.
 | |
|     return ISD::SETCC_INVALID;
 | |
| 
 | |
|   // Combine all of the condition bits.
 | |
|   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
 | |
| 
 | |
|   // Canonicalize illegal integer setcc's.
 | |
|   if (IsInteger) {
 | |
|     switch (Result) {
 | |
|     default: break;
 | |
|     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
 | |
|     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
 | |
|     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
 | |
|     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
 | |
|     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           SDNode Profile Support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
 | |
| static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
 | |
|   ID.AddInteger(OpC);
 | |
| }
 | |
| 
 | |
| /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
 | |
| /// solely with their pointer.
 | |
| static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
 | |
|   ID.AddPointer(VTList.VTs);
 | |
| }
 | |
| 
 | |
| /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
 | |
| static void AddNodeIDOperands(FoldingSetNodeID &ID,
 | |
|                               ArrayRef<SDValue> Ops) {
 | |
|   for (auto& Op : Ops) {
 | |
|     ID.AddPointer(Op.getNode());
 | |
|     ID.AddInteger(Op.getResNo());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
 | |
| static void AddNodeIDOperands(FoldingSetNodeID &ID,
 | |
|                               ArrayRef<SDUse> Ops) {
 | |
|   for (auto& Op : Ops) {
 | |
|     ID.AddPointer(Op.getNode());
 | |
|     ID.AddInteger(Op.getResNo());
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
 | |
|                           SDVTList VTList, ArrayRef<SDValue> OpList) {
 | |
|   AddNodeIDOpcode(ID, OpC);
 | |
|   AddNodeIDValueTypes(ID, VTList);
 | |
|   AddNodeIDOperands(ID, OpList);
 | |
| }
 | |
| 
 | |
| /// If this is an SDNode with special info, add this info to the NodeID data.
 | |
| static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
 | |
|   switch (N->getOpcode()) {
 | |
|   case ISD::TargetExternalSymbol:
 | |
|   case ISD::ExternalSymbol:
 | |
|   case ISD::MCSymbol:
 | |
|     llvm_unreachable("Should only be used on nodes with operands");
 | |
|   default: break;  // Normal nodes don't need extra info.
 | |
|   case ISD::TargetConstant:
 | |
|   case ISD::Constant: {
 | |
|     const ConstantSDNode *C = cast<ConstantSDNode>(N);
 | |
|     ID.AddPointer(C->getConstantIntValue());
 | |
|     ID.AddBoolean(C->isOpaque());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::TargetConstantFP:
 | |
|   case ISD::ConstantFP:
 | |
|     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
 | |
|     break;
 | |
|   case ISD::TargetGlobalAddress:
 | |
|   case ISD::GlobalAddress:
 | |
|   case ISD::TargetGlobalTLSAddress:
 | |
|   case ISD::GlobalTLSAddress: {
 | |
|     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
 | |
|     ID.AddPointer(GA->getGlobal());
 | |
|     ID.AddInteger(GA->getOffset());
 | |
|     ID.AddInteger(GA->getTargetFlags());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BasicBlock:
 | |
|     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
 | |
|     break;
 | |
|   case ISD::Register:
 | |
|     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
 | |
|     break;
 | |
|   case ISD::RegisterMask:
 | |
|     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
 | |
|     break;
 | |
|   case ISD::SRCVALUE:
 | |
|     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
 | |
|     break;
 | |
|   case ISD::FrameIndex:
 | |
|   case ISD::TargetFrameIndex:
 | |
|     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
 | |
|     break;
 | |
|   case ISD::JumpTable:
 | |
|   case ISD::TargetJumpTable:
 | |
|     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
 | |
|     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
 | |
|     break;
 | |
|   case ISD::ConstantPool:
 | |
|   case ISD::TargetConstantPool: {
 | |
|     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
 | |
|     ID.AddInteger(CP->getAlignment());
 | |
|     ID.AddInteger(CP->getOffset());
 | |
|     if (CP->isMachineConstantPoolEntry())
 | |
|       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
 | |
|     else
 | |
|       ID.AddPointer(CP->getConstVal());
 | |
|     ID.AddInteger(CP->getTargetFlags());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::TargetIndex: {
 | |
|     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
 | |
|     ID.AddInteger(TI->getIndex());
 | |
|     ID.AddInteger(TI->getOffset());
 | |
|     ID.AddInteger(TI->getTargetFlags());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::LOAD: {
 | |
|     const LoadSDNode *LD = cast<LoadSDNode>(N);
 | |
|     ID.AddInteger(LD->getMemoryVT().getRawBits());
 | |
|     ID.AddInteger(LD->getRawSubclassData());
 | |
|     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::STORE: {
 | |
|     const StoreSDNode *ST = cast<StoreSDNode>(N);
 | |
|     ID.AddInteger(ST->getMemoryVT().getRawBits());
 | |
|     ID.AddInteger(ST->getRawSubclassData());
 | |
|     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::ATOMIC_CMP_SWAP:
 | |
|   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
 | |
|   case ISD::ATOMIC_SWAP:
 | |
|   case ISD::ATOMIC_LOAD_ADD:
 | |
|   case ISD::ATOMIC_LOAD_SUB:
 | |
|   case ISD::ATOMIC_LOAD_AND:
 | |
|   case ISD::ATOMIC_LOAD_OR:
 | |
|   case ISD::ATOMIC_LOAD_XOR:
 | |
|   case ISD::ATOMIC_LOAD_NAND:
 | |
|   case ISD::ATOMIC_LOAD_MIN:
 | |
|   case ISD::ATOMIC_LOAD_MAX:
 | |
|   case ISD::ATOMIC_LOAD_UMIN:
 | |
|   case ISD::ATOMIC_LOAD_UMAX:
 | |
|   case ISD::ATOMIC_LOAD:
 | |
|   case ISD::ATOMIC_STORE: {
 | |
|     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
 | |
|     ID.AddInteger(AT->getMemoryVT().getRawBits());
 | |
|     ID.AddInteger(AT->getRawSubclassData());
 | |
|     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::PREFETCH: {
 | |
|     const MemSDNode *PF = cast<MemSDNode>(N);
 | |
|     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::VECTOR_SHUFFLE: {
 | |
|     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
 | |
|     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
 | |
|          i != e; ++i)
 | |
|       ID.AddInteger(SVN->getMaskElt(i));
 | |
|     break;
 | |
|   }
 | |
|   case ISD::TargetBlockAddress:
 | |
|   case ISD::BlockAddress: {
 | |
|     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
 | |
|     ID.AddPointer(BA->getBlockAddress());
 | |
|     ID.AddInteger(BA->getOffset());
 | |
|     ID.AddInteger(BA->getTargetFlags());
 | |
|     break;
 | |
|   }
 | |
|   } // end switch (N->getOpcode())
 | |
| 
 | |
|   // Target specific memory nodes could also have address spaces to check.
 | |
|   if (N->isTargetMemoryOpcode())
 | |
|     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
 | |
| }
 | |
| 
 | |
| /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
 | |
| /// data.
 | |
| static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
 | |
|   AddNodeIDOpcode(ID, N->getOpcode());
 | |
|   // Add the return value info.
 | |
|   AddNodeIDValueTypes(ID, N->getVTList());
 | |
|   // Add the operand info.
 | |
|   AddNodeIDOperands(ID, N->ops());
 | |
| 
 | |
|   // Handle SDNode leafs with special info.
 | |
|   AddNodeIDCustom(ID, N);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              SelectionDAG Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// doNotCSE - Return true if CSE should not be performed for this node.
 | |
| static bool doNotCSE(SDNode *N) {
 | |
|   if (N->getValueType(0) == MVT::Glue)
 | |
|     return true; // Never CSE anything that produces a flag.
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::HANDLENODE:
 | |
|   case ISD::EH_LABEL:
 | |
|     return true;   // Never CSE these nodes.
 | |
|   }
 | |
| 
 | |
|   // Check that remaining values produced are not flags.
 | |
|   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
 | |
|     if (N->getValueType(i) == MVT::Glue)
 | |
|       return true; // Never CSE anything that produces a flag.
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// RemoveDeadNodes - This method deletes all unreachable nodes in the
 | |
| /// SelectionDAG.
 | |
| void SelectionDAG::RemoveDeadNodes() {
 | |
|   // Create a dummy node (which is not added to allnodes), that adds a reference
 | |
|   // to the root node, preventing it from being deleted.
 | |
|   HandleSDNode Dummy(getRoot());
 | |
| 
 | |
|   SmallVector<SDNode*, 128> DeadNodes;
 | |
| 
 | |
|   // Add all obviously-dead nodes to the DeadNodes worklist.
 | |
|   for (SDNode &Node : allnodes())
 | |
|     if (Node.use_empty())
 | |
|       DeadNodes.push_back(&Node);
 | |
| 
 | |
|   RemoveDeadNodes(DeadNodes);
 | |
| 
 | |
|   // If the root changed (e.g. it was a dead load, update the root).
 | |
|   setRoot(Dummy.getValue());
 | |
| }
 | |
| 
 | |
| /// RemoveDeadNodes - This method deletes the unreachable nodes in the
 | |
| /// given list, and any nodes that become unreachable as a result.
 | |
| void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
 | |
| 
 | |
|   // Process the worklist, deleting the nodes and adding their uses to the
 | |
|   // worklist.
 | |
|   while (!DeadNodes.empty()) {
 | |
|     SDNode *N = DeadNodes.pop_back_val();
 | |
|     // Skip to next node if we've already managed to delete the node. This could
 | |
|     // happen if replacing a node causes a node previously added to the node to
 | |
|     // be deleted.
 | |
|     if (N->getOpcode() == ISD::DELETED_NODE)
 | |
|       continue;
 | |
| 
 | |
|     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
 | |
|       DUL->NodeDeleted(N, nullptr);
 | |
| 
 | |
|     // Take the node out of the appropriate CSE map.
 | |
|     RemoveNodeFromCSEMaps(N);
 | |
| 
 | |
|     // Next, brutally remove the operand list.  This is safe to do, as there are
 | |
|     // no cycles in the graph.
 | |
|     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
 | |
|       SDUse &Use = *I++;
 | |
|       SDNode *Operand = Use.getNode();
 | |
|       Use.set(SDValue());
 | |
| 
 | |
|       // Now that we removed this operand, see if there are no uses of it left.
 | |
|       if (Operand->use_empty())
 | |
|         DeadNodes.push_back(Operand);
 | |
|     }
 | |
| 
 | |
|     DeallocateNode(N);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAG::RemoveDeadNode(SDNode *N){
 | |
|   SmallVector<SDNode*, 16> DeadNodes(1, N);
 | |
| 
 | |
|   // Create a dummy node that adds a reference to the root node, preventing
 | |
|   // it from being deleted.  (This matters if the root is an operand of the
 | |
|   // dead node.)
 | |
|   HandleSDNode Dummy(getRoot());
 | |
| 
 | |
|   RemoveDeadNodes(DeadNodes);
 | |
| }
 | |
| 
 | |
| void SelectionDAG::DeleteNode(SDNode *N) {
 | |
|   // First take this out of the appropriate CSE map.
 | |
|   RemoveNodeFromCSEMaps(N);
 | |
| 
 | |
|   // Finally, remove uses due to operands of this node, remove from the
 | |
|   // AllNodes list, and delete the node.
 | |
|   DeleteNodeNotInCSEMaps(N);
 | |
| }
 | |
| 
 | |
| void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
 | |
|   assert(N->getIterator() != AllNodes.begin() &&
 | |
|          "Cannot delete the entry node!");
 | |
|   assert(N->use_empty() && "Cannot delete a node that is not dead!");
 | |
| 
 | |
|   // Drop all of the operands and decrement used node's use counts.
 | |
|   N->DropOperands();
 | |
| 
 | |
|   DeallocateNode(N);
 | |
| }
 | |
| 
 | |
| void SDDbgInfo::erase(const SDNode *Node) {
 | |
|   DbgValMapType::iterator I = DbgValMap.find(Node);
 | |
|   if (I == DbgValMap.end())
 | |
|     return;
 | |
|   for (auto &Val: I->second)
 | |
|     Val->setIsInvalidated();
 | |
|   DbgValMap.erase(I);
 | |
| }
 | |
| 
 | |
| void SelectionDAG::DeallocateNode(SDNode *N) {
 | |
|   // If we have operands, deallocate them.
 | |
|   removeOperands(N);
 | |
| 
 | |
|   NodeAllocator.Deallocate(AllNodes.remove(N));
 | |
| 
 | |
|   // Set the opcode to DELETED_NODE to help catch bugs when node
 | |
|   // memory is reallocated.
 | |
|   // FIXME: There are places in SDag that have grown a dependency on the opcode
 | |
|   // value in the released node.
 | |
|   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
 | |
|   N->NodeType = ISD::DELETED_NODE;
 | |
| 
 | |
|   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
 | |
|   // them and forget about that node.
 | |
|   DbgInfo->erase(N);
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
 | |
| static void VerifySDNode(SDNode *N) {
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     break;
 | |
|   case ISD::BUILD_PAIR: {
 | |
|     EVT VT = N->getValueType(0);
 | |
|     assert(N->getNumValues() == 1 && "Too many results!");
 | |
|     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
 | |
|            "Wrong return type!");
 | |
|     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
 | |
|     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
 | |
|            "Mismatched operand types!");
 | |
|     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
 | |
|            "Wrong operand type!");
 | |
|     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
 | |
|            "Wrong return type size");
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BUILD_VECTOR: {
 | |
|     assert(N->getNumValues() == 1 && "Too many results!");
 | |
|     assert(N->getValueType(0).isVector() && "Wrong return type!");
 | |
|     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
 | |
|            "Wrong number of operands!");
 | |
|     EVT EltVT = N->getValueType(0).getVectorElementType();
 | |
|     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
 | |
|       assert((I->getValueType() == EltVT ||
 | |
|              (EltVT.isInteger() && I->getValueType().isInteger() &&
 | |
|               EltVT.bitsLE(I->getValueType()))) &&
 | |
|             "Wrong operand type!");
 | |
|       assert(I->getValueType() == N->getOperand(0).getValueType() &&
 | |
|              "Operands must all have the same type");
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| #endif // NDEBUG
 | |
| 
 | |
| /// \brief Insert a newly allocated node into the DAG.
 | |
| ///
 | |
| /// Handles insertion into the all nodes list and CSE map, as well as
 | |
| /// verification and other common operations when a new node is allocated.
 | |
| void SelectionDAG::InsertNode(SDNode *N) {
 | |
|   AllNodes.push_back(N);
 | |
| #ifndef NDEBUG
 | |
|   N->PersistentId = NextPersistentId++;
 | |
|   VerifySDNode(N);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
 | |
| /// correspond to it.  This is useful when we're about to delete or repurpose
 | |
| /// the node.  We don't want future request for structurally identical nodes
 | |
| /// to return N anymore.
 | |
| bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
 | |
|   bool Erased = false;
 | |
|   switch (N->getOpcode()) {
 | |
|   case ISD::HANDLENODE: return false;  // noop.
 | |
|   case ISD::CONDCODE:
 | |
|     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
 | |
|            "Cond code doesn't exist!");
 | |
|     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
 | |
|     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
 | |
|     break;
 | |
|   case ISD::ExternalSymbol:
 | |
|     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
 | |
|     break;
 | |
|   case ISD::TargetExternalSymbol: {
 | |
|     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
 | |
|     Erased = TargetExternalSymbols.erase(
 | |
|                std::pair<std::string,unsigned char>(ESN->getSymbol(),
 | |
|                                                     ESN->getTargetFlags()));
 | |
|     break;
 | |
|   }
 | |
|   case ISD::MCSymbol: {
 | |
|     auto *MCSN = cast<MCSymbolSDNode>(N);
 | |
|     Erased = MCSymbols.erase(MCSN->getMCSymbol());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::VALUETYPE: {
 | |
|     EVT VT = cast<VTSDNode>(N)->getVT();
 | |
|     if (VT.isExtended()) {
 | |
|       Erased = ExtendedValueTypeNodes.erase(VT);
 | |
|     } else {
 | |
|       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
 | |
|       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     // Remove it from the CSE Map.
 | |
|     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
 | |
|     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
 | |
|     Erased = CSEMap.RemoveNode(N);
 | |
|     break;
 | |
|   }
 | |
| #ifndef NDEBUG
 | |
|   // Verify that the node was actually in one of the CSE maps, unless it has a
 | |
|   // flag result (which cannot be CSE'd) or is one of the special cases that are
 | |
|   // not subject to CSE.
 | |
|   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
 | |
|       !N->isMachineOpcode() && !doNotCSE(N)) {
 | |
|     N->dump(this);
 | |
|     dbgs() << "\n";
 | |
|     llvm_unreachable("Node is not in map!");
 | |
|   }
 | |
| #endif
 | |
|   return Erased;
 | |
| }
 | |
| 
 | |
| /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
 | |
| /// maps and modified in place. Add it back to the CSE maps, unless an identical
 | |
| /// node already exists, in which case transfer all its users to the existing
 | |
| /// node. This transfer can potentially trigger recursive merging.
 | |
| void
 | |
| SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
 | |
|   // For node types that aren't CSE'd, just act as if no identical node
 | |
|   // already exists.
 | |
|   if (!doNotCSE(N)) {
 | |
|     SDNode *Existing = CSEMap.GetOrInsertNode(N);
 | |
|     if (Existing != N) {
 | |
|       // If there was already an existing matching node, use ReplaceAllUsesWith
 | |
|       // to replace the dead one with the existing one.  This can cause
 | |
|       // recursive merging of other unrelated nodes down the line.
 | |
|       ReplaceAllUsesWith(N, Existing);
 | |
| 
 | |
|       // N is now dead. Inform the listeners and delete it.
 | |
|       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
 | |
|         DUL->NodeDeleted(N, Existing);
 | |
|       DeleteNodeNotInCSEMaps(N);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the node doesn't already exist, we updated it.  Inform listeners.
 | |
|   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
 | |
|     DUL->NodeUpdated(N);
 | |
| }
 | |
| 
 | |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
 | |
| /// were replaced with those specified.  If this node is never memoized,
 | |
| /// return null, otherwise return a pointer to the slot it would take.  If a
 | |
| /// node already exists with these operands, the slot will be non-null.
 | |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
 | |
|                                            void *&InsertPos) {
 | |
|   if (doNotCSE(N))
 | |
|     return nullptr;
 | |
| 
 | |
|   SDValue Ops[] = { Op };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
 | |
|   AddNodeIDCustom(ID, N);
 | |
|   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
 | |
|   if (Node)
 | |
|     Node->intersectFlagsWith(N->getFlags());
 | |
|   return Node;
 | |
| }
 | |
| 
 | |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
 | |
| /// were replaced with those specified.  If this node is never memoized,
 | |
| /// return null, otherwise return a pointer to the slot it would take.  If a
 | |
| /// node already exists with these operands, the slot will be non-null.
 | |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
 | |
|                                            SDValue Op1, SDValue Op2,
 | |
|                                            void *&InsertPos) {
 | |
|   if (doNotCSE(N))
 | |
|     return nullptr;
 | |
| 
 | |
|   SDValue Ops[] = { Op1, Op2 };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
 | |
|   AddNodeIDCustom(ID, N);
 | |
|   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
 | |
|   if (Node)
 | |
|     Node->intersectFlagsWith(N->getFlags());
 | |
|   return Node;
 | |
| }
 | |
| 
 | |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
 | |
| /// were replaced with those specified.  If this node is never memoized,
 | |
| /// return null, otherwise return a pointer to the slot it would take.  If a
 | |
| /// node already exists with these operands, the slot will be non-null.
 | |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
 | |
|                                            void *&InsertPos) {
 | |
|   if (doNotCSE(N))
 | |
|     return nullptr;
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
 | |
|   AddNodeIDCustom(ID, N);
 | |
|   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
 | |
|   if (Node)
 | |
|     Node->intersectFlagsWith(N->getFlags());
 | |
|   return Node;
 | |
| }
 | |
| 
 | |
| unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
 | |
|   Type *Ty = VT == MVT::iPTR ?
 | |
|                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
 | |
|                    VT.getTypeForEVT(*getContext());
 | |
| 
 | |
|   return getDataLayout().getABITypeAlignment(Ty);
 | |
| }
 | |
| 
 | |
| // EntryNode could meaningfully have debug info if we can find it...
 | |
| SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
 | |
|     : TM(tm), OptLevel(OL),
 | |
|       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
 | |
|       Root(getEntryNode()) {
 | |
|   InsertNode(&EntryNode);
 | |
|   DbgInfo = new SDDbgInfo();
 | |
| }
 | |
| 
 | |
| void SelectionDAG::init(MachineFunction &NewMF,
 | |
|                         OptimizationRemarkEmitter &NewORE,
 | |
|                         Pass *PassPtr) {
 | |
|   MF = &NewMF;
 | |
|   SDAGISelPass = PassPtr;
 | |
|   ORE = &NewORE;
 | |
|   TLI = getSubtarget().getTargetLowering();
 | |
|   TSI = getSubtarget().getSelectionDAGInfo();
 | |
|   Context = &MF->getFunction()->getContext();
 | |
| }
 | |
| 
 | |
| SelectionDAG::~SelectionDAG() {
 | |
|   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
 | |
|   allnodes_clear();
 | |
|   OperandRecycler.clear(OperandAllocator);
 | |
|   delete DbgInfo;
 | |
| }
 | |
| 
 | |
| void SelectionDAG::allnodes_clear() {
 | |
|   assert(&*AllNodes.begin() == &EntryNode);
 | |
|   AllNodes.remove(AllNodes.begin());
 | |
|   while (!AllNodes.empty())
 | |
|     DeallocateNode(&AllNodes.front());
 | |
| #ifndef NDEBUG
 | |
|   NextPersistentId = 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
 | |
|                                           void *&InsertPos) {
 | |
|   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   if (N) {
 | |
|     switch (N->getOpcode()) {
 | |
|     default: break;
 | |
|     case ISD::Constant:
 | |
|     case ISD::ConstantFP:
 | |
|       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
 | |
|                        "debug location.  Use another overload.");
 | |
|     }
 | |
|   }
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
 | |
|                                           const SDLoc &DL, void *&InsertPos) {
 | |
|   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   if (N) {
 | |
|     switch (N->getOpcode()) {
 | |
|     case ISD::Constant:
 | |
|     case ISD::ConstantFP:
 | |
|       // Erase debug location from the node if the node is used at several
 | |
|       // different places. Do not propagate one location to all uses as it
 | |
|       // will cause a worse single stepping debugging experience.
 | |
|       if (N->getDebugLoc() != DL.getDebugLoc())
 | |
|         N->setDebugLoc(DebugLoc());
 | |
|       break;
 | |
|     default:
 | |
|       // When the node's point of use is located earlier in the instruction
 | |
|       // sequence than its prior point of use, update its debug info to the
 | |
|       // earlier location.
 | |
|       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
 | |
|         N->setDebugLoc(DL.getDebugLoc());
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| void SelectionDAG::clear() {
 | |
|   allnodes_clear();
 | |
|   OperandRecycler.clear(OperandAllocator);
 | |
|   OperandAllocator.Reset();
 | |
|   CSEMap.clear();
 | |
| 
 | |
|   ExtendedValueTypeNodes.clear();
 | |
|   ExternalSymbols.clear();
 | |
|   TargetExternalSymbols.clear();
 | |
|   MCSymbols.clear();
 | |
|   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
 | |
|             static_cast<CondCodeSDNode*>(nullptr));
 | |
|   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
 | |
|             static_cast<SDNode*>(nullptr));
 | |
| 
 | |
|   EntryNode.UseList = nullptr;
 | |
|   InsertNode(&EntryNode);
 | |
|   Root = getEntryNode();
 | |
|   DbgInfo->clear();
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
 | |
|   return VT.bitsGT(Op.getValueType())
 | |
|              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
 | |
|              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
 | |
|   return VT.bitsGT(Op.getValueType()) ?
 | |
|     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
 | |
|     getNode(ISD::TRUNCATE, DL, VT, Op);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
 | |
|   return VT.bitsGT(Op.getValueType()) ?
 | |
|     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
 | |
|     getNode(ISD::TRUNCATE, DL, VT, Op);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
 | |
|   return VT.bitsGT(Op.getValueType()) ?
 | |
|     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
 | |
|     getNode(ISD::TRUNCATE, DL, VT, Op);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
 | |
|                                         EVT OpVT) {
 | |
|   if (VT.bitsLE(Op.getValueType()))
 | |
|     return getNode(ISD::TRUNCATE, SL, VT, Op);
 | |
| 
 | |
|   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
 | |
|   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
 | |
|   assert(!VT.isVector() &&
 | |
|          "getZeroExtendInReg should use the vector element type instead of "
 | |
|          "the vector type!");
 | |
|   if (Op.getValueType() == VT) return Op;
 | |
|   unsigned BitWidth = Op.getScalarValueSizeInBits();
 | |
|   APInt Imm = APInt::getLowBitsSet(BitWidth,
 | |
|                                    VT.getSizeInBits());
 | |
|   return getNode(ISD::AND, DL, Op.getValueType(), Op,
 | |
|                  getConstant(Imm, DL, Op.getValueType()));
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL,
 | |
|                                               EVT VT) {
 | |
|   assert(VT.isVector() && "This DAG node is restricted to vector types.");
 | |
|   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
 | |
|          "The sizes of the input and result must match in order to perform the "
 | |
|          "extend in-register.");
 | |
|   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
 | |
|          "The destination vector type must have fewer lanes than the input.");
 | |
|   return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, const SDLoc &DL,
 | |
|                                                EVT VT) {
 | |
|   assert(VT.isVector() && "This DAG node is restricted to vector types.");
 | |
|   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
 | |
|          "The sizes of the input and result must match in order to perform the "
 | |
|          "extend in-register.");
 | |
|   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
 | |
|          "The destination vector type must have fewer lanes than the input.");
 | |
|   return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL,
 | |
|                                                EVT VT) {
 | |
|   assert(VT.isVector() && "This DAG node is restricted to vector types.");
 | |
|   assert(VT.getSizeInBits() == Op.getValueSizeInBits() &&
 | |
|          "The sizes of the input and result must match in order to perform the "
 | |
|          "extend in-register.");
 | |
|   assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() &&
 | |
|          "The destination vector type must have fewer lanes than the input.");
 | |
|   return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op);
 | |
| }
 | |
| 
 | |
| /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
 | |
| SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
 | |
|   EVT EltVT = VT.getScalarType();
 | |
|   SDValue NegOne =
 | |
|     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
 | |
|   return getNode(ISD::XOR, DL, VT, Val, NegOne);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
 | |
|   EVT EltVT = VT.getScalarType();
 | |
|   SDValue TrueValue;
 | |
|   switch (TLI->getBooleanContents(VT)) {
 | |
|     case TargetLowering::ZeroOrOneBooleanContent:
 | |
|     case TargetLowering::UndefinedBooleanContent:
 | |
|       TrueValue = getConstant(1, DL, VT);
 | |
|       break;
 | |
|     case TargetLowering::ZeroOrNegativeOneBooleanContent:
 | |
|       TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL,
 | |
|                               VT);
 | |
|       break;
 | |
|   }
 | |
|   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
 | |
|                                   bool isT, bool isO) {
 | |
|   EVT EltVT = VT.getScalarType();
 | |
|   assert((EltVT.getSizeInBits() >= 64 ||
 | |
|          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
 | |
|          "getConstant with a uint64_t value that doesn't fit in the type!");
 | |
|   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
 | |
|                                   bool isT, bool isO) {
 | |
|   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
 | |
|                                   EVT VT, bool isT, bool isO) {
 | |
|   assert(VT.isInteger() && "Cannot create FP integer constant!");
 | |
| 
 | |
|   EVT EltVT = VT.getScalarType();
 | |
|   const ConstantInt *Elt = &Val;
 | |
| 
 | |
|   // In some cases the vector type is legal but the element type is illegal and
 | |
|   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
 | |
|   // inserted value (the type does not need to match the vector element type).
 | |
|   // Any extra bits introduced will be truncated away.
 | |
|   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
 | |
|       TargetLowering::TypePromoteInteger) {
 | |
|    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
 | |
|    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
 | |
|    Elt = ConstantInt::get(*getContext(), NewVal);
 | |
|   }
 | |
|   // In other cases the element type is illegal and needs to be expanded, for
 | |
|   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
 | |
|   // the value into n parts and use a vector type with n-times the elements.
 | |
|   // Then bitcast to the type requested.
 | |
|   // Legalizing constants too early makes the DAGCombiner's job harder so we
 | |
|   // only legalize if the DAG tells us we must produce legal types.
 | |
|   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
 | |
|            TLI->getTypeAction(*getContext(), EltVT) ==
 | |
|            TargetLowering::TypeExpandInteger) {
 | |
|     const APInt &NewVal = Elt->getValue();
 | |
|     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
 | |
|     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
 | |
|     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
 | |
|     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
 | |
| 
 | |
|     // Check the temporary vector is the correct size. If this fails then
 | |
|     // getTypeToTransformTo() probably returned a type whose size (in bits)
 | |
|     // isn't a power-of-2 factor of the requested type size.
 | |
|     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
 | |
| 
 | |
|     SmallVector<SDValue, 2> EltParts;
 | |
|     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
 | |
|       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
 | |
|                                            .zextOrTrunc(ViaEltSizeInBits), DL,
 | |
|                                      ViaEltVT, isT, isO));
 | |
|     }
 | |
| 
 | |
|     // EltParts is currently in little endian order. If we actually want
 | |
|     // big-endian order then reverse it now.
 | |
|     if (getDataLayout().isBigEndian())
 | |
|       std::reverse(EltParts.begin(), EltParts.end());
 | |
| 
 | |
|     // The elements must be reversed when the element order is different
 | |
|     // to the endianness of the elements (because the BITCAST is itself a
 | |
|     // vector shuffle in this situation). However, we do not need any code to
 | |
|     // perform this reversal because getConstant() is producing a vector
 | |
|     // splat.
 | |
|     // This situation occurs in MIPS MSA.
 | |
| 
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
|     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
 | |
|       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
 | |
| 
 | |
|     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
 | |
|     NewSDValueDbgMsg(V, "Creating constant: ");
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
 | |
|          "APInt size does not match type size!");
 | |
|   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
 | |
|   ID.AddPointer(Elt);
 | |
|   ID.AddBoolean(isO);
 | |
|   void *IP = nullptr;
 | |
|   SDNode *N = nullptr;
 | |
|   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
 | |
|     if (!VT.isVector())
 | |
|       return SDValue(N, 0);
 | |
| 
 | |
|   if (!N) {
 | |
|     N = newSDNode<ConstantSDNode>(isT, isO, Elt, DL.getDebugLoc(), EltVT);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|     InsertNode(N);
 | |
|   }
 | |
| 
 | |
|   SDValue Result(N, 0);
 | |
|   if (VT.isVector())
 | |
|     Result = getSplatBuildVector(VT, DL, Result);
 | |
| 
 | |
|   NewSDValueDbgMsg(Result, "Creating constant: ");
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
 | |
|                                         bool isTarget) {
 | |
|   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
 | |
|                                     bool isTarget) {
 | |
|   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
 | |
|                                     EVT VT, bool isTarget) {
 | |
|   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
 | |
| 
 | |
|   EVT EltVT = VT.getScalarType();
 | |
| 
 | |
|   // Do the map lookup using the actual bit pattern for the floating point
 | |
|   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
 | |
|   // we don't have issues with SNANs.
 | |
|   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
 | |
|   ID.AddPointer(&V);
 | |
|   void *IP = nullptr;
 | |
|   SDNode *N = nullptr;
 | |
|   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
 | |
|     if (!VT.isVector())
 | |
|       return SDValue(N, 0);
 | |
| 
 | |
|   if (!N) {
 | |
|     N = newSDNode<ConstantFPSDNode>(isTarget, &V, DL.getDebugLoc(), EltVT);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|     InsertNode(N);
 | |
|   }
 | |
| 
 | |
|   SDValue Result(N, 0);
 | |
|   if (VT.isVector())
 | |
|     Result = getSplatBuildVector(VT, DL, Result);
 | |
|   NewSDValueDbgMsg(Result, "Creating fp constant: ");
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
 | |
|                                     bool isTarget) {
 | |
|   EVT EltVT = VT.getScalarType();
 | |
|   if (EltVT == MVT::f32)
 | |
|     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
 | |
|   else if (EltVT == MVT::f64)
 | |
|     return getConstantFP(APFloat(Val), DL, VT, isTarget);
 | |
|   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
 | |
|            EltVT == MVT::f16) {
 | |
|     bool Ignored;
 | |
|     APFloat APF = APFloat(Val);
 | |
|     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
 | |
|                 &Ignored);
 | |
|     return getConstantFP(APF, DL, VT, isTarget);
 | |
|   } else
 | |
|     llvm_unreachable("Unsupported type in getConstantFP");
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
 | |
|                                        EVT VT, int64_t Offset, bool isTargetGA,
 | |
|                                        unsigned char TargetFlags) {
 | |
|   assert((TargetFlags == 0 || isTargetGA) &&
 | |
|          "Cannot set target flags on target-independent globals");
 | |
| 
 | |
|   // Truncate (with sign-extension) the offset value to the pointer size.
 | |
|   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
 | |
|   if (BitWidth < 64)
 | |
|     Offset = SignExtend64(Offset, BitWidth);
 | |
| 
 | |
|   unsigned Opc;
 | |
|   if (GV->isThreadLocal())
 | |
|     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
 | |
|   else
 | |
|     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(VT), None);
 | |
|   ID.AddPointer(GV);
 | |
|   ID.AddInteger(Offset);
 | |
|   ID.AddInteger(TargetFlags);
 | |
|   void *IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   auto *N = newSDNode<GlobalAddressSDNode>(
 | |
|       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|     InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
 | |
|   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(VT), None);
 | |
|   ID.AddInteger(FI);
 | |
|   void *IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
 | |
|                                    unsigned char TargetFlags) {
 | |
|   assert((TargetFlags == 0 || isTarget) &&
 | |
|          "Cannot set target flags on target-independent jump tables");
 | |
|   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(VT), None);
 | |
|   ID.AddInteger(JTI);
 | |
|   ID.AddInteger(TargetFlags);
 | |
|   void *IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
 | |
|                                       unsigned Alignment, int Offset,
 | |
|                                       bool isTarget,
 | |
|                                       unsigned char TargetFlags) {
 | |
|   assert((TargetFlags == 0 || isTarget) &&
 | |
|          "Cannot set target flags on target-independent globals");
 | |
|   if (Alignment == 0)
 | |
|     Alignment = MF->getFunction()->optForSize()
 | |
|                     ? getDataLayout().getABITypeAlignment(C->getType())
 | |
|                     : getDataLayout().getPrefTypeAlignment(C->getType());
 | |
|   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(VT), None);
 | |
|   ID.AddInteger(Alignment);
 | |
|   ID.AddInteger(Offset);
 | |
|   ID.AddPointer(C);
 | |
|   ID.AddInteger(TargetFlags);
 | |
|   void *IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
 | |
|                                           TargetFlags);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
 | |
|                                       unsigned Alignment, int Offset,
 | |
|                                       bool isTarget,
 | |
|                                       unsigned char TargetFlags) {
 | |
|   assert((TargetFlags == 0 || isTarget) &&
 | |
|          "Cannot set target flags on target-independent globals");
 | |
|   if (Alignment == 0)
 | |
|     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
 | |
|   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(VT), None);
 | |
|   ID.AddInteger(Alignment);
 | |
|   ID.AddInteger(Offset);
 | |
|   C->addSelectionDAGCSEId(ID);
 | |
|   ID.AddInteger(TargetFlags);
 | |
|   void *IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
 | |
|                                           TargetFlags);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
 | |
|                                      unsigned char TargetFlags) {
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
 | |
|   ID.AddInteger(Index);
 | |
|   ID.AddInteger(Offset);
 | |
|   ID.AddInteger(TargetFlags);
 | |
|   void *IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
 | |
|   ID.AddPointer(MBB);
 | |
|   void *IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   auto *N = newSDNode<BasicBlockSDNode>(MBB);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getValueType(EVT VT) {
 | |
|   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
 | |
|       ValueTypeNodes.size())
 | |
|     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
 | |
| 
 | |
|   SDNode *&N = VT.isExtended() ?
 | |
|     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
 | |
| 
 | |
|   if (N) return SDValue(N, 0);
 | |
|   N = newSDNode<VTSDNode>(VT);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
 | |
|   SDNode *&N = ExternalSymbols[Sym];
 | |
|   if (N) return SDValue(N, 0);
 | |
|   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
 | |
|   SDNode *&N = MCSymbols[Sym];
 | |
|   if (N)
 | |
|     return SDValue(N, 0);
 | |
|   N = newSDNode<MCSymbolSDNode>(Sym, VT);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
 | |
|                                               unsigned char TargetFlags) {
 | |
|   SDNode *&N =
 | |
|     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
 | |
|                                                                TargetFlags)];
 | |
|   if (N) return SDValue(N, 0);
 | |
|   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
 | |
|   if ((unsigned)Cond >= CondCodeNodes.size())
 | |
|     CondCodeNodes.resize(Cond+1);
 | |
| 
 | |
|   if (!CondCodeNodes[Cond]) {
 | |
|     auto *N = newSDNode<CondCodeSDNode>(Cond);
 | |
|     CondCodeNodes[Cond] = N;
 | |
|     InsertNode(N);
 | |
|   }
 | |
| 
 | |
|   return SDValue(CondCodeNodes[Cond], 0);
 | |
| }
 | |
| 
 | |
| /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
 | |
| /// point at N1 to point at N2 and indices that point at N2 to point at N1.
 | |
| static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
 | |
|   std::swap(N1, N2);
 | |
|   ShuffleVectorSDNode::commuteMask(M);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
 | |
|                                        SDValue N2, ArrayRef<int> Mask) {
 | |
|   assert(VT.getVectorNumElements() == Mask.size() &&
 | |
|            "Must have the same number of vector elements as mask elements!");
 | |
|   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
 | |
|          "Invalid VECTOR_SHUFFLE");
 | |
| 
 | |
|   // Canonicalize shuffle undef, undef -> undef
 | |
|   if (N1.isUndef() && N2.isUndef())
 | |
|     return getUNDEF(VT);
 | |
| 
 | |
|   // Validate that all indices in Mask are within the range of the elements
 | |
|   // input to the shuffle.
 | |
|   int NElts = Mask.size();
 | |
|   assert(llvm::all_of(Mask, [&](int M) { return M < (NElts * 2); }) &&
 | |
|          "Index out of range");
 | |
| 
 | |
|   // Copy the mask so we can do any needed cleanup.
 | |
|   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
 | |
| 
 | |
|   // Canonicalize shuffle v, v -> v, undef
 | |
|   if (N1 == N2) {
 | |
|     N2 = getUNDEF(VT);
 | |
|     for (int i = 0; i != NElts; ++i)
 | |
|       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
 | |
|   }
 | |
| 
 | |
|   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
 | |
|   if (N1.isUndef())
 | |
|     commuteShuffle(N1, N2, MaskVec);
 | |
| 
 | |
|   // If shuffling a splat, try to blend the splat instead. We do this here so
 | |
|   // that even when this arises during lowering we don't have to re-handle it.
 | |
|   auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
 | |
|     BitVector UndefElements;
 | |
|     SDValue Splat = BV->getSplatValue(&UndefElements);
 | |
|     if (!Splat)
 | |
|       return;
 | |
| 
 | |
|     for (int i = 0; i < NElts; ++i) {
 | |
|       if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
 | |
|         continue;
 | |
| 
 | |
|       // If this input comes from undef, mark it as such.
 | |
|       if (UndefElements[MaskVec[i] - Offset]) {
 | |
|         MaskVec[i] = -1;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // If we can blend a non-undef lane, use that instead.
 | |
|       if (!UndefElements[i])
 | |
|         MaskVec[i] = i + Offset;
 | |
|     }
 | |
|   };
 | |
|   if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
 | |
|     BlendSplat(N1BV, 0);
 | |
|   if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
 | |
|     BlendSplat(N2BV, NElts);
 | |
| 
 | |
|   // Canonicalize all index into lhs, -> shuffle lhs, undef
 | |
|   // Canonicalize all index into rhs, -> shuffle rhs, undef
 | |
|   bool AllLHS = true, AllRHS = true;
 | |
|   bool N2Undef = N2.isUndef();
 | |
|   for (int i = 0; i != NElts; ++i) {
 | |
|     if (MaskVec[i] >= NElts) {
 | |
|       if (N2Undef)
 | |
|         MaskVec[i] = -1;
 | |
|       else
 | |
|         AllLHS = false;
 | |
|     } else if (MaskVec[i] >= 0) {
 | |
|       AllRHS = false;
 | |
|     }
 | |
|   }
 | |
|   if (AllLHS && AllRHS)
 | |
|     return getUNDEF(VT);
 | |
|   if (AllLHS && !N2Undef)
 | |
|     N2 = getUNDEF(VT);
 | |
|   if (AllRHS) {
 | |
|     N1 = getUNDEF(VT);
 | |
|     commuteShuffle(N1, N2, MaskVec);
 | |
|   }
 | |
|   // Reset our undef status after accounting for the mask.
 | |
|   N2Undef = N2.isUndef();
 | |
|   // Re-check whether both sides ended up undef.
 | |
|   if (N1.isUndef() && N2Undef)
 | |
|     return getUNDEF(VT);
 | |
| 
 | |
|   // If Identity shuffle return that node.
 | |
|   bool Identity = true, AllSame = true;
 | |
|   for (int i = 0; i != NElts; ++i) {
 | |
|     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
 | |
|     if (MaskVec[i] != MaskVec[0]) AllSame = false;
 | |
|   }
 | |
|   if (Identity && NElts)
 | |
|     return N1;
 | |
| 
 | |
|   // Shuffling a constant splat doesn't change the result.
 | |
|   if (N2Undef) {
 | |
|     SDValue V = N1;
 | |
| 
 | |
|     // Look through any bitcasts. We check that these don't change the number
 | |
|     // (and size) of elements and just changes their types.
 | |
|     while (V.getOpcode() == ISD::BITCAST)
 | |
|       V = V->getOperand(0);
 | |
| 
 | |
|     // A splat should always show up as a build vector node.
 | |
|     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
 | |
|       BitVector UndefElements;
 | |
|       SDValue Splat = BV->getSplatValue(&UndefElements);
 | |
|       // If this is a splat of an undef, shuffling it is also undef.
 | |
|       if (Splat && Splat.isUndef())
 | |
|         return getUNDEF(VT);
 | |
| 
 | |
|       bool SameNumElts =
 | |
|           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
 | |
| 
 | |
|       // We only have a splat which can skip shuffles if there is a splatted
 | |
|       // value and no undef lanes rearranged by the shuffle.
 | |
|       if (Splat && UndefElements.none()) {
 | |
|         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
 | |
|         // number of elements match or the value splatted is a zero constant.
 | |
|         if (SameNumElts)
 | |
|           return N1;
 | |
|         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
 | |
|           if (C->isNullValue())
 | |
|             return N1;
 | |
|       }
 | |
| 
 | |
|       // If the shuffle itself creates a splat, build the vector directly.
 | |
|       if (AllSame && SameNumElts) {
 | |
|         EVT BuildVT = BV->getValueType(0);
 | |
|         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
 | |
|         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
 | |
| 
 | |
|         // We may have jumped through bitcasts, so the type of the
 | |
|         // BUILD_VECTOR may not match the type of the shuffle.
 | |
|         if (BuildVT != VT)
 | |
|           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
 | |
|         return NewBV;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   SDValue Ops[2] = { N1, N2 };
 | |
|   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
 | |
|   for (int i = 0; i != NElts; ++i)
 | |
|     ID.AddInteger(MaskVec[i]);
 | |
| 
 | |
|   void* IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   // Allocate the mask array for the node out of the BumpPtrAllocator, since
 | |
|   // SDNode doesn't have access to it.  This memory will be "leaked" when
 | |
|   // the node is deallocated, but recovered when the NodeAllocator is released.
 | |
|   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
 | |
|   std::copy(MaskVec.begin(), MaskVec.end(), MaskAlloc);
 | |
| 
 | |
|   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
 | |
|                                            dl.getDebugLoc(), MaskAlloc);
 | |
|   createOperands(N, Ops);
 | |
| 
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
 | |
|   MVT VT = SV.getSimpleValueType(0);
 | |
|   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
 | |
|   ShuffleVectorSDNode::commuteMask(MaskVec);
 | |
| 
 | |
|   SDValue Op0 = SV.getOperand(0);
 | |
|   SDValue Op1 = SV.getOperand(1);
 | |
|   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
 | |
|   ID.AddInteger(RegNo);
 | |
|   void *IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
 | |
|   ID.AddPointer(RegMask);
 | |
|   void *IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
 | |
|                                  MCSymbol *Label) {
 | |
|   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
 | |
|                                    SDValue Root, MCSymbol *Label) {
 | |
|   FoldingSetNodeID ID;
 | |
|   SDValue Ops[] = { Root };
 | |
|   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
 | |
|   ID.AddPointer(Label);
 | |
|   void *IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   auto *N = newSDNode<LabelSDNode>(dl.getIROrder(), dl.getDebugLoc(), Label);
 | |
|   createOperands(N, Ops);
 | |
| 
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
 | |
|                                       int64_t Offset,
 | |
|                                       bool isTarget,
 | |
|                                       unsigned char TargetFlags) {
 | |
|   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(VT), None);
 | |
|   ID.AddPointer(BA);
 | |
|   ID.AddInteger(Offset);
 | |
|   ID.AddInteger(TargetFlags);
 | |
|   void *IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getSrcValue(const Value *V) {
 | |
|   assert((!V || V->getType()->isPointerTy()) &&
 | |
|          "SrcValue is not a pointer?");
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
 | |
|   ID.AddPointer(V);
 | |
| 
 | |
|   void *IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   auto *N = newSDNode<SrcValueSDNode>(V);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getMDNode(const MDNode *MD) {
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
 | |
|   ID.AddPointer(MD);
 | |
| 
 | |
|   void *IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   auto *N = newSDNode<MDNodeSDNode>(MD);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
 | |
|   if (VT == V.getValueType())
 | |
|     return V;
 | |
| 
 | |
|   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
 | |
|                                        unsigned SrcAS, unsigned DestAS) {
 | |
|   SDValue Ops[] = {Ptr};
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
 | |
|   ID.AddInteger(SrcAS);
 | |
|   ID.AddInteger(DestAS);
 | |
| 
 | |
|   void *IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
 | |
|                                            VT, SrcAS, DestAS);
 | |
|   createOperands(N, Ops);
 | |
| 
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| /// getShiftAmountOperand - Return the specified value casted to
 | |
| /// the target's desired shift amount type.
 | |
| SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
 | |
|   EVT OpTy = Op.getValueType();
 | |
|   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
 | |
|   if (OpTy == ShTy || OpTy.isVector()) return Op;
 | |
| 
 | |
|   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::expandVAArg(SDNode *Node) {
 | |
|   SDLoc dl(Node);
 | |
|   const TargetLowering &TLI = getTargetLoweringInfo();
 | |
|   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
 | |
|   EVT VT = Node->getValueType(0);
 | |
|   SDValue Tmp1 = Node->getOperand(0);
 | |
|   SDValue Tmp2 = Node->getOperand(1);
 | |
|   unsigned Align = Node->getConstantOperandVal(3);
 | |
| 
 | |
|   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
 | |
|                                Tmp2, MachinePointerInfo(V));
 | |
|   SDValue VAList = VAListLoad;
 | |
| 
 | |
|   if (Align > TLI.getMinStackArgumentAlignment()) {
 | |
|     assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
 | |
| 
 | |
|     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
 | |
|                      getConstant(Align - 1, dl, VAList.getValueType()));
 | |
| 
 | |
|     VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList,
 | |
|                      getConstant(-(int64_t)Align, dl, VAList.getValueType()));
 | |
|   }
 | |
| 
 | |
|   // Increment the pointer, VAList, to the next vaarg
 | |
|   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
 | |
|                  getConstant(getDataLayout().getTypeAllocSize(
 | |
|                                                VT.getTypeForEVT(*getContext())),
 | |
|                              dl, VAList.getValueType()));
 | |
|   // Store the incremented VAList to the legalized pointer
 | |
|   Tmp1 =
 | |
|       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
 | |
|   // Load the actual argument out of the pointer VAList
 | |
|   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::expandVACopy(SDNode *Node) {
 | |
|   SDLoc dl(Node);
 | |
|   const TargetLowering &TLI = getTargetLoweringInfo();
 | |
|   // This defaults to loading a pointer from the input and storing it to the
 | |
|   // output, returning the chain.
 | |
|   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
 | |
|   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
 | |
|   SDValue Tmp1 =
 | |
|       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
 | |
|               Node->getOperand(2), MachinePointerInfo(VS));
 | |
|   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
 | |
|                   MachinePointerInfo(VD));
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
 | |
|   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
 | |
|   unsigned ByteSize = VT.getStoreSize();
 | |
|   Type *Ty = VT.getTypeForEVT(*getContext());
 | |
|   unsigned StackAlign =
 | |
|       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
 | |
| 
 | |
|   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
 | |
|   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
 | |
|   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
 | |
|   Type *Ty1 = VT1.getTypeForEVT(*getContext());
 | |
|   Type *Ty2 = VT2.getTypeForEVT(*getContext());
 | |
|   const DataLayout &DL = getDataLayout();
 | |
|   unsigned Align =
 | |
|       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
 | |
| 
 | |
|   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
 | |
|   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
 | |
|   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
 | |
|                                 ISD::CondCode Cond, const SDLoc &dl) {
 | |
|   // These setcc operations always fold.
 | |
|   switch (Cond) {
 | |
|   default: break;
 | |
|   case ISD::SETFALSE:
 | |
|   case ISD::SETFALSE2: return getConstant(0, dl, VT);
 | |
|   case ISD::SETTRUE:
 | |
|   case ISD::SETTRUE2: {
 | |
|     TargetLowering::BooleanContent Cnt =
 | |
|         TLI->getBooleanContents(N1->getValueType(0));
 | |
|     return getConstant(
 | |
|         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
 | |
|         VT);
 | |
|   }
 | |
| 
 | |
|   case ISD::SETOEQ:
 | |
|   case ISD::SETOGT:
 | |
|   case ISD::SETOGE:
 | |
|   case ISD::SETOLT:
 | |
|   case ISD::SETOLE:
 | |
|   case ISD::SETONE:
 | |
|   case ISD::SETO:
 | |
|   case ISD::SETUO:
 | |
|   case ISD::SETUEQ:
 | |
|   case ISD::SETUNE:
 | |
|     assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
 | |
|     const APInt &C2 = N2C->getAPIntValue();
 | |
|     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
 | |
|       const APInt &C1 = N1C->getAPIntValue();
 | |
| 
 | |
|       switch (Cond) {
 | |
|       default: llvm_unreachable("Unknown integer setcc!");
 | |
|       case ISD::SETEQ:  return getConstant(C1 == C2, dl, VT);
 | |
|       case ISD::SETNE:  return getConstant(C1 != C2, dl, VT);
 | |
|       case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT);
 | |
|       case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT);
 | |
|       case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT);
 | |
|       case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT);
 | |
|       case ISD::SETLT:  return getConstant(C1.slt(C2), dl, VT);
 | |
|       case ISD::SETGT:  return getConstant(C1.sgt(C2), dl, VT);
 | |
|       case ISD::SETLE:  return getConstant(C1.sle(C2), dl, VT);
 | |
|       case ISD::SETGE:  return getConstant(C1.sge(C2), dl, VT);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1)) {
 | |
|     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2)) {
 | |
|       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
 | |
|       switch (Cond) {
 | |
|       default: break;
 | |
|       case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
 | |
|                           return getUNDEF(VT);
 | |
|                         LLVM_FALLTHROUGH;
 | |
|       case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT);
 | |
|       case ISD::SETNE:  if (R==APFloat::cmpUnordered)
 | |
|                           return getUNDEF(VT);
 | |
|                         LLVM_FALLTHROUGH;
 | |
|       case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
 | |
|                                            R==APFloat::cmpLessThan, dl, VT);
 | |
|       case ISD::SETLT:  if (R==APFloat::cmpUnordered)
 | |
|                           return getUNDEF(VT);
 | |
|                         LLVM_FALLTHROUGH;
 | |
|       case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT);
 | |
|       case ISD::SETGT:  if (R==APFloat::cmpUnordered)
 | |
|                           return getUNDEF(VT);
 | |
|                         LLVM_FALLTHROUGH;
 | |
|       case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT);
 | |
|       case ISD::SETLE:  if (R==APFloat::cmpUnordered)
 | |
|                           return getUNDEF(VT);
 | |
|                         LLVM_FALLTHROUGH;
 | |
|       case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
 | |
|                                            R==APFloat::cmpEqual, dl, VT);
 | |
|       case ISD::SETGE:  if (R==APFloat::cmpUnordered)
 | |
|                           return getUNDEF(VT);
 | |
|                         LLVM_FALLTHROUGH;
 | |
|       case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
 | |
|                                            R==APFloat::cmpEqual, dl, VT);
 | |
|       case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, dl, VT);
 | |
|       case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, dl, VT);
 | |
|       case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
 | |
|                                            R==APFloat::cmpEqual, dl, VT);
 | |
|       case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT);
 | |
|       case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
 | |
|                                            R==APFloat::cmpLessThan, dl, VT);
 | |
|       case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
 | |
|                                            R==APFloat::cmpUnordered, dl, VT);
 | |
|       case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT);
 | |
|       case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT);
 | |
|       }
 | |
|     } else {
 | |
|       // Ensure that the constant occurs on the RHS.
 | |
|       ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
 | |
|       MVT CompVT = N1.getValueType().getSimpleVT();
 | |
|       if (!TLI->isCondCodeLegal(SwappedCond, CompVT))
 | |
|         return SDValue();
 | |
| 
 | |
|       return getSetCC(dl, VT, N2, N1, SwappedCond);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Could not fold it.
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// See if the specified operand can be simplified with the knowledge that only
 | |
| /// the bits specified by Mask are used.
 | |
| SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &Mask) {
 | |
|   switch (V.getOpcode()) {
 | |
|   default:
 | |
|     break;
 | |
|   case ISD::Constant: {
 | |
|     const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
 | |
|     assert(CV && "Const value should be ConstSDNode.");
 | |
|     const APInt &CVal = CV->getAPIntValue();
 | |
|     APInt NewVal = CVal & Mask;
 | |
|     if (NewVal != CVal)
 | |
|       return getConstant(NewVal, SDLoc(V), V.getValueType());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::OR:
 | |
|   case ISD::XOR:
 | |
|     // If the LHS or RHS don't contribute bits to the or, drop them.
 | |
|     if (MaskedValueIsZero(V.getOperand(0), Mask))
 | |
|       return V.getOperand(1);
 | |
|     if (MaskedValueIsZero(V.getOperand(1), Mask))
 | |
|       return V.getOperand(0);
 | |
|     break;
 | |
|   case ISD::SRL:
 | |
|     // Only look at single-use SRLs.
 | |
|     if (!V.getNode()->hasOneUse())
 | |
|       break;
 | |
|     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
 | |
|       // See if we can recursively simplify the LHS.
 | |
|       unsigned Amt = RHSC->getZExtValue();
 | |
| 
 | |
|       // Watch out for shift count overflow though.
 | |
|       if (Amt >= Mask.getBitWidth())
 | |
|         break;
 | |
|       APInt NewMask = Mask << Amt;
 | |
|       if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask))
 | |
|         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
 | |
|                        V.getOperand(1));
 | |
|     }
 | |
|     break;
 | |
|   case ISD::AND: {
 | |
|     // X & -1 -> X (ignoring bits which aren't demanded).
 | |
|     ConstantSDNode *AndVal = isConstOrConstSplat(V.getOperand(1));
 | |
|     if (AndVal && Mask.isSubsetOf(AndVal->getAPIntValue()))
 | |
|       return V.getOperand(0);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::ANY_EXTEND: {
 | |
|     SDValue Src = V.getOperand(0);
 | |
|     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
 | |
|     // Being conservative here - only peek through if we only demand bits in the
 | |
|     // non-extended source (even though the extended bits are technically undef).
 | |
|     if (Mask.getActiveBits() > SrcBitWidth)
 | |
|       break;
 | |
|     APInt SrcMask = Mask.trunc(SrcBitWidth);
 | |
|     if (SDValue DemandedSrc = GetDemandedBits(Src, SrcMask))
 | |
|       return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
 | |
| /// use this predicate to simplify operations downstream.
 | |
| bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
 | |
|   unsigned BitWidth = Op.getScalarValueSizeInBits();
 | |
|   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
 | |
| }
 | |
| 
 | |
| /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
 | |
| /// this predicate to simplify operations downstream.  Mask is known to be zero
 | |
| /// for bits that V cannot have.
 | |
| bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
 | |
|                                      unsigned Depth) const {
 | |
|   KnownBits Known;
 | |
|   computeKnownBits(Op, Known, Depth);
 | |
|   return Mask.isSubsetOf(Known.Zero);
 | |
| }
 | |
| 
 | |
| /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
 | |
| /// is less than the element bit-width of the shift node, return it.
 | |
| static const APInt *getValidShiftAmountConstant(SDValue V) {
 | |
|   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
 | |
|     // Shifting more than the bitwidth is not valid.
 | |
|     const APInt &ShAmt = SA->getAPIntValue();
 | |
|     if (ShAmt.ult(V.getScalarValueSizeInBits()))
 | |
|       return &ShAmt;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Determine which bits of Op are known to be either zero or one and return
 | |
| /// them in Known. For vectors, the known bits are those that are shared by
 | |
| /// every vector element.
 | |
| void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
 | |
|                                     unsigned Depth) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   APInt DemandedElts = VT.isVector()
 | |
|                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
 | |
|                            : APInt(1, 1);
 | |
|   computeKnownBits(Op, Known, DemandedElts, Depth);
 | |
| }
 | |
| 
 | |
| /// Determine which bits of Op are known to be either zero or one and return
 | |
| /// them in Known. The DemandedElts argument allows us to only collect the known
 | |
| /// bits that are shared by the requested vector elements.
 | |
| void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
 | |
|                                     const APInt &DemandedElts,
 | |
|                                     unsigned Depth) const {
 | |
|   unsigned BitWidth = Op.getScalarValueSizeInBits();
 | |
| 
 | |
|   Known = KnownBits(BitWidth);   // Don't know anything.
 | |
|   if (Depth == 6)
 | |
|     return;  // Limit search depth.
 | |
| 
 | |
|   KnownBits Known2;
 | |
|   unsigned NumElts = DemandedElts.getBitWidth();
 | |
| 
 | |
|   if (!DemandedElts)
 | |
|     return;  // No demanded elts, better to assume we don't know anything.
 | |
| 
 | |
|   unsigned Opcode = Op.getOpcode();
 | |
|   switch (Opcode) {
 | |
|   case ISD::Constant:
 | |
|     // We know all of the bits for a constant!
 | |
|     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
 | |
|     Known.Zero = ~Known.One;
 | |
|     break;
 | |
|   case ISD::BUILD_VECTOR:
 | |
|     // Collect the known bits that are shared by every demanded vector element.
 | |
|     assert(NumElts == Op.getValueType().getVectorNumElements() &&
 | |
|            "Unexpected vector size");
 | |
|     Known.Zero.setAllBits(); Known.One.setAllBits();
 | |
|     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
 | |
|       if (!DemandedElts[i])
 | |
|         continue;
 | |
| 
 | |
|       SDValue SrcOp = Op.getOperand(i);
 | |
|       computeKnownBits(SrcOp, Known2, Depth + 1);
 | |
| 
 | |
|       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
 | |
|       if (SrcOp.getValueSizeInBits() != BitWidth) {
 | |
|         assert(SrcOp.getValueSizeInBits() > BitWidth &&
 | |
|                "Expected BUILD_VECTOR implicit truncation");
 | |
|         Known2 = Known2.trunc(BitWidth);
 | |
|       }
 | |
| 
 | |
|       // Known bits are the values that are shared by every demanded element.
 | |
|       Known.One &= Known2.One;
 | |
|       Known.Zero &= Known2.Zero;
 | |
| 
 | |
|       // If we don't know any bits, early out.
 | |
|       if (!Known.One && !Known.Zero)
 | |
|         break;
 | |
|     }
 | |
|     break;
 | |
|   case ISD::VECTOR_SHUFFLE: {
 | |
|     // Collect the known bits that are shared by every vector element referenced
 | |
|     // by the shuffle.
 | |
|     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
 | |
|     Known.Zero.setAllBits(); Known.One.setAllBits();
 | |
|     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
 | |
|     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
 | |
|     for (unsigned i = 0; i != NumElts; ++i) {
 | |
|       if (!DemandedElts[i])
 | |
|         continue;
 | |
| 
 | |
|       int M = SVN->getMaskElt(i);
 | |
|       if (M < 0) {
 | |
|         // For UNDEF elements, we don't know anything about the common state of
 | |
|         // the shuffle result.
 | |
|         Known.resetAll();
 | |
|         DemandedLHS.clearAllBits();
 | |
|         DemandedRHS.clearAllBits();
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if ((unsigned)M < NumElts)
 | |
|         DemandedLHS.setBit((unsigned)M % NumElts);
 | |
|       else
 | |
|         DemandedRHS.setBit((unsigned)M % NumElts);
 | |
|     }
 | |
|     // Known bits are the values that are shared by every demanded element.
 | |
|     if (!!DemandedLHS) {
 | |
|       SDValue LHS = Op.getOperand(0);
 | |
|       computeKnownBits(LHS, Known2, DemandedLHS, Depth + 1);
 | |
|       Known.One &= Known2.One;
 | |
|       Known.Zero &= Known2.Zero;
 | |
|     }
 | |
|     // If we don't know any bits, early out.
 | |
|     if (!Known.One && !Known.Zero)
 | |
|       break;
 | |
|     if (!!DemandedRHS) {
 | |
|       SDValue RHS = Op.getOperand(1);
 | |
|       computeKnownBits(RHS, Known2, DemandedRHS, Depth + 1);
 | |
|       Known.One &= Known2.One;
 | |
|       Known.Zero &= Known2.Zero;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::CONCAT_VECTORS: {
 | |
|     // Split DemandedElts and test each of the demanded subvectors.
 | |
|     Known.Zero.setAllBits(); Known.One.setAllBits();
 | |
|     EVT SubVectorVT = Op.getOperand(0).getValueType();
 | |
|     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
 | |
|     unsigned NumSubVectors = Op.getNumOperands();
 | |
|     for (unsigned i = 0; i != NumSubVectors; ++i) {
 | |
|       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
 | |
|       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
 | |
|       if (!!DemandedSub) {
 | |
|         SDValue Sub = Op.getOperand(i);
 | |
|         computeKnownBits(Sub, Known2, DemandedSub, Depth + 1);
 | |
|         Known.One &= Known2.One;
 | |
|         Known.Zero &= Known2.Zero;
 | |
|       }
 | |
|       // If we don't know any bits, early out.
 | |
|       if (!Known.One && !Known.Zero)
 | |
|         break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::EXTRACT_SUBVECTOR: {
 | |
|     // If we know the element index, just demand that subvector elements,
 | |
|     // otherwise demand them all.
 | |
|     SDValue Src = Op.getOperand(0);
 | |
|     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
 | |
|     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
 | |
|     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
 | |
|       // Offset the demanded elts by the subvector index.
 | |
|       uint64_t Idx = SubIdx->getZExtValue();
 | |
|       APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx);
 | |
|       computeKnownBits(Src, Known, DemandedSrc, Depth + 1);
 | |
|     } else {
 | |
|       computeKnownBits(Src, Known, Depth + 1);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BITCAST: {
 | |
|     SDValue N0 = Op.getOperand(0);
 | |
|     unsigned SubBitWidth = N0.getScalarValueSizeInBits();
 | |
| 
 | |
|     // Ignore bitcasts from floating point.
 | |
|     if (!N0.getValueType().isInteger())
 | |
|       break;
 | |
| 
 | |
|     // Fast handling of 'identity' bitcasts.
 | |
|     if (BitWidth == SubBitWidth) {
 | |
|       computeKnownBits(N0, Known, DemandedElts, Depth + 1);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Support big-endian targets when it becomes useful.
 | |
|     bool IsLE = getDataLayout().isLittleEndian();
 | |
|     if (!IsLE)
 | |
|       break;
 | |
| 
 | |
|     // Bitcast 'small element' vector to 'large element' scalar/vector.
 | |
|     if ((BitWidth % SubBitWidth) == 0) {
 | |
|       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
 | |
| 
 | |
|       // Collect known bits for the (larger) output by collecting the known
 | |
|       // bits from each set of sub elements and shift these into place.
 | |
|       // We need to separately call computeKnownBits for each set of
 | |
|       // sub elements as the knownbits for each is likely to be different.
 | |
|       unsigned SubScale = BitWidth / SubBitWidth;
 | |
|       APInt SubDemandedElts(NumElts * SubScale, 0);
 | |
|       for (unsigned i = 0; i != NumElts; ++i)
 | |
|         if (DemandedElts[i])
 | |
|           SubDemandedElts.setBit(i * SubScale);
 | |
| 
 | |
|       for (unsigned i = 0; i != SubScale; ++i) {
 | |
|         computeKnownBits(N0, Known2, SubDemandedElts.shl(i),
 | |
|                          Depth + 1);
 | |
|         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * i);
 | |
|         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * i);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Bitcast 'large element' scalar/vector to 'small element' vector.
 | |
|     if ((SubBitWidth % BitWidth) == 0) {
 | |
|       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
 | |
| 
 | |
|       // Collect known bits for the (smaller) output by collecting the known
 | |
|       // bits from the overlapping larger input elements and extracting the
 | |
|       // sub sections we actually care about.
 | |
|       unsigned SubScale = SubBitWidth / BitWidth;
 | |
|       APInt SubDemandedElts(NumElts / SubScale, 0);
 | |
|       for (unsigned i = 0; i != NumElts; ++i)
 | |
|         if (DemandedElts[i])
 | |
|           SubDemandedElts.setBit(i / SubScale);
 | |
| 
 | |
|       computeKnownBits(N0, Known2, SubDemandedElts, Depth + 1);
 | |
| 
 | |
|       Known.Zero.setAllBits(); Known.One.setAllBits();
 | |
|       for (unsigned i = 0; i != NumElts; ++i)
 | |
|         if (DemandedElts[i]) {
 | |
|           unsigned Offset = (i % SubScale) * BitWidth;
 | |
|           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
 | |
|           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
 | |
|           // If we don't know any bits, early out.
 | |
|           if (!Known.One && !Known.Zero)
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::AND:
 | |
|     // If either the LHS or the RHS are Zero, the result is zero.
 | |
|     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
 | |
|     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
 | |
| 
 | |
|     // Output known-1 bits are only known if set in both the LHS & RHS.
 | |
|     Known.One &= Known2.One;
 | |
|     // Output known-0 are known to be clear if zero in either the LHS | RHS.
 | |
|     Known.Zero |= Known2.Zero;
 | |
|     break;
 | |
|   case ISD::OR:
 | |
|     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
 | |
|     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
 | |
| 
 | |
|     // Output known-0 bits are only known if clear in both the LHS & RHS.
 | |
|     Known.Zero &= Known2.Zero;
 | |
|     // Output known-1 are known to be set if set in either the LHS | RHS.
 | |
|     Known.One |= Known2.One;
 | |
|     break;
 | |
|   case ISD::XOR: {
 | |
|     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
 | |
|     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
 | |
| 
 | |
|     // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | |
|     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
 | |
|     // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | |
|     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
 | |
|     Known.Zero = KnownZeroOut;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::MUL: {
 | |
|     computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
 | |
|     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
 | |
| 
 | |
|     // If low bits are zero in either operand, output low known-0 bits.
 | |
|     // Also compute a conservative estimate for high known-0 bits.
 | |
|     // More trickiness is possible, but this is sufficient for the
 | |
|     // interesting case of alignment computation.
 | |
|     unsigned TrailZ = Known.countMinTrailingZeros() +
 | |
|                       Known2.countMinTrailingZeros();
 | |
|     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
 | |
|                                Known2.countMinLeadingZeros(),
 | |
|                                BitWidth) - BitWidth;
 | |
| 
 | |
|     Known.resetAll();
 | |
|     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
 | |
|     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
 | |
|     break;
 | |
|   }
 | |
|   case ISD::UDIV: {
 | |
|     // For the purposes of computing leading zeros we can conservatively
 | |
|     // treat a udiv as a logical right shift by the power of 2 known to
 | |
|     // be less than the denominator.
 | |
|     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
 | |
|     unsigned LeadZ = Known2.countMinLeadingZeros();
 | |
| 
 | |
|     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
 | |
|     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
 | |
|     if (RHSMaxLeadingZeros != BitWidth)
 | |
|       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
 | |
| 
 | |
|     Known.Zero.setHighBits(LeadZ);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SELECT:
 | |
|     computeKnownBits(Op.getOperand(2), Known, Depth+1);
 | |
|     // If we don't know any bits, early out.
 | |
|     if (!Known.One && !Known.Zero)
 | |
|       break;
 | |
|     computeKnownBits(Op.getOperand(1), Known2, Depth+1);
 | |
| 
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     Known.One &= Known2.One;
 | |
|     Known.Zero &= Known2.Zero;
 | |
|     break;
 | |
|   case ISD::SELECT_CC:
 | |
|     computeKnownBits(Op.getOperand(3), Known, Depth+1);
 | |
|     // If we don't know any bits, early out.
 | |
|     if (!Known.One && !Known.Zero)
 | |
|       break;
 | |
|     computeKnownBits(Op.getOperand(2), Known2, Depth+1);
 | |
| 
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     Known.One &= Known2.One;
 | |
|     Known.Zero &= Known2.Zero;
 | |
|     break;
 | |
|   case ISD::SMULO:
 | |
|   case ISD::UMULO:
 | |
|     if (Op.getResNo() != 1)
 | |
|       break;
 | |
|     // The boolean result conforms to getBooleanContents.
 | |
|     // If we know the result of a setcc has the top bits zero, use this info.
 | |
|     // We know that we have an integer-based boolean since these operations
 | |
|     // are only available for integer.
 | |
|     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
 | |
|             TargetLowering::ZeroOrOneBooleanContent &&
 | |
|         BitWidth > 1)
 | |
|       Known.Zero.setBitsFrom(1);
 | |
|     break;
 | |
|   case ISD::SETCC:
 | |
|     // If we know the result of a setcc has the top bits zero, use this info.
 | |
|     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
 | |
|             TargetLowering::ZeroOrOneBooleanContent &&
 | |
|         BitWidth > 1)
 | |
|       Known.Zero.setBitsFrom(1);
 | |
|     break;
 | |
|   case ISD::SHL:
 | |
|     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
 | |
|       computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
 | |
|       Known.Zero <<= *ShAmt;
 | |
|       Known.One <<= *ShAmt;
 | |
|       // Low bits are known zero.
 | |
|       Known.Zero.setLowBits(ShAmt->getZExtValue());
 | |
|     }
 | |
|     break;
 | |
|   case ISD::SRL:
 | |
|     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
 | |
|       computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
 | |
|       Known.Zero.lshrInPlace(*ShAmt);
 | |
|       Known.One.lshrInPlace(*ShAmt);
 | |
|       // High bits are known zero.
 | |
|       Known.Zero.setHighBits(ShAmt->getZExtValue());
 | |
|     }
 | |
|     break;
 | |
|   case ISD::SRA:
 | |
|     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
 | |
|       computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
 | |
|       Known.Zero.lshrInPlace(*ShAmt);
 | |
|       Known.One.lshrInPlace(*ShAmt);
 | |
|       // If we know the value of the sign bit, then we know it is copied across
 | |
|       // the high bits by the shift amount.
 | |
|       APInt SignMask = APInt::getSignMask(BitWidth);
 | |
|       SignMask.lshrInPlace(*ShAmt);  // Adjust to where it is now in the mask.
 | |
|       if (Known.Zero.intersects(SignMask)) {
 | |
|         Known.Zero.setHighBits(ShAmt->getZExtValue());// New bits are known zero.
 | |
|       } else if (Known.One.intersects(SignMask)) {
 | |
|         Known.One.setHighBits(ShAmt->getZExtValue()); // New bits are known one.
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case ISD::SIGN_EXTEND_INREG: {
 | |
|     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | |
|     unsigned EBits = EVT.getScalarSizeInBits();
 | |
| 
 | |
|     // Sign extension.  Compute the demanded bits in the result that are not
 | |
|     // present in the input.
 | |
|     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
 | |
| 
 | |
|     APInt InSignMask = APInt::getSignMask(EBits);
 | |
|     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
 | |
| 
 | |
|     // If the sign extended bits are demanded, we know that the sign
 | |
|     // bit is demanded.
 | |
|     InSignMask = InSignMask.zext(BitWidth);
 | |
|     if (NewBits.getBoolValue())
 | |
|       InputDemandedBits |= InSignMask;
 | |
| 
 | |
|     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
 | |
|     Known.One &= InputDemandedBits;
 | |
|     Known.Zero &= InputDemandedBits;
 | |
| 
 | |
|     // If the sign bit of the input is known set or clear, then we know the
 | |
|     // top bits of the result.
 | |
|     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
 | |
|       Known.Zero |= NewBits;
 | |
|       Known.One  &= ~NewBits;
 | |
|     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
 | |
|       Known.One  |= NewBits;
 | |
|       Known.Zero &= ~NewBits;
 | |
|     } else {                              // Input sign bit unknown
 | |
|       Known.Zero &= ~NewBits;
 | |
|       Known.One  &= ~NewBits;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::CTTZ:
 | |
|   case ISD::CTTZ_ZERO_UNDEF: {
 | |
|     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
 | |
|     // If we have a known 1, its position is our upper bound.
 | |
|     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
 | |
|     unsigned LowBits = Log2_32(PossibleTZ) + 1;
 | |
|     Known.Zero.setBitsFrom(LowBits);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::CTLZ:
 | |
|   case ISD::CTLZ_ZERO_UNDEF: {
 | |
|     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
 | |
|     // If we have a known 1, its position is our upper bound.
 | |
|     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
 | |
|     unsigned LowBits = Log2_32(PossibleLZ) + 1;
 | |
|     Known.Zero.setBitsFrom(LowBits);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::CTPOP: {
 | |
|     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
 | |
|     // If we know some of the bits are zero, they can't be one.
 | |
|     unsigned PossibleOnes = Known2.countMaxPopulation();
 | |
|     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::LOAD: {
 | |
|     LoadSDNode *LD = cast<LoadSDNode>(Op);
 | |
|     // If this is a ZEXTLoad and we are looking at the loaded value.
 | |
|     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
 | |
|       EVT VT = LD->getMemoryVT();
 | |
|       unsigned MemBits = VT.getScalarSizeInBits();
 | |
|       Known.Zero.setBitsFrom(MemBits);
 | |
|     } else if (const MDNode *Ranges = LD->getRanges()) {
 | |
|       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
 | |
|         computeKnownBitsFromRangeMetadata(*Ranges, Known);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::ZERO_EXTEND_VECTOR_INREG: {
 | |
|     EVT InVT = Op.getOperand(0).getValueType();
 | |
|     unsigned InBits = InVT.getScalarSizeInBits();
 | |
|     Known = Known.trunc(InBits);
 | |
|     computeKnownBits(Op.getOperand(0), Known,
 | |
|                      DemandedElts.zext(InVT.getVectorNumElements()),
 | |
|                      Depth + 1);
 | |
|     Known = Known.zext(BitWidth);
 | |
|     Known.Zero.setBitsFrom(InBits);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::ZERO_EXTEND: {
 | |
|     EVT InVT = Op.getOperand(0).getValueType();
 | |
|     unsigned InBits = InVT.getScalarSizeInBits();
 | |
|     Known = Known.trunc(InBits);
 | |
|     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
 | |
|     Known = Known.zext(BitWidth);
 | |
|     Known.Zero.setBitsFrom(InBits);
 | |
|     break;
 | |
|   }
 | |
|   // TODO ISD::SIGN_EXTEND_VECTOR_INREG
 | |
|   case ISD::SIGN_EXTEND: {
 | |
|     EVT InVT = Op.getOperand(0).getValueType();
 | |
|     unsigned InBits = InVT.getScalarSizeInBits();
 | |
| 
 | |
|     Known = Known.trunc(InBits);
 | |
|     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
 | |
| 
 | |
|     // If the sign bit is known to be zero or one, then sext will extend
 | |
|     // it to the top bits, else it will just zext.
 | |
|     Known = Known.sext(BitWidth);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::ANY_EXTEND: {
 | |
|     EVT InVT = Op.getOperand(0).getValueType();
 | |
|     unsigned InBits = InVT.getScalarSizeInBits();
 | |
|     Known = Known.trunc(InBits);
 | |
|     computeKnownBits(Op.getOperand(0), Known, Depth+1);
 | |
|     Known = Known.zext(BitWidth);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::TRUNCATE: {
 | |
|     EVT InVT = Op.getOperand(0).getValueType();
 | |
|     unsigned InBits = InVT.getScalarSizeInBits();
 | |
|     Known = Known.zext(InBits);
 | |
|     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
 | |
|     Known = Known.trunc(BitWidth);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::AssertZext: {
 | |
|     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | |
|     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
 | |
|     computeKnownBits(Op.getOperand(0), Known, Depth+1);
 | |
|     Known.Zero |= (~InMask);
 | |
|     Known.One  &= (~Known.Zero);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::FGETSIGN:
 | |
|     // All bits are zero except the low bit.
 | |
|     Known.Zero.setBitsFrom(1);
 | |
|     break;
 | |
|   case ISD::USUBO:
 | |
|   case ISD::SSUBO:
 | |
|     if (Op.getResNo() == 1) {
 | |
|       // If we know the result of a setcc has the top bits zero, use this info.
 | |
|       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
 | |
|               TargetLowering::ZeroOrOneBooleanContent &&
 | |
|           BitWidth > 1)
 | |
|         Known.Zero.setBitsFrom(1);
 | |
|       break;
 | |
|     }
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case ISD::SUB:
 | |
|   case ISD::SUBC: {
 | |
|     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) {
 | |
|       // We know that the top bits of C-X are clear if X contains less bits
 | |
|       // than C (i.e. no wrap-around can happen).  For example, 20-X is
 | |
|       // positive if we can prove that X is >= 0 and < 16.
 | |
|       if (CLHS->getAPIntValue().isNonNegative()) {
 | |
|         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
 | |
|         // NLZ can't be BitWidth with no sign bit
 | |
|         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
 | |
|         computeKnownBits(Op.getOperand(1), Known2, DemandedElts,
 | |
|                          Depth + 1);
 | |
| 
 | |
|         // If all of the MaskV bits are known to be zero, then we know the
 | |
|         // output top bits are zero, because we now know that the output is
 | |
|         // from [0-C].
 | |
|         if ((Known2.Zero & MaskV) == MaskV) {
 | |
|           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
 | |
|           // Top bits known zero.
 | |
|           Known.Zero.setHighBits(NLZ2);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If low bits are know to be zero in both operands, then we know they are
 | |
|     // going to be 0 in the result. Both addition and complement operations
 | |
|     // preserve the low zero bits.
 | |
|     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
 | |
|     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
 | |
|     if (KnownZeroLow == 0)
 | |
|       break;
 | |
| 
 | |
|     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
 | |
|     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
 | |
|     Known.Zero.setLowBits(KnownZeroLow);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::UADDO:
 | |
|   case ISD::SADDO:
 | |
|   case ISD::ADDCARRY:
 | |
|     if (Op.getResNo() == 1) {
 | |
|       // If we know the result of a setcc has the top bits zero, use this info.
 | |
|       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
 | |
|               TargetLowering::ZeroOrOneBooleanContent &&
 | |
|           BitWidth > 1)
 | |
|         Known.Zero.setBitsFrom(1);
 | |
|       break;
 | |
|     }
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case ISD::ADD:
 | |
|   case ISD::ADDC:
 | |
|   case ISD::ADDE: {
 | |
|     // Output known-0 bits are known if clear or set in both the low clear bits
 | |
|     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
 | |
|     // low 3 bits clear.
 | |
|     // Output known-0 bits are also known if the top bits of each input are
 | |
|     // known to be clear. For example, if one input has the top 10 bits clear
 | |
|     // and the other has the top 8 bits clear, we know the top 7 bits of the
 | |
|     // output must be clear.
 | |
|     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
 | |
|     unsigned KnownZeroHigh = Known2.countMinLeadingZeros();
 | |
|     unsigned KnownZeroLow = Known2.countMinTrailingZeros();
 | |
| 
 | |
|     computeKnownBits(Op.getOperand(1), Known2, DemandedElts,
 | |
|                      Depth + 1);
 | |
|     KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros());
 | |
|     KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
 | |
| 
 | |
|     if (Opcode == ISD::ADDE || Opcode == ISD::ADDCARRY) {
 | |
|       // With ADDE and ADDCARRY, a carry bit may be added in, so we can only
 | |
|       // use this information if we know (at least) that the low two bits are
 | |
|       // clear. We then return to the caller that the low bit is unknown but
 | |
|       // that other bits are known zero.
 | |
|       if (KnownZeroLow >= 2)
 | |
|         Known.Zero.setBits(1, KnownZeroLow);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     Known.Zero.setLowBits(KnownZeroLow);
 | |
|     if (KnownZeroHigh > 1)
 | |
|       Known.Zero.setHighBits(KnownZeroHigh - 1);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SREM:
 | |
|     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
 | |
|       const APInt &RA = Rem->getAPIntValue().abs();
 | |
|       if (RA.isPowerOf2()) {
 | |
|         APInt LowBits = RA - 1;
 | |
|         computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
 | |
| 
 | |
|         // The low bits of the first operand are unchanged by the srem.
 | |
|         Known.Zero = Known2.Zero & LowBits;
 | |
|         Known.One = Known2.One & LowBits;
 | |
| 
 | |
|         // If the first operand is non-negative or has all low bits zero, then
 | |
|         // the upper bits are all zero.
 | |
|         if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits))
 | |
|           Known.Zero |= ~LowBits;
 | |
| 
 | |
|         // If the first operand is negative and not all low bits are zero, then
 | |
|         // the upper bits are all one.
 | |
|         if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0))
 | |
|           Known.One |= ~LowBits;
 | |
|         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case ISD::UREM: {
 | |
|     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
 | |
|       const APInt &RA = Rem->getAPIntValue();
 | |
|       if (RA.isPowerOf2()) {
 | |
|         APInt LowBits = (RA - 1);
 | |
|         computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
 | |
| 
 | |
|         // The upper bits are all zero, the lower ones are unchanged.
 | |
|         Known.Zero = Known2.Zero | ~LowBits;
 | |
|         Known.One = Known2.One & LowBits;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Since the result is less than or equal to either operand, any leading
 | |
|     // zero bits in either operand must also exist in the result.
 | |
|     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
 | |
|     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
 | |
| 
 | |
|     uint32_t Leaders =
 | |
|         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
 | |
|     Known.resetAll();
 | |
|     Known.Zero.setHighBits(Leaders);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::EXTRACT_ELEMENT: {
 | |
|     computeKnownBits(Op.getOperand(0), Known, Depth+1);
 | |
|     const unsigned Index = Op.getConstantOperandVal(1);
 | |
|     const unsigned BitWidth = Op.getValueSizeInBits();
 | |
| 
 | |
|     // Remove low part of known bits mask
 | |
|     Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth);
 | |
|     Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth);
 | |
| 
 | |
|     // Remove high part of known bit mask
 | |
|     Known = Known.trunc(BitWidth);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::EXTRACT_VECTOR_ELT: {
 | |
|     SDValue InVec = Op.getOperand(0);
 | |
|     SDValue EltNo = Op.getOperand(1);
 | |
|     EVT VecVT = InVec.getValueType();
 | |
|     const unsigned BitWidth = Op.getValueSizeInBits();
 | |
|     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
 | |
|     const unsigned NumSrcElts = VecVT.getVectorNumElements();
 | |
|     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
 | |
|     // anything about the extended bits.
 | |
|     if (BitWidth > EltBitWidth)
 | |
|       Known = Known.trunc(EltBitWidth);
 | |
|     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
 | |
|     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
 | |
|       // If we know the element index, just demand that vector element.
 | |
|       unsigned Idx = ConstEltNo->getZExtValue();
 | |
|       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
 | |
|       computeKnownBits(InVec, Known, DemandedElt, Depth + 1);
 | |
|     } else {
 | |
|       // Unknown element index, so ignore DemandedElts and demand them all.
 | |
|       computeKnownBits(InVec, Known, Depth + 1);
 | |
|     }
 | |
|     if (BitWidth > EltBitWidth)
 | |
|       Known = Known.zext(BitWidth);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::INSERT_VECTOR_ELT: {
 | |
|     SDValue InVec = Op.getOperand(0);
 | |
|     SDValue InVal = Op.getOperand(1);
 | |
|     SDValue EltNo = Op.getOperand(2);
 | |
| 
 | |
|     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
 | |
|     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
 | |
|       // If we know the element index, split the demand between the
 | |
|       // source vector and the inserted element.
 | |
|       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
 | |
|       unsigned EltIdx = CEltNo->getZExtValue();
 | |
| 
 | |
|       // If we demand the inserted element then add its common known bits.
 | |
|       if (DemandedElts[EltIdx]) {
 | |
|         computeKnownBits(InVal, Known2, Depth + 1);
 | |
|         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
 | |
|         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
 | |
|       }
 | |
| 
 | |
|       // If we demand the source vector then add its common known bits, ensuring
 | |
|       // that we don't demand the inserted element.
 | |
|       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
 | |
|       if (!!VectorElts) {
 | |
|         computeKnownBits(InVec, Known2, VectorElts, Depth + 1);
 | |
|         Known.One &= Known2.One;
 | |
|         Known.Zero &= Known2.Zero;
 | |
|       }
 | |
|     } else {
 | |
|       // Unknown element index, so ignore DemandedElts and demand them all.
 | |
|       computeKnownBits(InVec, Known, Depth + 1);
 | |
|       computeKnownBits(InVal, Known2, Depth + 1);
 | |
|       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
 | |
|       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BITREVERSE: {
 | |
|     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
 | |
|     Known.Zero = Known2.Zero.reverseBits();
 | |
|     Known.One = Known2.One.reverseBits();
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BSWAP: {
 | |
|     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
 | |
|     Known.Zero = Known2.Zero.byteSwap();
 | |
|     Known.One = Known2.One.byteSwap();
 | |
|     break;
 | |
|   }
 | |
|   case ISD::ABS: {
 | |
|     computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
 | |
| 
 | |
|     // If the source's MSB is zero then we know the rest of the bits already.
 | |
|     if (Known2.isNonNegative()) {
 | |
|       Known.Zero = Known2.Zero;
 | |
|       Known.One = Known2.One;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // We only know that the absolute values's MSB will be zero iff there is
 | |
|     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
 | |
|     Known2.One.clearSignBit();
 | |
|     if (Known2.One.getBoolValue()) {
 | |
|       Known.Zero = APInt::getSignMask(BitWidth);
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::UMIN: {
 | |
|     computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
 | |
|     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
 | |
| 
 | |
|     // UMIN - we know that the result will have the maximum of the
 | |
|     // known zero leading bits of the inputs.
 | |
|     unsigned LeadZero = Known.countMinLeadingZeros();
 | |
|     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
 | |
| 
 | |
|     Known.Zero &= Known2.Zero;
 | |
|     Known.One &= Known2.One;
 | |
|     Known.Zero.setHighBits(LeadZero);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::UMAX: {
 | |
|     computeKnownBits(Op.getOperand(0), Known, DemandedElts,
 | |
|                      Depth + 1);
 | |
|     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
 | |
| 
 | |
|     // UMAX - we know that the result will have the maximum of the
 | |
|     // known one leading bits of the inputs.
 | |
|     unsigned LeadOne = Known.countMinLeadingOnes();
 | |
|     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
 | |
| 
 | |
|     Known.Zero &= Known2.Zero;
 | |
|     Known.One &= Known2.One;
 | |
|     Known.One.setHighBits(LeadOne);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SMIN:
 | |
|   case ISD::SMAX: {
 | |
|     computeKnownBits(Op.getOperand(0), Known, DemandedElts,
 | |
|                      Depth + 1);
 | |
|     // If we don't know any bits, early out.
 | |
|     if (!Known.One && !Known.Zero)
 | |
|       break;
 | |
|     computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
 | |
|     Known.Zero &= Known2.Zero;
 | |
|     Known.One &= Known2.One;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::FrameIndex:
 | |
|   case ISD::TargetFrameIndex:
 | |
|     if (unsigned Align = InferPtrAlignment(Op)) {
 | |
|       // The low bits are known zero if the pointer is aligned.
 | |
|       Known.Zero.setLowBits(Log2_32(Align));
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   default:
 | |
|     if (Opcode < ISD::BUILTIN_OP_END)
 | |
|       break;
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case ISD::INTRINSIC_WO_CHAIN:
 | |
|   case ISD::INTRINSIC_W_CHAIN:
 | |
|   case ISD::INTRINSIC_VOID:
 | |
|     // Allow the target to implement this method for its nodes.
 | |
|     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
 | |
| }
 | |
| 
 | |
| SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
 | |
|                                                              SDValue N1) const {
 | |
|   // X + 0 never overflow
 | |
|   if (isNullConstant(N1))
 | |
|     return OFK_Never;
 | |
| 
 | |
|   KnownBits N1Known;
 | |
|   computeKnownBits(N1, N1Known);
 | |
|   if (N1Known.Zero.getBoolValue()) {
 | |
|     KnownBits N0Known;
 | |
|     computeKnownBits(N0, N0Known);
 | |
| 
 | |
|     bool overflow;
 | |
|     (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
 | |
|     if (!overflow)
 | |
|       return OFK_Never;
 | |
|   }
 | |
| 
 | |
|   // mulhi + 1 never overflow
 | |
|   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
 | |
|       (~N1Known.Zero & 0x01) == ~N1Known.Zero)
 | |
|     return OFK_Never;
 | |
| 
 | |
|   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
 | |
|     KnownBits N0Known;
 | |
|     computeKnownBits(N0, N0Known);
 | |
| 
 | |
|     if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
 | |
|       return OFK_Never;
 | |
|   }
 | |
| 
 | |
|   return OFK_Sometime;
 | |
| }
 | |
| 
 | |
| bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
 | |
|   EVT OpVT = Val.getValueType();
 | |
|   unsigned BitWidth = OpVT.getScalarSizeInBits();
 | |
| 
 | |
|   // Is the constant a known power of 2?
 | |
|   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
 | |
|     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
 | |
| 
 | |
|   // A left-shift of a constant one will have exactly one bit set because
 | |
|   // shifting the bit off the end is undefined.
 | |
|   if (Val.getOpcode() == ISD::SHL) {
 | |
|     auto *C = isConstOrConstSplat(Val.getOperand(0));
 | |
|     if (C && C->getAPIntValue() == 1)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // Similarly, a logical right-shift of a constant sign-bit will have exactly
 | |
|   // one bit set.
 | |
|   if (Val.getOpcode() == ISD::SRL) {
 | |
|     auto *C = isConstOrConstSplat(Val.getOperand(0));
 | |
|     if (C && C->getAPIntValue().isSignMask())
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // Are all operands of a build vector constant powers of two?
 | |
|   if (Val.getOpcode() == ISD::BUILD_VECTOR)
 | |
|     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
 | |
|           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
 | |
|             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
 | |
|           return false;
 | |
|         }))
 | |
|       return true;
 | |
| 
 | |
|   // More could be done here, though the above checks are enough
 | |
|   // to handle some common cases.
 | |
| 
 | |
|   // Fall back to computeKnownBits to catch other known cases.
 | |
|   KnownBits Known;
 | |
|   computeKnownBits(Val, Known);
 | |
|   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
 | |
| }
 | |
| 
 | |
| unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   APInt DemandedElts = VT.isVector()
 | |
|                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
 | |
|                            : APInt(1, 1);
 | |
|   return ComputeNumSignBits(Op, DemandedElts, Depth);
 | |
| }
 | |
| 
 | |
| unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
 | |
|                                           unsigned Depth) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   assert(VT.isInteger() && "Invalid VT!");
 | |
|   unsigned VTBits = VT.getScalarSizeInBits();
 | |
|   unsigned NumElts = DemandedElts.getBitWidth();
 | |
|   unsigned Tmp, Tmp2;
 | |
|   unsigned FirstAnswer = 1;
 | |
| 
 | |
|   if (Depth == 6)
 | |
|     return 1;  // Limit search depth.
 | |
| 
 | |
|   if (!DemandedElts)
 | |
|     return 1;  // No demanded elts, better to assume we don't know anything.
 | |
| 
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::AssertSext:
 | |
|     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
 | |
|     return VTBits-Tmp+1;
 | |
|   case ISD::AssertZext:
 | |
|     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
 | |
|     return VTBits-Tmp;
 | |
| 
 | |
|   case ISD::Constant: {
 | |
|     const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
 | |
|     return Val.getNumSignBits();
 | |
|   }
 | |
| 
 | |
|   case ISD::BUILD_VECTOR:
 | |
|     Tmp = VTBits;
 | |
|     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
 | |
|       if (!DemandedElts[i])
 | |
|         continue;
 | |
| 
 | |
|       SDValue SrcOp = Op.getOperand(i);
 | |
|       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
 | |
| 
 | |
|       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
 | |
|       if (SrcOp.getValueSizeInBits() != VTBits) {
 | |
|         assert(SrcOp.getValueSizeInBits() > VTBits &&
 | |
|                "Expected BUILD_VECTOR implicit truncation");
 | |
|         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
 | |
|         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
 | |
|       }
 | |
|       Tmp = std::min(Tmp, Tmp2);
 | |
|     }
 | |
|     return Tmp;
 | |
| 
 | |
|   case ISD::VECTOR_SHUFFLE: {
 | |
|     // Collect the minimum number of sign bits that are shared by every vector
 | |
|     // element referenced by the shuffle.
 | |
|     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
 | |
|     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
 | |
|     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
 | |
|     for (unsigned i = 0; i != NumElts; ++i) {
 | |
|       int M = SVN->getMaskElt(i);
 | |
|       if (!DemandedElts[i])
 | |
|         continue;
 | |
|       // For UNDEF elements, we don't know anything about the common state of
 | |
|       // the shuffle result.
 | |
|       if (M < 0)
 | |
|         return 1;
 | |
|       if ((unsigned)M < NumElts)
 | |
|         DemandedLHS.setBit((unsigned)M % NumElts);
 | |
|       else
 | |
|         DemandedRHS.setBit((unsigned)M % NumElts);
 | |
|     }
 | |
|     Tmp = std::numeric_limits<unsigned>::max();
 | |
|     if (!!DemandedLHS)
 | |
|       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
 | |
|     if (!!DemandedRHS) {
 | |
|       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
 | |
|       Tmp = std::min(Tmp, Tmp2);
 | |
|     }
 | |
|     // If we don't know anything, early out and try computeKnownBits fall-back.
 | |
|     if (Tmp == 1)
 | |
|       break;
 | |
|     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
 | |
|     return Tmp;
 | |
|   }
 | |
| 
 | |
|   case ISD::SIGN_EXTEND:
 | |
|   case ISD::SIGN_EXTEND_VECTOR_INREG:
 | |
|     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
 | |
|     return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
 | |
| 
 | |
|   case ISD::SIGN_EXTEND_INREG:
 | |
|     // Max of the input and what this extends.
 | |
|     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
 | |
|     Tmp = VTBits-Tmp+1;
 | |
| 
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     return std::max(Tmp, Tmp2);
 | |
| 
 | |
|   case ISD::SRA:
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
 | |
|     // SRA X, C   -> adds C sign bits.
 | |
|     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) {
 | |
|       APInt ShiftVal = C->getAPIntValue();
 | |
|       ShiftVal += Tmp;
 | |
|       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
 | |
|     }
 | |
|     return Tmp;
 | |
|   case ISD::SHL:
 | |
|     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1))) {
 | |
|       // shl destroys sign bits.
 | |
|       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
 | |
|           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
 | |
|       return Tmp - C->getZExtValue();
 | |
|     }
 | |
|     break;
 | |
|   case ISD::AND:
 | |
|   case ISD::OR:
 | |
|   case ISD::XOR:    // NOT is handled here.
 | |
|     // Logical binary ops preserve the number of sign bits at the worst.
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     if (Tmp != 1) {
 | |
|       Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
 | |
|       FirstAnswer = std::min(Tmp, Tmp2);
 | |
|       // We computed what we know about the sign bits as our first
 | |
|       // answer. Now proceed to the generic code that uses
 | |
|       // computeKnownBits, and pick whichever answer is better.
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case ISD::SELECT:
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
 | |
|     if (Tmp == 1) return 1;  // Early out.
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
 | |
|     return std::min(Tmp, Tmp2);
 | |
|   case ISD::SELECT_CC:
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(2), Depth+1);
 | |
|     if (Tmp == 1) return 1;  // Early out.
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(3), Depth+1);
 | |
|     return std::min(Tmp, Tmp2);
 | |
|   case ISD::SMIN:
 | |
|   case ISD::SMAX:
 | |
|   case ISD::UMIN:
 | |
|   case ISD::UMAX:
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
 | |
|     if (Tmp == 1)
 | |
|       return 1;  // Early out.
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
 | |
|     return std::min(Tmp, Tmp2);
 | |
|   case ISD::SADDO:
 | |
|   case ISD::UADDO:
 | |
|   case ISD::SSUBO:
 | |
|   case ISD::USUBO:
 | |
|   case ISD::SMULO:
 | |
|   case ISD::UMULO:
 | |
|     if (Op.getResNo() != 1)
 | |
|       break;
 | |
|     // The boolean result conforms to getBooleanContents.  Fall through.
 | |
|     // If setcc returns 0/-1, all bits are sign bits.
 | |
|     // We know that we have an integer-based boolean since these operations
 | |
|     // are only available for integer.
 | |
|     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
 | |
|         TargetLowering::ZeroOrNegativeOneBooleanContent)
 | |
|       return VTBits;
 | |
|     break;
 | |
|   case ISD::SETCC:
 | |
|     // If setcc returns 0/-1, all bits are sign bits.
 | |
|     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
 | |
|         TargetLowering::ZeroOrNegativeOneBooleanContent)
 | |
|       return VTBits;
 | |
|     break;
 | |
|   case ISD::ROTL:
 | |
|   case ISD::ROTR:
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       unsigned RotAmt = C->getZExtValue() & (VTBits-1);
 | |
| 
 | |
|       // Handle rotate right by N like a rotate left by 32-N.
 | |
|       if (Op.getOpcode() == ISD::ROTR)
 | |
|         RotAmt = (VTBits-RotAmt) & (VTBits-1);
 | |
| 
 | |
|       // If we aren't rotating out all of the known-in sign bits, return the
 | |
|       // number that are left.  This handles rotl(sext(x), 1) for example.
 | |
|       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|       if (Tmp > RotAmt+1) return Tmp-RotAmt;
 | |
|     }
 | |
|     break;
 | |
|   case ISD::ADD:
 | |
|   case ISD::ADDC:
 | |
|     // Add can have at most one carry bit.  Thus we know that the output
 | |
|     // is, at worst, one more bit than the inputs.
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     if (Tmp == 1) return 1;  // Early out.
 | |
| 
 | |
|     // Special case decrementing a value (ADD X, -1):
 | |
|     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
 | |
|       if (CRHS->isAllOnesValue()) {
 | |
|         KnownBits Known;
 | |
|         computeKnownBits(Op.getOperand(0), Known, Depth+1);
 | |
| 
 | |
|         // If the input is known to be 0 or 1, the output is 0/-1, which is all
 | |
|         // sign bits set.
 | |
|         if ((Known.Zero | 1).isAllOnesValue())
 | |
|           return VTBits;
 | |
| 
 | |
|         // If we are subtracting one from a positive number, there is no carry
 | |
|         // out of the result.
 | |
|         if (Known.isNonNegative())
 | |
|           return Tmp;
 | |
|       }
 | |
| 
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
 | |
|     if (Tmp2 == 1) return 1;
 | |
|     return std::min(Tmp, Tmp2)-1;
 | |
| 
 | |
|   case ISD::SUB:
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
 | |
|     if (Tmp2 == 1) return 1;
 | |
| 
 | |
|     // Handle NEG.
 | |
|     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
 | |
|       if (CLHS->isNullValue()) {
 | |
|         KnownBits Known;
 | |
|         computeKnownBits(Op.getOperand(1), Known, Depth+1);
 | |
|         // If the input is known to be 0 or 1, the output is 0/-1, which is all
 | |
|         // sign bits set.
 | |
|         if ((Known.Zero | 1).isAllOnesValue())
 | |
|           return VTBits;
 | |
| 
 | |
|         // If the input is known to be positive (the sign bit is known clear),
 | |
|         // the output of the NEG has the same number of sign bits as the input.
 | |
|         if (Known.isNonNegative())
 | |
|           return Tmp2;
 | |
| 
 | |
|         // Otherwise, we treat this like a SUB.
 | |
|       }
 | |
| 
 | |
|     // Sub can have at most one carry bit.  Thus we know that the output
 | |
|     // is, at worst, one more bit than the inputs.
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     if (Tmp == 1) return 1;  // Early out.
 | |
|     return std::min(Tmp, Tmp2)-1;
 | |
|   case ISD::TRUNCATE: {
 | |
|     // Check if the sign bits of source go down as far as the truncated value.
 | |
|     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
 | |
|     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
 | |
|     if (NumSrcSignBits > (NumSrcBits - VTBits))
 | |
|       return NumSrcSignBits - (NumSrcBits - VTBits);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::EXTRACT_ELEMENT: {
 | |
|     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     const int BitWidth = Op.getValueSizeInBits();
 | |
|     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
 | |
| 
 | |
|     // Get reverse index (starting from 1), Op1 value indexes elements from
 | |
|     // little end. Sign starts at big end.
 | |
|     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
 | |
| 
 | |
|     // If the sign portion ends in our element the subtraction gives correct
 | |
|     // result. Otherwise it gives either negative or > bitwidth result
 | |
|     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
 | |
|   }
 | |
|   case ISD::INSERT_VECTOR_ELT: {
 | |
|     SDValue InVec = Op.getOperand(0);
 | |
|     SDValue InVal = Op.getOperand(1);
 | |
|     SDValue EltNo = Op.getOperand(2);
 | |
|     unsigned NumElts = InVec.getValueType().getVectorNumElements();
 | |
| 
 | |
|     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
 | |
|     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
 | |
|       // If we know the element index, split the demand between the
 | |
|       // source vector and the inserted element.
 | |
|       unsigned EltIdx = CEltNo->getZExtValue();
 | |
| 
 | |
|       // If we demand the inserted element then get its sign bits.
 | |
|       Tmp = std::numeric_limits<unsigned>::max();
 | |
|       if (DemandedElts[EltIdx]) {
 | |
|         // TODO - handle implicit truncation of inserted elements.
 | |
|         if (InVal.getScalarValueSizeInBits() != VTBits)
 | |
|           break;
 | |
|         Tmp = ComputeNumSignBits(InVal, Depth + 1);
 | |
|       }
 | |
| 
 | |
|       // If we demand the source vector then get its sign bits, and determine
 | |
|       // the minimum.
 | |
|       APInt VectorElts = DemandedElts;
 | |
|       VectorElts.clearBit(EltIdx);
 | |
|       if (!!VectorElts) {
 | |
|         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
 | |
|         Tmp = std::min(Tmp, Tmp2);
 | |
|       }
 | |
|     } else {
 | |
|       // Unknown element index, so ignore DemandedElts and demand them all.
 | |
|       Tmp = ComputeNumSignBits(InVec, Depth + 1);
 | |
|       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
 | |
|       Tmp = std::min(Tmp, Tmp2);
 | |
|     }
 | |
|     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
 | |
|     return Tmp;
 | |
|   }
 | |
|   case ISD::EXTRACT_VECTOR_ELT: {
 | |
|     SDValue InVec = Op.getOperand(0);
 | |
|     SDValue EltNo = Op.getOperand(1);
 | |
|     EVT VecVT = InVec.getValueType();
 | |
|     const unsigned BitWidth = Op.getValueSizeInBits();
 | |
|     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
 | |
|     const unsigned NumSrcElts = VecVT.getVectorNumElements();
 | |
| 
 | |
|     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
 | |
|     // anything about sign bits. But if the sizes match we can derive knowledge
 | |
|     // about sign bits from the vector operand.
 | |
|     if (BitWidth != EltBitWidth)
 | |
|       break;
 | |
| 
 | |
|     // If we know the element index, just demand that vector element, else for
 | |
|     // an unknown element index, ignore DemandedElts and demand them all.
 | |
|     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
 | |
|     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
 | |
|     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
 | |
|       DemandedSrcElts =
 | |
|           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
 | |
| 
 | |
|     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
 | |
|   }
 | |
|   case ISD::EXTRACT_SUBVECTOR: {
 | |
|     // If we know the element index, just demand that subvector elements,
 | |
|     // otherwise demand them all.
 | |
|     SDValue Src = Op.getOperand(0);
 | |
|     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
 | |
|     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
 | |
|     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
 | |
|       // Offset the demanded elts by the subvector index.
 | |
|       uint64_t Idx = SubIdx->getZExtValue();
 | |
|       APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx);
 | |
|       return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
 | |
|     }
 | |
|     return ComputeNumSignBits(Src, Depth + 1);
 | |
|   }
 | |
|   case ISD::CONCAT_VECTORS:
 | |
|     // Determine the minimum number of sign bits across all demanded
 | |
|     // elts of the input vectors. Early out if the result is already 1.
 | |
|     Tmp = std::numeric_limits<unsigned>::max();
 | |
|     EVT SubVectorVT = Op.getOperand(0).getValueType();
 | |
|     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
 | |
|     unsigned NumSubVectors = Op.getNumOperands();
 | |
|     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
 | |
|       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
 | |
|       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
 | |
|       if (!DemandedSub)
 | |
|         continue;
 | |
|       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
 | |
|       Tmp = std::min(Tmp, Tmp2);
 | |
|     }
 | |
|     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
 | |
|     return Tmp;
 | |
|   }
 | |
| 
 | |
|   // If we are looking at the loaded value of the SDNode.
 | |
|   if (Op.getResNo() == 0) {
 | |
|     // Handle LOADX separately here. EXTLOAD case will fallthrough.
 | |
|     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
 | |
|       unsigned ExtType = LD->getExtensionType();
 | |
|       switch (ExtType) {
 | |
|         default: break;
 | |
|         case ISD::SEXTLOAD:    // '17' bits known
 | |
|           Tmp = LD->getMemoryVT().getScalarSizeInBits();
 | |
|           return VTBits-Tmp+1;
 | |
|         case ISD::ZEXTLOAD:    // '16' bits known
 | |
|           Tmp = LD->getMemoryVT().getScalarSizeInBits();
 | |
|           return VTBits-Tmp;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Allow the target to implement this method for its nodes.
 | |
|   if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | |
|       Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | |
|       Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | |
|       Op.getOpcode() == ISD::INTRINSIC_VOID) {
 | |
|     unsigned NumBits =
 | |
|         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
 | |
|     if (NumBits > 1)
 | |
|       FirstAnswer = std::max(FirstAnswer, NumBits);
 | |
|   }
 | |
| 
 | |
|   // Finally, if we can prove that the top bits of the result are 0's or 1's,
 | |
|   // use this information.
 | |
|   KnownBits Known;
 | |
|   computeKnownBits(Op, Known, DemandedElts, Depth);
 | |
| 
 | |
|   APInt Mask;
 | |
|   if (Known.isNonNegative()) {        // sign bit is 0
 | |
|     Mask = Known.Zero;
 | |
|   } else if (Known.isNegative()) {  // sign bit is 1;
 | |
|     Mask = Known.One;
 | |
|   } else {
 | |
|     // Nothing known.
 | |
|     return FirstAnswer;
 | |
|   }
 | |
| 
 | |
|   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
 | |
|   // the number of identical bits in the top of the input value.
 | |
|   Mask = ~Mask;
 | |
|   Mask <<= Mask.getBitWidth()-VTBits;
 | |
|   // Return # leading zeros.  We use 'min' here in case Val was zero before
 | |
|   // shifting.  We don't want to return '64' as for an i32 "0".
 | |
|   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
 | |
| }
 | |
| 
 | |
| bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
 | |
|   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
 | |
|       !isa<ConstantSDNode>(Op.getOperand(1)))
 | |
|     return false;
 | |
| 
 | |
|   if (Op.getOpcode() == ISD::OR &&
 | |
|       !MaskedValueIsZero(Op.getOperand(0),
 | |
|                      cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
 | |
|   // If we're told that NaNs won't happen, assume they won't.
 | |
|   if (getTarget().Options.NoNaNsFPMath)
 | |
|     return true;
 | |
| 
 | |
|   if (Op->getFlags().hasNoNaNs())
 | |
|     return true;
 | |
| 
 | |
|   // If the value is a constant, we can obviously see if it is a NaN or not.
 | |
|   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
 | |
|     return !C->getValueAPF().isNaN();
 | |
| 
 | |
|   // TODO: Recognize more cases here.
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
 | |
|   // If the value is a constant, we can obviously see if it is a zero or not.
 | |
|   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
 | |
|     return !C->isZero();
 | |
| 
 | |
|   // TODO: Recognize more cases here.
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::OR:
 | |
|     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
 | |
|       return !C->isNullValue();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
 | |
|   // Check the obvious case.
 | |
|   if (A == B) return true;
 | |
| 
 | |
|   // For for negative and positive zero.
 | |
|   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
 | |
|     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
 | |
|       if (CA->isZero() && CB->isZero()) return true;
 | |
| 
 | |
|   // Otherwise they may not be equal.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
 | |
|   assert(A.getValueType() == B.getValueType() &&
 | |
|          "Values must have the same type");
 | |
|   KnownBits AKnown, BKnown;
 | |
|   computeKnownBits(A, AKnown);
 | |
|   computeKnownBits(B, BKnown);
 | |
|   return (AKnown.Zero | BKnown.Zero).isAllOnesValue();
 | |
| }
 | |
| 
 | |
| static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
 | |
|                                   ArrayRef<SDValue> Ops,
 | |
|                                   SelectionDAG &DAG) {
 | |
|   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
 | |
|   assert(llvm::all_of(Ops,
 | |
|                       [Ops](SDValue Op) {
 | |
|                         return Ops[0].getValueType() == Op.getValueType();
 | |
|                       }) &&
 | |
|          "Concatenation of vectors with inconsistent value types!");
 | |
|   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
 | |
|              VT.getVectorNumElements() &&
 | |
|          "Incorrect element count in vector concatenation!");
 | |
| 
 | |
|   if (Ops.size() == 1)
 | |
|     return Ops[0];
 | |
| 
 | |
|   // Concat of UNDEFs is UNDEF.
 | |
|   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
 | |
|     return DAG.getUNDEF(VT);
 | |
| 
 | |
|   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
 | |
|   // simplified to one big BUILD_VECTOR.
 | |
|   // FIXME: Add support for SCALAR_TO_VECTOR as well.
 | |
|   EVT SVT = VT.getScalarType();
 | |
|   SmallVector<SDValue, 16> Elts;
 | |
|   for (SDValue Op : Ops) {
 | |
|     EVT OpVT = Op.getValueType();
 | |
|     if (Op.isUndef())
 | |
|       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
 | |
|     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
 | |
|       Elts.append(Op->op_begin(), Op->op_end());
 | |
|     else
 | |
|       return SDValue();
 | |
|   }
 | |
| 
 | |
|   // BUILD_VECTOR requires all inputs to be of the same type, find the
 | |
|   // maximum type and extend them all.
 | |
|   for (SDValue Op : Elts)
 | |
|     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
 | |
| 
 | |
|   if (SVT.bitsGT(VT.getScalarType()))
 | |
|     for (SDValue &Op : Elts)
 | |
|       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
 | |
|                ? DAG.getZExtOrTrunc(Op, DL, SVT)
 | |
|                : DAG.getSExtOrTrunc(Op, DL, SVT);
 | |
| 
 | |
|   SDValue V = DAG.getBuildVector(VT, DL, Elts);
 | |
|   NewSDValueDbgMsg(V, "New node fold concat vectors: ");
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// Gets or creates the specified node.
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
 | |
|   void *IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
 | |
|                               getVTList(VT));
 | |
|   CSEMap.InsertNode(N, IP);
 | |
| 
 | |
|   InsertNode(N);
 | |
|   SDValue V = SDValue(N, 0);
 | |
|   NewSDValueDbgMsg(V, "Creating new node: ");
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
 | |
|                               SDValue Operand, const SDNodeFlags Flags) {
 | |
|   // Constant fold unary operations with an integer constant operand. Even
 | |
|   // opaque constant will be folded, because the folding of unary operations
 | |
|   // doesn't create new constants with different values. Nevertheless, the
 | |
|   // opaque flag is preserved during folding to prevent future folding with
 | |
|   // other constants.
 | |
|   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
 | |
|     const APInt &Val = C->getAPIntValue();
 | |
|     switch (Opcode) {
 | |
|     default: break;
 | |
|     case ISD::SIGN_EXTEND:
 | |
|       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
 | |
|                          C->isTargetOpcode(), C->isOpaque());
 | |
|     case ISD::ANY_EXTEND:
 | |
|     case ISD::ZERO_EXTEND:
 | |
|     case ISD::TRUNCATE:
 | |
|       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
 | |
|                          C->isTargetOpcode(), C->isOpaque());
 | |
|     case ISD::UINT_TO_FP:
 | |
|     case ISD::SINT_TO_FP: {
 | |
|       APFloat apf(EVTToAPFloatSemantics(VT),
 | |
|                   APInt::getNullValue(VT.getSizeInBits()));
 | |
|       (void)apf.convertFromAPInt(Val,
 | |
|                                  Opcode==ISD::SINT_TO_FP,
 | |
|                                  APFloat::rmNearestTiesToEven);
 | |
|       return getConstantFP(apf, DL, VT);
 | |
|     }
 | |
|     case ISD::BITCAST:
 | |
|       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
 | |
|         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
 | |
|       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
 | |
|         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
 | |
|       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
 | |
|         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
 | |
|       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
 | |
|         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
 | |
|       break;
 | |
|     case ISD::ABS:
 | |
|       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
 | |
|                          C->isOpaque());
 | |
|     case ISD::BITREVERSE:
 | |
|       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
 | |
|                          C->isOpaque());
 | |
|     case ISD::BSWAP:
 | |
|       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
 | |
|                          C->isOpaque());
 | |
|     case ISD::CTPOP:
 | |
|       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
 | |
|                          C->isOpaque());
 | |
|     case ISD::CTLZ:
 | |
|     case ISD::CTLZ_ZERO_UNDEF:
 | |
|       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
 | |
|                          C->isOpaque());
 | |
|     case ISD::CTTZ:
 | |
|     case ISD::CTTZ_ZERO_UNDEF:
 | |
|       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
 | |
|                          C->isOpaque());
 | |
|     case ISD::FP16_TO_FP: {
 | |
|       bool Ignored;
 | |
|       APFloat FPV(APFloat::IEEEhalf(),
 | |
|                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
 | |
| 
 | |
|       // This can return overflow, underflow, or inexact; we don't care.
 | |
|       // FIXME need to be more flexible about rounding mode.
 | |
|       (void)FPV.convert(EVTToAPFloatSemantics(VT),
 | |
|                         APFloat::rmNearestTiesToEven, &Ignored);
 | |
|       return getConstantFP(FPV, DL, VT);
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Constant fold unary operations with a floating point constant operand.
 | |
|   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
 | |
|     APFloat V = C->getValueAPF();    // make copy
 | |
|     switch (Opcode) {
 | |
|     case ISD::FNEG:
 | |
|       V.changeSign();
 | |
|       return getConstantFP(V, DL, VT);
 | |
|     case ISD::FABS:
 | |
|       V.clearSign();
 | |
|       return getConstantFP(V, DL, VT);
 | |
|     case ISD::FCEIL: {
 | |
|       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
 | |
|       if (fs == APFloat::opOK || fs == APFloat::opInexact)
 | |
|         return getConstantFP(V, DL, VT);
 | |
|       break;
 | |
|     }
 | |
|     case ISD::FTRUNC: {
 | |
|       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
 | |
|       if (fs == APFloat::opOK || fs == APFloat::opInexact)
 | |
|         return getConstantFP(V, DL, VT);
 | |
|       break;
 | |
|     }
 | |
|     case ISD::FFLOOR: {
 | |
|       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
 | |
|       if (fs == APFloat::opOK || fs == APFloat::opInexact)
 | |
|         return getConstantFP(V, DL, VT);
 | |
|       break;
 | |
|     }
 | |
|     case ISD::FP_EXTEND: {
 | |
|       bool ignored;
 | |
|       // This can return overflow, underflow, or inexact; we don't care.
 | |
|       // FIXME need to be more flexible about rounding mode.
 | |
|       (void)V.convert(EVTToAPFloatSemantics(VT),
 | |
|                       APFloat::rmNearestTiesToEven, &ignored);
 | |
|       return getConstantFP(V, DL, VT);
 | |
|     }
 | |
|     case ISD::FP_TO_SINT:
 | |
|     case ISD::FP_TO_UINT: {
 | |
|       bool ignored;
 | |
|       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
 | |
|       // FIXME need to be more flexible about rounding mode.
 | |
|       APFloat::opStatus s =
 | |
|           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
 | |
|       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
 | |
|         break;
 | |
|       return getConstant(IntVal, DL, VT);
 | |
|     }
 | |
|     case ISD::BITCAST:
 | |
|       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
 | |
|         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
 | |
|       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
 | |
|         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
 | |
|       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
 | |
|         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
 | |
|       break;
 | |
|     case ISD::FP_TO_FP16: {
 | |
|       bool Ignored;
 | |
|       // This can return overflow, underflow, or inexact; we don't care.
 | |
|       // FIXME need to be more flexible about rounding mode.
 | |
|       (void)V.convert(APFloat::IEEEhalf(),
 | |
|                       APFloat::rmNearestTiesToEven, &Ignored);
 | |
|       return getConstant(V.bitcastToAPInt(), DL, VT);
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Constant fold unary operations with a vector integer or float operand.
 | |
|   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
 | |
|     if (BV->isConstant()) {
 | |
|       switch (Opcode) {
 | |
|       default:
 | |
|         // FIXME: Entirely reasonable to perform folding of other unary
 | |
|         // operations here as the need arises.
 | |
|         break;
 | |
|       case ISD::FNEG:
 | |
|       case ISD::FABS:
 | |
|       case ISD::FCEIL:
 | |
|       case ISD::FTRUNC:
 | |
|       case ISD::FFLOOR:
 | |
|       case ISD::FP_EXTEND:
 | |
|       case ISD::FP_TO_SINT:
 | |
|       case ISD::FP_TO_UINT:
 | |
|       case ISD::TRUNCATE:
 | |
|       case ISD::UINT_TO_FP:
 | |
|       case ISD::SINT_TO_FP:
 | |
|       case ISD::ABS:
 | |
|       case ISD::BITREVERSE:
 | |
|       case ISD::BSWAP:
 | |
|       case ISD::CTLZ:
 | |
|       case ISD::CTLZ_ZERO_UNDEF:
 | |
|       case ISD::CTTZ:
 | |
|       case ISD::CTTZ_ZERO_UNDEF:
 | |
|       case ISD::CTPOP: {
 | |
|         SDValue Ops = { Operand };
 | |
|         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
 | |
|           return Fold;
 | |
|       }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned OpOpcode = Operand.getNode()->getOpcode();
 | |
|   switch (Opcode) {
 | |
|   case ISD::TokenFactor:
 | |
|   case ISD::MERGE_VALUES:
 | |
|   case ISD::CONCAT_VECTORS:
 | |
|     return Operand;         // Factor, merge or concat of one node?  No need.
 | |
|   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
 | |
|   case ISD::FP_EXTEND:
 | |
|     assert(VT.isFloatingPoint() &&
 | |
|            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
 | |
|     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
 | |
|     assert((!VT.isVector() ||
 | |
|             VT.getVectorNumElements() ==
 | |
|             Operand.getValueType().getVectorNumElements()) &&
 | |
|            "Vector element count mismatch!");
 | |
|     assert(Operand.getValueType().bitsLT(VT) &&
 | |
|            "Invalid fpext node, dst < src!");
 | |
|     if (Operand.isUndef())
 | |
|       return getUNDEF(VT);
 | |
|     break;
 | |
|   case ISD::SIGN_EXTEND:
 | |
|     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
 | |
|            "Invalid SIGN_EXTEND!");
 | |
|     if (Operand.getValueType() == VT) return Operand;   // noop extension
 | |
|     assert((!VT.isVector() ||
 | |
|             VT.getVectorNumElements() ==
 | |
|             Operand.getValueType().getVectorNumElements()) &&
 | |
|            "Vector element count mismatch!");
 | |
|     assert(Operand.getValueType().bitsLT(VT) &&
 | |
|            "Invalid sext node, dst < src!");
 | |
|     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
 | |
|       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
 | |
|     else if (OpOpcode == ISD::UNDEF)
 | |
|       // sext(undef) = 0, because the top bits will all be the same.
 | |
|       return getConstant(0, DL, VT);
 | |
|     break;
 | |
|   case ISD::ZERO_EXTEND:
 | |
|     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
 | |
|            "Invalid ZERO_EXTEND!");
 | |
|     if (Operand.getValueType() == VT) return Operand;   // noop extension
 | |
|     assert((!VT.isVector() ||
 | |
|             VT.getVectorNumElements() ==
 | |
|             Operand.getValueType().getVectorNumElements()) &&
 | |
|            "Vector element count mismatch!");
 | |
|     assert(Operand.getValueType().bitsLT(VT) &&
 | |
|            "Invalid zext node, dst < src!");
 | |
|     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
 | |
|       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
 | |
|     else if (OpOpcode == ISD::UNDEF)
 | |
|       // zext(undef) = 0, because the top bits will be zero.
 | |
|       return getConstant(0, DL, VT);
 | |
|     break;
 | |
|   case ISD::ANY_EXTEND:
 | |
|     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
 | |
|            "Invalid ANY_EXTEND!");
 | |
|     if (Operand.getValueType() == VT) return Operand;   // noop extension
 | |
|     assert((!VT.isVector() ||
 | |
|             VT.getVectorNumElements() ==
 | |
|             Operand.getValueType().getVectorNumElements()) &&
 | |
|            "Vector element count mismatch!");
 | |
|     assert(Operand.getValueType().bitsLT(VT) &&
 | |
|            "Invalid anyext node, dst < src!");
 | |
| 
 | |
|     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
 | |
|         OpOpcode == ISD::ANY_EXTEND)
 | |
|       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
 | |
|       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
 | |
|     else if (OpOpcode == ISD::UNDEF)
 | |
|       return getUNDEF(VT);
 | |
| 
 | |
|     // (ext (trunx x)) -> x
 | |
|     if (OpOpcode == ISD::TRUNCATE) {
 | |
|       SDValue OpOp = Operand.getOperand(0);
 | |
|       if (OpOp.getValueType() == VT)
 | |
|         return OpOp;
 | |
|     }
 | |
|     break;
 | |
|   case ISD::TRUNCATE:
 | |
|     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
 | |
|            "Invalid TRUNCATE!");
 | |
|     if (Operand.getValueType() == VT) return Operand;   // noop truncate
 | |
|     assert((!VT.isVector() ||
 | |
|             VT.getVectorNumElements() ==
 | |
|             Operand.getValueType().getVectorNumElements()) &&
 | |
|            "Vector element count mismatch!");
 | |
|     assert(Operand.getValueType().bitsGT(VT) &&
 | |
|            "Invalid truncate node, src < dst!");
 | |
|     if (OpOpcode == ISD::TRUNCATE)
 | |
|       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
 | |
|     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
 | |
|         OpOpcode == ISD::ANY_EXTEND) {
 | |
|       // If the source is smaller than the dest, we still need an extend.
 | |
|       if (Operand.getOperand(0).getValueType().getScalarType()
 | |
|             .bitsLT(VT.getScalarType()))
 | |
|         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
 | |
|       if (Operand.getOperand(0).getValueType().bitsGT(VT))
 | |
|         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
 | |
|       return Operand.getOperand(0);
 | |
|     }
 | |
|     if (OpOpcode == ISD::UNDEF)
 | |
|       return getUNDEF(VT);
 | |
|     break;
 | |
|   case ISD::ABS:
 | |
|     assert(VT.isInteger() && VT == Operand.getValueType() &&
 | |
|            "Invalid ABS!");
 | |
|     if (OpOpcode == ISD::UNDEF)
 | |
|       return getUNDEF(VT);
 | |
|     break;
 | |
|   case ISD::BSWAP:
 | |
|     assert(VT.isInteger() && VT == Operand.getValueType() &&
 | |
|            "Invalid BSWAP!");
 | |
|     assert((VT.getScalarSizeInBits() % 16 == 0) &&
 | |
|            "BSWAP types must be a multiple of 16 bits!");
 | |
|     if (OpOpcode == ISD::UNDEF)
 | |
|       return getUNDEF(VT);
 | |
|     break;
 | |
|   case ISD::BITREVERSE:
 | |
|     assert(VT.isInteger() && VT == Operand.getValueType() &&
 | |
|            "Invalid BITREVERSE!");
 | |
|     if (OpOpcode == ISD::UNDEF)
 | |
|       return getUNDEF(VT);
 | |
|     break;
 | |
|   case ISD::BITCAST:
 | |
|     // Basic sanity checking.
 | |
|     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
 | |
|            "Cannot BITCAST between types of different sizes!");
 | |
|     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
 | |
|     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
 | |
|       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
 | |
|     if (OpOpcode == ISD::UNDEF)
 | |
|       return getUNDEF(VT);
 | |
|     break;
 | |
|   case ISD::SCALAR_TO_VECTOR:
 | |
|     assert(VT.isVector() && !Operand.getValueType().isVector() &&
 | |
|            (VT.getVectorElementType() == Operand.getValueType() ||
 | |
|             (VT.getVectorElementType().isInteger() &&
 | |
|              Operand.getValueType().isInteger() &&
 | |
|              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
 | |
|            "Illegal SCALAR_TO_VECTOR node!");
 | |
|     if (OpOpcode == ISD::UNDEF)
 | |
|       return getUNDEF(VT);
 | |
|     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
 | |
|     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
 | |
|         isa<ConstantSDNode>(Operand.getOperand(1)) &&
 | |
|         Operand.getConstantOperandVal(1) == 0 &&
 | |
|         Operand.getOperand(0).getValueType() == VT)
 | |
|       return Operand.getOperand(0);
 | |
|     break;
 | |
|   case ISD::FNEG:
 | |
|     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
 | |
|     if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB)
 | |
|       // FIXME: FNEG has no fast-math-flags to propagate; use the FSUB's flags?
 | |
|       return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
 | |
|                      Operand.getOperand(0), Operand.getNode()->getFlags());
 | |
|     if (OpOpcode == ISD::FNEG)  // --X -> X
 | |
|       return Operand.getOperand(0);
 | |
|     break;
 | |
|   case ISD::FABS:
 | |
|     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
 | |
|       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   SDNode *N;
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDValue Ops[] = {Operand};
 | |
|   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opcode, VTs, Ops);
 | |
|     void *IP = nullptr;
 | |
|     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
 | |
|       E->intersectFlagsWith(Flags);
 | |
|       return SDValue(E, 0);
 | |
|     }
 | |
| 
 | |
|     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
 | |
|     N->setFlags(Flags);
 | |
|     createOperands(N, Ops);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|   } else {
 | |
|     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
 | |
|     createOperands(N, Ops);
 | |
|   }
 | |
| 
 | |
|   InsertNode(N);
 | |
|   SDValue V = SDValue(N, 0);
 | |
|   NewSDValueDbgMsg(V, "Creating new node: ");
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
 | |
|                                         const APInt &C2) {
 | |
|   switch (Opcode) {
 | |
|   case ISD::ADD:  return std::make_pair(C1 + C2, true);
 | |
|   case ISD::SUB:  return std::make_pair(C1 - C2, true);
 | |
|   case ISD::MUL:  return std::make_pair(C1 * C2, true);
 | |
|   case ISD::AND:  return std::make_pair(C1 & C2, true);
 | |
|   case ISD::OR:   return std::make_pair(C1 | C2, true);
 | |
|   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
 | |
|   case ISD::SHL:  return std::make_pair(C1 << C2, true);
 | |
|   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
 | |
|   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
 | |
|   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
 | |
|   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
 | |
|   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
 | |
|   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
 | |
|   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
 | |
|   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
 | |
|   case ISD::UDIV:
 | |
|     if (!C2.getBoolValue())
 | |
|       break;
 | |
|     return std::make_pair(C1.udiv(C2), true);
 | |
|   case ISD::UREM:
 | |
|     if (!C2.getBoolValue())
 | |
|       break;
 | |
|     return std::make_pair(C1.urem(C2), true);
 | |
|   case ISD::SDIV:
 | |
|     if (!C2.getBoolValue())
 | |
|       break;
 | |
|     return std::make_pair(C1.sdiv(C2), true);
 | |
|   case ISD::SREM:
 | |
|     if (!C2.getBoolValue())
 | |
|       break;
 | |
|     return std::make_pair(C1.srem(C2), true);
 | |
|   }
 | |
|   return std::make_pair(APInt(1, 0), false);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
 | |
|                                              EVT VT, const ConstantSDNode *Cst1,
 | |
|                                              const ConstantSDNode *Cst2) {
 | |
|   if (Cst1->isOpaque() || Cst2->isOpaque())
 | |
|     return SDValue();
 | |
| 
 | |
|   std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(),
 | |
|                                             Cst2->getAPIntValue());
 | |
|   if (!Folded.second)
 | |
|     return SDValue();
 | |
|   return getConstant(Folded.first, DL, VT);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
 | |
|                                        const GlobalAddressSDNode *GA,
 | |
|                                        const SDNode *N2) {
 | |
|   if (GA->getOpcode() != ISD::GlobalAddress)
 | |
|     return SDValue();
 | |
|   if (!TLI->isOffsetFoldingLegal(GA))
 | |
|     return SDValue();
 | |
|   const ConstantSDNode *Cst2 = dyn_cast<ConstantSDNode>(N2);
 | |
|   if (!Cst2)
 | |
|     return SDValue();
 | |
|   int64_t Offset = Cst2->getSExtValue();
 | |
|   switch (Opcode) {
 | |
|   case ISD::ADD: break;
 | |
|   case ISD::SUB: Offset = -uint64_t(Offset); break;
 | |
|   default: return SDValue();
 | |
|   }
 | |
|   return getGlobalAddress(GA->getGlobal(), SDLoc(Cst2), VT,
 | |
|                           GA->getOffset() + uint64_t(Offset));
 | |
| }
 | |
| 
 | |
| bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
 | |
|   switch (Opcode) {
 | |
|   case ISD::SDIV:
 | |
|   case ISD::UDIV:
 | |
|   case ISD::SREM:
 | |
|   case ISD::UREM: {
 | |
|     // If a divisor is zero/undef or any element of a divisor vector is
 | |
|     // zero/undef, the whole op is undef.
 | |
|     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
 | |
|     SDValue Divisor = Ops[1];
 | |
|     if (Divisor.isUndef() || isNullConstant(Divisor))
 | |
|       return true;
 | |
| 
 | |
|     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
 | |
|            llvm::any_of(Divisor->op_values(),
 | |
|                         [](SDValue V) { return V.isUndef() ||
 | |
|                                         isNullConstant(V); });
 | |
|     // TODO: Handle signed overflow.
 | |
|   }
 | |
|   // TODO: Handle oversized shifts.
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
 | |
|                                              EVT VT, SDNode *Cst1,
 | |
|                                              SDNode *Cst2) {
 | |
|   // If the opcode is a target-specific ISD node, there's nothing we can
 | |
|   // do here and the operand rules may not line up with the below, so
 | |
|   // bail early.
 | |
|   if (Opcode >= ISD::BUILTIN_OP_END)
 | |
|     return SDValue();
 | |
| 
 | |
|   if (isUndef(Opcode, {SDValue(Cst1, 0), SDValue(Cst2, 0)}))
 | |
|     return getUNDEF(VT);
 | |
| 
 | |
|   // Handle the case of two scalars.
 | |
|   if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) {
 | |
|     if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) {
 | |
|       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2);
 | |
|       assert((!Folded || !VT.isVector()) &&
 | |
|              "Can't fold vectors ops with scalar operands");
 | |
|       return Folded;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // fold (add Sym, c) -> Sym+c
 | |
|   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst1))
 | |
|     return FoldSymbolOffset(Opcode, VT, GA, Cst2);
 | |
|   if (TLI->isCommutativeBinOp(Opcode))
 | |
|     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Cst2))
 | |
|       return FoldSymbolOffset(Opcode, VT, GA, Cst1);
 | |
| 
 | |
|   // For vectors extract each constant element into Inputs so we can constant
 | |
|   // fold them individually.
 | |
|   BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1);
 | |
|   BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2);
 | |
|   if (!BV1 || !BV2)
 | |
|     return SDValue();
 | |
| 
 | |
|   assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!");
 | |
| 
 | |
|   EVT SVT = VT.getScalarType();
 | |
|   EVT LegalSVT = SVT;
 | |
|   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
 | |
|     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
 | |
|     if (LegalSVT.bitsLT(SVT))
 | |
|       return SDValue();
 | |
|   }
 | |
|   SmallVector<SDValue, 4> Outputs;
 | |
|   for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) {
 | |
|     SDValue V1 = BV1->getOperand(I);
 | |
|     SDValue V2 = BV2->getOperand(I);
 | |
| 
 | |
|     if (SVT.isInteger()) {
 | |
|         if (V1->getValueType(0).bitsGT(SVT))
 | |
|           V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
 | |
|         if (V2->getValueType(0).bitsGT(SVT))
 | |
|           V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
 | |
|     }
 | |
| 
 | |
|     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
 | |
|       return SDValue();
 | |
| 
 | |
|     // Fold one vector element.
 | |
|     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
 | |
|     if (LegalSVT != SVT)
 | |
|       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
 | |
| 
 | |
|     // Scalar folding only succeeded if the result is a constant or UNDEF.
 | |
|     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
 | |
|         ScalarResult.getOpcode() != ISD::ConstantFP)
 | |
|       return SDValue();
 | |
|     Outputs.push_back(ScalarResult);
 | |
|   }
 | |
| 
 | |
|   assert(VT.getVectorNumElements() == Outputs.size() &&
 | |
|          "Vector size mismatch!");
 | |
| 
 | |
|   // We may have a vector type but a scalar result. Create a splat.
 | |
|   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
 | |
| 
 | |
|   // Build a big vector out of the scalar elements we generated.
 | |
|   return getBuildVector(VT, SDLoc(), Outputs);
 | |
| }
 | |
| 
 | |
| // TODO: Merge with FoldConstantArithmetic
 | |
| SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
 | |
|                                                    const SDLoc &DL, EVT VT,
 | |
|                                                    ArrayRef<SDValue> Ops,
 | |
|                                                    const SDNodeFlags Flags) {
 | |
|   // If the opcode is a target-specific ISD node, there's nothing we can
 | |
|   // do here and the operand rules may not line up with the below, so
 | |
|   // bail early.
 | |
|   if (Opcode >= ISD::BUILTIN_OP_END)
 | |
|     return SDValue();
 | |
| 
 | |
|   if (isUndef(Opcode, Ops))
 | |
|     return getUNDEF(VT);
 | |
| 
 | |
|   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
 | |
|   if (!VT.isVector())
 | |
|     return SDValue();
 | |
| 
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
| 
 | |
|   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
 | |
|     return !Op.getValueType().isVector() ||
 | |
|            Op.getValueType().getVectorNumElements() == NumElts;
 | |
|   };
 | |
| 
 | |
|   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
 | |
|     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
 | |
|     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
 | |
|            (BV && BV->isConstant());
 | |
|   };
 | |
| 
 | |
|   // All operands must be vector types with the same number of elements as
 | |
|   // the result type and must be either UNDEF or a build vector of constant
 | |
|   // or UNDEF scalars.
 | |
|   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
 | |
|       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
 | |
|     return SDValue();
 | |
| 
 | |
|   // If we are comparing vectors, then the result needs to be a i1 boolean
 | |
|   // that is then sign-extended back to the legal result type.
 | |
|   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
 | |
| 
 | |
|   // Find legal integer scalar type for constant promotion and
 | |
|   // ensure that its scalar size is at least as large as source.
 | |
|   EVT LegalSVT = VT.getScalarType();
 | |
|   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
 | |
|     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
 | |
|     if (LegalSVT.bitsLT(VT.getScalarType()))
 | |
|       return SDValue();
 | |
|   }
 | |
| 
 | |
|   // Constant fold each scalar lane separately.
 | |
|   SmallVector<SDValue, 4> ScalarResults;
 | |
|   for (unsigned i = 0; i != NumElts; i++) {
 | |
|     SmallVector<SDValue, 4> ScalarOps;
 | |
|     for (SDValue Op : Ops) {
 | |
|       EVT InSVT = Op.getValueType().getScalarType();
 | |
|       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
 | |
|       if (!InBV) {
 | |
|         // We've checked that this is UNDEF or a constant of some kind.
 | |
|         if (Op.isUndef())
 | |
|           ScalarOps.push_back(getUNDEF(InSVT));
 | |
|         else
 | |
|           ScalarOps.push_back(Op);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       SDValue ScalarOp = InBV->getOperand(i);
 | |
|       EVT ScalarVT = ScalarOp.getValueType();
 | |
| 
 | |
|       // Build vector (integer) scalar operands may need implicit
 | |
|       // truncation - do this before constant folding.
 | |
|       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
 | |
|         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
 | |
| 
 | |
|       ScalarOps.push_back(ScalarOp);
 | |
|     }
 | |
| 
 | |
|     // Constant fold the scalar operands.
 | |
|     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
 | |
| 
 | |
|     // Legalize the (integer) scalar constant if necessary.
 | |
|     if (LegalSVT != SVT)
 | |
|       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
 | |
| 
 | |
|     // Scalar folding only succeeded if the result is a constant or UNDEF.
 | |
|     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
 | |
|         ScalarResult.getOpcode() != ISD::ConstantFP)
 | |
|       return SDValue();
 | |
|     ScalarResults.push_back(ScalarResult);
 | |
|   }
 | |
| 
 | |
|   SDValue V = getBuildVector(VT, DL, ScalarResults);
 | |
|   NewSDValueDbgMsg(V, "New node fold constant vector: ");
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
 | |
|                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 | |
|   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
 | |
|   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
 | |
|   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
 | |
| 
 | |
|   // Canonicalize constant to RHS if commutative.
 | |
|   if (TLI->isCommutativeBinOp(Opcode)) {
 | |
|     if (N1C && !N2C) {
 | |
|       std::swap(N1C, N2C);
 | |
|       std::swap(N1, N2);
 | |
|     } else if (N1CFP && !N2CFP) {
 | |
|       std::swap(N1CFP, N2CFP);
 | |
|       std::swap(N1, N2);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case ISD::TokenFactor:
 | |
|     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
 | |
|            N2.getValueType() == MVT::Other && "Invalid token factor!");
 | |
|     // Fold trivial token factors.
 | |
|     if (N1.getOpcode() == ISD::EntryToken) return N2;
 | |
|     if (N2.getOpcode() == ISD::EntryToken) return N1;
 | |
|     if (N1 == N2) return N1;
 | |
|     break;
 | |
|   case ISD::CONCAT_VECTORS: {
 | |
|     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
 | |
|     SDValue Ops[] = {N1, N2};
 | |
|     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
 | |
|       return V;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::AND:
 | |
|     assert(VT.isInteger() && "This operator does not apply to FP types!");
 | |
|     assert(N1.getValueType() == N2.getValueType() &&
 | |
|            N1.getValueType() == VT && "Binary operator types must match!");
 | |
|     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
 | |
|     // worth handling here.
 | |
|     if (N2C && N2C->isNullValue())
 | |
|       return N2;
 | |
|     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
 | |
|       return N1;
 | |
|     break;
 | |
|   case ISD::OR:
 | |
|   case ISD::XOR:
 | |
|   case ISD::ADD:
 | |
|   case ISD::SUB:
 | |
|     assert(VT.isInteger() && "This operator does not apply to FP types!");
 | |
|     assert(N1.getValueType() == N2.getValueType() &&
 | |
|            N1.getValueType() == VT && "Binary operator types must match!");
 | |
|     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
 | |
|     // it's worth handling here.
 | |
|     if (N2C && N2C->isNullValue())
 | |
|       return N1;
 | |
|     break;
 | |
|   case ISD::UDIV:
 | |
|   case ISD::UREM:
 | |
|   case ISD::MULHU:
 | |
|   case ISD::MULHS:
 | |
|   case ISD::MUL:
 | |
|   case ISD::SDIV:
 | |
|   case ISD::SREM:
 | |
|   case ISD::SMIN:
 | |
|   case ISD::SMAX:
 | |
|   case ISD::UMIN:
 | |
|   case ISD::UMAX:
 | |
|     assert(VT.isInteger() && "This operator does not apply to FP types!");
 | |
|     assert(N1.getValueType() == N2.getValueType() &&
 | |
|            N1.getValueType() == VT && "Binary operator types must match!");
 | |
|     break;
 | |
|   case ISD::FADD:
 | |
|   case ISD::FSUB:
 | |
|   case ISD::FMUL:
 | |
|   case ISD::FDIV:
 | |
|   case ISD::FREM:
 | |
|     if (getTarget().Options.UnsafeFPMath) {
 | |
|       if (Opcode == ISD::FADD) {
 | |
|         // x+0 --> x
 | |
|         if (N2CFP && N2CFP->getValueAPF().isZero())
 | |
|           return N1;
 | |
|       } else if (Opcode == ISD::FSUB) {
 | |
|         // x-0 --> x
 | |
|         if (N2CFP && N2CFP->getValueAPF().isZero())
 | |
|           return N1;
 | |
|       } else if (Opcode == ISD::FMUL) {
 | |
|         // x*0 --> 0
 | |
|         if (N2CFP && N2CFP->isZero())
 | |
|           return N2;
 | |
|         // x*1 --> x
 | |
|         if (N2CFP && N2CFP->isExactlyValue(1.0))
 | |
|           return N1;
 | |
|       }
 | |
|     }
 | |
|     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
 | |
|     assert(N1.getValueType() == N2.getValueType() &&
 | |
|            N1.getValueType() == VT && "Binary operator types must match!");
 | |
|     break;
 | |
|   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
 | |
|     assert(N1.getValueType() == VT &&
 | |
|            N1.getValueType().isFloatingPoint() &&
 | |
|            N2.getValueType().isFloatingPoint() &&
 | |
|            "Invalid FCOPYSIGN!");
 | |
|     break;
 | |
|   case ISD::SHL:
 | |
|   case ISD::SRA:
 | |
|   case ISD::SRL:
 | |
|   case ISD::ROTL:
 | |
|   case ISD::ROTR:
 | |
|     assert(VT == N1.getValueType() &&
 | |
|            "Shift operators return type must be the same as their first arg");
 | |
|     assert(VT.isInteger() && N2.getValueType().isInteger() &&
 | |
|            "Shifts only work on integers");
 | |
|     assert((!VT.isVector() || VT == N2.getValueType()) &&
 | |
|            "Vector shift amounts must be in the same as their first arg");
 | |
|     // Verify that the shift amount VT is bit enough to hold valid shift
 | |
|     // amounts.  This catches things like trying to shift an i1024 value by an
 | |
|     // i8, which is easy to fall into in generic code that uses
 | |
|     // TLI.getShiftAmount().
 | |
|     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
 | |
|            "Invalid use of small shift amount with oversized value!");
 | |
| 
 | |
|     // Always fold shifts of i1 values so the code generator doesn't need to
 | |
|     // handle them.  Since we know the size of the shift has to be less than the
 | |
|     // size of the value, the shift/rotate count is guaranteed to be zero.
 | |
|     if (VT == MVT::i1)
 | |
|       return N1;
 | |
|     if (N2C && N2C->isNullValue())
 | |
|       return N1;
 | |
|     break;
 | |
|   case ISD::FP_ROUND_INREG: {
 | |
|     EVT EVT = cast<VTSDNode>(N2)->getVT();
 | |
|     assert(VT == N1.getValueType() && "Not an inreg round!");
 | |
|     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
 | |
|            "Cannot FP_ROUND_INREG integer types");
 | |
|     assert(EVT.isVector() == VT.isVector() &&
 | |
|            "FP_ROUND_INREG type should be vector iff the operand "
 | |
|            "type is vector!");
 | |
|     assert((!EVT.isVector() ||
 | |
|             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
 | |
|            "Vector element counts must match in FP_ROUND_INREG");
 | |
|     assert(EVT.bitsLE(VT) && "Not rounding down!");
 | |
|     (void)EVT;
 | |
|     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
 | |
|     break;
 | |
|   }
 | |
|   case ISD::FP_ROUND:
 | |
|     assert(VT.isFloatingPoint() &&
 | |
|            N1.getValueType().isFloatingPoint() &&
 | |
|            VT.bitsLE(N1.getValueType()) &&
 | |
|            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
 | |
|            "Invalid FP_ROUND!");
 | |
|     if (N1.getValueType() == VT) return N1;  // noop conversion.
 | |
|     break;
 | |
|   case ISD::AssertSext:
 | |
|   case ISD::AssertZext: {
 | |
|     EVT EVT = cast<VTSDNode>(N2)->getVT();
 | |
|     assert(VT == N1.getValueType() && "Not an inreg extend!");
 | |
|     assert(VT.isInteger() && EVT.isInteger() &&
 | |
|            "Cannot *_EXTEND_INREG FP types");
 | |
|     assert(!EVT.isVector() &&
 | |
|            "AssertSExt/AssertZExt type should be the vector element type "
 | |
|            "rather than the vector type!");
 | |
|     assert(EVT.bitsLE(VT) && "Not extending!");
 | |
|     if (VT == EVT) return N1; // noop assertion.
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SIGN_EXTEND_INREG: {
 | |
|     EVT EVT = cast<VTSDNode>(N2)->getVT();
 | |
|     assert(VT == N1.getValueType() && "Not an inreg extend!");
 | |
|     assert(VT.isInteger() && EVT.isInteger() &&
 | |
|            "Cannot *_EXTEND_INREG FP types");
 | |
|     assert(EVT.isVector() == VT.isVector() &&
 | |
|            "SIGN_EXTEND_INREG type should be vector iff the operand "
 | |
|            "type is vector!");
 | |
|     assert((!EVT.isVector() ||
 | |
|             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
 | |
|            "Vector element counts must match in SIGN_EXTEND_INREG");
 | |
|     assert(EVT.bitsLE(VT) && "Not extending!");
 | |
|     if (EVT == VT) return N1;  // Not actually extending
 | |
| 
 | |
|     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
 | |
|       unsigned FromBits = EVT.getScalarSizeInBits();
 | |
|       Val <<= Val.getBitWidth() - FromBits;
 | |
|       Val.ashrInPlace(Val.getBitWidth() - FromBits);
 | |
|       return getConstant(Val, DL, ConstantVT);
 | |
|     };
 | |
| 
 | |
|     if (N1C) {
 | |
|       const APInt &Val = N1C->getAPIntValue();
 | |
|       return SignExtendInReg(Val, VT);
 | |
|     }
 | |
|     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
 | |
|       SmallVector<SDValue, 8> Ops;
 | |
|       llvm::EVT OpVT = N1.getOperand(0).getValueType();
 | |
|       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
 | |
|         SDValue Op = N1.getOperand(i);
 | |
|         if (Op.isUndef()) {
 | |
|           Ops.push_back(getUNDEF(OpVT));
 | |
|           continue;
 | |
|         }
 | |
|         ConstantSDNode *C = cast<ConstantSDNode>(Op);
 | |
|         APInt Val = C->getAPIntValue();
 | |
|         Ops.push_back(SignExtendInReg(Val, OpVT));
 | |
|       }
 | |
|       return getBuildVector(VT, DL, Ops);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::EXTRACT_VECTOR_ELT:
 | |
|     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
 | |
|     if (N1.isUndef())
 | |
|       return getUNDEF(VT);
 | |
| 
 | |
|     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
 | |
|     if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements())
 | |
|       return getUNDEF(VT);
 | |
| 
 | |
|     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
 | |
|     // expanding copies of large vectors from registers.
 | |
|     if (N2C &&
 | |
|         N1.getOpcode() == ISD::CONCAT_VECTORS &&
 | |
|         N1.getNumOperands() > 0) {
 | |
|       unsigned Factor =
 | |
|         N1.getOperand(0).getValueType().getVectorNumElements();
 | |
|       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
 | |
|                      N1.getOperand(N2C->getZExtValue() / Factor),
 | |
|                      getConstant(N2C->getZExtValue() % Factor, DL,
 | |
|                                  N2.getValueType()));
 | |
|     }
 | |
| 
 | |
|     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
 | |
|     // expanding large vector constants.
 | |
|     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
 | |
|       SDValue Elt = N1.getOperand(N2C->getZExtValue());
 | |
| 
 | |
|       if (VT != Elt.getValueType())
 | |
|         // If the vector element type is not legal, the BUILD_VECTOR operands
 | |
|         // are promoted and implicitly truncated, and the result implicitly
 | |
|         // extended. Make that explicit here.
 | |
|         Elt = getAnyExtOrTrunc(Elt, DL, VT);
 | |
| 
 | |
|       return Elt;
 | |
|     }
 | |
| 
 | |
|     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
 | |
|     // operations are lowered to scalars.
 | |
|     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
 | |
|       // If the indices are the same, return the inserted element else
 | |
|       // if the indices are known different, extract the element from
 | |
|       // the original vector.
 | |
|       SDValue N1Op2 = N1.getOperand(2);
 | |
|       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
 | |
| 
 | |
|       if (N1Op2C && N2C) {
 | |
|         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
 | |
|           if (VT == N1.getOperand(1).getValueType())
 | |
|             return N1.getOperand(1);
 | |
|           else
 | |
|             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
 | |
|         }
 | |
| 
 | |
|         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
 | |
|     // when vector types are scalarized and v1iX is legal.
 | |
|     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
 | |
|     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
 | |
|         N1.getValueType().getVectorNumElements() == 1) {
 | |
|       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
 | |
|                      N1.getOperand(1));
 | |
|     }
 | |
|     break;
 | |
|   case ISD::EXTRACT_ELEMENT:
 | |
|     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
 | |
|     assert(!N1.getValueType().isVector() && !VT.isVector() &&
 | |
|            (N1.getValueType().isInteger() == VT.isInteger()) &&
 | |
|            N1.getValueType() != VT &&
 | |
|            "Wrong types for EXTRACT_ELEMENT!");
 | |
| 
 | |
|     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
 | |
|     // 64-bit integers into 32-bit parts.  Instead of building the extract of
 | |
|     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
 | |
|     if (N1.getOpcode() == ISD::BUILD_PAIR)
 | |
|       return N1.getOperand(N2C->getZExtValue());
 | |
| 
 | |
|     // EXTRACT_ELEMENT of a constant int is also very common.
 | |
|     if (N1C) {
 | |
|       unsigned ElementSize = VT.getSizeInBits();
 | |
|       unsigned Shift = ElementSize * N2C->getZExtValue();
 | |
|       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
 | |
|       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
 | |
|     }
 | |
|     break;
 | |
|   case ISD::EXTRACT_SUBVECTOR:
 | |
|     if (VT.isSimple() && N1.getValueType().isSimple()) {
 | |
|       assert(VT.isVector() && N1.getValueType().isVector() &&
 | |
|              "Extract subvector VTs must be a vectors!");
 | |
|       assert(VT.getVectorElementType() ==
 | |
|              N1.getValueType().getVectorElementType() &&
 | |
|              "Extract subvector VTs must have the same element type!");
 | |
|       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
 | |
|              "Extract subvector must be from larger vector to smaller vector!");
 | |
| 
 | |
|       if (N2C) {
 | |
|         assert((VT.getVectorNumElements() + N2C->getZExtValue()
 | |
|                 <= N1.getValueType().getVectorNumElements())
 | |
|                && "Extract subvector overflow!");
 | |
|       }
 | |
| 
 | |
|       // Trivial extraction.
 | |
|       if (VT.getSimpleVT() == N1.getSimpleValueType())
 | |
|         return N1;
 | |
| 
 | |
|       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
 | |
|       if (N1.isUndef())
 | |
|         return getUNDEF(VT);
 | |
| 
 | |
|       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
 | |
|       // the concat have the same type as the extract.
 | |
|       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
 | |
|           N1.getNumOperands() > 0 &&
 | |
|           VT == N1.getOperand(0).getValueType()) {
 | |
|         unsigned Factor = VT.getVectorNumElements();
 | |
|         return N1.getOperand(N2C->getZExtValue() / Factor);
 | |
|       }
 | |
| 
 | |
|       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
 | |
|       // during shuffle legalization.
 | |
|       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
 | |
|           VT == N1.getOperand(1).getValueType())
 | |
|         return N1.getOperand(1);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Perform trivial constant folding.
 | |
|   if (SDValue SV =
 | |
|           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
 | |
|     return SV;
 | |
| 
 | |
|   // Constant fold FP operations.
 | |
|   bool HasFPExceptions = TLI->hasFloatingPointExceptions();
 | |
|   if (N1CFP) {
 | |
|     if (N2CFP) {
 | |
|       APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
 | |
|       APFloat::opStatus s;
 | |
|       switch (Opcode) {
 | |
|       case ISD::FADD:
 | |
|         s = V1.add(V2, APFloat::rmNearestTiesToEven);
 | |
|         if (!HasFPExceptions || s != APFloat::opInvalidOp)
 | |
|           return getConstantFP(V1, DL, VT);
 | |
|         break;
 | |
|       case ISD::FSUB:
 | |
|         s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
 | |
|         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
 | |
|           return getConstantFP(V1, DL, VT);
 | |
|         break;
 | |
|       case ISD::FMUL:
 | |
|         s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
 | |
|         if (!HasFPExceptions || s!=APFloat::opInvalidOp)
 | |
|           return getConstantFP(V1, DL, VT);
 | |
|         break;
 | |
|       case ISD::FDIV:
 | |
|         s = V1.divide(V2, APFloat::rmNearestTiesToEven);
 | |
|         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
 | |
|                                  s!=APFloat::opDivByZero)) {
 | |
|           return getConstantFP(V1, DL, VT);
 | |
|         }
 | |
|         break;
 | |
|       case ISD::FREM :
 | |
|         s = V1.mod(V2);
 | |
|         if (!HasFPExceptions || (s!=APFloat::opInvalidOp &&
 | |
|                                  s!=APFloat::opDivByZero)) {
 | |
|           return getConstantFP(V1, DL, VT);
 | |
|         }
 | |
|         break;
 | |
|       case ISD::FCOPYSIGN:
 | |
|         V1.copySign(V2);
 | |
|         return getConstantFP(V1, DL, VT);
 | |
|       default: break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Opcode == ISD::FP_ROUND) {
 | |
|       APFloat V = N1CFP->getValueAPF();    // make copy
 | |
|       bool ignored;
 | |
|       // This can return overflow, underflow, or inexact; we don't care.
 | |
|       // FIXME need to be more flexible about rounding mode.
 | |
|       (void)V.convert(EVTToAPFloatSemantics(VT),
 | |
|                       APFloat::rmNearestTiesToEven, &ignored);
 | |
|       return getConstantFP(V, DL, VT);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Canonicalize an UNDEF to the RHS, even over a constant.
 | |
|   if (N1.isUndef()) {
 | |
|     if (TLI->isCommutativeBinOp(Opcode)) {
 | |
|       std::swap(N1, N2);
 | |
|     } else {
 | |
|       switch (Opcode) {
 | |
|       case ISD::FP_ROUND_INREG:
 | |
|       case ISD::SIGN_EXTEND_INREG:
 | |
|       case ISD::SUB:
 | |
|       case ISD::FSUB:
 | |
|       case ISD::FDIV:
 | |
|       case ISD::FREM:
 | |
|       case ISD::SRA:
 | |
|         return N1;     // fold op(undef, arg2) -> undef
 | |
|       case ISD::UDIV:
 | |
|       case ISD::SDIV:
 | |
|       case ISD::UREM:
 | |
|       case ISD::SREM:
 | |
|       case ISD::SRL:
 | |
|       case ISD::SHL:
 | |
|         if (!VT.isVector())
 | |
|           return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
 | |
|         // For vectors, we can't easily build an all zero vector, just return
 | |
|         // the LHS.
 | |
|         return N2;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fold a bunch of operators when the RHS is undef.
 | |
|   if (N2.isUndef()) {
 | |
|     switch (Opcode) {
 | |
|     case ISD::XOR:
 | |
|       if (N1.isUndef())
 | |
|         // Handle undef ^ undef -> 0 special case. This is a common
 | |
|         // idiom (misuse).
 | |
|         return getConstant(0, DL, VT);
 | |
|       LLVM_FALLTHROUGH;
 | |
|     case ISD::ADD:
 | |
|     case ISD::ADDC:
 | |
|     case ISD::ADDE:
 | |
|     case ISD::SUB:
 | |
|     case ISD::UDIV:
 | |
|     case ISD::SDIV:
 | |
|     case ISD::UREM:
 | |
|     case ISD::SREM:
 | |
|       return N2;       // fold op(arg1, undef) -> undef
 | |
|     case ISD::FADD:
 | |
|     case ISD::FSUB:
 | |
|     case ISD::FMUL:
 | |
|     case ISD::FDIV:
 | |
|     case ISD::FREM:
 | |
|       if (getTarget().Options.UnsafeFPMath)
 | |
|         return N2;
 | |
|       break;
 | |
|     case ISD::MUL:
 | |
|     case ISD::AND:
 | |
|     case ISD::SRL:
 | |
|     case ISD::SHL:
 | |
|       if (!VT.isVector())
 | |
|         return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
 | |
|       // For vectors, we can't easily build an all zero vector, just return
 | |
|       // the LHS.
 | |
|       return N1;
 | |
|     case ISD::OR:
 | |
|       if (!VT.isVector())
 | |
|         return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT);
 | |
|       // For vectors, we can't easily build an all one vector, just return
 | |
|       // the LHS.
 | |
|       return N1;
 | |
|     case ISD::SRA:
 | |
|       return N1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Memoize this node if possible.
 | |
|   SDNode *N;
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDValue Ops[] = {N1, N2};
 | |
|   if (VT != MVT::Glue) {
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opcode, VTs, Ops);
 | |
|     void *IP = nullptr;
 | |
|     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
 | |
|       E->intersectFlagsWith(Flags);
 | |
|       return SDValue(E, 0);
 | |
|     }
 | |
| 
 | |
|     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
 | |
|     N->setFlags(Flags);
 | |
|     createOperands(N, Ops);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|   } else {
 | |
|     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
 | |
|     createOperands(N, Ops);
 | |
|   }
 | |
| 
 | |
|   InsertNode(N);
 | |
|   SDValue V = SDValue(N, 0);
 | |
|   NewSDValueDbgMsg(V, "Creating new node: ");
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
 | |
|                               SDValue N1, SDValue N2, SDValue N3) {
 | |
|   // Perform various simplifications.
 | |
|   switch (Opcode) {
 | |
|   case ISD::FMA: {
 | |
|     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
 | |
|     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
 | |
|     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
 | |
|     if (N1CFP && N2CFP && N3CFP) {
 | |
|       APFloat  V1 = N1CFP->getValueAPF();
 | |
|       const APFloat &V2 = N2CFP->getValueAPF();
 | |
|       const APFloat &V3 = N3CFP->getValueAPF();
 | |
|       APFloat::opStatus s =
 | |
|         V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
 | |
|       if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp)
 | |
|         return getConstantFP(V1, DL, VT);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::CONCAT_VECTORS: {
 | |
|     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
 | |
|     SDValue Ops[] = {N1, N2, N3};
 | |
|     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
 | |
|       return V;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SETCC: {
 | |
|     // Use FoldSetCC to simplify SETCC's.
 | |
|     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
 | |
|       return V;
 | |
|     // Vector constant folding.
 | |
|     SDValue Ops[] = {N1, N2, N3};
 | |
|     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
 | |
|       NewSDValueDbgMsg(V, "New node vector constant folding: ");
 | |
|       return V;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SELECT:
 | |
|     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
 | |
|      if (N1C->getZExtValue())
 | |
|        return N2;             // select true, X, Y -> X
 | |
|      return N3;             // select false, X, Y -> Y
 | |
|     }
 | |
| 
 | |
|     if (N2 == N3) return N2;   // select C, X, X -> X
 | |
|     break;
 | |
|   case ISD::VECTOR_SHUFFLE:
 | |
|     llvm_unreachable("should use getVectorShuffle constructor!");
 | |
|   case ISD::INSERT_VECTOR_ELT: {
 | |
|     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
 | |
|     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
 | |
|     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
 | |
|       return getUNDEF(VT);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::INSERT_SUBVECTOR: {
 | |
|     SDValue Index = N3;
 | |
|     if (VT.isSimple() && N1.getValueType().isSimple()
 | |
|         && N2.getValueType().isSimple()) {
 | |
|       assert(VT.isVector() && N1.getValueType().isVector() &&
 | |
|              N2.getValueType().isVector() &&
 | |
|              "Insert subvector VTs must be a vectors");
 | |
|       assert(VT == N1.getValueType() &&
 | |
|              "Dest and insert subvector source types must match!");
 | |
|       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
 | |
|              "Insert subvector must be from smaller vector to larger vector!");
 | |
|       if (isa<ConstantSDNode>(Index)) {
 | |
|         assert((N2.getValueType().getVectorNumElements() +
 | |
|                 cast<ConstantSDNode>(Index)->getZExtValue()
 | |
|                 <= VT.getVectorNumElements())
 | |
|                && "Insert subvector overflow!");
 | |
|       }
 | |
| 
 | |
|       // Trivial insertion.
 | |
|       if (VT.getSimpleVT() == N2.getSimpleValueType())
 | |
|         return N2;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BITCAST:
 | |
|     // Fold bit_convert nodes from a type to themselves.
 | |
|     if (N1.getValueType() == VT)
 | |
|       return N1;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Memoize node if it doesn't produce a flag.
 | |
|   SDNode *N;
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDValue Ops[] = {N1, N2, N3};
 | |
|   if (VT != MVT::Glue) {
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opcode, VTs, Ops);
 | |
|     void *IP = nullptr;
 | |
|     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
 | |
|       return SDValue(E, 0);
 | |
| 
 | |
|     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
 | |
|     createOperands(N, Ops);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|   } else {
 | |
|     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
 | |
|     createOperands(N, Ops);
 | |
|   }
 | |
| 
 | |
|   InsertNode(N);
 | |
|   SDValue V = SDValue(N, 0);
 | |
|   NewSDValueDbgMsg(V, "Creating new node: ");
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
 | |
|                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
 | |
|   SDValue Ops[] = { N1, N2, N3, N4 };
 | |
|   return getNode(Opcode, DL, VT, Ops);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
 | |
|                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
 | |
|                               SDValue N5) {
 | |
|   SDValue Ops[] = { N1, N2, N3, N4, N5 };
 | |
|   return getNode(Opcode, DL, VT, Ops);
 | |
| }
 | |
| 
 | |
| /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
 | |
| /// the incoming stack arguments to be loaded from the stack.
 | |
| SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
 | |
|   SmallVector<SDValue, 8> ArgChains;
 | |
| 
 | |
|   // Include the original chain at the beginning of the list. When this is
 | |
|   // used by target LowerCall hooks, this helps legalize find the
 | |
|   // CALLSEQ_BEGIN node.
 | |
|   ArgChains.push_back(Chain);
 | |
| 
 | |
|   // Add a chain value for each stack argument.
 | |
|   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
 | |
|        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
 | |
|     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
 | |
|       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
 | |
|         if (FI->getIndex() < 0)
 | |
|           ArgChains.push_back(SDValue(L, 1));
 | |
| 
 | |
|   // Build a tokenfactor for all the chains.
 | |
|   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
 | |
| }
 | |
| 
 | |
| /// getMemsetValue - Vectorized representation of the memset value
 | |
| /// operand.
 | |
| static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
 | |
|                               const SDLoc &dl) {
 | |
|   assert(!Value.isUndef());
 | |
| 
 | |
|   unsigned NumBits = VT.getScalarSizeInBits();
 | |
|   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
 | |
|     assert(C->getAPIntValue().getBitWidth() == 8);
 | |
|     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
 | |
|     if (VT.isInteger())
 | |
|       return DAG.getConstant(Val, dl, VT);
 | |
|     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
 | |
|                              VT);
 | |
|   }
 | |
| 
 | |
|   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
 | |
|   EVT IntVT = VT.getScalarType();
 | |
|   if (!IntVT.isInteger())
 | |
|     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
 | |
| 
 | |
|   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
 | |
|   if (NumBits > 8) {
 | |
|     // Use a multiplication with 0x010101... to extend the input to the
 | |
|     // required length.
 | |
|     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
 | |
|     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
 | |
|                         DAG.getConstant(Magic, dl, IntVT));
 | |
|   }
 | |
| 
 | |
|   if (VT != Value.getValueType() && !VT.isInteger())
 | |
|     Value = DAG.getBitcast(VT.getScalarType(), Value);
 | |
|   if (VT != Value.getValueType())
 | |
|     Value = DAG.getSplatBuildVector(VT, dl, Value);
 | |
| 
 | |
|   return Value;
 | |
| }
 | |
| 
 | |
| /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
 | |
| /// used when a memcpy is turned into a memset when the source is a constant
 | |
| /// string ptr.
 | |
| static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
 | |
|                                   const TargetLowering &TLI,
 | |
|                                   const ConstantDataArraySlice &Slice) {
 | |
|   // Handle vector with all elements zero.
 | |
|   if (Slice.Array == nullptr) {
 | |
|     if (VT.isInteger())
 | |
|       return DAG.getConstant(0, dl, VT);
 | |
|     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
 | |
|       return DAG.getConstantFP(0.0, dl, VT);
 | |
|     else if (VT.isVector()) {
 | |
|       unsigned NumElts = VT.getVectorNumElements();
 | |
|       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
 | |
|       return DAG.getNode(ISD::BITCAST, dl, VT,
 | |
|                          DAG.getConstant(0, dl,
 | |
|                                          EVT::getVectorVT(*DAG.getContext(),
 | |
|                                                           EltVT, NumElts)));
 | |
|     } else
 | |
|       llvm_unreachable("Expected type!");
 | |
|   }
 | |
| 
 | |
|   assert(!VT.isVector() && "Can't handle vector type here!");
 | |
|   unsigned NumVTBits = VT.getSizeInBits();
 | |
|   unsigned NumVTBytes = NumVTBits / 8;
 | |
|   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
 | |
| 
 | |
|   APInt Val(NumVTBits, 0);
 | |
|   if (DAG.getDataLayout().isLittleEndian()) {
 | |
|     for (unsigned i = 0; i != NumBytes; ++i)
 | |
|       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
 | |
|   } else {
 | |
|     for (unsigned i = 0; i != NumBytes; ++i)
 | |
|       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
 | |
|   }
 | |
| 
 | |
|   // If the "cost" of materializing the integer immediate is less than the cost
 | |
|   // of a load, then it is cost effective to turn the load into the immediate.
 | |
|   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
 | |
|   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
 | |
|     return DAG.getConstant(Val, dl, VT);
 | |
|   return SDValue(nullptr, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
 | |
|                                            const SDLoc &DL) {
 | |
|   EVT VT = Base.getValueType();
 | |
|   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
 | |
| }
 | |
| 
 | |
| /// Returns true if memcpy source is constant data.
 | |
| static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
 | |
|   uint64_t SrcDelta = 0;
 | |
|   GlobalAddressSDNode *G = nullptr;
 | |
|   if (Src.getOpcode() == ISD::GlobalAddress)
 | |
|     G = cast<GlobalAddressSDNode>(Src);
 | |
|   else if (Src.getOpcode() == ISD::ADD &&
 | |
|            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
 | |
|            Src.getOperand(1).getOpcode() == ISD::Constant) {
 | |
|     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
 | |
|     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
 | |
|   }
 | |
|   if (!G)
 | |
|     return false;
 | |
| 
 | |
|   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
 | |
|                                   SrcDelta + G->getOffset());
 | |
| }
 | |
| 
 | |
| /// Determines the optimal series of memory ops to replace the memset / memcpy.
 | |
| /// Return true if the number of memory ops is below the threshold (Limit).
 | |
| /// It returns the types of the sequence of memory ops to perform
 | |
| /// memset / memcpy by reference.
 | |
| static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
 | |
|                                      unsigned Limit, uint64_t Size,
 | |
|                                      unsigned DstAlign, unsigned SrcAlign,
 | |
|                                      bool IsMemset,
 | |
|                                      bool ZeroMemset,
 | |
|                                      bool MemcpyStrSrc,
 | |
|                                      bool AllowOverlap,
 | |
|                                      unsigned DstAS, unsigned SrcAS,
 | |
|                                      SelectionDAG &DAG,
 | |
|                                      const TargetLowering &TLI) {
 | |
|   assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
 | |
|          "Expecting memcpy / memset source to meet alignment requirement!");
 | |
|   // If 'SrcAlign' is zero, that means the memory operation does not need to
 | |
|   // load the value, i.e. memset or memcpy from constant string. Otherwise,
 | |
|   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
 | |
|   // is the specified alignment of the memory operation. If it is zero, that
 | |
|   // means it's possible to change the alignment of the destination.
 | |
|   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
 | |
|   // not need to be loaded.
 | |
|   EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
 | |
|                                    IsMemset, ZeroMemset, MemcpyStrSrc,
 | |
|                                    DAG.getMachineFunction());
 | |
| 
 | |
|   if (VT == MVT::Other) {
 | |
|     // Use the largest integer type whose alignment constraints are satisfied.
 | |
|     // We only need to check DstAlign here as SrcAlign is always greater or
 | |
|     // equal to DstAlign (or zero).
 | |
|     VT = MVT::i64;
 | |
|     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
 | |
|            !TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
 | |
|       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
 | |
|     assert(VT.isInteger());
 | |
| 
 | |
|     // Find the largest legal integer type.
 | |
|     MVT LVT = MVT::i64;
 | |
|     while (!TLI.isTypeLegal(LVT))
 | |
|       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
 | |
|     assert(LVT.isInteger());
 | |
| 
 | |
|     // If the type we've chosen is larger than the largest legal integer type
 | |
|     // then use that instead.
 | |
|     if (VT.bitsGT(LVT))
 | |
|       VT = LVT;
 | |
|   }
 | |
| 
 | |
|   unsigned NumMemOps = 0;
 | |
|   while (Size != 0) {
 | |
|     unsigned VTSize = VT.getSizeInBits() / 8;
 | |
|     while (VTSize > Size) {
 | |
|       // For now, only use non-vector load / store's for the left-over pieces.
 | |
|       EVT NewVT = VT;
 | |
|       unsigned NewVTSize;
 | |
| 
 | |
|       bool Found = false;
 | |
|       if (VT.isVector() || VT.isFloatingPoint()) {
 | |
|         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
 | |
|         if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
 | |
|             TLI.isSafeMemOpType(NewVT.getSimpleVT()))
 | |
|           Found = true;
 | |
|         else if (NewVT == MVT::i64 &&
 | |
|                  TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
 | |
|                  TLI.isSafeMemOpType(MVT::f64)) {
 | |
|           // i64 is usually not legal on 32-bit targets, but f64 may be.
 | |
|           NewVT = MVT::f64;
 | |
|           Found = true;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!Found) {
 | |
|         do {
 | |
|           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
 | |
|           if (NewVT == MVT::i8)
 | |
|             break;
 | |
|         } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
 | |
|       }
 | |
|       NewVTSize = NewVT.getSizeInBits() / 8;
 | |
| 
 | |
|       // If the new VT cannot cover all of the remaining bits, then consider
 | |
|       // issuing a (or a pair of) unaligned and overlapping load / store.
 | |
|       // FIXME: Only does this for 64-bit or more since we don't have proper
 | |
|       // cost model for unaligned load / store.
 | |
|       bool Fast;
 | |
|       if (NumMemOps && AllowOverlap &&
 | |
|           VTSize >= 8 && NewVTSize < Size &&
 | |
|           TLI.allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, &Fast) && Fast)
 | |
|         VTSize = Size;
 | |
|       else {
 | |
|         VT = NewVT;
 | |
|         VTSize = NewVTSize;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (++NumMemOps > Limit)
 | |
|       return false;
 | |
| 
 | |
|     MemOps.push_back(VT);
 | |
|     Size -= VTSize;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
 | |
|   // On Darwin, -Os means optimize for size without hurting performance, so
 | |
|   // only really optimize for size when -Oz (MinSize) is used.
 | |
|   if (MF.getTarget().getTargetTriple().isOSDarwin())
 | |
|     return MF.getFunction()->optForMinSize();
 | |
|   return MF.getFunction()->optForSize();
 | |
| }
 | |
| 
 | |
| static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
 | |
|                                        SDValue Chain, SDValue Dst, SDValue Src,
 | |
|                                        uint64_t Size, unsigned Align,
 | |
|                                        bool isVol, bool AlwaysInline,
 | |
|                                        MachinePointerInfo DstPtrInfo,
 | |
|                                        MachinePointerInfo SrcPtrInfo) {
 | |
|   // Turn a memcpy of undef to nop.
 | |
|   if (Src.isUndef())
 | |
|     return Chain;
 | |
| 
 | |
|   // Expand memcpy to a series of load and store ops if the size operand falls
 | |
|   // below a certain threshold.
 | |
|   // TODO: In the AlwaysInline case, if the size is big then generate a loop
 | |
|   // rather than maybe a humongous number of loads and stores.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   const DataLayout &DL = DAG.getDataLayout();
 | |
|   LLVMContext &C = *DAG.getContext();
 | |
|   std::vector<EVT> MemOps;
 | |
|   bool DstAlignCanChange = false;
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   bool OptSize = shouldLowerMemFuncForSize(MF);
 | |
|   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
 | |
|   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
 | |
|     DstAlignCanChange = true;
 | |
|   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
 | |
|   if (Align > SrcAlign)
 | |
|     SrcAlign = Align;
 | |
|   ConstantDataArraySlice Slice;
 | |
|   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
 | |
|   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
 | |
|   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
 | |
| 
 | |
|   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
 | |
|                                 (DstAlignCanChange ? 0 : Align),
 | |
|                                 (isZeroConstant ? 0 : SrcAlign),
 | |
|                                 false, false, CopyFromConstant, true,
 | |
|                                 DstPtrInfo.getAddrSpace(),
 | |
|                                 SrcPtrInfo.getAddrSpace(),
 | |
|                                 DAG, TLI))
 | |
|     return SDValue();
 | |
| 
 | |
|   if (DstAlignCanChange) {
 | |
|     Type *Ty = MemOps[0].getTypeForEVT(C);
 | |
|     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
 | |
| 
 | |
|     // Don't promote to an alignment that would require dynamic stack
 | |
|     // realignment.
 | |
|     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
 | |
|     if (!TRI->needsStackRealignment(MF))
 | |
|       while (NewAlign > Align &&
 | |
|              DL.exceedsNaturalStackAlignment(NewAlign))
 | |
|           NewAlign /= 2;
 | |
| 
 | |
|     if (NewAlign > Align) {
 | |
|       // Give the stack frame object a larger alignment if needed.
 | |
|       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
 | |
|         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
 | |
|       Align = NewAlign;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MachineMemOperand::Flags MMOFlags =
 | |
|       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
 | |
|   SmallVector<SDValue, 8> OutChains;
 | |
|   unsigned NumMemOps = MemOps.size();
 | |
|   uint64_t SrcOff = 0, DstOff = 0;
 | |
|   for (unsigned i = 0; i != NumMemOps; ++i) {
 | |
|     EVT VT = MemOps[i];
 | |
|     unsigned VTSize = VT.getSizeInBits() / 8;
 | |
|     SDValue Value, Store;
 | |
| 
 | |
|     if (VTSize > Size) {
 | |
|       // Issuing an unaligned load / store pair  that overlaps with the previous
 | |
|       // pair. Adjust the offset accordingly.
 | |
|       assert(i == NumMemOps-1 && i != 0);
 | |
|       SrcOff -= VTSize - Size;
 | |
|       DstOff -= VTSize - Size;
 | |
|     }
 | |
| 
 | |
|     if (CopyFromConstant &&
 | |
|         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
 | |
|       // It's unlikely a store of a vector immediate can be done in a single
 | |
|       // instruction. It would require a load from a constantpool first.
 | |
|       // We only handle zero vectors here.
 | |
|       // FIXME: Handle other cases where store of vector immediate is done in
 | |
|       // a single instruction.
 | |
|       ConstantDataArraySlice SubSlice;
 | |
|       if (SrcOff < Slice.Length) {
 | |
|         SubSlice = Slice;
 | |
|         SubSlice.move(SrcOff);
 | |
|       } else {
 | |
|         // This is an out-of-bounds access and hence UB. Pretend we read zero.
 | |
|         SubSlice.Array = nullptr;
 | |
|         SubSlice.Offset = 0;
 | |
|         SubSlice.Length = VTSize;
 | |
|       }
 | |
|       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
 | |
|       if (Value.getNode())
 | |
|         Store = DAG.getStore(Chain, dl, Value,
 | |
|                              DAG.getMemBasePlusOffset(Dst, DstOff, dl),
 | |
|                              DstPtrInfo.getWithOffset(DstOff), Align,
 | |
|                              MMOFlags);
 | |
|     }
 | |
| 
 | |
|     if (!Store.getNode()) {
 | |
|       // The type might not be legal for the target.  This should only happen
 | |
|       // if the type is smaller than a legal type, as on PPC, so the right
 | |
|       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
 | |
|       // to Load/Store if NVT==VT.
 | |
|       // FIXME does the case above also need this?
 | |
|       EVT NVT = TLI.getTypeToTransformTo(C, VT);
 | |
|       assert(NVT.bitsGE(VT));
 | |
| 
 | |
|       bool isDereferenceable =
 | |
|         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
 | |
|       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
 | |
|       if (isDereferenceable)
 | |
|         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
 | |
| 
 | |
|       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
 | |
|                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
 | |
|                              SrcPtrInfo.getWithOffset(SrcOff), VT,
 | |
|                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
 | |
|       OutChains.push_back(Value.getValue(1));
 | |
|       Store = DAG.getTruncStore(
 | |
|           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
 | |
|           DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags);
 | |
|     }
 | |
|     OutChains.push_back(Store);
 | |
|     SrcOff += VTSize;
 | |
|     DstOff += VTSize;
 | |
|     Size -= VTSize;
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
 | |
| }
 | |
| 
 | |
| static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
 | |
|                                         SDValue Chain, SDValue Dst, SDValue Src,
 | |
|                                         uint64_t Size, unsigned Align,
 | |
|                                         bool isVol, bool AlwaysInline,
 | |
|                                         MachinePointerInfo DstPtrInfo,
 | |
|                                         MachinePointerInfo SrcPtrInfo) {
 | |
|   // Turn a memmove of undef to nop.
 | |
|   if (Src.isUndef())
 | |
|     return Chain;
 | |
| 
 | |
|   // Expand memmove to a series of load and store ops if the size operand falls
 | |
|   // below a certain threshold.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   const DataLayout &DL = DAG.getDataLayout();
 | |
|   LLVMContext &C = *DAG.getContext();
 | |
|   std::vector<EVT> MemOps;
 | |
|   bool DstAlignCanChange = false;
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   bool OptSize = shouldLowerMemFuncForSize(MF);
 | |
|   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
 | |
|   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
 | |
|     DstAlignCanChange = true;
 | |
|   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
 | |
|   if (Align > SrcAlign)
 | |
|     SrcAlign = Align;
 | |
|   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
 | |
| 
 | |
|   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
 | |
|                                 (DstAlignCanChange ? 0 : Align), SrcAlign,
 | |
|                                 false, false, false, false,
 | |
|                                 DstPtrInfo.getAddrSpace(),
 | |
|                                 SrcPtrInfo.getAddrSpace(),
 | |
|                                 DAG, TLI))
 | |
|     return SDValue();
 | |
| 
 | |
|   if (DstAlignCanChange) {
 | |
|     Type *Ty = MemOps[0].getTypeForEVT(C);
 | |
|     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
 | |
|     if (NewAlign > Align) {
 | |
|       // Give the stack frame object a larger alignment if needed.
 | |
|       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
 | |
|         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
 | |
|       Align = NewAlign;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MachineMemOperand::Flags MMOFlags =
 | |
|       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
 | |
|   uint64_t SrcOff = 0, DstOff = 0;
 | |
|   SmallVector<SDValue, 8> LoadValues;
 | |
|   SmallVector<SDValue, 8> LoadChains;
 | |
|   SmallVector<SDValue, 8> OutChains;
 | |
|   unsigned NumMemOps = MemOps.size();
 | |
|   for (unsigned i = 0; i < NumMemOps; i++) {
 | |
|     EVT VT = MemOps[i];
 | |
|     unsigned VTSize = VT.getSizeInBits() / 8;
 | |
|     SDValue Value;
 | |
| 
 | |
|     bool isDereferenceable =
 | |
|       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
 | |
|     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
 | |
|     if (isDereferenceable)
 | |
|       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
 | |
| 
 | |
|     Value =
 | |
|         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
 | |
|                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
 | |
|     LoadValues.push_back(Value);
 | |
|     LoadChains.push_back(Value.getValue(1));
 | |
|     SrcOff += VTSize;
 | |
|   }
 | |
|   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
 | |
|   OutChains.clear();
 | |
|   for (unsigned i = 0; i < NumMemOps; i++) {
 | |
|     EVT VT = MemOps[i];
 | |
|     unsigned VTSize = VT.getSizeInBits() / 8;
 | |
|     SDValue Store;
 | |
| 
 | |
|     Store = DAG.getStore(Chain, dl, LoadValues[i],
 | |
|                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
 | |
|                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
 | |
|     OutChains.push_back(Store);
 | |
|     DstOff += VTSize;
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
 | |
| }
 | |
| 
 | |
| /// \brief Lower the call to 'memset' intrinsic function into a series of store
 | |
| /// operations.
 | |
| ///
 | |
| /// \param DAG Selection DAG where lowered code is placed.
 | |
| /// \param dl Link to corresponding IR location.
 | |
| /// \param Chain Control flow dependency.
 | |
| /// \param Dst Pointer to destination memory location.
 | |
| /// \param Src Value of byte to write into the memory.
 | |
| /// \param Size Number of bytes to write.
 | |
| /// \param Align Alignment of the destination in bytes.
 | |
| /// \param isVol True if destination is volatile.
 | |
| /// \param DstPtrInfo IR information on the memory pointer.
 | |
| /// \returns New head in the control flow, if lowering was successful, empty
 | |
| /// SDValue otherwise.
 | |
| ///
 | |
| /// The function tries to replace 'llvm.memset' intrinsic with several store
 | |
| /// operations and value calculation code. This is usually profitable for small
 | |
| /// memory size.
 | |
| static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
 | |
|                                SDValue Chain, SDValue Dst, SDValue Src,
 | |
|                                uint64_t Size, unsigned Align, bool isVol,
 | |
|                                MachinePointerInfo DstPtrInfo) {
 | |
|   // Turn a memset of undef to nop.
 | |
|   if (Src.isUndef())
 | |
|     return Chain;
 | |
| 
 | |
|   // Expand memset to a series of load/store ops if the size operand
 | |
|   // falls below a certain threshold.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   std::vector<EVT> MemOps;
 | |
|   bool DstAlignCanChange = false;
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   bool OptSize = shouldLowerMemFuncForSize(MF);
 | |
|   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
 | |
|   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
 | |
|     DstAlignCanChange = true;
 | |
|   bool IsZeroVal =
 | |
|     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
 | |
|   if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
 | |
|                                 Size, (DstAlignCanChange ? 0 : Align), 0,
 | |
|                                 true, IsZeroVal, false, true,
 | |
|                                 DstPtrInfo.getAddrSpace(), ~0u,
 | |
|                                 DAG, TLI))
 | |
|     return SDValue();
 | |
| 
 | |
|   if (DstAlignCanChange) {
 | |
|     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
 | |
|     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
 | |
|     if (NewAlign > Align) {
 | |
|       // Give the stack frame object a larger alignment if needed.
 | |
|       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
 | |
|         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
 | |
|       Align = NewAlign;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SmallVector<SDValue, 8> OutChains;
 | |
|   uint64_t DstOff = 0;
 | |
|   unsigned NumMemOps = MemOps.size();
 | |
| 
 | |
|   // Find the largest store and generate the bit pattern for it.
 | |
|   EVT LargestVT = MemOps[0];
 | |
|   for (unsigned i = 1; i < NumMemOps; i++)
 | |
|     if (MemOps[i].bitsGT(LargestVT))
 | |
|       LargestVT = MemOps[i];
 | |
|   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
 | |
| 
 | |
|   for (unsigned i = 0; i < NumMemOps; i++) {
 | |
|     EVT VT = MemOps[i];
 | |
|     unsigned VTSize = VT.getSizeInBits() / 8;
 | |
|     if (VTSize > Size) {
 | |
|       // Issuing an unaligned load / store pair  that overlaps with the previous
 | |
|       // pair. Adjust the offset accordingly.
 | |
|       assert(i == NumMemOps-1 && i != 0);
 | |
|       DstOff -= VTSize - Size;
 | |
|     }
 | |
| 
 | |
|     // If this store is smaller than the largest store see whether we can get
 | |
|     // the smaller value for free with a truncate.
 | |
|     SDValue Value = MemSetValue;
 | |
|     if (VT.bitsLT(LargestVT)) {
 | |
|       if (!LargestVT.isVector() && !VT.isVector() &&
 | |
|           TLI.isTruncateFree(LargestVT, VT))
 | |
|         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
 | |
|       else
 | |
|         Value = getMemsetValue(Src, VT, DAG, dl);
 | |
|     }
 | |
|     assert(Value.getValueType() == VT && "Value with wrong type.");
 | |
|     SDValue Store = DAG.getStore(
 | |
|         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
 | |
|         DstPtrInfo.getWithOffset(DstOff), Align,
 | |
|         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
 | |
|     OutChains.push_back(Store);
 | |
|     DstOff += VT.getSizeInBits() / 8;
 | |
|     Size -= VTSize;
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
 | |
| }
 | |
| 
 | |
| static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
 | |
|                                             unsigned AS) {
 | |
|   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
 | |
|   // pointer operands can be losslessly bitcasted to pointers of address space 0
 | |
|   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
 | |
|     report_fatal_error("cannot lower memory intrinsic in address space " +
 | |
|                        Twine(AS));
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
 | |
|                                 SDValue Src, SDValue Size, unsigned Align,
 | |
|                                 bool isVol, bool AlwaysInline, bool isTailCall,
 | |
|                                 MachinePointerInfo DstPtrInfo,
 | |
|                                 MachinePointerInfo SrcPtrInfo) {
 | |
|   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
 | |
| 
 | |
|   // Check to see if we should lower the memcpy to loads and stores first.
 | |
|   // For cases within the target-specified limits, this is the best choice.
 | |
|   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
 | |
|   if (ConstantSize) {
 | |
|     // Memcpy with size zero? Just return the original chain.
 | |
|     if (ConstantSize->isNullValue())
 | |
|       return Chain;
 | |
| 
 | |
|     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
 | |
|                                              ConstantSize->getZExtValue(),Align,
 | |
|                                 isVol, false, DstPtrInfo, SrcPtrInfo);
 | |
|     if (Result.getNode())
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   // Then check to see if we should lower the memcpy with target-specific
 | |
|   // code. If the target chooses to do this, this is the next best.
 | |
|   if (TSI) {
 | |
|     SDValue Result = TSI->EmitTargetCodeForMemcpy(
 | |
|         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
 | |
|         DstPtrInfo, SrcPtrInfo);
 | |
|     if (Result.getNode())
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   // If we really need inline code and the target declined to provide it,
 | |
|   // use a (potentially long) sequence of loads and stores.
 | |
|   if (AlwaysInline) {
 | |
|     assert(ConstantSize && "AlwaysInline requires a constant size!");
 | |
|     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
 | |
|                                    ConstantSize->getZExtValue(), Align, isVol,
 | |
|                                    true, DstPtrInfo, SrcPtrInfo);
 | |
|   }
 | |
| 
 | |
|   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
 | |
|   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
 | |
| 
 | |
|   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
 | |
|   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
 | |
|   // respect volatile, so they may do things like read or write memory
 | |
|   // beyond the given memory regions. But fixing this isn't easy, and most
 | |
|   // people don't care.
 | |
| 
 | |
|   // Emit a library call.
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
|   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
 | |
|   Entry.Node = Dst; Args.push_back(Entry);
 | |
|   Entry.Node = Src; Args.push_back(Entry);
 | |
|   Entry.Node = Size; Args.push_back(Entry);
 | |
|   // FIXME: pass in SDLoc
 | |
|   TargetLowering::CallLoweringInfo CLI(*this);
 | |
|   CLI.setDebugLoc(dl)
 | |
|       .setChain(Chain)
 | |
|       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
 | |
|                     Dst.getValueType().getTypeForEVT(*getContext()),
 | |
|                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
 | |
|                                       TLI->getPointerTy(getDataLayout())),
 | |
|                     std::move(Args))
 | |
|       .setDiscardResult()
 | |
|       .setTailCall(isTailCall);
 | |
| 
 | |
|   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
 | |
|   return CallResult.second;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
 | |
|                                  SDValue Src, SDValue Size, unsigned Align,
 | |
|                                  bool isVol, bool isTailCall,
 | |
|                                  MachinePointerInfo DstPtrInfo,
 | |
|                                  MachinePointerInfo SrcPtrInfo) {
 | |
|   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
 | |
| 
 | |
|   // Check to see if we should lower the memmove to loads and stores first.
 | |
|   // For cases within the target-specified limits, this is the best choice.
 | |
|   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
 | |
|   if (ConstantSize) {
 | |
|     // Memmove with size zero? Just return the original chain.
 | |
|     if (ConstantSize->isNullValue())
 | |
|       return Chain;
 | |
| 
 | |
|     SDValue Result =
 | |
|       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
 | |
|                                ConstantSize->getZExtValue(), Align, isVol,
 | |
|                                false, DstPtrInfo, SrcPtrInfo);
 | |
|     if (Result.getNode())
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   // Then check to see if we should lower the memmove with target-specific
 | |
|   // code. If the target chooses to do this, this is the next best.
 | |
|   if (TSI) {
 | |
|     SDValue Result = TSI->EmitTargetCodeForMemmove(
 | |
|         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
 | |
|     if (Result.getNode())
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
 | |
|   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
 | |
| 
 | |
|   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
 | |
|   // not be safe.  See memcpy above for more details.
 | |
| 
 | |
|   // Emit a library call.
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
|   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
 | |
|   Entry.Node = Dst; Args.push_back(Entry);
 | |
|   Entry.Node = Src; Args.push_back(Entry);
 | |
|   Entry.Node = Size; Args.push_back(Entry);
 | |
|   // FIXME:  pass in SDLoc
 | |
|   TargetLowering::CallLoweringInfo CLI(*this);
 | |
|   CLI.setDebugLoc(dl)
 | |
|       .setChain(Chain)
 | |
|       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
 | |
|                     Dst.getValueType().getTypeForEVT(*getContext()),
 | |
|                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
 | |
|                                       TLI->getPointerTy(getDataLayout())),
 | |
|                     std::move(Args))
 | |
|       .setDiscardResult()
 | |
|       .setTailCall(isTailCall);
 | |
| 
 | |
|   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
 | |
|   return CallResult.second;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
 | |
|                                 SDValue Src, SDValue Size, unsigned Align,
 | |
|                                 bool isVol, bool isTailCall,
 | |
|                                 MachinePointerInfo DstPtrInfo) {
 | |
|   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
 | |
| 
 | |
|   // Check to see if we should lower the memset to stores first.
 | |
|   // For cases within the target-specified limits, this is the best choice.
 | |
|   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
 | |
|   if (ConstantSize) {
 | |
|     // Memset with size zero? Just return the original chain.
 | |
|     if (ConstantSize->isNullValue())
 | |
|       return Chain;
 | |
| 
 | |
|     SDValue Result =
 | |
|       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
 | |
|                       Align, isVol, DstPtrInfo);
 | |
| 
 | |
|     if (Result.getNode())
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   // Then check to see if we should lower the memset with target-specific
 | |
|   // code. If the target chooses to do this, this is the next best.
 | |
|   if (TSI) {
 | |
|     SDValue Result = TSI->EmitTargetCodeForMemset(
 | |
|         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
 | |
|     if (Result.getNode())
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
 | |
| 
 | |
|   // Emit a library call.
 | |
|   Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
|   Entry.Node = Dst; Entry.Ty = IntPtrTy;
 | |
|   Args.push_back(Entry);
 | |
|   Entry.Node = Src;
 | |
|   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
 | |
|   Args.push_back(Entry);
 | |
|   Entry.Node = Size;
 | |
|   Entry.Ty = IntPtrTy;
 | |
|   Args.push_back(Entry);
 | |
| 
 | |
|   // FIXME: pass in SDLoc
 | |
|   TargetLowering::CallLoweringInfo CLI(*this);
 | |
|   CLI.setDebugLoc(dl)
 | |
|       .setChain(Chain)
 | |
|       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
 | |
|                     Dst.getValueType().getTypeForEVT(*getContext()),
 | |
|                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
 | |
|                                       TLI->getPointerTy(getDataLayout())),
 | |
|                     std::move(Args))
 | |
|       .setDiscardResult()
 | |
|       .setTailCall(isTailCall);
 | |
| 
 | |
|   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
 | |
|   return CallResult.second;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
 | |
|                                 SDVTList VTList, ArrayRef<SDValue> Ops,
 | |
|                                 MachineMemOperand *MMO) {
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(MemVT.getRawBits());
 | |
|   AddNodeIDNode(ID, Opcode, VTList, Ops);
 | |
|   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
 | |
|   void* IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
 | |
|     cast<AtomicSDNode>(E)->refineAlignment(MMO);
 | |
|     return SDValue(E, 0);
 | |
|   }
 | |
| 
 | |
|   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
 | |
|                                     VTList, MemVT, MMO);
 | |
|   createOperands(N, Ops);
 | |
| 
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getAtomicCmpSwap(
 | |
|     unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain,
 | |
|     SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
 | |
|     unsigned Alignment, AtomicOrdering SuccessOrdering,
 | |
|     AtomicOrdering FailureOrdering, SyncScope::ID SSID) {
 | |
|   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
 | |
|          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
 | |
|   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
 | |
| 
 | |
|   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
 | |
|     Alignment = getEVTAlignment(MemVT);
 | |
| 
 | |
|   MachineFunction &MF = getMachineFunction();
 | |
| 
 | |
|   // FIXME: Volatile isn't really correct; we should keep track of atomic
 | |
|   // orderings in the memoperand.
 | |
|   auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad |
 | |
|                MachineMemOperand::MOStore;
 | |
|   MachineMemOperand *MMO =
 | |
|     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
 | |
|                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
 | |
|                             FailureOrdering);
 | |
| 
 | |
|   return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
 | |
|                                        EVT MemVT, SDVTList VTs, SDValue Chain,
 | |
|                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
 | |
|                                        MachineMemOperand *MMO) {
 | |
|   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
 | |
|          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
 | |
|   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
 | |
| 
 | |
|   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
 | |
|   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
 | |
|                                 SDValue Chain, SDValue Ptr, SDValue Val,
 | |
|                                 const Value *PtrVal, unsigned Alignment,
 | |
|                                 AtomicOrdering Ordering,
 | |
|                                 SyncScope::ID SSID) {
 | |
|   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
 | |
|     Alignment = getEVTAlignment(MemVT);
 | |
| 
 | |
|   MachineFunction &MF = getMachineFunction();
 | |
|   // An atomic store does not load. An atomic load does not store.
 | |
|   // (An atomicrmw obviously both loads and stores.)
 | |
|   // For now, atomics are considered to be volatile always, and they are
 | |
|   // chained as such.
 | |
|   // FIXME: Volatile isn't really correct; we should keep track of atomic
 | |
|   // orderings in the memoperand.
 | |
|   auto Flags = MachineMemOperand::MOVolatile;
 | |
|   if (Opcode != ISD::ATOMIC_STORE)
 | |
|     Flags |= MachineMemOperand::MOLoad;
 | |
|   if (Opcode != ISD::ATOMIC_LOAD)
 | |
|     Flags |= MachineMemOperand::MOStore;
 | |
| 
 | |
|   MachineMemOperand *MMO =
 | |
|     MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
 | |
|                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
 | |
|                             nullptr, SSID, Ordering);
 | |
| 
 | |
|   return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
 | |
|                                 SDValue Chain, SDValue Ptr, SDValue Val,
 | |
|                                 MachineMemOperand *MMO) {
 | |
|   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_SUB ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_AND ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_OR ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_XOR ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_NAND ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_MIN ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_MAX ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_UMIN ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_UMAX ||
 | |
|           Opcode == ISD::ATOMIC_SWAP ||
 | |
|           Opcode == ISD::ATOMIC_STORE) &&
 | |
|          "Invalid Atomic Op");
 | |
| 
 | |
|   EVT VT = Val.getValueType();
 | |
| 
 | |
|   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
 | |
|                                                getVTList(VT, MVT::Other);
 | |
|   SDValue Ops[] = {Chain, Ptr, Val};
 | |
|   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
 | |
|                                 EVT VT, SDValue Chain, SDValue Ptr,
 | |
|                                 MachineMemOperand *MMO) {
 | |
|   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
 | |
| 
 | |
|   SDVTList VTs = getVTList(VT, MVT::Other);
 | |
|   SDValue Ops[] = {Chain, Ptr};
 | |
|   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
 | |
| }
 | |
| 
 | |
| /// getMergeValues - Create a MERGE_VALUES node from the given operands.
 | |
| SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
 | |
|   if (Ops.size() == 1)
 | |
|     return Ops[0];
 | |
| 
 | |
|   SmallVector<EVT, 4> VTs;
 | |
|   VTs.reserve(Ops.size());
 | |
|   for (unsigned i = 0; i < Ops.size(); ++i)
 | |
|     VTs.push_back(Ops[i].getValueType());
 | |
|   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getMemIntrinsicNode(
 | |
|     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
 | |
|     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, bool Vol,
 | |
|     bool ReadMem, bool WriteMem, unsigned Size) {
 | |
|   if (Align == 0)  // Ensure that codegen never sees alignment 0
 | |
|     Align = getEVTAlignment(MemVT);
 | |
| 
 | |
|   MachineFunction &MF = getMachineFunction();
 | |
|   auto Flags = MachineMemOperand::MONone;
 | |
|   if (WriteMem)
 | |
|     Flags |= MachineMemOperand::MOStore;
 | |
|   if (ReadMem)
 | |
|     Flags |= MachineMemOperand::MOLoad;
 | |
|   if (Vol)
 | |
|     Flags |= MachineMemOperand::MOVolatile;
 | |
|   if (!Size)
 | |
|     Size = MemVT.getStoreSize();
 | |
|   MachineMemOperand *MMO =
 | |
|     MF.getMachineMemOperand(PtrInfo, Flags, Size, Align);
 | |
| 
 | |
|   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
 | |
|                                           SDVTList VTList,
 | |
|                                           ArrayRef<SDValue> Ops, EVT MemVT,
 | |
|                                           MachineMemOperand *MMO) {
 | |
|   assert((Opcode == ISD::INTRINSIC_VOID ||
 | |
|           Opcode == ISD::INTRINSIC_W_CHAIN ||
 | |
|           Opcode == ISD::PREFETCH ||
 | |
|           Opcode == ISD::LIFETIME_START ||
 | |
|           Opcode == ISD::LIFETIME_END ||
 | |
|           ((int)Opcode <= std::numeric_limits<int>::max() &&
 | |
|            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
 | |
|          "Opcode is not a memory-accessing opcode!");
 | |
| 
 | |
|   // Memoize the node unless it returns a flag.
 | |
|   MemIntrinsicSDNode *N;
 | |
|   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opcode, VTList, Ops);
 | |
|     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
 | |
|     void *IP = nullptr;
 | |
|     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
 | |
|       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
 | |
|       return SDValue(E, 0);
 | |
|     }
 | |
| 
 | |
|     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
 | |
|                                       VTList, MemVT, MMO);
 | |
|     createOperands(N, Ops);
 | |
| 
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   } else {
 | |
|     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
 | |
|                                       VTList, MemVT, MMO);
 | |
|     createOperands(N, Ops);
 | |
|   }
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
 | |
| /// MachinePointerInfo record from it.  This is particularly useful because the
 | |
| /// code generator has many cases where it doesn't bother passing in a
 | |
| /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
 | |
| static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr,
 | |
|                                            int64_t Offset = 0) {
 | |
|   // If this is FI+Offset, we can model it.
 | |
|   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
 | |
|     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
 | |
|                                              FI->getIndex(), Offset);
 | |
| 
 | |
|   // If this is (FI+Offset1)+Offset2, we can model it.
 | |
|   if (Ptr.getOpcode() != ISD::ADD ||
 | |
|       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
 | |
|       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
 | |
|     return MachinePointerInfo();
 | |
| 
 | |
|   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
 | |
|   return MachinePointerInfo::getFixedStack(
 | |
|       DAG.getMachineFunction(), FI,
 | |
|       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
 | |
| }
 | |
| 
 | |
| /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
 | |
| /// MachinePointerInfo record from it.  This is particularly useful because the
 | |
| /// code generator has many cases where it doesn't bother passing in a
 | |
| /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
 | |
| static MachinePointerInfo InferPointerInfo(SelectionDAG &DAG, SDValue Ptr,
 | |
|                                            SDValue OffsetOp) {
 | |
|   // If the 'Offset' value isn't a constant, we can't handle this.
 | |
|   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
 | |
|     return InferPointerInfo(DAG, Ptr, OffsetNode->getSExtValue());
 | |
|   if (OffsetOp.isUndef())
 | |
|     return InferPointerInfo(DAG, Ptr);
 | |
|   return MachinePointerInfo();
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
 | |
|                               EVT VT, const SDLoc &dl, SDValue Chain,
 | |
|                               SDValue Ptr, SDValue Offset,
 | |
|                               MachinePointerInfo PtrInfo, EVT MemVT,
 | |
|                               unsigned Alignment,
 | |
|                               MachineMemOperand::Flags MMOFlags,
 | |
|                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
 | |
|   assert(Chain.getValueType() == MVT::Other &&
 | |
|         "Invalid chain type");
 | |
|   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
 | |
|     Alignment = getEVTAlignment(MemVT);
 | |
| 
 | |
|   MMOFlags |= MachineMemOperand::MOLoad;
 | |
|   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
 | |
|   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
 | |
|   // clients.
 | |
|   if (PtrInfo.V.isNull())
 | |
|     PtrInfo = InferPointerInfo(*this, Ptr, Offset);
 | |
| 
 | |
|   MachineFunction &MF = getMachineFunction();
 | |
|   MachineMemOperand *MMO = MF.getMachineMemOperand(
 | |
|       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
 | |
|   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
 | |
|                               EVT VT, const SDLoc &dl, SDValue Chain,
 | |
|                               SDValue Ptr, SDValue Offset, EVT MemVT,
 | |
|                               MachineMemOperand *MMO) {
 | |
|   if (VT == MemVT) {
 | |
|     ExtType = ISD::NON_EXTLOAD;
 | |
|   } else if (ExtType == ISD::NON_EXTLOAD) {
 | |
|     assert(VT == MemVT && "Non-extending load from different memory type!");
 | |
|   } else {
 | |
|     // Extending load.
 | |
|     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
 | |
|            "Should only be an extending load, not truncating!");
 | |
|     assert(VT.isInteger() == MemVT.isInteger() &&
 | |
|            "Cannot convert from FP to Int or Int -> FP!");
 | |
|     assert(VT.isVector() == MemVT.isVector() &&
 | |
|            "Cannot use an ext load to convert to or from a vector!");
 | |
|     assert((!VT.isVector() ||
 | |
|             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
 | |
|            "Cannot use an ext load to change the number of vector elements!");
 | |
|   }
 | |
| 
 | |
|   bool Indexed = AM != ISD::UNINDEXED;
 | |
|   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
 | |
| 
 | |
|   SDVTList VTs = Indexed ?
 | |
|     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
 | |
|   SDValue Ops[] = { Chain, Ptr, Offset };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
 | |
|   ID.AddInteger(MemVT.getRawBits());
 | |
|   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
 | |
|       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
 | |
|   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
 | |
|   void *IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
 | |
|     cast<LoadSDNode>(E)->refineAlignment(MMO);
 | |
|     return SDValue(E, 0);
 | |
|   }
 | |
|   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
 | |
|                                   ExtType, MemVT, MMO);
 | |
|   createOperands(N, Ops);
 | |
| 
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
 | |
|                               SDValue Ptr, MachinePointerInfo PtrInfo,
 | |
|                               unsigned Alignment,
 | |
|                               MachineMemOperand::Flags MMOFlags,
 | |
|                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
 | |
|   SDValue Undef = getUNDEF(Ptr.getValueType());
 | |
|   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
 | |
|                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
 | |
|                               SDValue Ptr, MachineMemOperand *MMO) {
 | |
|   SDValue Undef = getUNDEF(Ptr.getValueType());
 | |
|   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
 | |
|                  VT, MMO);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
 | |
|                                  EVT VT, SDValue Chain, SDValue Ptr,
 | |
|                                  MachinePointerInfo PtrInfo, EVT MemVT,
 | |
|                                  unsigned Alignment,
 | |
|                                  MachineMemOperand::Flags MMOFlags,
 | |
|                                  const AAMDNodes &AAInfo) {
 | |
|   SDValue Undef = getUNDEF(Ptr.getValueType());
 | |
|   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
 | |
|                  MemVT, Alignment, MMOFlags, AAInfo);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
 | |
|                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
 | |
|                                  MachineMemOperand *MMO) {
 | |
|   SDValue Undef = getUNDEF(Ptr.getValueType());
 | |
|   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
 | |
|                  MemVT, MMO);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
 | |
|                                      SDValue Base, SDValue Offset,
 | |
|                                      ISD::MemIndexedMode AM) {
 | |
|   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
 | |
|   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
 | |
|   // Don't propagate the invariant or dereferenceable flags.
 | |
|   auto MMOFlags =
 | |
|       LD->getMemOperand()->getFlags() &
 | |
|       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
 | |
|   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
 | |
|                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
 | |
|                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
 | |
|                  LD->getAAInfo());
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
 | |
|                                SDValue Ptr, MachinePointerInfo PtrInfo,
 | |
|                                unsigned Alignment,
 | |
|                                MachineMemOperand::Flags MMOFlags,
 | |
|                                const AAMDNodes &AAInfo) {
 | |
|   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
 | |
|   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
 | |
|     Alignment = getEVTAlignment(Val.getValueType());
 | |
| 
 | |
|   MMOFlags |= MachineMemOperand::MOStore;
 | |
|   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
 | |
| 
 | |
|   if (PtrInfo.V.isNull())
 | |
|     PtrInfo = InferPointerInfo(*this, Ptr);
 | |
| 
 | |
|   MachineFunction &MF = getMachineFunction();
 | |
|   MachineMemOperand *MMO = MF.getMachineMemOperand(
 | |
|       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
 | |
|   return getStore(Chain, dl, Val, Ptr, MMO);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
 | |
|                                SDValue Ptr, MachineMemOperand *MMO) {
 | |
|   assert(Chain.getValueType() == MVT::Other &&
 | |
|         "Invalid chain type");
 | |
|   EVT VT = Val.getValueType();
 | |
|   SDVTList VTs = getVTList(MVT::Other);
 | |
|   SDValue Undef = getUNDEF(Ptr.getValueType());
 | |
|   SDValue Ops[] = { Chain, Val, Ptr, Undef };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
 | |
|   ID.AddInteger(VT.getRawBits());
 | |
|   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
 | |
|       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
 | |
|   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
 | |
|   void *IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
 | |
|     cast<StoreSDNode>(E)->refineAlignment(MMO);
 | |
|     return SDValue(E, 0);
 | |
|   }
 | |
|   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
 | |
|                                    ISD::UNINDEXED, false, VT, MMO);
 | |
|   createOperands(N, Ops);
 | |
| 
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
 | |
|                                     SDValue Ptr, MachinePointerInfo PtrInfo,
 | |
|                                     EVT SVT, unsigned Alignment,
 | |
|                                     MachineMemOperand::Flags MMOFlags,
 | |
|                                     const AAMDNodes &AAInfo) {
 | |
|   assert(Chain.getValueType() == MVT::Other &&
 | |
|         "Invalid chain type");
 | |
|   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
 | |
|     Alignment = getEVTAlignment(SVT);
 | |
| 
 | |
|   MMOFlags |= MachineMemOperand::MOStore;
 | |
|   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
 | |
| 
 | |
|   if (PtrInfo.V.isNull())
 | |
|     PtrInfo = InferPointerInfo(*this, Ptr);
 | |
| 
 | |
|   MachineFunction &MF = getMachineFunction();
 | |
|   MachineMemOperand *MMO = MF.getMachineMemOperand(
 | |
|       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
 | |
|   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
 | |
|                                     SDValue Ptr, EVT SVT,
 | |
|                                     MachineMemOperand *MMO) {
 | |
|   EVT VT = Val.getValueType();
 | |
| 
 | |
|   assert(Chain.getValueType() == MVT::Other &&
 | |
|         "Invalid chain type");
 | |
|   if (VT == SVT)
 | |
|     return getStore(Chain, dl, Val, Ptr, MMO);
 | |
| 
 | |
|   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
 | |
|          "Should only be a truncating store, not extending!");
 | |
|   assert(VT.isInteger() == SVT.isInteger() &&
 | |
|          "Can't do FP-INT conversion!");
 | |
|   assert(VT.isVector() == SVT.isVector() &&
 | |
|          "Cannot use trunc store to convert to or from a vector!");
 | |
|   assert((!VT.isVector() ||
 | |
|           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
 | |
|          "Cannot use trunc store to change the number of vector elements!");
 | |
| 
 | |
|   SDVTList VTs = getVTList(MVT::Other);
 | |
|   SDValue Undef = getUNDEF(Ptr.getValueType());
 | |
|   SDValue Ops[] = { Chain, Val, Ptr, Undef };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
 | |
|   ID.AddInteger(SVT.getRawBits());
 | |
|   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
 | |
|       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
 | |
|   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
 | |
|   void *IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
 | |
|     cast<StoreSDNode>(E)->refineAlignment(MMO);
 | |
|     return SDValue(E, 0);
 | |
|   }
 | |
|   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
 | |
|                                    ISD::UNINDEXED, true, SVT, MMO);
 | |
|   createOperands(N, Ops);
 | |
| 
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
 | |
|                                       SDValue Base, SDValue Offset,
 | |
|                                       ISD::MemIndexedMode AM) {
 | |
|   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
 | |
|   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
 | |
|   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
 | |
|   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
 | |
|   ID.AddInteger(ST->getMemoryVT().getRawBits());
 | |
|   ID.AddInteger(ST->getRawSubclassData());
 | |
|   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
 | |
|   void *IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
 | |
|                                    ST->isTruncatingStore(), ST->getMemoryVT(),
 | |
|                                    ST->getMemOperand());
 | |
|   createOperands(N, Ops);
 | |
| 
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
 | |
|                                     SDValue Ptr, SDValue Mask, SDValue Src0,
 | |
|                                     EVT MemVT, MachineMemOperand *MMO,
 | |
|                                     ISD::LoadExtType ExtTy, bool isExpanding) {
 | |
|   SDVTList VTs = getVTList(VT, MVT::Other);
 | |
|   SDValue Ops[] = { Chain, Ptr, Mask, Src0 };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
 | |
|   ID.AddInteger(VT.getRawBits());
 | |
|   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
 | |
|       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
 | |
|   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
 | |
|   void *IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
 | |
|     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
 | |
|     return SDValue(E, 0);
 | |
|   }
 | |
|   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
 | |
|                                         ExtTy, isExpanding, MemVT, MMO);
 | |
|   createOperands(N, Ops);
 | |
| 
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
 | |
|                                      SDValue Val, SDValue Ptr, SDValue Mask,
 | |
|                                      EVT MemVT, MachineMemOperand *MMO,
 | |
|                                      bool IsTruncating, bool IsCompressing) {
 | |
|   assert(Chain.getValueType() == MVT::Other &&
 | |
|         "Invalid chain type");
 | |
|   EVT VT = Val.getValueType();
 | |
|   SDVTList VTs = getVTList(MVT::Other);
 | |
|   SDValue Ops[] = { Chain, Ptr, Mask, Val };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
 | |
|   ID.AddInteger(VT.getRawBits());
 | |
|   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
 | |
|       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
 | |
|   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
 | |
|   void *IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
 | |
|     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
 | |
|     return SDValue(E, 0);
 | |
|   }
 | |
|   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
 | |
|                                          IsTruncating, IsCompressing, MemVT, MMO);
 | |
|   createOperands(N, Ops);
 | |
| 
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
 | |
|                                       ArrayRef<SDValue> Ops,
 | |
|                                       MachineMemOperand *MMO) {
 | |
|   assert(Ops.size() == 5 && "Incompatible number of operands");
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
 | |
|   ID.AddInteger(VT.getRawBits());
 | |
|   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
 | |
|       dl.getIROrder(), VTs, VT, MMO));
 | |
|   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
 | |
|   void *IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
 | |
|     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
 | |
|     return SDValue(E, 0);
 | |
|   }
 | |
| 
 | |
|   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
 | |
|                                           VTs, VT, MMO);
 | |
|   createOperands(N, Ops);
 | |
| 
 | |
|   assert(N->getValue().getValueType() == N->getValueType(0) &&
 | |
|          "Incompatible type of the PassThru value in MaskedGatherSDNode");
 | |
|   assert(N->getMask().getValueType().getVectorNumElements() ==
 | |
|              N->getValueType(0).getVectorNumElements() &&
 | |
|          "Vector width mismatch between mask and data");
 | |
|   assert(N->getIndex().getValueType().getVectorNumElements() ==
 | |
|              N->getValueType(0).getVectorNumElements() &&
 | |
|          "Vector width mismatch between index and data");
 | |
| 
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
 | |
|                                        ArrayRef<SDValue> Ops,
 | |
|                                        MachineMemOperand *MMO) {
 | |
|   assert(Ops.size() == 5 && "Incompatible number of operands");
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
 | |
|   ID.AddInteger(VT.getRawBits());
 | |
|   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
 | |
|       dl.getIROrder(), VTs, VT, MMO));
 | |
|   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
 | |
|   void *IP = nullptr;
 | |
|   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
 | |
|     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
 | |
|     return SDValue(E, 0);
 | |
|   }
 | |
|   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
 | |
|                                            VTs, VT, MMO);
 | |
|   createOperands(N, Ops);
 | |
| 
 | |
|   assert(N->getMask().getValueType().getVectorNumElements() ==
 | |
|              N->getValue().getValueType().getVectorNumElements() &&
 | |
|          "Vector width mismatch between mask and data");
 | |
|   assert(N->getIndex().getValueType().getVectorNumElements() ==
 | |
|              N->getValue().getValueType().getVectorNumElements() &&
 | |
|          "Vector width mismatch between index and data");
 | |
| 
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
 | |
|                                SDValue Ptr, SDValue SV, unsigned Align) {
 | |
|   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
 | |
|   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
 | |
|                               ArrayRef<SDUse> Ops) {
 | |
|   switch (Ops.size()) {
 | |
|   case 0: return getNode(Opcode, DL, VT);
 | |
|   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
 | |
|   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
 | |
|   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
 | |
|   default: break;
 | |
|   }
 | |
| 
 | |
|   // Copy from an SDUse array into an SDValue array for use with
 | |
|   // the regular getNode logic.
 | |
|   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
 | |
|   return getNode(Opcode, DL, VT, NewOps);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
 | |
|                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
 | |
|   unsigned NumOps = Ops.size();
 | |
|   switch (NumOps) {
 | |
|   case 0: return getNode(Opcode, DL, VT);
 | |
|   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
 | |
|   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
 | |
|   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
 | |
|   default: break;
 | |
|   }
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case ISD::CONCAT_VECTORS:
 | |
|     // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
 | |
|     if (SDValue V = FoldCONCAT_VECTORS(DL, VT, Ops, *this))
 | |
|       return V;
 | |
|     break;
 | |
|   case ISD::SELECT_CC:
 | |
|     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
 | |
|     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
 | |
|            "LHS and RHS of condition must have same type!");
 | |
|     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
 | |
|            "True and False arms of SelectCC must have same type!");
 | |
|     assert(Ops[2].getValueType() == VT &&
 | |
|            "select_cc node must be of same type as true and false value!");
 | |
|     break;
 | |
|   case ISD::BR_CC:
 | |
|     assert(NumOps == 5 && "BR_CC takes 5 operands!");
 | |
|     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
 | |
|            "LHS/RHS of comparison should match types!");
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Memoize nodes.
 | |
|   SDNode *N;
 | |
|   SDVTList VTs = getVTList(VT);
 | |
| 
 | |
|   if (VT != MVT::Glue) {
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opcode, VTs, Ops);
 | |
|     void *IP = nullptr;
 | |
| 
 | |
|     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
 | |
|       return SDValue(E, 0);
 | |
| 
 | |
|     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
 | |
|     createOperands(N, Ops);
 | |
| 
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|   } else {
 | |
|     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
 | |
|     createOperands(N, Ops);
 | |
|   }
 | |
| 
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
 | |
|                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
 | |
|   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
 | |
|                               ArrayRef<SDValue> Ops) {
 | |
|   if (VTList.NumVTs == 1)
 | |
|     return getNode(Opcode, DL, VTList.VTs[0], Ops);
 | |
| 
 | |
| #if 0
 | |
|   switch (Opcode) {
 | |
|   // FIXME: figure out how to safely handle things like
 | |
|   // int foo(int x) { return 1 << (x & 255); }
 | |
|   // int bar() { return foo(256); }
 | |
|   case ISD::SRA_PARTS:
 | |
|   case ISD::SRL_PARTS:
 | |
|   case ISD::SHL_PARTS:
 | |
|     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
 | |
|         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
 | |
|       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
 | |
|     else if (N3.getOpcode() == ISD::AND)
 | |
|       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
 | |
|         // If the and is only masking out bits that cannot effect the shift,
 | |
|         // eliminate the and.
 | |
|         unsigned NumBits = VT.getScalarSizeInBits()*2;
 | |
|         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
 | |
|           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
 | |
|       }
 | |
|     break;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // Memoize the node unless it returns a flag.
 | |
|   SDNode *N;
 | |
|   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opcode, VTList, Ops);
 | |
|     void *IP = nullptr;
 | |
|     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
 | |
|       return SDValue(E, 0);
 | |
| 
 | |
|     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
 | |
|     createOperands(N, Ops);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|   } else {
 | |
|     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
 | |
|     createOperands(N, Ops);
 | |
|   }
 | |
|   InsertNode(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
 | |
|                               SDVTList VTList) {
 | |
|   return getNode(Opcode, DL, VTList, None);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
 | |
|                               SDValue N1) {
 | |
|   SDValue Ops[] = { N1 };
 | |
|   return getNode(Opcode, DL, VTList, Ops);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
 | |
|                               SDValue N1, SDValue N2) {
 | |
|   SDValue Ops[] = { N1, N2 };
 | |
|   return getNode(Opcode, DL, VTList, Ops);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
 | |
|                               SDValue N1, SDValue N2, SDValue N3) {
 | |
|   SDValue Ops[] = { N1, N2, N3 };
 | |
|   return getNode(Opcode, DL, VTList, Ops);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
 | |
|                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
 | |
|   SDValue Ops[] = { N1, N2, N3, N4 };
 | |
|   return getNode(Opcode, DL, VTList, Ops);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
 | |
|                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
 | |
|                               SDValue N5) {
 | |
|   SDValue Ops[] = { N1, N2, N3, N4, N5 };
 | |
|   return getNode(Opcode, DL, VTList, Ops);
 | |
| }
 | |
| 
 | |
| SDVTList SelectionDAG::getVTList(EVT VT) {
 | |
|   return makeVTList(SDNode::getValueTypeList(VT), 1);
 | |
| }
 | |
| 
 | |
| SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(2U);
 | |
|   ID.AddInteger(VT1.getRawBits());
 | |
|   ID.AddInteger(VT2.getRawBits());
 | |
| 
 | |
|   void *IP = nullptr;
 | |
|   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
 | |
|   if (!Result) {
 | |
|     EVT *Array = Allocator.Allocate<EVT>(2);
 | |
|     Array[0] = VT1;
 | |
|     Array[1] = VT2;
 | |
|     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
 | |
|     VTListMap.InsertNode(Result, IP);
 | |
|   }
 | |
|   return Result->getSDVTList();
 | |
| }
 | |
| 
 | |
| SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(3U);
 | |
|   ID.AddInteger(VT1.getRawBits());
 | |
|   ID.AddInteger(VT2.getRawBits());
 | |
|   ID.AddInteger(VT3.getRawBits());
 | |
| 
 | |
|   void *IP = nullptr;
 | |
|   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
 | |
|   if (!Result) {
 | |
|     EVT *Array = Allocator.Allocate<EVT>(3);
 | |
|     Array[0] = VT1;
 | |
|     Array[1] = VT2;
 | |
|     Array[2] = VT3;
 | |
|     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
 | |
|     VTListMap.InsertNode(Result, IP);
 | |
|   }
 | |
|   return Result->getSDVTList();
 | |
| }
 | |
| 
 | |
| SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(4U);
 | |
|   ID.AddInteger(VT1.getRawBits());
 | |
|   ID.AddInteger(VT2.getRawBits());
 | |
|   ID.AddInteger(VT3.getRawBits());
 | |
|   ID.AddInteger(VT4.getRawBits());
 | |
| 
 | |
|   void *IP = nullptr;
 | |
|   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
 | |
|   if (!Result) {
 | |
|     EVT *Array = Allocator.Allocate<EVT>(4);
 | |
|     Array[0] = VT1;
 | |
|     Array[1] = VT2;
 | |
|     Array[2] = VT3;
 | |
|     Array[3] = VT4;
 | |
|     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
 | |
|     VTListMap.InsertNode(Result, IP);
 | |
|   }
 | |
|   return Result->getSDVTList();
 | |
| }
 | |
| 
 | |
| SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
 | |
|   unsigned NumVTs = VTs.size();
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(NumVTs);
 | |
|   for (unsigned index = 0; index < NumVTs; index++) {
 | |
|     ID.AddInteger(VTs[index].getRawBits());
 | |
|   }
 | |
| 
 | |
|   void *IP = nullptr;
 | |
|   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
 | |
|   if (!Result) {
 | |
|     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
 | |
|     std::copy(VTs.begin(), VTs.end(), Array);
 | |
|     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
 | |
|     VTListMap.InsertNode(Result, IP);
 | |
|   }
 | |
|   return Result->getSDVTList();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
 | |
| /// specified operands.  If the resultant node already exists in the DAG,
 | |
| /// this does not modify the specified node, instead it returns the node that
 | |
| /// already exists.  If the resultant node does not exist in the DAG, the
 | |
| /// input node is returned.  As a degenerate case, if you specify the same
 | |
| /// input operands as the node already has, the input node is returned.
 | |
| SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
 | |
|   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
 | |
| 
 | |
|   // Check to see if there is no change.
 | |
|   if (Op == N->getOperand(0)) return N;
 | |
| 
 | |
|   // See if the modified node already exists.
 | |
|   void *InsertPos = nullptr;
 | |
|   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
 | |
|     return Existing;
 | |
| 
 | |
|   // Nope it doesn't.  Remove the node from its current place in the maps.
 | |
|   if (InsertPos)
 | |
|     if (!RemoveNodeFromCSEMaps(N))
 | |
|       InsertPos = nullptr;
 | |
| 
 | |
|   // Now we update the operands.
 | |
|   N->OperandList[0].set(Op);
 | |
| 
 | |
|   // If this gets put into a CSE map, add it.
 | |
|   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
 | |
|   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
 | |
| 
 | |
|   // Check to see if there is no change.
 | |
|   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
 | |
|     return N;   // No operands changed, just return the input node.
 | |
| 
 | |
|   // See if the modified node already exists.
 | |
|   void *InsertPos = nullptr;
 | |
|   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
 | |
|     return Existing;
 | |
| 
 | |
|   // Nope it doesn't.  Remove the node from its current place in the maps.
 | |
|   if (InsertPos)
 | |
|     if (!RemoveNodeFromCSEMaps(N))
 | |
|       InsertPos = nullptr;
 | |
| 
 | |
|   // Now we update the operands.
 | |
|   if (N->OperandList[0] != Op1)
 | |
|     N->OperandList[0].set(Op1);
 | |
|   if (N->OperandList[1] != Op2)
 | |
|     N->OperandList[1].set(Op2);
 | |
| 
 | |
|   // If this gets put into a CSE map, add it.
 | |
|   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::
 | |
| UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
 | |
|   SDValue Ops[] = { Op1, Op2, Op3 };
 | |
|   return UpdateNodeOperands(N, Ops);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::
 | |
| UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
 | |
|                    SDValue Op3, SDValue Op4) {
 | |
|   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
 | |
|   return UpdateNodeOperands(N, Ops);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::
 | |
| UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
 | |
|                    SDValue Op3, SDValue Op4, SDValue Op5) {
 | |
|   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
 | |
|   return UpdateNodeOperands(N, Ops);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::
 | |
| UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
 | |
|   unsigned NumOps = Ops.size();
 | |
|   assert(N->getNumOperands() == NumOps &&
 | |
|          "Update with wrong number of operands");
 | |
| 
 | |
|   // If no operands changed just return the input node.
 | |
|   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
 | |
|     return N;
 | |
| 
 | |
|   // See if the modified node already exists.
 | |
|   void *InsertPos = nullptr;
 | |
|   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
 | |
|     return Existing;
 | |
| 
 | |
|   // Nope it doesn't.  Remove the node from its current place in the maps.
 | |
|   if (InsertPos)
 | |
|     if (!RemoveNodeFromCSEMaps(N))
 | |
|       InsertPos = nullptr;
 | |
| 
 | |
|   // Now we update the operands.
 | |
|   for (unsigned i = 0; i != NumOps; ++i)
 | |
|     if (N->OperandList[i] != Ops[i])
 | |
|       N->OperandList[i].set(Ops[i]);
 | |
| 
 | |
|   // If this gets put into a CSE map, add it.
 | |
|   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| /// DropOperands - Release the operands and set this node to have
 | |
| /// zero operands.
 | |
| void SDNode::DropOperands() {
 | |
|   // Unlike the code in MorphNodeTo that does this, we don't need to
 | |
|   // watch for dead nodes here.
 | |
|   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
 | |
|     SDUse &Use = *I++;
 | |
|     Use.set(SDValue());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
 | |
| /// machine opcode.
 | |
| ///
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    EVT VT) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, None);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    EVT VT, SDValue Op1) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDValue Ops[] = { Op1 };
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    EVT VT, SDValue Op1,
 | |
|                                    SDValue Op2) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDValue Ops[] = { Op1, Op2 };
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    EVT VT, SDValue Op1,
 | |
|                                    SDValue Op2, SDValue Op3) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDValue Ops[] = { Op1, Op2, Op3 };
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    EVT VT, ArrayRef<SDValue> Ops) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    EVT VT1, EVT VT2) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, None);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    EVT VT1, EVT VT2, EVT VT3,
 | |
|                                    ArrayRef<SDValue> Ops) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2, VT3);
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    EVT VT1, EVT VT2,
 | |
|                                    SDValue Op1, SDValue Op2) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   SDValue Ops[] = { Op1, Op2 };
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
 | |
|   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
 | |
|   // Reset the NodeID to -1.
 | |
|   New->setNodeId(-1);
 | |
|   if (New != N) {
 | |
|     ReplaceAllUsesWith(N, New);
 | |
|     RemoveDeadNode(N);
 | |
|   }
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
 | |
| /// the line number information on the merged node since it is not possible to
 | |
| /// preserve the information that operation is associated with multiple lines.
 | |
| /// This will make the debugger working better at -O0, were there is a higher
 | |
| /// probability having other instructions associated with that line.
 | |
| ///
 | |
| /// For IROrder, we keep the smaller of the two
 | |
| SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
 | |
|   DebugLoc NLoc = N->getDebugLoc();
 | |
|   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
 | |
|     N->setDebugLoc(DebugLoc());
 | |
|   }
 | |
|   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
 | |
|   N->setIROrder(Order);
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| /// MorphNodeTo - This *mutates* the specified node to have the specified
 | |
| /// return type, opcode, and operands.
 | |
| ///
 | |
| /// Note that MorphNodeTo returns the resultant node.  If there is already a
 | |
| /// node of the specified opcode and operands, it returns that node instead of
 | |
| /// the current one.  Note that the SDLoc need not be the same.
 | |
| ///
 | |
| /// Using MorphNodeTo is faster than creating a new node and swapping it in
 | |
| /// with ReplaceAllUsesWith both because it often avoids allocating a new
 | |
| /// node, and because it doesn't require CSE recalculation for any of
 | |
| /// the node's users.
 | |
| ///
 | |
| /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
 | |
| /// As a consequence it isn't appropriate to use from within the DAG combiner or
 | |
| /// the legalizer which maintain worklists that would need to be updated when
 | |
| /// deleting things.
 | |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
 | |
|                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
 | |
|   // If an identical node already exists, use it.
 | |
|   void *IP = nullptr;
 | |
|   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opc, VTs, Ops);
 | |
|     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
 | |
|       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
 | |
|   }
 | |
| 
 | |
|   if (!RemoveNodeFromCSEMaps(N))
 | |
|     IP = nullptr;
 | |
| 
 | |
|   // Start the morphing.
 | |
|   N->NodeType = Opc;
 | |
|   N->ValueList = VTs.VTs;
 | |
|   N->NumValues = VTs.NumVTs;
 | |
| 
 | |
|   // Clear the operands list, updating used nodes to remove this from their
 | |
|   // use list.  Keep track of any operands that become dead as a result.
 | |
|   SmallPtrSet<SDNode*, 16> DeadNodeSet;
 | |
|   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
 | |
|     SDUse &Use = *I++;
 | |
|     SDNode *Used = Use.getNode();
 | |
|     Use.set(SDValue());
 | |
|     if (Used->use_empty())
 | |
|       DeadNodeSet.insert(Used);
 | |
|   }
 | |
| 
 | |
|   // For MachineNode, initialize the memory references information.
 | |
|   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
 | |
|     MN->setMemRefs(nullptr, nullptr);
 | |
| 
 | |
|   // Swap for an appropriately sized array from the recycler.
 | |
|   removeOperands(N);
 | |
|   createOperands(N, Ops);
 | |
| 
 | |
|   // Delete any nodes that are still dead after adding the uses for the
 | |
|   // new operands.
 | |
|   if (!DeadNodeSet.empty()) {
 | |
|     SmallVector<SDNode *, 16> DeadNodes;
 | |
|     for (SDNode *N : DeadNodeSet)
 | |
|       if (N->use_empty())
 | |
|         DeadNodes.push_back(N);
 | |
|     RemoveDeadNodes(DeadNodes);
 | |
|   }
 | |
| 
 | |
|   if (IP)
 | |
|     CSEMap.InsertNode(N, IP);   // Memoize the new node.
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
 | |
|   unsigned OrigOpc = Node->getOpcode();
 | |
|   unsigned NewOpc;
 | |
|   bool IsUnary = false;
 | |
|   bool IsTernary = false;
 | |
|   switch (OrigOpc) {
 | |
|   default:
 | |
|     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
 | |
|   case ISD::STRICT_FADD: NewOpc = ISD::FADD; break;
 | |
|   case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break;
 | |
|   case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break;
 | |
|   case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break;
 | |
|   case ISD::STRICT_FREM: NewOpc = ISD::FREM; break;
 | |
|   case ISD::STRICT_FMA: NewOpc = ISD::FMA; IsTernary = true; break;
 | |
|   case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; IsUnary = true; break;
 | |
|   case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break;
 | |
|   case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break;
 | |
|   case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; IsUnary = true; break;
 | |
|   case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; IsUnary = true; break;
 | |
|   case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; IsUnary = true; break;
 | |
|   case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; IsUnary = true; break;
 | |
|   case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; IsUnary = true; break;
 | |
|   case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; IsUnary = true; break;
 | |
|   case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; IsUnary = true; break;
 | |
|   case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; IsUnary = true; break;
 | |
|   case ISD::STRICT_FNEARBYINT:
 | |
|     NewOpc = ISD::FNEARBYINT;
 | |
|     IsUnary = true;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // We're taking this node out of the chain, so we need to re-link things.
 | |
|   SDValue InputChain = Node->getOperand(0);
 | |
|   SDValue OutputChain = SDValue(Node, 1);
 | |
|   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
 | |
| 
 | |
|   SDVTList VTs = getVTList(Node->getOperand(1).getValueType());
 | |
|   SDNode *Res = nullptr;
 | |
|   if (IsUnary)
 | |
|     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1) });
 | |
|   else if (IsTernary)
 | |
|     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
 | |
|                                            Node->getOperand(2),
 | |
|                                            Node->getOperand(3)});
 | |
|   else
 | |
|     Res = MorphNodeTo(Node, NewOpc, VTs, { Node->getOperand(1),
 | |
|                                            Node->getOperand(2) });
 | |
| 
 | |
|   // MorphNodeTo can operate in two ways: if an existing node with the
 | |
|   // specified operands exists, it can just return it.  Otherwise, it
 | |
|   // updates the node in place to have the requested operands.
 | |
|   if (Res == Node) {
 | |
|     // If we updated the node in place, reset the node ID.  To the isel,
 | |
|     // this should be just like a newly allocated machine node.
 | |
|     Res->setNodeId(-1);
 | |
|   } else {
 | |
|     ReplaceAllUsesWith(Node, Res);
 | |
|     RemoveDeadNode(Node);
 | |
|   }
 | |
| 
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| /// getMachineNode - These are used for target selectors to create a new node
 | |
| /// with specified return type(s), MachineInstr opcode, and operands.
 | |
| ///
 | |
| /// Note that getMachineNode returns the resultant node.  If there is already a
 | |
| /// node of the specified opcode and operands, it returns that node instead of
 | |
| /// the current one.
 | |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
 | |
|                                             EVT VT) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   return getMachineNode(Opcode, dl, VTs, None);
 | |
| }
 | |
| 
 | |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
 | |
|                                             EVT VT, SDValue Op1) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDValue Ops[] = { Op1 };
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops);
 | |
| }
 | |
| 
 | |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
 | |
|                                             EVT VT, SDValue Op1, SDValue Op2) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDValue Ops[] = { Op1, Op2 };
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops);
 | |
| }
 | |
| 
 | |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
 | |
|                                             EVT VT, SDValue Op1, SDValue Op2,
 | |
|                                             SDValue Op3) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDValue Ops[] = { Op1, Op2, Op3 };
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops);
 | |
| }
 | |
| 
 | |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
 | |
|                                             EVT VT, ArrayRef<SDValue> Ops) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops);
 | |
| }
 | |
| 
 | |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
 | |
|                                             EVT VT1, EVT VT2, SDValue Op1,
 | |
|                                             SDValue Op2) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   SDValue Ops[] = { Op1, Op2 };
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops);
 | |
| }
 | |
| 
 | |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
 | |
|                                             EVT VT1, EVT VT2, SDValue Op1,
 | |
|                                             SDValue Op2, SDValue Op3) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   SDValue Ops[] = { Op1, Op2, Op3 };
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops);
 | |
| }
 | |
| 
 | |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
 | |
|                                             EVT VT1, EVT VT2,
 | |
|                                             ArrayRef<SDValue> Ops) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops);
 | |
| }
 | |
| 
 | |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
 | |
|                                             EVT VT1, EVT VT2, EVT VT3,
 | |
|                                             SDValue Op1, SDValue Op2) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2, VT3);
 | |
|   SDValue Ops[] = { Op1, Op2 };
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops);
 | |
| }
 | |
| 
 | |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
 | |
|                                             EVT VT1, EVT VT2, EVT VT3,
 | |
|                                             SDValue Op1, SDValue Op2,
 | |
|                                             SDValue Op3) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2, VT3);
 | |
|   SDValue Ops[] = { Op1, Op2, Op3 };
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops);
 | |
| }
 | |
| 
 | |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
 | |
|                                             EVT VT1, EVT VT2, EVT VT3,
 | |
|                                             ArrayRef<SDValue> Ops) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2, VT3);
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops);
 | |
| }
 | |
| 
 | |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
 | |
|                                             ArrayRef<EVT> ResultTys,
 | |
|                                             ArrayRef<SDValue> Ops) {
 | |
|   SDVTList VTs = getVTList(ResultTys);
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops);
 | |
| }
 | |
| 
 | |
| MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
 | |
|                                             SDVTList VTs,
 | |
|                                             ArrayRef<SDValue> Ops) {
 | |
|   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
 | |
|   MachineSDNode *N;
 | |
|   void *IP = nullptr;
 | |
| 
 | |
|   if (DoCSE) {
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
 | |
|     IP = nullptr;
 | |
|     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
 | |
|       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Allocate a new MachineSDNode.
 | |
|   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
 | |
|   createOperands(N, Ops);
 | |
| 
 | |
|   if (DoCSE)
 | |
|     CSEMap.InsertNode(N, IP);
 | |
| 
 | |
|   InsertNode(N);
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| /// getTargetExtractSubreg - A convenience function for creating
 | |
| /// TargetOpcode::EXTRACT_SUBREG nodes.
 | |
| SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
 | |
|                                              SDValue Operand) {
 | |
|   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
 | |
|   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
 | |
|                                   VT, Operand, SRIdxVal);
 | |
|   return SDValue(Subreg, 0);
 | |
| }
 | |
| 
 | |
| /// getTargetInsertSubreg - A convenience function for creating
 | |
| /// TargetOpcode::INSERT_SUBREG nodes.
 | |
| SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
 | |
|                                             SDValue Operand, SDValue Subreg) {
 | |
|   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
 | |
|   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
 | |
|                                   VT, Operand, Subreg, SRIdxVal);
 | |
|   return SDValue(Result, 0);
 | |
| }
 | |
| 
 | |
| /// getNodeIfExists - Get the specified node if it's already available, or
 | |
| /// else return NULL.
 | |
| SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
 | |
|                                       ArrayRef<SDValue> Ops,
 | |
|                                       const SDNodeFlags Flags) {
 | |
|   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opcode, VTList, Ops);
 | |
|     void *IP = nullptr;
 | |
|     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
 | |
|       E->intersectFlagsWith(Flags);
 | |
|       return E;
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// getDbgValue - Creates a SDDbgValue node.
 | |
| ///
 | |
| /// SDNode
 | |
| SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
 | |
|                                       SDNode *N, unsigned R, bool IsIndirect,
 | |
|                                       const DebugLoc &DL, unsigned O) {
 | |
|   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
 | |
|          "Expected inlined-at fields to agree");
 | |
|   return new (DbgInfo->getAlloc())
 | |
|       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
 | |
| }
 | |
| 
 | |
| /// Constant
 | |
| SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
 | |
|                                               DIExpression *Expr,
 | |
|                                               const Value *C,
 | |
|                                               const DebugLoc &DL, unsigned O) {
 | |
|   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
 | |
|          "Expected inlined-at fields to agree");
 | |
|   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
 | |
| }
 | |
| 
 | |
| /// FrameIndex
 | |
| SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
 | |
|                                                 DIExpression *Expr, unsigned FI,
 | |
|                                                 const DebugLoc &DL,
 | |
|                                                 unsigned O) {
 | |
|   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
 | |
|          "Expected inlined-at fields to agree");
 | |
|   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, DL, O);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
 | |
| /// pointed to by a use iterator is deleted, increment the use iterator
 | |
| /// so that it doesn't dangle.
 | |
| ///
 | |
| class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
 | |
|   SDNode::use_iterator &UI;
 | |
|   SDNode::use_iterator &UE;
 | |
| 
 | |
|   void NodeDeleted(SDNode *N, SDNode *E) override {
 | |
|     // Increment the iterator as needed.
 | |
|     while (UI != UE && N == *UI)
 | |
|       ++UI;
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   RAUWUpdateListener(SelectionDAG &d,
 | |
|                      SDNode::use_iterator &ui,
 | |
|                      SDNode::use_iterator &ue)
 | |
|     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
 | |
| /// This can cause recursive merging of nodes in the DAG.
 | |
| ///
 | |
| /// This version assumes From has a single result value.
 | |
| ///
 | |
| void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
 | |
|   SDNode *From = FromN.getNode();
 | |
|   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
 | |
|          "Cannot replace with this method!");
 | |
|   assert(From != To.getNode() && "Cannot replace uses of with self");
 | |
| 
 | |
|   // Preserve Debug Values
 | |
|   TransferDbgValues(FromN, To);
 | |
| 
 | |
|   // Iterate over all the existing uses of From. New uses will be added
 | |
|   // to the beginning of the use list, which we avoid visiting.
 | |
|   // This specifically avoids visiting uses of From that arise while the
 | |
|   // replacement is happening, because any such uses would be the result
 | |
|   // of CSE: If an existing node looks like From after one of its operands
 | |
|   // is replaced by To, we don't want to replace of all its users with To
 | |
|   // too. See PR3018 for more info.
 | |
|   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
 | |
|   RAUWUpdateListener Listener(*this, UI, UE);
 | |
|   while (UI != UE) {
 | |
|     SDNode *User = *UI;
 | |
| 
 | |
|     // This node is about to morph, remove its old self from the CSE maps.
 | |
|     RemoveNodeFromCSEMaps(User);
 | |
| 
 | |
|     // A user can appear in a use list multiple times, and when this
 | |
|     // happens the uses are usually next to each other in the list.
 | |
|     // To help reduce the number of CSE recomputations, process all
 | |
|     // the uses of this user that we can find this way.
 | |
|     do {
 | |
|       SDUse &Use = UI.getUse();
 | |
|       ++UI;
 | |
|       Use.set(To);
 | |
|     } while (UI != UE && *UI == User);
 | |
| 
 | |
|     // Now that we have modified User, add it back to the CSE maps.  If it
 | |
|     // already exists there, recursively merge the results together.
 | |
|     AddModifiedNodeToCSEMaps(User);
 | |
|   }
 | |
| 
 | |
|   // If we just RAUW'd the root, take note.
 | |
|   if (FromN == getRoot())
 | |
|     setRoot(To);
 | |
| }
 | |
| 
 | |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
 | |
| /// This can cause recursive merging of nodes in the DAG.
 | |
| ///
 | |
| /// This version assumes that for each value of From, there is a
 | |
| /// corresponding value in To in the same position with the same type.
 | |
| ///
 | |
| void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
 | |
| #ifndef NDEBUG
 | |
|   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
 | |
|     assert((!From->hasAnyUseOfValue(i) ||
 | |
|             From->getValueType(i) == To->getValueType(i)) &&
 | |
|            "Cannot use this version of ReplaceAllUsesWith!");
 | |
| #endif
 | |
| 
 | |
|   // Handle the trivial case.
 | |
|   if (From == To)
 | |
|     return;
 | |
| 
 | |
|   // Preserve Debug Info. Only do this if there's a use.
 | |
|   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
 | |
|     if (From->hasAnyUseOfValue(i)) {
 | |
|       assert((i < To->getNumValues()) && "Invalid To location");
 | |
|       TransferDbgValues(SDValue(From, i), SDValue(To, i));
 | |
|     }
 | |
| 
 | |
|   // Iterate over just the existing users of From. See the comments in
 | |
|   // the ReplaceAllUsesWith above.
 | |
|   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
 | |
|   RAUWUpdateListener Listener(*this, UI, UE);
 | |
|   while (UI != UE) {
 | |
|     SDNode *User = *UI;
 | |
| 
 | |
|     // This node is about to morph, remove its old self from the CSE maps.
 | |
|     RemoveNodeFromCSEMaps(User);
 | |
| 
 | |
|     // A user can appear in a use list multiple times, and when this
 | |
|     // happens the uses are usually next to each other in the list.
 | |
|     // To help reduce the number of CSE recomputations, process all
 | |
|     // the uses of this user that we can find this way.
 | |
|     do {
 | |
|       SDUse &Use = UI.getUse();
 | |
|       ++UI;
 | |
|       Use.setNode(To);
 | |
|     } while (UI != UE && *UI == User);
 | |
| 
 | |
|     // Now that we have modified User, add it back to the CSE maps.  If it
 | |
|     // already exists there, recursively merge the results together.
 | |
|     AddModifiedNodeToCSEMaps(User);
 | |
|   }
 | |
| 
 | |
|   // If we just RAUW'd the root, take note.
 | |
|   if (From == getRoot().getNode())
 | |
|     setRoot(SDValue(To, getRoot().getResNo()));
 | |
| }
 | |
| 
 | |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
 | |
| /// This can cause recursive merging of nodes in the DAG.
 | |
| ///
 | |
| /// This version can replace From with any result values.  To must match the
 | |
| /// number and types of values returned by From.
 | |
| void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
 | |
|   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
 | |
|     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
 | |
| 
 | |
|   // Preserve Debug Info.
 | |
|   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
 | |
|     TransferDbgValues(SDValue(From, i), *To);
 | |
| 
 | |
|   // Iterate over just the existing users of From. See the comments in
 | |
|   // the ReplaceAllUsesWith above.
 | |
|   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
 | |
|   RAUWUpdateListener Listener(*this, UI, UE);
 | |
|   while (UI != UE) {
 | |
|     SDNode *User = *UI;
 | |
| 
 | |
|     // This node is about to morph, remove its old self from the CSE maps.
 | |
|     RemoveNodeFromCSEMaps(User);
 | |
| 
 | |
|     // A user can appear in a use list multiple times, and when this
 | |
|     // happens the uses are usually next to each other in the list.
 | |
|     // To help reduce the number of CSE recomputations, process all
 | |
|     // the uses of this user that we can find this way.
 | |
|     do {
 | |
|       SDUse &Use = UI.getUse();
 | |
|       const SDValue &ToOp = To[Use.getResNo()];
 | |
|       ++UI;
 | |
|       Use.set(ToOp);
 | |
|     } while (UI != UE && *UI == User);
 | |
| 
 | |
|     // Now that we have modified User, add it back to the CSE maps.  If it
 | |
|     // already exists there, recursively merge the results together.
 | |
|     AddModifiedNodeToCSEMaps(User);
 | |
|   }
 | |
| 
 | |
|   // If we just RAUW'd the root, take note.
 | |
|   if (From == getRoot().getNode())
 | |
|     setRoot(SDValue(To[getRoot().getResNo()]));
 | |
| }
 | |
| 
 | |
| /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
 | |
| /// uses of other values produced by From.getNode() alone.  The Deleted
 | |
| /// vector is handled the same way as for ReplaceAllUsesWith.
 | |
| void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
 | |
|   // Handle the really simple, really trivial case efficiently.
 | |
|   if (From == To) return;
 | |
| 
 | |
|   // Handle the simple, trivial, case efficiently.
 | |
|   if (From.getNode()->getNumValues() == 1) {
 | |
|     ReplaceAllUsesWith(From, To);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Preserve Debug Info.
 | |
|   TransferDbgValues(From, To);
 | |
| 
 | |
|   // Iterate over just the existing users of From. See the comments in
 | |
|   // the ReplaceAllUsesWith above.
 | |
|   SDNode::use_iterator UI = From.getNode()->use_begin(),
 | |
|                        UE = From.getNode()->use_end();
 | |
|   RAUWUpdateListener Listener(*this, UI, UE);
 | |
|   while (UI != UE) {
 | |
|     SDNode *User = *UI;
 | |
|     bool UserRemovedFromCSEMaps = false;
 | |
| 
 | |
|     // A user can appear in a use list multiple times, and when this
 | |
|     // happens the uses are usually next to each other in the list.
 | |
|     // To help reduce the number of CSE recomputations, process all
 | |
|     // the uses of this user that we can find this way.
 | |
|     do {
 | |
|       SDUse &Use = UI.getUse();
 | |
| 
 | |
|       // Skip uses of different values from the same node.
 | |
|       if (Use.getResNo() != From.getResNo()) {
 | |
|         ++UI;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // If this node hasn't been modified yet, it's still in the CSE maps,
 | |
|       // so remove its old self from the CSE maps.
 | |
|       if (!UserRemovedFromCSEMaps) {
 | |
|         RemoveNodeFromCSEMaps(User);
 | |
|         UserRemovedFromCSEMaps = true;
 | |
|       }
 | |
| 
 | |
|       ++UI;
 | |
|       Use.set(To);
 | |
|     } while (UI != UE && *UI == User);
 | |
| 
 | |
|     // We are iterating over all uses of the From node, so if a use
 | |
|     // doesn't use the specific value, no changes are made.
 | |
|     if (!UserRemovedFromCSEMaps)
 | |
|       continue;
 | |
| 
 | |
|     // Now that we have modified User, add it back to the CSE maps.  If it
 | |
|     // already exists there, recursively merge the results together.
 | |
|     AddModifiedNodeToCSEMaps(User);
 | |
|   }
 | |
| 
 | |
|   // If we just RAUW'd the root, take note.
 | |
|   if (From == getRoot())
 | |
|     setRoot(To);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
 | |
|   /// to record information about a use.
 | |
|   struct UseMemo {
 | |
|     SDNode *User;
 | |
|     unsigned Index;
 | |
|     SDUse *Use;
 | |
|   };
 | |
| 
 | |
|   /// operator< - Sort Memos by User.
 | |
|   bool operator<(const UseMemo &L, const UseMemo &R) {
 | |
|     return (intptr_t)L.User < (intptr_t)R.User;
 | |
|   }
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
 | |
| /// uses of other values produced by From.getNode() alone.  The same value
 | |
| /// may appear in both the From and To list.  The Deleted vector is
 | |
| /// handled the same way as for ReplaceAllUsesWith.
 | |
| void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
 | |
|                                               const SDValue *To,
 | |
|                                               unsigned Num){
 | |
|   // Handle the simple, trivial case efficiently.
 | |
|   if (Num == 1)
 | |
|     return ReplaceAllUsesOfValueWith(*From, *To);
 | |
| 
 | |
|   TransferDbgValues(*From, *To);
 | |
| 
 | |
|   // Read up all the uses and make records of them. This helps
 | |
|   // processing new uses that are introduced during the
 | |
|   // replacement process.
 | |
|   SmallVector<UseMemo, 4> Uses;
 | |
|   for (unsigned i = 0; i != Num; ++i) {
 | |
|     unsigned FromResNo = From[i].getResNo();
 | |
|     SDNode *FromNode = From[i].getNode();
 | |
|     for (SDNode::use_iterator UI = FromNode->use_begin(),
 | |
|          E = FromNode->use_end(); UI != E; ++UI) {
 | |
|       SDUse &Use = UI.getUse();
 | |
|       if (Use.getResNo() == FromResNo) {
 | |
|         UseMemo Memo = { *UI, i, &Use };
 | |
|         Uses.push_back(Memo);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Sort the uses, so that all the uses from a given User are together.
 | |
|   std::sort(Uses.begin(), Uses.end());
 | |
| 
 | |
|   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
 | |
|        UseIndex != UseIndexEnd; ) {
 | |
|     // We know that this user uses some value of From.  If it is the right
 | |
|     // value, update it.
 | |
|     SDNode *User = Uses[UseIndex].User;
 | |
| 
 | |
|     // This node is about to morph, remove its old self from the CSE maps.
 | |
|     RemoveNodeFromCSEMaps(User);
 | |
| 
 | |
|     // The Uses array is sorted, so all the uses for a given User
 | |
|     // are next to each other in the list.
 | |
|     // To help reduce the number of CSE recomputations, process all
 | |
|     // the uses of this user that we can find this way.
 | |
|     do {
 | |
|       unsigned i = Uses[UseIndex].Index;
 | |
|       SDUse &Use = *Uses[UseIndex].Use;
 | |
|       ++UseIndex;
 | |
| 
 | |
|       Use.set(To[i]);
 | |
|     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
 | |
| 
 | |
|     // Now that we have modified User, add it back to the CSE maps.  If it
 | |
|     // already exists there, recursively merge the results together.
 | |
|     AddModifiedNodeToCSEMaps(User);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
 | |
| /// based on their topological order. It returns the maximum id and a vector
 | |
| /// of the SDNodes* in assigned order by reference.
 | |
| unsigned SelectionDAG::AssignTopologicalOrder() {
 | |
|   unsigned DAGSize = 0;
 | |
| 
 | |
|   // SortedPos tracks the progress of the algorithm. Nodes before it are
 | |
|   // sorted, nodes after it are unsorted. When the algorithm completes
 | |
|   // it is at the end of the list.
 | |
|   allnodes_iterator SortedPos = allnodes_begin();
 | |
| 
 | |
|   // Visit all the nodes. Move nodes with no operands to the front of
 | |
|   // the list immediately. Annotate nodes that do have operands with their
 | |
|   // operand count. Before we do this, the Node Id fields of the nodes
 | |
|   // may contain arbitrary values. After, the Node Id fields for nodes
 | |
|   // before SortedPos will contain the topological sort index, and the
 | |
|   // Node Id fields for nodes At SortedPos and after will contain the
 | |
|   // count of outstanding operands.
 | |
|   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
 | |
|     SDNode *N = &*I++;
 | |
|     checkForCycles(N, this);
 | |
|     unsigned Degree = N->getNumOperands();
 | |
|     if (Degree == 0) {
 | |
|       // A node with no uses, add it to the result array immediately.
 | |
|       N->setNodeId(DAGSize++);
 | |
|       allnodes_iterator Q(N);
 | |
|       if (Q != SortedPos)
 | |
|         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
 | |
|       assert(SortedPos != AllNodes.end() && "Overran node list");
 | |
|       ++SortedPos;
 | |
|     } else {
 | |
|       // Temporarily use the Node Id as scratch space for the degree count.
 | |
|       N->setNodeId(Degree);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Visit all the nodes. As we iterate, move nodes into sorted order,
 | |
|   // such that by the time the end is reached all nodes will be sorted.
 | |
|   for (SDNode &Node : allnodes()) {
 | |
|     SDNode *N = &Node;
 | |
|     checkForCycles(N, this);
 | |
|     // N is in sorted position, so all its uses have one less operand
 | |
|     // that needs to be sorted.
 | |
|     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       SDNode *P = *UI;
 | |
|       unsigned Degree = P->getNodeId();
 | |
|       assert(Degree != 0 && "Invalid node degree");
 | |
|       --Degree;
 | |
|       if (Degree == 0) {
 | |
|         // All of P's operands are sorted, so P may sorted now.
 | |
|         P->setNodeId(DAGSize++);
 | |
|         if (P->getIterator() != SortedPos)
 | |
|           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
 | |
|         assert(SortedPos != AllNodes.end() && "Overran node list");
 | |
|         ++SortedPos;
 | |
|       } else {
 | |
|         // Update P's outstanding operand count.
 | |
|         P->setNodeId(Degree);
 | |
|       }
 | |
|     }
 | |
|     if (Node.getIterator() == SortedPos) {
 | |
| #ifndef NDEBUG
 | |
|       allnodes_iterator I(N);
 | |
|       SDNode *S = &*++I;
 | |
|       dbgs() << "Overran sorted position:\n";
 | |
|       S->dumprFull(this); dbgs() << "\n";
 | |
|       dbgs() << "Checking if this is due to cycles\n";
 | |
|       checkForCycles(this, true);
 | |
| #endif
 | |
|       llvm_unreachable(nullptr);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(SortedPos == AllNodes.end() &&
 | |
|          "Topological sort incomplete!");
 | |
|   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
 | |
|          "First node in topological sort is not the entry token!");
 | |
|   assert(AllNodes.front().getNodeId() == 0 &&
 | |
|          "First node in topological sort has non-zero id!");
 | |
|   assert(AllNodes.front().getNumOperands() == 0 &&
 | |
|          "First node in topological sort has operands!");
 | |
|   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
 | |
|          "Last node in topologic sort has unexpected id!");
 | |
|   assert(AllNodes.back().use_empty() &&
 | |
|          "Last node in topologic sort has users!");
 | |
|   assert(DAGSize == allnodes_size() && "Node count mismatch!");
 | |
|   return DAGSize;
 | |
| }
 | |
| 
 | |
| /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
 | |
| /// value is produced by SD.
 | |
| void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
 | |
|   if (SD) {
 | |
|     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
 | |
|     SD->setHasDebugValue(true);
 | |
|   }
 | |
|   DbgInfo->add(DB, SD, isParameter);
 | |
| }
 | |
| 
 | |
| /// TransferDbgValues - Transfer SDDbgValues. Called in replace nodes.
 | |
| void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
 | |
|   if (From == To || !From.getNode()->getHasDebugValue())
 | |
|     return;
 | |
|   SDNode *FromNode = From.getNode();
 | |
|   SDNode *ToNode = To.getNode();
 | |
|   ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
 | |
|   SmallVector<SDDbgValue *, 2> ClonedDVs;
 | |
|   for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
 | |
|        I != E; ++I) {
 | |
|     SDDbgValue *Dbg = *I;
 | |
|     // Only add Dbgvalues attached to same ResNo.
 | |
|     if (Dbg->getKind() == SDDbgValue::SDNODE &&
 | |
|         Dbg->getSDNode() == From.getNode() &&
 | |
|         Dbg->getResNo() == From.getResNo() && !Dbg->isInvalidated()) {
 | |
|       assert(FromNode != ToNode &&
 | |
|              "Should not transfer Debug Values intranode");
 | |
|       SDDbgValue *Clone = getDbgValue(Dbg->getVariable(), Dbg->getExpression(),
 | |
|                                       ToNode, To.getResNo(), Dbg->isIndirect(),
 | |
|                                       Dbg->getDebugLoc(), Dbg->getOrder());
 | |
|       ClonedDVs.push_back(Clone);
 | |
|       Dbg->setIsInvalidated();
 | |
|     }
 | |
|   }
 | |
|   for (SDDbgValue *I : ClonedDVs)
 | |
|     AddDbgValue(I, ToNode, false);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
 | |
|                                                    SDValue NewMemOp) {
 | |
|   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
 | |
|   // The new memory operation must have the same position as the old load in
 | |
|   // terms of memory dependency. Create a TokenFactor for the old load and new
 | |
|   // memory operation and update uses of the old load's output chain to use that
 | |
|   // TokenFactor.
 | |
|   SDValue OldChain = SDValue(OldLoad, 1);
 | |
|   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
 | |
|   if (!OldLoad->hasAnyUseOfValue(1))
 | |
|     return NewChain;
 | |
| 
 | |
|   SDValue TokenFactor =
 | |
|       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
 | |
|   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
 | |
|   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
 | |
|   return TokenFactor;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              SDNode Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool llvm::isNullConstant(SDValue V) {
 | |
|   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
 | |
|   return Const != nullptr && Const->isNullValue();
 | |
| }
 | |
| 
 | |
| bool llvm::isNullFPConstant(SDValue V) {
 | |
|   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
 | |
|   return Const != nullptr && Const->isZero() && !Const->isNegative();
 | |
| }
 | |
| 
 | |
| bool llvm::isAllOnesConstant(SDValue V) {
 | |
|   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
 | |
|   return Const != nullptr && Const->isAllOnesValue();
 | |
| }
 | |
| 
 | |
| bool llvm::isOneConstant(SDValue V) {
 | |
|   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
 | |
|   return Const != nullptr && Const->isOne();
 | |
| }
 | |
| 
 | |
| bool llvm::isBitwiseNot(SDValue V) {
 | |
|   return V.getOpcode() == ISD::XOR && isAllOnesConstant(V.getOperand(1));
 | |
| }
 | |
| 
 | |
| ConstantSDNode *llvm::isConstOrConstSplat(SDValue N) {
 | |
|   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
 | |
|     return CN;
 | |
| 
 | |
|   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
 | |
|     BitVector UndefElements;
 | |
|     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
 | |
| 
 | |
|     // BuildVectors can truncate their operands. Ignore that case here.
 | |
|     // FIXME: We blindly ignore splats which include undef which is overly
 | |
|     // pessimistic.
 | |
|     if (CN && UndefElements.none() &&
 | |
|         CN->getValueType(0) == N.getValueType().getScalarType())
 | |
|       return CN;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N) {
 | |
|   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
 | |
|     return CN;
 | |
| 
 | |
|   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
 | |
|     BitVector UndefElements;
 | |
|     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
 | |
| 
 | |
|     if (CN && UndefElements.none())
 | |
|       return CN;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| HandleSDNode::~HandleSDNode() {
 | |
|   DropOperands();
 | |
| }
 | |
| 
 | |
| GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
 | |
|                                          const DebugLoc &DL,
 | |
|                                          const GlobalValue *GA, EVT VT,
 | |
|                                          int64_t o, unsigned char TF)
 | |
|     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
 | |
|   TheGlobal = GA;
 | |
| }
 | |
| 
 | |
| AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
 | |
|                                          EVT VT, unsigned SrcAS,
 | |
|                                          unsigned DestAS)
 | |
|     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
 | |
|       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
 | |
| 
 | |
| MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
 | |
|                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
 | |
|     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
 | |
|   MemSDNodeBits.IsVolatile = MMO->isVolatile();
 | |
|   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
 | |
|   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
 | |
|   MemSDNodeBits.IsInvariant = MMO->isInvariant();
 | |
| 
 | |
|   // We check here that the size of the memory operand fits within the size of
 | |
|   // the MMO. This is because the MMO might indicate only a possible address
 | |
|   // range instead of specifying the affected memory addresses precisely.
 | |
|   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
 | |
| }
 | |
| 
 | |
| /// Profile - Gather unique data for the node.
 | |
| ///
 | |
| void SDNode::Profile(FoldingSetNodeID &ID) const {
 | |
|   AddNodeIDNode(ID, this);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   struct EVTArray {
 | |
|     std::vector<EVT> VTs;
 | |
| 
 | |
|     EVTArray() {
 | |
|       VTs.reserve(MVT::LAST_VALUETYPE);
 | |
|       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
 | |
|         VTs.push_back(MVT((MVT::SimpleValueType)i));
 | |
|     }
 | |
|   };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
 | |
| static ManagedStatic<EVTArray> SimpleVTArray;
 | |
| static ManagedStatic<sys::SmartMutex<true>> VTMutex;
 | |
| 
 | |
| /// getValueTypeList - Return a pointer to the specified value type.
 | |
| ///
 | |
| const EVT *SDNode::getValueTypeList(EVT VT) {
 | |
|   if (VT.isExtended()) {
 | |
|     sys::SmartScopedLock<true> Lock(*VTMutex);
 | |
|     return &(*EVTs->insert(VT).first);
 | |
|   } else {
 | |
|     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
 | |
|            "Value type out of range!");
 | |
|     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
 | |
| /// indicated value.  This method ignores uses of other values defined by this
 | |
| /// operation.
 | |
| bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
 | |
|   assert(Value < getNumValues() && "Bad value!");
 | |
| 
 | |
|   // TODO: Only iterate over uses of a given value of the node
 | |
|   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
 | |
|     if (UI.getUse().getResNo() == Value) {
 | |
|       if (NUses == 0)
 | |
|         return false;
 | |
|       --NUses;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Found exactly the right number of uses?
 | |
|   return NUses == 0;
 | |
| }
 | |
| 
 | |
| /// hasAnyUseOfValue - Return true if there are any use of the indicated
 | |
| /// value. This method ignores uses of other values defined by this operation.
 | |
| bool SDNode::hasAnyUseOfValue(unsigned Value) const {
 | |
|   assert(Value < getNumValues() && "Bad value!");
 | |
| 
 | |
|   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
 | |
|     if (UI.getUse().getResNo() == Value)
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isOnlyUserOf - Return true if this node is the only use of N.
 | |
| bool SDNode::isOnlyUserOf(const SDNode *N) const {
 | |
|   bool Seen = false;
 | |
|   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
 | |
|     SDNode *User = *I;
 | |
|     if (User == this)
 | |
|       Seen = true;
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return Seen;
 | |
| }
 | |
| 
 | |
| /// Return true if the only users of N are contained in Nodes.
 | |
| bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
 | |
|   bool Seen = false;
 | |
|   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
 | |
|     SDNode *User = *I;
 | |
|     if (llvm::any_of(Nodes,
 | |
|                      [&User](const SDNode *Node) { return User == Node; }))
 | |
|       Seen = true;
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return Seen;
 | |
| }
 | |
| 
 | |
| /// isOperand - Return true if this node is an operand of N.
 | |
| bool SDValue::isOperandOf(const SDNode *N) const {
 | |
|   for (const SDValue &Op : N->op_values())
 | |
|     if (*this == Op)
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SDNode::isOperandOf(const SDNode *N) const {
 | |
|   for (const SDValue &Op : N->op_values())
 | |
|     if (this == Op.getNode())
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// reachesChainWithoutSideEffects - Return true if this operand (which must
 | |
| /// be a chain) reaches the specified operand without crossing any
 | |
| /// side-effecting instructions on any chain path.  In practice, this looks
 | |
| /// through token factors and non-volatile loads.  In order to remain efficient,
 | |
| /// this only looks a couple of nodes in, it does not do an exhaustive search.
 | |
| ///
 | |
| /// Note that we only need to examine chains when we're searching for
 | |
| /// side-effects; SelectionDAG requires that all side-effects are represented
 | |
| /// by chains, even if another operand would force a specific ordering. This
 | |
| /// constraint is necessary to allow transformations like splitting loads.
 | |
| bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
 | |
|                                              unsigned Depth) const {
 | |
|   if (*this == Dest) return true;
 | |
| 
 | |
|   // Don't search too deeply, we just want to be able to see through
 | |
|   // TokenFactor's etc.
 | |
|   if (Depth == 0) return false;
 | |
| 
 | |
|   // If this is a token factor, all inputs to the TF happen in parallel.
 | |
|   if (getOpcode() == ISD::TokenFactor) {
 | |
|     // First, try a shallow search.
 | |
|     if (is_contained((*this)->ops(), Dest)) {
 | |
|       // We found the chain we want as an operand of this TokenFactor.
 | |
|       // Essentially, we reach the chain without side-effects if we could
 | |
|       // serialize the TokenFactor into a simple chain of operations with
 | |
|       // Dest as the last operation. This is automatically true if the
 | |
|       // chain has one use: there are no other ordering constraints.
 | |
|       // If the chain has more than one use, we give up: some other
 | |
|       // use of Dest might force a side-effect between Dest and the current
 | |
|       // node.
 | |
|       if (Dest.hasOneUse())
 | |
|         return true;
 | |
|     }
 | |
|     // Next, try a deep search: check whether every operand of the TokenFactor
 | |
|     // reaches Dest.
 | |
|     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
 | |
|       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   // Loads don't have side effects, look through them.
 | |
|   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
 | |
|     if (!Ld->isVolatile())
 | |
|       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SDNode::hasPredecessor(const SDNode *N) const {
 | |
|   SmallPtrSet<const SDNode *, 32> Visited;
 | |
|   SmallVector<const SDNode *, 16> Worklist;
 | |
|   Worklist.push_back(this);
 | |
|   return hasPredecessorHelper(N, Visited, Worklist);
 | |
| }
 | |
| 
 | |
| void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
 | |
|   this->Flags.intersectWith(Flags);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
 | |
|   assert(N->getNumValues() == 1 &&
 | |
|          "Can't unroll a vector with multiple results!");
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
|   unsigned NE = VT.getVectorNumElements();
 | |
|   EVT EltVT = VT.getVectorElementType();
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   SmallVector<SDValue, 8> Scalars;
 | |
|   SmallVector<SDValue, 4> Operands(N->getNumOperands());
 | |
| 
 | |
|   // If ResNE is 0, fully unroll the vector op.
 | |
|   if (ResNE == 0)
 | |
|     ResNE = NE;
 | |
|   else if (NE > ResNE)
 | |
|     NE = ResNE;
 | |
| 
 | |
|   unsigned i;
 | |
|   for (i= 0; i != NE; ++i) {
 | |
|     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
 | |
|       SDValue Operand = N->getOperand(j);
 | |
|       EVT OperandVT = Operand.getValueType();
 | |
|       if (OperandVT.isVector()) {
 | |
|         // A vector operand; extract a single element.
 | |
|         EVT OperandEltVT = OperandVT.getVectorElementType();
 | |
|         Operands[j] =
 | |
|             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
 | |
|                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
 | |
|       } else {
 | |
|         // A scalar operand; just use it as is.
 | |
|         Operands[j] = Operand;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     switch (N->getOpcode()) {
 | |
|     default: {
 | |
|       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
 | |
|                                 N->getFlags()));
 | |
|       break;
 | |
|     }
 | |
|     case ISD::VSELECT:
 | |
|       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
 | |
|       break;
 | |
|     case ISD::SHL:
 | |
|     case ISD::SRA:
 | |
|     case ISD::SRL:
 | |
|     case ISD::ROTL:
 | |
|     case ISD::ROTR:
 | |
|       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
 | |
|                                getShiftAmountOperand(Operands[0].getValueType(),
 | |
|                                                      Operands[1])));
 | |
|       break;
 | |
|     case ISD::SIGN_EXTEND_INREG:
 | |
|     case ISD::FP_ROUND_INREG: {
 | |
|       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
 | |
|       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
 | |
|                                 Operands[0],
 | |
|                                 getValueType(ExtVT)));
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (; i < ResNE; ++i)
 | |
|     Scalars.push_back(getUNDEF(EltVT));
 | |
| 
 | |
|   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
 | |
|   return getBuildVector(VecVT, dl, Scalars);
 | |
| }
 | |
| 
 | |
| bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
 | |
|                                                   LoadSDNode *Base,
 | |
|                                                   unsigned Bytes,
 | |
|                                                   int Dist) const {
 | |
|   if (LD->isVolatile() || Base->isVolatile())
 | |
|     return false;
 | |
|   if (LD->isIndexed() || Base->isIndexed())
 | |
|     return false;
 | |
|   if (LD->getChain() != Base->getChain())
 | |
|     return false;
 | |
|   EVT VT = LD->getValueType(0);
 | |
|   if (VT.getSizeInBits() / 8 != Bytes)
 | |
|     return false;
 | |
| 
 | |
|   SDValue Loc = LD->getOperand(1);
 | |
|   SDValue BaseLoc = Base->getOperand(1);
 | |
| 
 | |
|   auto BaseLocDecomp = BaseIndexOffset::match(BaseLoc, *this);
 | |
|   auto LocDecomp = BaseIndexOffset::match(Loc, *this);
 | |
| 
 | |
|   int64_t Offset = 0;
 | |
|   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
 | |
|     return (Dist * Bytes == Offset);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
 | |
| /// it cannot be inferred.
 | |
| unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
 | |
|   // If this is a GlobalAddress + cst, return the alignment.
 | |
|   const GlobalValue *GV;
 | |
|   int64_t GVOffset = 0;
 | |
|   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
 | |
|     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
 | |
|     KnownBits Known(PtrWidth);
 | |
|     llvm::computeKnownBits(GV, Known, getDataLayout());
 | |
|     unsigned AlignBits = Known.countMinTrailingZeros();
 | |
|     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
 | |
|     if (Align)
 | |
|       return MinAlign(Align, GVOffset);
 | |
|   }
 | |
| 
 | |
|   // If this is a direct reference to a stack slot, use information about the
 | |
|   // stack slot's alignment.
 | |
|   int FrameIdx = 1 << 31;
 | |
|   int64_t FrameOffset = 0;
 | |
|   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
 | |
|     FrameIdx = FI->getIndex();
 | |
|   } else if (isBaseWithConstantOffset(Ptr) &&
 | |
|              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
 | |
|     // Handle FI+Cst
 | |
|     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
 | |
|     FrameOffset = Ptr.getConstantOperandVal(1);
 | |
|   }
 | |
| 
 | |
|   if (FrameIdx != (1 << 31)) {
 | |
|     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
 | |
|     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
 | |
|                                     FrameOffset);
 | |
|     return FIInfoAlign;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
 | |
| /// which is split (or expanded) into two not necessarily identical pieces.
 | |
| std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
 | |
|   // Currently all types are split in half.
 | |
|   EVT LoVT, HiVT;
 | |
|   if (!VT.isVector())
 | |
|     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
 | |
|   else
 | |
|     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
 | |
| 
 | |
|   return std::make_pair(LoVT, HiVT);
 | |
| }
 | |
| 
 | |
| /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
 | |
| /// low/high part.
 | |
| std::pair<SDValue, SDValue>
 | |
| SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
 | |
|                           const EVT &HiVT) {
 | |
|   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
 | |
|          N.getValueType().getVectorNumElements() &&
 | |
|          "More vector elements requested than available!");
 | |
|   SDValue Lo, Hi;
 | |
|   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
 | |
|                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
 | |
|   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
 | |
|                getConstant(LoVT.getVectorNumElements(), DL,
 | |
|                            TLI->getVectorIdxTy(getDataLayout())));
 | |
|   return std::make_pair(Lo, Hi);
 | |
| }
 | |
| 
 | |
| void SelectionDAG::ExtractVectorElements(SDValue Op,
 | |
|                                          SmallVectorImpl<SDValue> &Args,
 | |
|                                          unsigned Start, unsigned Count) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   if (Count == 0)
 | |
|     Count = VT.getVectorNumElements();
 | |
| 
 | |
|   EVT EltVT = VT.getVectorElementType();
 | |
|   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
 | |
|   SDLoc SL(Op);
 | |
|   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
 | |
|     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
 | |
|                            Op, getConstant(i, SL, IdxTy)));
 | |
|   }
 | |
| }
 | |
| 
 | |
| // getAddressSpace - Return the address space this GlobalAddress belongs to.
 | |
| unsigned GlobalAddressSDNode::getAddressSpace() const {
 | |
|   return getGlobal()->getType()->getAddressSpace();
 | |
| }
 | |
| 
 | |
| Type *ConstantPoolSDNode::getType() const {
 | |
|   if (isMachineConstantPoolEntry())
 | |
|     return Val.MachineCPVal->getType();
 | |
|   return Val.ConstVal->getType();
 | |
| }
 | |
| 
 | |
| bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
 | |
|                                         unsigned &SplatBitSize,
 | |
|                                         bool &HasAnyUndefs,
 | |
|                                         unsigned MinSplatBits,
 | |
|                                         bool IsBigEndian) const {
 | |
|   EVT VT = getValueType(0);
 | |
|   assert(VT.isVector() && "Expected a vector type");
 | |
|   unsigned VecWidth = VT.getSizeInBits();
 | |
|   if (MinSplatBits > VecWidth)
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: The widths are based on this node's type, but build vectors can
 | |
|   // truncate their operands.
 | |
|   SplatValue = APInt(VecWidth, 0);
 | |
|   SplatUndef = APInt(VecWidth, 0);
 | |
| 
 | |
|   // Get the bits. Bits with undefined values (when the corresponding element
 | |
|   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
 | |
|   // in SplatValue. If any of the values are not constant, give up and return
 | |
|   // false.
 | |
|   unsigned int NumOps = getNumOperands();
 | |
|   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
 | |
|   unsigned EltWidth = VT.getScalarSizeInBits();
 | |
| 
 | |
|   for (unsigned j = 0; j < NumOps; ++j) {
 | |
|     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
 | |
|     SDValue OpVal = getOperand(i);
 | |
|     unsigned BitPos = j * EltWidth;
 | |
| 
 | |
|     if (OpVal.isUndef())
 | |
|       SplatUndef.setBits(BitPos, BitPos + EltWidth);
 | |
|     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
 | |
|       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
 | |
|     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
 | |
|       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // The build_vector is all constants or undefs. Find the smallest element
 | |
|   // size that splats the vector.
 | |
|   HasAnyUndefs = (SplatUndef != 0);
 | |
| 
 | |
|   // FIXME: This does not work for vectors with elements less than 8 bits.
 | |
|   while (VecWidth > 8) {
 | |
|     unsigned HalfSize = VecWidth / 2;
 | |
|     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
 | |
|     APInt LowValue = SplatValue.trunc(HalfSize);
 | |
|     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
 | |
|     APInt LowUndef = SplatUndef.trunc(HalfSize);
 | |
| 
 | |
|     // If the two halves do not match (ignoring undef bits), stop here.
 | |
|     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
 | |
|         MinSplatBits > HalfSize)
 | |
|       break;
 | |
| 
 | |
|     SplatValue = HighValue | LowValue;
 | |
|     SplatUndef = HighUndef & LowUndef;
 | |
| 
 | |
|     VecWidth = HalfSize;
 | |
|   }
 | |
| 
 | |
|   SplatBitSize = VecWidth;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
 | |
|   if (UndefElements) {
 | |
|     UndefElements->clear();
 | |
|     UndefElements->resize(getNumOperands());
 | |
|   }
 | |
|   SDValue Splatted;
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | |
|     SDValue Op = getOperand(i);
 | |
|     if (Op.isUndef()) {
 | |
|       if (UndefElements)
 | |
|         (*UndefElements)[i] = true;
 | |
|     } else if (!Splatted) {
 | |
|       Splatted = Op;
 | |
|     } else if (Splatted != Op) {
 | |
|       return SDValue();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Splatted) {
 | |
|     assert(getOperand(0).isUndef() &&
 | |
|            "Can only have a splat without a constant for all undefs.");
 | |
|     return getOperand(0);
 | |
|   }
 | |
| 
 | |
|   return Splatted;
 | |
| }
 | |
| 
 | |
| ConstantSDNode *
 | |
| BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
 | |
|   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
 | |
| }
 | |
| 
 | |
| ConstantFPSDNode *
 | |
| BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
 | |
|   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
 | |
| }
 | |
| 
 | |
| int32_t
 | |
| BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
 | |
|                                                    uint32_t BitWidth) const {
 | |
|   if (ConstantFPSDNode *CN =
 | |
|           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
 | |
|     bool IsExact;
 | |
|     APSInt IntVal(BitWidth);
 | |
|     const APFloat &APF = CN->getValueAPF();
 | |
|     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
 | |
|             APFloat::opOK ||
 | |
|         !IsExact)
 | |
|       return -1;
 | |
| 
 | |
|     return IntVal.exactLogBase2();
 | |
|   }
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| bool BuildVectorSDNode::isConstant() const {
 | |
|   for (const SDValue &Op : op_values()) {
 | |
|     unsigned Opc = Op.getOpcode();
 | |
|     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
 | |
|   // Find the first non-undef value in the shuffle mask.
 | |
|   unsigned i, e;
 | |
|   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
 | |
|     /* search */;
 | |
| 
 | |
|   assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
 | |
| 
 | |
|   // Make sure all remaining elements are either undef or the same as the first
 | |
|   // non-undef value.
 | |
|   for (int Idx = Mask[i]; i != e; ++i)
 | |
|     if (Mask[i] >= 0 && Mask[i] != Idx)
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // \brief Returns the SDNode if it is a constant integer BuildVector
 | |
| // or constant integer.
 | |
| SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
 | |
|   if (isa<ConstantSDNode>(N))
 | |
|     return N.getNode();
 | |
|   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
 | |
|     return N.getNode();
 | |
|   // Treat a GlobalAddress supporting constant offset folding as a
 | |
|   // constant integer.
 | |
|   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
 | |
|     if (GA->getOpcode() == ISD::GlobalAddress &&
 | |
|         TLI->isOffsetFoldingLegal(GA))
 | |
|       return GA;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
 | |
|   if (isa<ConstantFPSDNode>(N))
 | |
|     return N.getNode();
 | |
| 
 | |
|   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
 | |
|     return N.getNode();
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static void checkForCyclesHelper(const SDNode *N,
 | |
|                                  SmallPtrSetImpl<const SDNode*> &Visited,
 | |
|                                  SmallPtrSetImpl<const SDNode*> &Checked,
 | |
|                                  const llvm::SelectionDAG *DAG) {
 | |
|   // If this node has already been checked, don't check it again.
 | |
|   if (Checked.count(N))
 | |
|     return;
 | |
| 
 | |
|   // If a node has already been visited on this depth-first walk, reject it as
 | |
|   // a cycle.
 | |
|   if (!Visited.insert(N).second) {
 | |
|     errs() << "Detected cycle in SelectionDAG\n";
 | |
|     dbgs() << "Offending node:\n";
 | |
|     N->dumprFull(DAG); dbgs() << "\n";
 | |
|     abort();
 | |
|   }
 | |
| 
 | |
|   for (const SDValue &Op : N->op_values())
 | |
|     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
 | |
| 
 | |
|   Checked.insert(N);
 | |
|   Visited.erase(N);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void llvm::checkForCycles(const llvm::SDNode *N,
 | |
|                           const llvm::SelectionDAG *DAG,
 | |
|                           bool force) {
 | |
| #ifndef NDEBUG
 | |
|   bool check = force;
 | |
| #ifdef EXPENSIVE_CHECKS
 | |
|   check = true;
 | |
| #endif  // EXPENSIVE_CHECKS
 | |
|   if (check) {
 | |
|     assert(N && "Checking nonexistent SDNode");
 | |
|     SmallPtrSet<const SDNode*, 32> visited;
 | |
|     SmallPtrSet<const SDNode*, 32> checked;
 | |
|     checkForCyclesHelper(N, visited, checked, DAG);
 | |
|   }
 | |
| #endif  // !NDEBUG
 | |
| }
 | |
| 
 | |
| void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
 | |
|   checkForCycles(DAG->getRoot().getNode(), DAG, force);
 | |
| }
 |