forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1000 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1000 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file includes support code use by SelectionDAGBuilder when lowering a
 | |
| // statepoint sequence in SelectionDAG IR.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "StatepointLowering.h"
 | |
| #include "SelectionDAGBuilder.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/FunctionLoweringInfo.h"
 | |
| #include "llvm/CodeGen/GCMetadata.h"
 | |
| #include "llvm/CodeGen/GCStrategy.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/StackMaps.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Statepoint.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "statepoint-lowering"
 | |
| 
 | |
| STATISTIC(NumSlotsAllocatedForStatepoints,
 | |
|           "Number of stack slots allocated for statepoints");
 | |
| STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
 | |
| STATISTIC(StatepointMaxSlotsRequired,
 | |
|           "Maximum number of stack slots required for a singe statepoint");
 | |
| 
 | |
| static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
 | |
|                                  SelectionDAGBuilder &Builder, uint64_t Value) {
 | |
|   SDLoc L = Builder.getCurSDLoc();
 | |
|   Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
 | |
|                                               MVT::i64));
 | |
|   Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
 | |
| }
 | |
| 
 | |
| void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
 | |
|   // Consistency check
 | |
|   assert(PendingGCRelocateCalls.empty() &&
 | |
|          "Trying to visit statepoint before finished processing previous one");
 | |
|   Locations.clear();
 | |
|   NextSlotToAllocate = 0;
 | |
|   // Need to resize this on each safepoint - we need the two to stay in sync and
 | |
|   // the clear patterns of a SelectionDAGBuilder have no relation to
 | |
|   // FunctionLoweringInfo.  Also need to ensure used bits get cleared.
 | |
|   AllocatedStackSlots.clear();
 | |
|   AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
 | |
| }
 | |
| 
 | |
| void StatepointLoweringState::clear() {
 | |
|   Locations.clear();
 | |
|   AllocatedStackSlots.clear();
 | |
|   assert(PendingGCRelocateCalls.empty() &&
 | |
|          "cleared before statepoint sequence completed");
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| StatepointLoweringState::allocateStackSlot(EVT ValueType,
 | |
|                                            SelectionDAGBuilder &Builder) {
 | |
|   NumSlotsAllocatedForStatepoints++;
 | |
|   MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
 | |
| 
 | |
|   unsigned SpillSize = ValueType.getSizeInBits() / 8;
 | |
|   assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?");
 | |
| 
 | |
|   // First look for a previously created stack slot which is not in
 | |
|   // use (accounting for the fact arbitrary slots may already be
 | |
|   // reserved), or to create a new stack slot and use it.
 | |
| 
 | |
|   const size_t NumSlots = AllocatedStackSlots.size();
 | |
|   assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
 | |
| 
 | |
|   assert(AllocatedStackSlots.size() ==
 | |
|          Builder.FuncInfo.StatepointStackSlots.size() &&
 | |
|          "Broken invariant");
 | |
| 
 | |
|   for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
 | |
|     if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
 | |
|       const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
 | |
|       if (MFI.getObjectSize(FI) == SpillSize) {
 | |
|         AllocatedStackSlots.set(NextSlotToAllocate);
 | |
|         // TODO: Is ValueType the right thing to use here?
 | |
|         return Builder.DAG.getFrameIndex(FI, ValueType);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Couldn't find a free slot, so create a new one:
 | |
| 
 | |
|   SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
 | |
|   const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
 | |
|   MFI.markAsStatepointSpillSlotObjectIndex(FI);
 | |
| 
 | |
|   Builder.FuncInfo.StatepointStackSlots.push_back(FI);
 | |
|   AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
 | |
|   assert(AllocatedStackSlots.size() ==
 | |
|          Builder.FuncInfo.StatepointStackSlots.size() &&
 | |
|          "Broken invariant");
 | |
| 
 | |
|   StatepointMaxSlotsRequired.updateMax(
 | |
|       Builder.FuncInfo.StatepointStackSlots.size());
 | |
| 
 | |
|   return SpillSlot;
 | |
| }
 | |
| 
 | |
| /// Utility function for reservePreviousStackSlotForValue. Tries to find
 | |
| /// stack slot index to which we have spilled value for previous statepoints.
 | |
| /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
 | |
| static Optional<int> findPreviousSpillSlot(const Value *Val,
 | |
|                                            SelectionDAGBuilder &Builder,
 | |
|                                            int LookUpDepth) {
 | |
|   // Can not look any further - give up now
 | |
|   if (LookUpDepth <= 0)
 | |
|     return None;
 | |
| 
 | |
|   // Spill location is known for gc relocates
 | |
|   if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
 | |
|     const auto &SpillMap =
 | |
|         Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()];
 | |
| 
 | |
|     auto It = SpillMap.find(Relocate->getDerivedPtr());
 | |
|     if (It == SpillMap.end())
 | |
|       return None;
 | |
| 
 | |
|     return It->second;
 | |
|   }
 | |
| 
 | |
|   // Look through bitcast instructions.
 | |
|   if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
 | |
|     return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
 | |
| 
 | |
|   // Look through phi nodes
 | |
|   // All incoming values should have same known stack slot, otherwise result
 | |
|   // is unknown.
 | |
|   if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
 | |
|     Optional<int> MergedResult = None;
 | |
| 
 | |
|     for (auto &IncomingValue : Phi->incoming_values()) {
 | |
|       Optional<int> SpillSlot =
 | |
|           findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
 | |
|       if (!SpillSlot.hasValue())
 | |
|         return None;
 | |
| 
 | |
|       if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
 | |
|         return None;
 | |
| 
 | |
|       MergedResult = SpillSlot;
 | |
|     }
 | |
|     return MergedResult;
 | |
|   }
 | |
| 
 | |
|   // TODO: We can do better for PHI nodes. In cases like this:
 | |
|   //   ptr = phi(relocated_pointer, not_relocated_pointer)
 | |
|   //   statepoint(ptr)
 | |
|   // We will return that stack slot for ptr is unknown. And later we might
 | |
|   // assign different stack slots for ptr and relocated_pointer. This limits
 | |
|   // llvm's ability to remove redundant stores.
 | |
|   // Unfortunately it's hard to accomplish in current infrastructure.
 | |
|   // We use this function to eliminate spill store completely, while
 | |
|   // in example we still need to emit store, but instead of any location
 | |
|   // we need to use special "preferred" location.
 | |
| 
 | |
|   // TODO: handle simple updates.  If a value is modified and the original
 | |
|   // value is no longer live, it would be nice to put the modified value in the
 | |
|   // same slot.  This allows folding of the memory accesses for some
 | |
|   // instructions types (like an increment).
 | |
|   //   statepoint (i)
 | |
|   //   i1 = i+1
 | |
|   //   statepoint (i1)
 | |
|   // However we need to be careful for cases like this:
 | |
|   //   statepoint(i)
 | |
|   //   i1 = i+1
 | |
|   //   statepoint(i, i1)
 | |
|   // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
 | |
|   // put handling of simple modifications in this function like it's done
 | |
|   // for bitcasts we might end up reserving i's slot for 'i+1' because order in
 | |
|   // which we visit values is unspecified.
 | |
| 
 | |
|   // Don't know any information about this instruction
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| /// Try to find existing copies of the incoming values in stack slots used for
 | |
| /// statepoint spilling.  If we can find a spill slot for the incoming value,
 | |
| /// mark that slot as allocated, and reuse the same slot for this safepoint.
 | |
| /// This helps to avoid series of loads and stores that only serve to reshuffle
 | |
| /// values on the stack between calls.
 | |
| static void reservePreviousStackSlotForValue(const Value *IncomingValue,
 | |
|                                              SelectionDAGBuilder &Builder) {
 | |
| 
 | |
|   SDValue Incoming = Builder.getValue(IncomingValue);
 | |
| 
 | |
|   if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
 | |
|     // We won't need to spill this, so no need to check for previously
 | |
|     // allocated stack slots
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
 | |
|   if (OldLocation.getNode())
 | |
|     // Duplicates in input
 | |
|     return;
 | |
| 
 | |
|   const int LookUpDepth = 6;
 | |
|   Optional<int> Index =
 | |
|       findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
 | |
|   if (!Index.hasValue())
 | |
|     return;
 | |
| 
 | |
|   const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
 | |
| 
 | |
|   auto SlotIt = find(StatepointSlots, *Index);
 | |
|   assert(SlotIt != StatepointSlots.end() &&
 | |
|          "Value spilled to the unknown stack slot");
 | |
| 
 | |
|   // This is one of our dedicated lowering slots
 | |
|   const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
 | |
|   if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
 | |
|     // stack slot already assigned to someone else, can't use it!
 | |
|     // TODO: currently we reserve space for gc arguments after doing
 | |
|     // normal allocation for deopt arguments.  We should reserve for
 | |
|     // _all_ deopt and gc arguments, then start allocating.  This
 | |
|     // will prevent some moves being inserted when vm state changes,
 | |
|     // but gc state doesn't between two calls.
 | |
|     return;
 | |
|   }
 | |
|   // Reserve this stack slot
 | |
|   Builder.StatepointLowering.reserveStackSlot(Offset);
 | |
| 
 | |
|   // Cache this slot so we find it when going through the normal
 | |
|   // assignment loop.
 | |
|   SDValue Loc =
 | |
|       Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
 | |
|   Builder.StatepointLowering.setLocation(Incoming, Loc);
 | |
| }
 | |
| 
 | |
| /// Remove any duplicate (as SDValues) from the derived pointer pairs.  This
 | |
| /// is not required for correctness.  It's purpose is to reduce the size of
 | |
| /// StackMap section.  It has no effect on the number of spill slots required
 | |
| /// or the actual lowering.
 | |
| static void
 | |
| removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases,
 | |
|                       SmallVectorImpl<const Value *> &Ptrs,
 | |
|                       SmallVectorImpl<const GCRelocateInst *> &Relocs,
 | |
|                       SelectionDAGBuilder &Builder,
 | |
|                       FunctionLoweringInfo::StatepointSpillMap &SSM) {
 | |
|   DenseMap<SDValue, const Value *> Seen;
 | |
| 
 | |
|   SmallVector<const Value *, 64> NewBases, NewPtrs;
 | |
|   SmallVector<const GCRelocateInst *, 64> NewRelocs;
 | |
|   for (size_t i = 0, e = Ptrs.size(); i < e; i++) {
 | |
|     SDValue SD = Builder.getValue(Ptrs[i]);
 | |
|     auto SeenIt = Seen.find(SD);
 | |
| 
 | |
|     if (SeenIt == Seen.end()) {
 | |
|       // Only add non-duplicates
 | |
|       NewBases.push_back(Bases[i]);
 | |
|       NewPtrs.push_back(Ptrs[i]);
 | |
|       NewRelocs.push_back(Relocs[i]);
 | |
|       Seen[SD] = Ptrs[i];
 | |
|     } else {
 | |
|       // Duplicate pointer found, note in SSM and move on:
 | |
|       SSM.DuplicateMap[Ptrs[i]] = SeenIt->second;
 | |
|     }
 | |
|   }
 | |
|   assert(Bases.size() >= NewBases.size());
 | |
|   assert(Ptrs.size() >= NewPtrs.size());
 | |
|   assert(Relocs.size() >= NewRelocs.size());
 | |
|   Bases = NewBases;
 | |
|   Ptrs = NewPtrs;
 | |
|   Relocs = NewRelocs;
 | |
|   assert(Ptrs.size() == Bases.size());
 | |
|   assert(Ptrs.size() == Relocs.size());
 | |
| }
 | |
| 
 | |
| /// Extract call from statepoint, lower it and return pointer to the
 | |
| /// call node. Also update NodeMap so that getValue(statepoint) will
 | |
| /// reference lowered call result
 | |
| static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
 | |
|     SelectionDAGBuilder::StatepointLoweringInfo &SI,
 | |
|     SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) {
 | |
| 
 | |
|   SDValue ReturnValue, CallEndVal;
 | |
|   std::tie(ReturnValue, CallEndVal) =
 | |
|       Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
 | |
|   SDNode *CallEnd = CallEndVal.getNode();
 | |
| 
 | |
|   // Get a call instruction from the call sequence chain.  Tail calls are not
 | |
|   // allowed.  The following code is essentially reverse engineering X86's
 | |
|   // LowerCallTo.
 | |
|   //
 | |
|   // We are expecting DAG to have the following form:
 | |
|   //
 | |
|   // ch = eh_label (only in case of invoke statepoint)
 | |
|   //   ch, glue = callseq_start ch
 | |
|   //   ch, glue = X86::Call ch, glue
 | |
|   //   ch, glue = callseq_end ch, glue
 | |
|   //   get_return_value ch, glue
 | |
|   //
 | |
|   // get_return_value can either be a sequence of CopyFromReg instructions
 | |
|   // to grab the return value from the return register(s), or it can be a LOAD
 | |
|   // to load a value returned by reference via a stack slot.
 | |
| 
 | |
|   bool HasDef = !SI.CLI.RetTy->isVoidTy();
 | |
|   if (HasDef) {
 | |
|     if (CallEnd->getOpcode() == ISD::LOAD)
 | |
|       CallEnd = CallEnd->getOperand(0).getNode();
 | |
|     else
 | |
|       while (CallEnd->getOpcode() == ISD::CopyFromReg)
 | |
|         CallEnd = CallEnd->getOperand(0).getNode();
 | |
|   }
 | |
| 
 | |
|   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
 | |
|   return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
 | |
| }
 | |
| 
 | |
| /// Spill a value incoming to the statepoint. It might be either part of
 | |
| /// vmstate
 | |
| /// or gcstate. In both cases unconditionally spill it on the stack unless it
 | |
| /// is a null constant. Return pair with first element being frame index
 | |
| /// containing saved value and second element with outgoing chain from the
 | |
| /// emitted store
 | |
| static std::pair<SDValue, SDValue>
 | |
| spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
 | |
|                              SelectionDAGBuilder &Builder) {
 | |
|   SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
 | |
| 
 | |
|   // Emit new store if we didn't do it for this ptr before
 | |
|   if (!Loc.getNode()) {
 | |
|     Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
 | |
|                                                        Builder);
 | |
|     int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
 | |
|     // We use TargetFrameIndex so that isel will not select it into LEA
 | |
|     Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());
 | |
| 
 | |
|     // TODO: We can create TokenFactor node instead of
 | |
|     //       chaining stores one after another, this may allow
 | |
|     //       a bit more optimal scheduling for them
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     // Right now we always allocate spill slots that are of the same
 | |
|     // size as the value we're about to spill (the size of spillee can
 | |
|     // vary since we spill vectors of pointers too).  At some point we
 | |
|     // can consider allowing spills of smaller values to larger slots
 | |
|     // (i.e. change the '==' in the assert below to a '>=').
 | |
|     MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
 | |
|     assert((MFI.getObjectSize(Index) * 8) == Incoming.getValueSizeInBits() &&
 | |
|            "Bad spill:  stack slot does not match!");
 | |
| #endif
 | |
| 
 | |
|     Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
 | |
|                                  MachinePointerInfo::getFixedStack(
 | |
|                                      Builder.DAG.getMachineFunction(), Index));
 | |
| 
 | |
|     Builder.StatepointLowering.setLocation(Incoming, Loc);
 | |
|   }
 | |
| 
 | |
|   assert(Loc.getNode());
 | |
|   return std::make_pair(Loc, Chain);
 | |
| }
 | |
| 
 | |
| /// Lower a single value incoming to a statepoint node.  This value can be
 | |
| /// either a deopt value or a gc value, the handling is the same.  We special
 | |
| /// case constants and allocas, then fall back to spilling if required.
 | |
| static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly,
 | |
|                                          SmallVectorImpl<SDValue> &Ops,
 | |
|                                          SelectionDAGBuilder &Builder) {
 | |
|   SDValue Chain = Builder.getRoot();
 | |
| 
 | |
|   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
 | |
|     // If the original value was a constant, make sure it gets recorded as
 | |
|     // such in the stackmap.  This is required so that the consumer can
 | |
|     // parse any internal format to the deopt state.  It also handles null
 | |
|     // pointers and other constant pointers in GC states.  Note the constant
 | |
|     // vectors do not appear to actually hit this path and that anything larger
 | |
|     // than an i64 value (not type!) will fail asserts here.
 | |
|     pushStackMapConstant(Ops, Builder, C->getSExtValue());
 | |
|   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
 | |
|     // This handles allocas as arguments to the statepoint (this is only
 | |
|     // really meaningful for a deopt value.  For GC, we'd be trying to
 | |
|     // relocate the address of the alloca itself?)
 | |
|     assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
 | |
|            "Incoming value is a frame index!");
 | |
|     Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
 | |
|                                                   Builder.getFrameIndexTy()));
 | |
|   } else if (LiveInOnly) {
 | |
|     // If this value is live in (not live-on-return, or live-through), we can
 | |
|     // treat it the same way patchpoint treats it's "live in" values.  We'll 
 | |
|     // end up folding some of these into stack references, but they'll be 
 | |
|     // handled by the register allocator.  Note that we do not have the notion
 | |
|     // of a late use so these values might be placed in registers which are 
 | |
|     // clobbered by the call.  This is fine for live-in.
 | |
|     Ops.push_back(Incoming);
 | |
|   } else {
 | |
|     // Otherwise, locate a spill slot and explicitly spill it so it
 | |
|     // can be found by the runtime later.  We currently do not support
 | |
|     // tracking values through callee saved registers to their eventual
 | |
|     // spill location.  This would be a useful optimization, but would
 | |
|     // need to be optional since it requires a lot of complexity on the
 | |
|     // runtime side which not all would support.
 | |
|     auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
 | |
|     Ops.push_back(Res.first);
 | |
|     Chain = Res.second;
 | |
|   }
 | |
| 
 | |
|   Builder.DAG.setRoot(Chain);
 | |
| }
 | |
| 
 | |
| /// Lower deopt state and gc pointer arguments of the statepoint.  The actual
 | |
| /// lowering is described in lowerIncomingStatepointValue.  This function is
 | |
| /// responsible for lowering everything in the right position and playing some
 | |
| /// tricks to avoid redundant stack manipulation where possible.  On
 | |
| /// completion, 'Ops' will contain ready to use operands for machine code
 | |
| /// statepoint. The chain nodes will have already been created and the DAG root
 | |
| /// will be set to the last value spilled (if any were).
 | |
| static void
 | |
| lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
 | |
|                         SelectionDAGBuilder::StatepointLoweringInfo &SI,
 | |
|                         SelectionDAGBuilder &Builder) {
 | |
|   // Lower the deopt and gc arguments for this statepoint.  Layout will be:
 | |
|   // deopt argument length, deopt arguments.., gc arguments...
 | |
| #ifndef NDEBUG
 | |
|   if (auto *GFI = Builder.GFI) {
 | |
|     // Check that each of the gc pointer and bases we've gotten out of the
 | |
|     // safepoint is something the strategy thinks might be a pointer (or vector
 | |
|     // of pointers) into the GC heap.  This is basically just here to help catch
 | |
|     // errors during statepoint insertion. TODO: This should actually be in the
 | |
|     // Verifier, but we can't get to the GCStrategy from there (yet).
 | |
|     GCStrategy &S = GFI->getStrategy();
 | |
|     for (const Value *V : SI.Bases) {
 | |
|       auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
 | |
|       if (Opt.hasValue()) {
 | |
|         assert(Opt.getValue() &&
 | |
|                "non gc managed base pointer found in statepoint");
 | |
|       }
 | |
|     }
 | |
|     for (const Value *V : SI.Ptrs) {
 | |
|       auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
 | |
|       if (Opt.hasValue()) {
 | |
|         assert(Opt.getValue() &&
 | |
|                "non gc managed derived pointer found in statepoint");
 | |
|       }
 | |
|     }
 | |
|     assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
 | |
|   } else {
 | |
|     assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
 | |
|     assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // Figure out what lowering strategy we're going to use for each part
 | |
|   // Note: Is is conservatively correct to lower both "live-in" and "live-out"
 | |
|   // as "live-through". A "live-through" variable is one which is "live-in",
 | |
|   // "live-out", and live throughout the lifetime of the call (i.e. we can find
 | |
|   // it from any PC within the transitive callee of the statepoint).  In
 | |
|   // particular, if the callee spills callee preserved registers we may not
 | |
|   // be able to find a value placed in that register during the call.  This is
 | |
|   // fine for live-out, but not for live-through.  If we were willing to make
 | |
|   // assumptions about the code generator producing the callee, we could
 | |
|   // potentially allow live-through values in callee saved registers.
 | |
|   const bool LiveInDeopt =
 | |
|     SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
 | |
| 
 | |
|   auto isGCValue =[&](const Value *V) {
 | |
|     return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V);
 | |
|   };
 | |
|   
 | |
|   // Before we actually start lowering (and allocating spill slots for values),
 | |
|   // reserve any stack slots which we judge to be profitable to reuse for a
 | |
|   // particular value.  This is purely an optimization over the code below and
 | |
|   // doesn't change semantics at all.  It is important for performance that we
 | |
|   // reserve slots for both deopt and gc values before lowering either.
 | |
|   for (const Value *V : SI.DeoptState) {
 | |
|     if (!LiveInDeopt || isGCValue(V))
 | |
|       reservePreviousStackSlotForValue(V, Builder);
 | |
|   }
 | |
|   for (unsigned i = 0; i < SI.Bases.size(); ++i) {
 | |
|     reservePreviousStackSlotForValue(SI.Bases[i], Builder);
 | |
|     reservePreviousStackSlotForValue(SI.Ptrs[i], Builder);
 | |
|   }
 | |
| 
 | |
|   // First, prefix the list with the number of unique values to be
 | |
|   // lowered.  Note that this is the number of *Values* not the
 | |
|   // number of SDValues required to lower them.
 | |
|   const int NumVMSArgs = SI.DeoptState.size();
 | |
|   pushStackMapConstant(Ops, Builder, NumVMSArgs);
 | |
| 
 | |
|   // The vm state arguments are lowered in an opaque manner.  We do not know
 | |
|   // what type of values are contained within.
 | |
|   for (const Value *V : SI.DeoptState) {
 | |
|     SDValue Incoming = Builder.getValue(V);
 | |
|     const bool LiveInValue = LiveInDeopt && !isGCValue(V);
 | |
|     lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, Builder);
 | |
|   }
 | |
| 
 | |
|   // Finally, go ahead and lower all the gc arguments.  There's no prefixed
 | |
|   // length for this one.  After lowering, we'll have the base and pointer
 | |
|   // arrays interwoven with each (lowered) base pointer immediately followed by
 | |
|   // it's (lowered) derived pointer.  i.e
 | |
|   // (base[0], ptr[0], base[1], ptr[1], ...)
 | |
|   for (unsigned i = 0; i < SI.Bases.size(); ++i) {
 | |
|     const Value *Base = SI.Bases[i];
 | |
|     lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false,
 | |
|                                  Ops, Builder);
 | |
| 
 | |
|     const Value *Ptr = SI.Ptrs[i];
 | |
|     lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false,
 | |
|                                  Ops, Builder);
 | |
|   }
 | |
| 
 | |
|   // If there are any explicit spill slots passed to the statepoint, record
 | |
|   // them, but otherwise do not do anything special.  These are user provided
 | |
|   // allocas and give control over placement to the consumer.  In this case,
 | |
|   // it is the contents of the slot which may get updated, not the pointer to
 | |
|   // the alloca
 | |
|   for (Value *V : SI.GCArgs) {
 | |
|     SDValue Incoming = Builder.getValue(V);
 | |
|     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
 | |
|       // This handles allocas as arguments to the statepoint
 | |
|       assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
 | |
|              "Incoming value is a frame index!");
 | |
|       Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
 | |
|                                                     Builder.getFrameIndexTy()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Record computed locations for all lowered values.
 | |
|   // This can not be embedded in lowering loops as we need to record *all*
 | |
|   // values, while previous loops account only values with unique SDValues.
 | |
|   const Instruction *StatepointInstr = SI.StatepointInstr;
 | |
|   auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr];
 | |
| 
 | |
|   for (const GCRelocateInst *Relocate : SI.GCRelocates) {
 | |
|     const Value *V = Relocate->getDerivedPtr();
 | |
|     SDValue SDV = Builder.getValue(V);
 | |
|     SDValue Loc = Builder.StatepointLowering.getLocation(SDV);
 | |
| 
 | |
|     if (Loc.getNode()) {
 | |
|       SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex();
 | |
|     } else {
 | |
|       // Record value as visited, but not spilled. This is case for allocas
 | |
|       // and constants. For this values we can avoid emitting spill load while
 | |
|       // visiting corresponding gc_relocate.
 | |
|       // Actually we do not need to record them in this map at all.
 | |
|       // We do this only to check that we are not relocating any unvisited
 | |
|       // value.
 | |
|       SpillMap.SlotMap[V] = None;
 | |
| 
 | |
|       // Default llvm mechanisms for exporting values which are used in
 | |
|       // different basic blocks does not work for gc relocates.
 | |
|       // Note that it would be incorrect to teach llvm that all relocates are
 | |
|       // uses of the corresponding values so that it would automatically
 | |
|       // export them. Relocates of the spilled values does not use original
 | |
|       // value.
 | |
|       if (Relocate->getParent() != StatepointInstr->getParent())
 | |
|         Builder.ExportFromCurrentBlock(V);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
 | |
|     SelectionDAGBuilder::StatepointLoweringInfo &SI) {
 | |
|   // The basic scheme here is that information about both the original call and
 | |
|   // the safepoint is encoded in the CallInst.  We create a temporary call and
 | |
|   // lower it, then reverse engineer the calling sequence.
 | |
| 
 | |
|   NumOfStatepoints++;
 | |
|   // Clear state
 | |
|   StatepointLowering.startNewStatepoint(*this);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // We schedule gc relocates before removeDuplicateGCPtrs since we _will_
 | |
|   // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs.
 | |
|   for (auto *Reloc : SI.GCRelocates)
 | |
|     if (Reloc->getParent() == SI.StatepointInstr->getParent())
 | |
|       StatepointLowering.scheduleRelocCall(*Reloc);
 | |
| #endif
 | |
| 
 | |
|   // Remove any redundant llvm::Values which map to the same SDValue as another
 | |
|   // input.  Also has the effect of removing duplicates in the original
 | |
|   // llvm::Value input list as well.  This is a useful optimization for
 | |
|   // reducing the size of the StackMap section.  It has no other impact.
 | |
|   removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this,
 | |
|                         FuncInfo.StatepointSpillMaps[SI.StatepointInstr]);
 | |
|   assert(SI.Bases.size() == SI.Ptrs.size() &&
 | |
|          SI.Ptrs.size() == SI.GCRelocates.size());
 | |
| 
 | |
|   // Lower statepoint vmstate and gcstate arguments
 | |
|   SmallVector<SDValue, 10> LoweredMetaArgs;
 | |
|   lowerStatepointMetaArgs(LoweredMetaArgs, SI, *this);
 | |
| 
 | |
|   // Now that we've emitted the spills, we need to update the root so that the
 | |
|   // call sequence is ordered correctly.
 | |
|   SI.CLI.setChain(getRoot());
 | |
| 
 | |
|   // Get call node, we will replace it later with statepoint
 | |
|   SDValue ReturnVal;
 | |
|   SDNode *CallNode;
 | |
|   std::tie(ReturnVal, CallNode) =
 | |
|       lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports);
 | |
| 
 | |
|   // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
 | |
|   // nodes with all the appropriate arguments and return values.
 | |
| 
 | |
|   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
 | |
|   SDValue Chain = CallNode->getOperand(0);
 | |
| 
 | |
|   SDValue Glue;
 | |
|   bool CallHasIncomingGlue = CallNode->getGluedNode();
 | |
|   if (CallHasIncomingGlue) {
 | |
|     // Glue is always last operand
 | |
|     Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
 | |
|   }
 | |
| 
 | |
|   // Build the GC_TRANSITION_START node if necessary.
 | |
|   //
 | |
|   // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
 | |
|   // order in which they appear in the call to the statepoint intrinsic. If
 | |
|   // any of the operands is a pointer-typed, that operand is immediately
 | |
|   // followed by a SRCVALUE for the pointer that may be used during lowering
 | |
|   // (e.g. to form MachinePointerInfo values for loads/stores).
 | |
|   const bool IsGCTransition =
 | |
|       (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
 | |
|       (uint64_t)StatepointFlags::GCTransition;
 | |
|   if (IsGCTransition) {
 | |
|     SmallVector<SDValue, 8> TSOps;
 | |
| 
 | |
|     // Add chain
 | |
|     TSOps.push_back(Chain);
 | |
| 
 | |
|     // Add GC transition arguments
 | |
|     for (const Value *V : SI.GCTransitionArgs) {
 | |
|       TSOps.push_back(getValue(V));
 | |
|       if (V->getType()->isPointerTy())
 | |
|         TSOps.push_back(DAG.getSrcValue(V));
 | |
|     }
 | |
| 
 | |
|     // Add glue if necessary
 | |
|     if (CallHasIncomingGlue)
 | |
|       TSOps.push_back(Glue);
 | |
| 
 | |
|     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
| 
 | |
|     SDValue GCTransitionStart =
 | |
|         DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
 | |
| 
 | |
|     Chain = GCTransitionStart.getValue(0);
 | |
|     Glue = GCTransitionStart.getValue(1);
 | |
|   }
 | |
| 
 | |
|   // TODO: Currently, all of these operands are being marked as read/write in
 | |
|   // PrologEpilougeInserter.cpp, we should special case the VMState arguments
 | |
|   // and flags to be read-only.
 | |
|   SmallVector<SDValue, 40> Ops;
 | |
| 
 | |
|   // Add the <id> and <numBytes> constants.
 | |
|   Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
 | |
|   Ops.push_back(
 | |
|       DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
 | |
| 
 | |
|   // Calculate and push starting position of vmstate arguments
 | |
|   // Get number of arguments incoming directly into call node
 | |
|   unsigned NumCallRegArgs =
 | |
|       CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
 | |
|   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
 | |
| 
 | |
|   // Add call target
 | |
|   SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
 | |
|   Ops.push_back(CallTarget);
 | |
| 
 | |
|   // Add call arguments
 | |
|   // Get position of register mask in the call
 | |
|   SDNode::op_iterator RegMaskIt;
 | |
|   if (CallHasIncomingGlue)
 | |
|     RegMaskIt = CallNode->op_end() - 2;
 | |
|   else
 | |
|     RegMaskIt = CallNode->op_end() - 1;
 | |
|   Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
 | |
| 
 | |
|   // Add a constant argument for the calling convention
 | |
|   pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
 | |
| 
 | |
|   // Add a constant argument for the flags
 | |
|   uint64_t Flags = SI.StatepointFlags;
 | |
|   assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
 | |
|          "Unknown flag used");
 | |
|   pushStackMapConstant(Ops, *this, Flags);
 | |
| 
 | |
|   // Insert all vmstate and gcstate arguments
 | |
|   Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end());
 | |
| 
 | |
|   // Add register mask from call node
 | |
|   Ops.push_back(*RegMaskIt);
 | |
| 
 | |
|   // Add chain
 | |
|   Ops.push_back(Chain);
 | |
| 
 | |
|   // Same for the glue, but we add it only if original call had it
 | |
|   if (Glue.getNode())
 | |
|     Ops.push_back(Glue);
 | |
| 
 | |
|   // Compute return values.  Provide a glue output since we consume one as
 | |
|   // input.  This allows someone else to chain off us as needed.
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
| 
 | |
|   SDNode *StatepointMCNode =
 | |
|       DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
 | |
| 
 | |
|   SDNode *SinkNode = StatepointMCNode;
 | |
| 
 | |
|   // Build the GC_TRANSITION_END node if necessary.
 | |
|   //
 | |
|   // See the comment above regarding GC_TRANSITION_START for the layout of
 | |
|   // the operands to the GC_TRANSITION_END node.
 | |
|   if (IsGCTransition) {
 | |
|     SmallVector<SDValue, 8> TEOps;
 | |
| 
 | |
|     // Add chain
 | |
|     TEOps.push_back(SDValue(StatepointMCNode, 0));
 | |
| 
 | |
|     // Add GC transition arguments
 | |
|     for (const Value *V : SI.GCTransitionArgs) {
 | |
|       TEOps.push_back(getValue(V));
 | |
|       if (V->getType()->isPointerTy())
 | |
|         TEOps.push_back(DAG.getSrcValue(V));
 | |
|     }
 | |
| 
 | |
|     // Add glue
 | |
|     TEOps.push_back(SDValue(StatepointMCNode, 1));
 | |
| 
 | |
|     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
| 
 | |
|     SDValue GCTransitionStart =
 | |
|         DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
 | |
| 
 | |
|     SinkNode = GCTransitionStart.getNode();
 | |
|   }
 | |
| 
 | |
|   // Replace original call
 | |
|   DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root
 | |
|   // Remove original call node
 | |
|   DAG.DeleteNode(CallNode);
 | |
| 
 | |
|   // DON'T set the root - under the assumption that it's already set past the
 | |
|   // inserted node we created.
 | |
| 
 | |
|   // TODO: A better future implementation would be to emit a single variable
 | |
|   // argument, variable return value STATEPOINT node here and then hookup the
 | |
|   // return value of each gc.relocate to the respective output of the
 | |
|   // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear
 | |
|   // to actually be possible today.
 | |
| 
 | |
|   return ReturnVal;
 | |
| }
 | |
| 
 | |
| void
 | |
| SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP,
 | |
|                                      const BasicBlock *EHPadBB /*= nullptr*/) {
 | |
|   assert(ISP.getCallSite().getCallingConv() != CallingConv::AnyReg &&
 | |
|          "anyregcc is not supported on statepoints!");
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // If this is a malformed statepoint, report it early to simplify debugging.
 | |
|   // This should catch any IR level mistake that's made when constructing or
 | |
|   // transforming statepoints.
 | |
|   ISP.verify();
 | |
| 
 | |
|   // Check that the associated GCStrategy expects to encounter statepoints.
 | |
|   assert(GFI->getStrategy().useStatepoints() &&
 | |
|          "GCStrategy does not expect to encounter statepoints");
 | |
| #endif
 | |
| 
 | |
|   SDValue ActualCallee;
 | |
| 
 | |
|   if (ISP.getNumPatchBytes() > 0) {
 | |
|     // If we've been asked to emit a nop sequence instead of a call instruction
 | |
|     // for this statepoint then don't lower the call target, but use a constant
 | |
|     // `null` instead.  Not lowering the call target lets statepoint clients get
 | |
|     // away without providing a physical address for the symbolic call target at
 | |
|     // link time.
 | |
| 
 | |
|     const auto &TLI = DAG.getTargetLoweringInfo();
 | |
|     const auto &DL = DAG.getDataLayout();
 | |
| 
 | |
|     unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace();
 | |
|     ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS));
 | |
|   } else {
 | |
|     ActualCallee = getValue(ISP.getCalledValue());
 | |
|   }
 | |
| 
 | |
|   StatepointLoweringInfo SI(DAG);
 | |
|   populateCallLoweringInfo(SI.CLI, ISP.getCallSite(),
 | |
|                            ImmutableStatepoint::CallArgsBeginPos,
 | |
|                            ISP.getNumCallArgs(), ActualCallee,
 | |
|                            ISP.getActualReturnType(), false /* IsPatchPoint */);
 | |
| 
 | |
|   for (const GCRelocateInst *Relocate : ISP.getRelocates()) {
 | |
|     SI.GCRelocates.push_back(Relocate);
 | |
|     SI.Bases.push_back(Relocate->getBasePtr());
 | |
|     SI.Ptrs.push_back(Relocate->getDerivedPtr());
 | |
|   }
 | |
| 
 | |
|   SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
 | |
|   SI.StatepointInstr = ISP.getInstruction();
 | |
|   SI.GCTransitionArgs =
 | |
|       ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
 | |
|   SI.ID = ISP.getID();
 | |
|   SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end());
 | |
|   SI.StatepointFlags = ISP.getFlags();
 | |
|   SI.NumPatchBytes = ISP.getNumPatchBytes();
 | |
|   SI.EHPadBB = EHPadBB;
 | |
| 
 | |
|   SDValue ReturnValue = LowerAsSTATEPOINT(SI);
 | |
| 
 | |
|   // Export the result value if needed
 | |
|   const GCResultInst *GCResult = ISP.getGCResult();
 | |
|   Type *RetTy = ISP.getActualReturnType();
 | |
|   if (!RetTy->isVoidTy() && GCResult) {
 | |
|     if (GCResult->getParent() != ISP.getCallSite().getParent()) {
 | |
|       // Result value will be used in a different basic block so we need to
 | |
|       // export it now.  Default exporting mechanism will not work here because
 | |
|       // statepoint call has a different type than the actual call. It means
 | |
|       // that by default llvm will create export register of the wrong type
 | |
|       // (always i32 in our case). So instead we need to create export register
 | |
|       // with correct type manually.
 | |
|       // TODO: To eliminate this problem we can remove gc.result intrinsics
 | |
|       //       completely and make statepoint call to return a tuple.
 | |
|       unsigned Reg = FuncInfo.CreateRegs(RetTy);
 | |
|       RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
 | |
|                        DAG.getDataLayout(), Reg, RetTy, true);
 | |
|       SDValue Chain = DAG.getEntryNode();
 | |
| 
 | |
|       RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
 | |
|       PendingExports.push_back(Chain);
 | |
|       FuncInfo.ValueMap[ISP.getInstruction()] = Reg;
 | |
|     } else {
 | |
|       // Result value will be used in a same basic block. Don't export it or
 | |
|       // perform any explicit register copies.
 | |
|       // We'll replace the actuall call node shortly. gc_result will grab
 | |
|       // this value.
 | |
|       setValue(ISP.getInstruction(), ReturnValue);
 | |
|     }
 | |
|   } else {
 | |
|     // The token value is never used from here on, just generate a poison value
 | |
|     setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc()));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
 | |
|     ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB,
 | |
|     bool VarArgDisallowed, bool ForceVoidReturnTy) {
 | |
|   StatepointLoweringInfo SI(DAG);
 | |
|   unsigned ArgBeginIndex = CS.arg_begin() - CS.getInstruction()->op_begin();
 | |
|   populateCallLoweringInfo(
 | |
|       SI.CLI, CS, ArgBeginIndex, CS.getNumArgOperands(), Callee,
 | |
|       ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : CS.getType(),
 | |
|       false);
 | |
|   if (!VarArgDisallowed)
 | |
|     SI.CLI.IsVarArg = CS.getFunctionType()->isVarArg();
 | |
| 
 | |
|   auto DeoptBundle = *CS.getOperandBundle(LLVMContext::OB_deopt);
 | |
| 
 | |
|   unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
 | |
| 
 | |
|   auto SD = parseStatepointDirectivesFromAttrs(CS.getAttributes());
 | |
|   SI.ID = SD.StatepointID.getValueOr(DefaultID);
 | |
|   SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0);
 | |
| 
 | |
|   SI.DeoptState =
 | |
|       ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
 | |
|   SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
 | |
|   SI.EHPadBB = EHPadBB;
 | |
| 
 | |
|   // NB! The GC arguments are deliberately left empty.
 | |
| 
 | |
|   if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
 | |
|     const Instruction *Inst = CS.getInstruction();
 | |
|     ReturnVal = lowerRangeToAssertZExt(DAG, *Inst, ReturnVal);
 | |
|     setValue(Inst, ReturnVal);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
 | |
|     ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB) {
 | |
|   LowerCallSiteWithDeoptBundleImpl(CS, Callee, EHPadBB,
 | |
|                                    /* VarArgDisallowed = */ false,
 | |
|                                    /* ForceVoidReturnTy  = */ false);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
 | |
|   // The result value of the gc_result is simply the result of the actual
 | |
|   // call.  We've already emitted this, so just grab the value.
 | |
|   const Instruction *I = CI.getStatepoint();
 | |
| 
 | |
|   if (I->getParent() != CI.getParent()) {
 | |
|     // Statepoint is in different basic block so we should have stored call
 | |
|     // result in a virtual register.
 | |
|     // We can not use default getValue() functionality to copy value from this
 | |
|     // register because statepoint and actual call return types can be
 | |
|     // different, and getValue() will use CopyFromReg of the wrong type,
 | |
|     // which is always i32 in our case.
 | |
|     PointerType *CalleeType = cast<PointerType>(
 | |
|         ImmutableStatepoint(I).getCalledValue()->getType());
 | |
|     Type *RetTy =
 | |
|         cast<FunctionType>(CalleeType->getElementType())->getReturnType();
 | |
|     SDValue CopyFromReg = getCopyFromRegs(I, RetTy);
 | |
| 
 | |
|     assert(CopyFromReg.getNode());
 | |
|     setValue(&CI, CopyFromReg);
 | |
|   } else {
 | |
|     setValue(&CI, getValue(I));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
 | |
| #ifndef NDEBUG
 | |
|   // Consistency check
 | |
|   // We skip this check for relocates not in the same basic block as their
 | |
|   // statepoint. It would be too expensive to preserve validation info through
 | |
|   // different basic blocks.
 | |
|   if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
 | |
|     StatepointLowering.relocCallVisited(Relocate);
 | |
| 
 | |
|   auto *Ty = Relocate.getType()->getScalarType();
 | |
|   if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
 | |
|     assert(*IsManaged && "Non gc managed pointer relocated!");
 | |
| #endif
 | |
| 
 | |
|   const Value *DerivedPtr = Relocate.getDerivedPtr();
 | |
|   SDValue SD = getValue(DerivedPtr);
 | |
| 
 | |
|   auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()];
 | |
|   auto SlotIt = SpillMap.find(DerivedPtr);
 | |
|   assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value");
 | |
|   Optional<int> DerivedPtrLocation = SlotIt->second;
 | |
| 
 | |
|   // We didn't need to spill these special cases (constants and allocas).
 | |
|   // See the handling in spillIncomingValueForStatepoint for detail.
 | |
|   if (!DerivedPtrLocation) {
 | |
|     setValue(&Relocate, SD);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SDValue SpillSlot =
 | |
|       DAG.getTargetFrameIndex(*DerivedPtrLocation, getFrameIndexTy());
 | |
| 
 | |
|   // Be conservative: flush all pending loads
 | |
|   // TODO: Probably we can be less restrictive on this,
 | |
|   // it may allow more scheduling opportunities.
 | |
|   SDValue Chain = getRoot();
 | |
| 
 | |
|   SDValue SpillLoad =
 | |
|       DAG.getLoad(DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
 | |
|                                                            Relocate.getType()),
 | |
|                   getCurSDLoc(), Chain, SpillSlot,
 | |
|                   MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
 | |
|                                                     *DerivedPtrLocation));
 | |
| 
 | |
|   // Again, be conservative, don't emit pending loads
 | |
|   DAG.setRoot(SpillLoad.getValue(1));
 | |
| 
 | |
|   assert(SpillLoad.getNode());
 | |
|   setValue(&Relocate, SpillLoad);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
 | |
|   const auto &TLI = DAG.getTargetLoweringInfo();
 | |
|   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
 | |
|                                          TLI.getPointerTy(DAG.getDataLayout()));
 | |
| 
 | |
|   // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
 | |
|   // call.  We also do not lower the return value to any virtual register, and
 | |
|   // change the immediately following return to a trap instruction.
 | |
|   LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
 | |
|                                    /* VarArgDisallowed = */ true,
 | |
|                                    /* ForceVoidReturnTy = */ true);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::LowerDeoptimizingReturn() {
 | |
|   // We do not lower the return value from llvm.deoptimize to any virtual
 | |
|   // register, and change the immediately following return to a trap
 | |
|   // instruction.
 | |
|   if (DAG.getTarget().Options.TrapUnreachable)
 | |
|     DAG.setRoot(
 | |
|         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
 | |
| }
 |