forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3883 lines
		
	
	
		
			156 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3883 lines
		
	
	
		
			156 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the TargetLowering class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/CodeGen/CallingConvLower.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/MC/MCExpr.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Target/TargetLoweringObjectFile.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| #include <cctype>
 | |
| using namespace llvm;
 | |
| 
 | |
| /// NOTE: The TargetMachine owns TLOF.
 | |
| TargetLowering::TargetLowering(const TargetMachine &tm)
 | |
|   : TargetLoweringBase(tm) {}
 | |
| 
 | |
| const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| bool TargetLowering::isPositionIndependent() const {
 | |
|   return getTargetMachine().isPositionIndependent();
 | |
| }
 | |
| 
 | |
| /// Check whether a given call node is in tail position within its function. If
 | |
| /// so, it sets Chain to the input chain of the tail call.
 | |
| bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
 | |
|                                           SDValue &Chain) const {
 | |
|   const Function *F = DAG.getMachineFunction().getFunction();
 | |
| 
 | |
|   // Conservatively require the attributes of the call to match those of
 | |
|   // the return. Ignore noalias because it doesn't affect the call sequence.
 | |
|   AttributeList CallerAttrs = F->getAttributes();
 | |
|   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
 | |
|           .removeAttribute(Attribute::NoAlias)
 | |
|           .hasAttributes())
 | |
|     return false;
 | |
| 
 | |
|   // It's not safe to eliminate the sign / zero extension of the return value.
 | |
|   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
 | |
|       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
 | |
|     return false;
 | |
| 
 | |
|   // Check if the only use is a function return node.
 | |
|   return isUsedByReturnOnly(Node, Chain);
 | |
| }
 | |
| 
 | |
| bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
 | |
|     const uint32_t *CallerPreservedMask,
 | |
|     const SmallVectorImpl<CCValAssign> &ArgLocs,
 | |
|     const SmallVectorImpl<SDValue> &OutVals) const {
 | |
|   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
 | |
|     const CCValAssign &ArgLoc = ArgLocs[I];
 | |
|     if (!ArgLoc.isRegLoc())
 | |
|       continue;
 | |
|     unsigned Reg = ArgLoc.getLocReg();
 | |
|     // Only look at callee saved registers.
 | |
|     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
 | |
|       continue;
 | |
|     // Check that we pass the value used for the caller.
 | |
|     // (We look for a CopyFromReg reading a virtual register that is used
 | |
|     //  for the function live-in value of register Reg)
 | |
|     SDValue Value = OutVals[I];
 | |
|     if (Value->getOpcode() != ISD::CopyFromReg)
 | |
|       return false;
 | |
|     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
 | |
|     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Set CallLoweringInfo attribute flags based on a call instruction
 | |
| /// and called function attributes.
 | |
| void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS,
 | |
|                                                      unsigned ArgIdx) {
 | |
|   IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt);
 | |
|   IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt);
 | |
|   IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg);
 | |
|   IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet);
 | |
|   IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest);
 | |
|   IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal);
 | |
|   IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca);
 | |
|   IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned);
 | |
|   IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
 | |
|   IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError);
 | |
|   Alignment  = CS->getParamAlignment(ArgIdx);
 | |
| }
 | |
| 
 | |
| /// Generate a libcall taking the given operands as arguments and returning a
 | |
| /// result of type RetVT.
 | |
| std::pair<SDValue, SDValue>
 | |
| TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
 | |
|                             ArrayRef<SDValue> Ops, bool isSigned,
 | |
|                             const SDLoc &dl, bool doesNotReturn,
 | |
|                             bool isReturnValueUsed) const {
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   Args.reserve(Ops.size());
 | |
| 
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
|   for (SDValue Op : Ops) {
 | |
|     Entry.Node = Op;
 | |
|     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
 | |
|     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
 | |
|     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
 | |
|     Args.push_back(Entry);
 | |
|   }
 | |
| 
 | |
|   if (LC == RTLIB::UNKNOWN_LIBCALL)
 | |
|     report_fatal_error("Unsupported library call operation!");
 | |
|   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
 | |
|                                          getPointerTy(DAG.getDataLayout()));
 | |
| 
 | |
|   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
 | |
|   TargetLowering::CallLoweringInfo CLI(DAG);
 | |
|   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
 | |
|   CLI.setDebugLoc(dl)
 | |
|       .setChain(DAG.getEntryNode())
 | |
|       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
 | |
|       .setNoReturn(doesNotReturn)
 | |
|       .setDiscardResult(!isReturnValueUsed)
 | |
|       .setSExtResult(signExtend)
 | |
|       .setZExtResult(!signExtend);
 | |
|   return LowerCallTo(CLI);
 | |
| }
 | |
| 
 | |
| /// Soften the operands of a comparison. This code is shared among BR_CC,
 | |
| /// SELECT_CC, and SETCC handlers.
 | |
| void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
 | |
|                                          SDValue &NewLHS, SDValue &NewRHS,
 | |
|                                          ISD::CondCode &CCCode,
 | |
|                                          const SDLoc &dl) const {
 | |
|   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
 | |
|          && "Unsupported setcc type!");
 | |
| 
 | |
|   // Expand into one or more soft-fp libcall(s).
 | |
|   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
 | |
|   bool ShouldInvertCC = false;
 | |
|   switch (CCCode) {
 | |
|   case ISD::SETEQ:
 | |
|   case ISD::SETOEQ:
 | |
|     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
 | |
|           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
 | |
|           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
 | |
|     break;
 | |
|   case ISD::SETNE:
 | |
|   case ISD::SETUNE:
 | |
|     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
 | |
|           (VT == MVT::f64) ? RTLIB::UNE_F64 :
 | |
|           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
 | |
|     break;
 | |
|   case ISD::SETGE:
 | |
|   case ISD::SETOGE:
 | |
|     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
 | |
|           (VT == MVT::f64) ? RTLIB::OGE_F64 :
 | |
|           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
 | |
|     break;
 | |
|   case ISD::SETLT:
 | |
|   case ISD::SETOLT:
 | |
|     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
 | |
|           (VT == MVT::f64) ? RTLIB::OLT_F64 :
 | |
|           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
 | |
|     break;
 | |
|   case ISD::SETLE:
 | |
|   case ISD::SETOLE:
 | |
|     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
 | |
|           (VT == MVT::f64) ? RTLIB::OLE_F64 :
 | |
|           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
 | |
|     break;
 | |
|   case ISD::SETGT:
 | |
|   case ISD::SETOGT:
 | |
|     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
 | |
|           (VT == MVT::f64) ? RTLIB::OGT_F64 :
 | |
|           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
 | |
|     break;
 | |
|   case ISD::SETUO:
 | |
|     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
 | |
|           (VT == MVT::f64) ? RTLIB::UO_F64 :
 | |
|           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
 | |
|     break;
 | |
|   case ISD::SETO:
 | |
|     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
 | |
|           (VT == MVT::f64) ? RTLIB::O_F64 :
 | |
|           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
 | |
|     break;
 | |
|   case ISD::SETONE:
 | |
|     // SETONE = SETOLT | SETOGT
 | |
|     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
 | |
|           (VT == MVT::f64) ? RTLIB::OLT_F64 :
 | |
|           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
 | |
|     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
 | |
|           (VT == MVT::f64) ? RTLIB::OGT_F64 :
 | |
|           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
 | |
|     break;
 | |
|   case ISD::SETUEQ:
 | |
|     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
 | |
|           (VT == MVT::f64) ? RTLIB::UO_F64 :
 | |
|           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
 | |
|     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
 | |
|           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
 | |
|           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
 | |
|     break;
 | |
|   default:
 | |
|     // Invert CC for unordered comparisons
 | |
|     ShouldInvertCC = true;
 | |
|     switch (CCCode) {
 | |
|     case ISD::SETULT:
 | |
|       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
 | |
|             (VT == MVT::f64) ? RTLIB::OGE_F64 :
 | |
|             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
 | |
|       break;
 | |
|     case ISD::SETULE:
 | |
|       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
 | |
|             (VT == MVT::f64) ? RTLIB::OGT_F64 :
 | |
|             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
 | |
|       break;
 | |
|     case ISD::SETUGT:
 | |
|       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
 | |
|             (VT == MVT::f64) ? RTLIB::OLE_F64 :
 | |
|             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
 | |
|       break;
 | |
|     case ISD::SETUGE:
 | |
|       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
 | |
|             (VT == MVT::f64) ? RTLIB::OLT_F64 :
 | |
|             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
 | |
|       break;
 | |
|     default: llvm_unreachable("Do not know how to soften this setcc!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Use the target specific return value for comparions lib calls.
 | |
|   EVT RetVT = getCmpLibcallReturnType();
 | |
|   SDValue Ops[2] = {NewLHS, NewRHS};
 | |
|   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
 | |
|                        dl).first;
 | |
|   NewRHS = DAG.getConstant(0, dl, RetVT);
 | |
| 
 | |
|   CCCode = getCmpLibcallCC(LC1);
 | |
|   if (ShouldInvertCC)
 | |
|     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
 | |
| 
 | |
|   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
 | |
|     SDValue Tmp = DAG.getNode(
 | |
|         ISD::SETCC, dl,
 | |
|         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
 | |
|         NewLHS, NewRHS, DAG.getCondCode(CCCode));
 | |
|     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
 | |
|                          dl).first;
 | |
|     NewLHS = DAG.getNode(
 | |
|         ISD::SETCC, dl,
 | |
|         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
 | |
|         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
 | |
|     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
 | |
|     NewRHS = SDValue();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return the entry encoding for a jump table in the current function. The
 | |
| /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
 | |
| unsigned TargetLowering::getJumpTableEncoding() const {
 | |
|   // In non-pic modes, just use the address of a block.
 | |
|   if (!isPositionIndependent())
 | |
|     return MachineJumpTableInfo::EK_BlockAddress;
 | |
| 
 | |
|   // In PIC mode, if the target supports a GPRel32 directive, use it.
 | |
|   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
 | |
|     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
 | |
| 
 | |
|   // Otherwise, use a label difference.
 | |
|   return MachineJumpTableInfo::EK_LabelDifference32;
 | |
| }
 | |
| 
 | |
| SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   // If our PIC model is GP relative, use the global offset table as the base.
 | |
|   unsigned JTEncoding = getJumpTableEncoding();
 | |
| 
 | |
|   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
 | |
|       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
 | |
|     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
 | |
| 
 | |
|   return Table;
 | |
| }
 | |
| 
 | |
| /// This returns the relocation base for the given PIC jumptable, the same as
 | |
| /// getPICJumpTableRelocBase, but as an MCExpr.
 | |
| const MCExpr *
 | |
| TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
 | |
|                                              unsigned JTI,MCContext &Ctx) const{
 | |
|   // The normal PIC reloc base is the label at the start of the jump table.
 | |
|   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
 | |
| }
 | |
| 
 | |
| bool
 | |
| TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
 | |
|   const TargetMachine &TM = getTargetMachine();
 | |
|   const GlobalValue *GV = GA->getGlobal();
 | |
| 
 | |
|   // If the address is not even local to this DSO we will have to load it from
 | |
|   // a got and then add the offset.
 | |
|   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
 | |
|     return false;
 | |
| 
 | |
|   // If the code is position independent we will have to add a base register.
 | |
|   if (isPositionIndependent())
 | |
|     return false;
 | |
| 
 | |
|   // Otherwise we can do it.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Optimization Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// If the specified instruction has a constant integer operand and there are
 | |
| /// bits set in that constant that are not demanded, then clear those bits and
 | |
| /// return true.
 | |
| bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
 | |
|                                             TargetLoweringOpt &TLO) const {
 | |
|   SelectionDAG &DAG = TLO.DAG;
 | |
|   SDLoc DL(Op);
 | |
|   unsigned Opcode = Op.getOpcode();
 | |
| 
 | |
|   // Do target-specific constant optimization.
 | |
|   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
 | |
|     return TLO.New.getNode();
 | |
| 
 | |
|   // FIXME: ISD::SELECT, ISD::SELECT_CC
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     break;
 | |
|   case ISD::XOR:
 | |
|   case ISD::AND:
 | |
|   case ISD::OR: {
 | |
|     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
 | |
|     if (!Op1C)
 | |
|       return false;
 | |
| 
 | |
|     // If this is a 'not' op, don't touch it because that's a canonical form.
 | |
|     const APInt &C = Op1C->getAPIntValue();
 | |
|     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
 | |
|       return false;
 | |
| 
 | |
|     if (!C.isSubsetOf(Demanded)) {
 | |
|       EVT VT = Op.getValueType();
 | |
|       SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
 | |
|       SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
 | |
|       return TLO.CombineTo(Op, NewOp);
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
 | |
| /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
 | |
| /// generalized for targets with other types of implicit widening casts.
 | |
| bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
 | |
|                                       const APInt &Demanded,
 | |
|                                       TargetLoweringOpt &TLO) const {
 | |
|   assert(Op.getNumOperands() == 2 &&
 | |
|          "ShrinkDemandedOp only supports binary operators!");
 | |
|   assert(Op.getNode()->getNumValues() == 1 &&
 | |
|          "ShrinkDemandedOp only supports nodes with one result!");
 | |
| 
 | |
|   SelectionDAG &DAG = TLO.DAG;
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   // Early return, as this function cannot handle vector types.
 | |
|   if (Op.getValueType().isVector())
 | |
|     return false;
 | |
| 
 | |
|   // Don't do this if the node has another user, which may require the
 | |
|   // full value.
 | |
|   if (!Op.getNode()->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   // Search for the smallest integer type with free casts to and from
 | |
|   // Op's type. For expedience, just check power-of-2 integer types.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
 | |
|   unsigned SmallVTBits = DemandedSize;
 | |
|   if (!isPowerOf2_32(SmallVTBits))
 | |
|     SmallVTBits = NextPowerOf2(SmallVTBits);
 | |
|   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
 | |
|     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
 | |
|     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
 | |
|         TLI.isZExtFree(SmallVT, Op.getValueType())) {
 | |
|       // We found a type with free casts.
 | |
|       SDValue X = DAG.getNode(
 | |
|           Op.getOpcode(), dl, SmallVT,
 | |
|           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
 | |
|           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
 | |
|       bool NeedZext = DemandedSize > SmallVTBits;
 | |
|       SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
 | |
|                               dl, Op.getValueType(), X);
 | |
|       return TLO.CombineTo(Op, Z);
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool
 | |
| TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx,
 | |
|                                      const APInt &Demanded,
 | |
|                                      DAGCombinerInfo &DCI,
 | |
|                                      TargetLoweringOpt &TLO) const {
 | |
|   SDValue Op = User->getOperand(OpIdx);
 | |
|   KnownBits Known;
 | |
| 
 | |
|   if (!SimplifyDemandedBits(Op, Demanded, Known, TLO, 0, true))
 | |
|     return false;
 | |
| 
 | |
| 
 | |
|   // Old will not always be the same as Op.  For example:
 | |
|   //
 | |
|   // Demanded = 0xffffff
 | |
|   // Op = i64 truncate (i32 and x, 0xffffff)
 | |
|   // In this case simplify demand bits will want to replace the 'and' node
 | |
|   // with the value 'x', which will give us:
 | |
|   // Old = i32 and x, 0xffffff
 | |
|   // New = x
 | |
|   if (TLO.Old.hasOneUse()) {
 | |
|     // For the one use case, we just commit the change.
 | |
|     DCI.CommitTargetLoweringOpt(TLO);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If Old has more than one use then it must be Op, because the
 | |
|   // AssumeSingleUse flag is not propogated to recursive calls of
 | |
|   // SimplifyDemanded bits, so the only node with multiple use that
 | |
|   // it will attempt to combine will be opt.
 | |
|   assert(TLO.Old == Op);
 | |
| 
 | |
|   SmallVector <SDValue, 4> NewOps;
 | |
|   for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
 | |
|     if (i == OpIdx) {
 | |
|       NewOps.push_back(TLO.New);
 | |
|       continue;
 | |
|     }
 | |
|     NewOps.push_back(User->getOperand(i));
 | |
|   }
 | |
|   TLO.DAG.UpdateNodeOperands(User, NewOps);
 | |
|   // Op has less users now, so we may be able to perform additional combines
 | |
|   // with it.
 | |
|   DCI.AddToWorklist(Op.getNode());
 | |
|   // User's operands have been updated, so we may be able to do new combines
 | |
|   // with it.
 | |
|   DCI.AddToWorklist(User);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool TargetLowering::SimplifyDemandedBits(SDValue Op, APInt &DemandedMask,
 | |
|                                           DAGCombinerInfo &DCI) const {
 | |
| 
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
 | |
|                         !DCI.isBeforeLegalizeOps());
 | |
|   KnownBits Known;
 | |
| 
 | |
|   bool Simplified = SimplifyDemandedBits(Op, DemandedMask, Known, TLO);
 | |
|   if (Simplified)
 | |
|     DCI.CommitTargetLoweringOpt(TLO);
 | |
|   return Simplified;
 | |
| }
 | |
| 
 | |
| /// Look at Op. At this point, we know that only the DemandedMask bits of the
 | |
| /// result of Op are ever used downstream. If we can use this information to
 | |
| /// simplify Op, create a new simplified DAG node and return true, returning the
 | |
| /// original and new nodes in Old and New. Otherwise, analyze the expression and
 | |
| /// return a mask of Known bits for the expression (used to simplify the
 | |
| /// caller).  The Known bits may only be accurate for those bits in the
 | |
| /// DemandedMask.
 | |
| bool TargetLowering::SimplifyDemandedBits(SDValue Op,
 | |
|                                           const APInt &DemandedMask,
 | |
|                                           KnownBits &Known,
 | |
|                                           TargetLoweringOpt &TLO,
 | |
|                                           unsigned Depth,
 | |
|                                           bool AssumeSingleUse) const {
 | |
|   unsigned BitWidth = DemandedMask.getBitWidth();
 | |
|   assert(Op.getScalarValueSizeInBits() == BitWidth &&
 | |
|          "Mask size mismatches value type size!");
 | |
|   APInt NewMask = DemandedMask;
 | |
|   SDLoc dl(Op);
 | |
|   auto &DL = TLO.DAG.getDataLayout();
 | |
| 
 | |
|   // Don't know anything.
 | |
|   Known = KnownBits(BitWidth);
 | |
| 
 | |
|   // Other users may use these bits.
 | |
|   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
 | |
|     if (Depth != 0) {
 | |
|       // If not at the root, Just compute the Known bits to
 | |
|       // simplify things downstream.
 | |
|       TLO.DAG.computeKnownBits(Op, Known, Depth);
 | |
|       return false;
 | |
|     }
 | |
|     // If this is the root being simplified, allow it to have multiple uses,
 | |
|     // just set the NewMask to all bits.
 | |
|     NewMask = APInt::getAllOnesValue(BitWidth);
 | |
|   } else if (DemandedMask == 0) {
 | |
|     // Not demanding any bits from Op.
 | |
|     if (!Op.isUndef())
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
 | |
|     return false;
 | |
|   } else if (Depth == 6) {        // Limit search depth.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   KnownBits Known2, KnownOut;
 | |
|   switch (Op.getOpcode()) {
 | |
|   case ISD::Constant:
 | |
|     // We know all of the bits for a constant!
 | |
|     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
 | |
|     Known.Zero = ~Known.One;
 | |
|     return false;   // Don't fall through, will infinitely loop.
 | |
|   case ISD::BUILD_VECTOR:
 | |
|     // Collect the known bits that are shared by every constant vector element.
 | |
|     Known.Zero.setAllBits(); Known.One.setAllBits();
 | |
|     for (SDValue SrcOp : Op->ops()) {
 | |
|       if (!isa<ConstantSDNode>(SrcOp)) {
 | |
|         // We can only handle all constant values - bail out with no known bits.
 | |
|         Known = KnownBits(BitWidth);
 | |
|         return false;
 | |
|       }
 | |
|       Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
 | |
|       Known2.Zero = ~Known2.One;
 | |
| 
 | |
|       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
 | |
|       if (Known2.One.getBitWidth() != BitWidth) {
 | |
|         assert(Known2.getBitWidth() > BitWidth &&
 | |
|                "Expected BUILD_VECTOR implicit truncation");
 | |
|         Known2 = Known2.trunc(BitWidth);
 | |
|       }
 | |
| 
 | |
|       // Known bits are the values that are shared by every element.
 | |
|       // TODO: support per-element known bits.
 | |
|       Known.One &= Known2.One;
 | |
|       Known.Zero &= Known2.Zero;
 | |
|     }
 | |
|     return false;   // Don't fall through, will infinitely loop.
 | |
|   case ISD::AND:
 | |
|     // If the RHS is a constant, check to see if the LHS would be zero without
 | |
|     // using the bits from the RHS.  Below, we use knowledge about the RHS to
 | |
|     // simplify the LHS, here we're using information from the LHS to simplify
 | |
|     // the RHS.
 | |
|     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op.getOperand(1))) {
 | |
|       SDValue Op0 = Op.getOperand(0);
 | |
|       KnownBits LHSKnown;
 | |
|       // Do not increment Depth here; that can cause an infinite loop.
 | |
|       TLO.DAG.computeKnownBits(Op0, LHSKnown, Depth);
 | |
|       // If the LHS already has zeros where RHSC does, this and is dead.
 | |
|       if ((LHSKnown.Zero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
 | |
|         return TLO.CombineTo(Op, Op0);
 | |
| 
 | |
|       // If any of the set bits in the RHS are known zero on the LHS, shrink
 | |
|       // the constant.
 | |
|       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & NewMask, TLO))
 | |
|         return true;
 | |
| 
 | |
|       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
 | |
|       // constant, but if this 'and' is only clearing bits that were just set by
 | |
|       // the xor, then this 'and' can be eliminated by shrinking the mask of
 | |
|       // the xor. For example, for a 32-bit X:
 | |
|       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
 | |
|       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
 | |
|           LHSKnown.One == ~RHSC->getAPIntValue()) {
 | |
|         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, Op.getValueType(),
 | |
|                                       Op0.getOperand(0), Op.getOperand(1));
 | |
|         return TLO.CombineTo(Op, Xor);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), ~Known.Zero & NewMask,
 | |
|                              Known2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // If all of the demanded bits are known one on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'and'.
 | |
|     if (NewMask.isSubsetOf(Known2.Zero | Known.One))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
|     if (NewMask.isSubsetOf(Known.Zero | Known2.One))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(1));
 | |
|     // If all of the demanded bits in the inputs are known zeros, return zero.
 | |
|     if (NewMask.isSubsetOf(Known.Zero | Known2.Zero))
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType()));
 | |
|     // If the RHS is a constant, see if we can simplify it.
 | |
|     if (ShrinkDemandedConstant(Op, ~Known2.Zero & NewMask, TLO))
 | |
|       return true;
 | |
|     // If the operation can be done in a smaller type, do so.
 | |
|     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
 | |
|       return true;
 | |
| 
 | |
|     // Output known-1 bits are only known if set in both the LHS & RHS.
 | |
|     Known.One &= Known2.One;
 | |
|     // Output known-0 are known to be clear if zero in either the LHS | RHS.
 | |
|     Known.Zero |= Known2.Zero;
 | |
|     break;
 | |
|   case ISD::OR:
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), ~Known.One & NewMask,
 | |
|                              Known2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // If all of the demanded bits are known zero on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'or'.
 | |
|     if (NewMask.isSubsetOf(Known2.One | Known.Zero))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
|     if (NewMask.isSubsetOf(Known.One | Known2.Zero))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(1));
 | |
|     // If the RHS is a constant, see if we can simplify it.
 | |
|     if (ShrinkDemandedConstant(Op, NewMask, TLO))
 | |
|       return true;
 | |
|     // If the operation can be done in a smaller type, do so.
 | |
|     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
 | |
|       return true;
 | |
| 
 | |
|     // Output known-0 bits are only known if clear in both the LHS & RHS.
 | |
|     Known.Zero &= Known2.Zero;
 | |
|     // Output known-1 are known to be set if set in either the LHS | RHS.
 | |
|     Known.One |= Known2.One;
 | |
|     break;
 | |
|   case ISD::XOR: {
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, Known2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // If all of the demanded bits are known zero on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'xor'.
 | |
|     if (NewMask.isSubsetOf(Known.Zero))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
|     if (NewMask.isSubsetOf(Known2.Zero))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(1));
 | |
|     // If the operation can be done in a smaller type, do so.
 | |
|     if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO))
 | |
|       return true;
 | |
| 
 | |
|     // If all of the unknown bits are known to be zero on one side or the other
 | |
|     // (but not both) turn this into an *inclusive* or.
 | |
|     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
 | |
|     if ((NewMask & ~Known.Zero & ~Known2.Zero) == 0)
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
 | |
|                                                Op.getOperand(0),
 | |
|                                                Op.getOperand(1)));
 | |
| 
 | |
|     // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | |
|     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
 | |
|     // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | |
|     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
 | |
| 
 | |
|     // If all of the demanded bits on one side are known, and all of the set
 | |
|     // bits on that side are also known to be set on the other side, turn this
 | |
|     // into an AND, as we know the bits will be cleared.
 | |
|     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
 | |
|     // NB: it is okay if more bits are known than are requested
 | |
|     if (NewMask.isSubsetOf(Known.Zero|Known.One)) { // all known on one side
 | |
|       if (Known.One == Known2.One) { // set bits are the same on both sides
 | |
|         EVT VT = Op.getValueType();
 | |
|         SDValue ANDC = TLO.DAG.getConstant(~Known.One & NewMask, dl, VT);
 | |
|         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
 | |
|                                                  Op.getOperand(0), ANDC));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the RHS is a constant, see if we can change it. Don't alter a -1
 | |
|     // constant because that's a 'not' op, and that is better for combining and
 | |
|     // codegen.
 | |
|     ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1));
 | |
|     if (C && !C->isAllOnesValue()) {
 | |
|       if (NewMask.isSubsetOf(C->getAPIntValue())) {
 | |
|         // We're flipping all demanded bits. Flip the undemanded bits too.
 | |
|         SDValue New = TLO.DAG.getNOT(dl, Op.getOperand(0), Op.getValueType());
 | |
|         return TLO.CombineTo(Op, New);
 | |
|       }
 | |
|       // If we can't turn this into a 'not', try to shrink the constant.
 | |
|       if (ShrinkDemandedConstant(Op, NewMask, TLO))
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     Known = std::move(KnownOut);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SELECT:
 | |
|     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known, TLO, Depth+1))
 | |
|       return true;
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | |
|     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // If the operands are constants, see if we can simplify them.
 | |
|     if (ShrinkDemandedConstant(Op, NewMask, TLO))
 | |
|       return true;
 | |
| 
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     Known.One &= Known2.One;
 | |
|     Known.Zero &= Known2.Zero;
 | |
|     break;
 | |
|   case ISD::SELECT_CC:
 | |
|     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, Known, TLO, Depth+1))
 | |
|       return true;
 | |
|     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | |
|     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // If the operands are constants, see if we can simplify them.
 | |
|     if (ShrinkDemandedConstant(Op, NewMask, TLO))
 | |
|       return true;
 | |
| 
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     Known.One &= Known2.One;
 | |
|     Known.Zero &= Known2.Zero;
 | |
|     break;
 | |
|   case ISD::SETCC: {
 | |
|     SDValue Op0 = Op.getOperand(0);
 | |
|     SDValue Op1 = Op.getOperand(1);
 | |
|     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | |
|     // If (1) we only need the sign-bit, (2) the setcc operands are the same
 | |
|     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
 | |
|     // -1, we may be able to bypass the setcc.
 | |
|     if (NewMask.isSignMask() && Op0.getScalarValueSizeInBits() == BitWidth &&
 | |
|         getBooleanContents(Op.getValueType()) ==
 | |
|             BooleanContent::ZeroOrNegativeOneBooleanContent) {
 | |
|       // If we're testing X < 0, then this compare isn't needed - just use X!
 | |
|       // FIXME: We're limiting to integer types here, but this should also work
 | |
|       // if we don't care about FP signed-zero. The use of SETLT with FP means
 | |
|       // that we don't care about NaNs.
 | |
|       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
 | |
|           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
 | |
|         return TLO.CombineTo(Op, Op0);
 | |
| 
 | |
|       // TODO: Should we check for other forms of sign-bit comparisons?
 | |
|       // Examples: X <= -1, X >= 0
 | |
|     }
 | |
|     if (getBooleanContents(Op0.getValueType()) ==
 | |
|             TargetLowering::ZeroOrOneBooleanContent &&
 | |
|         BitWidth > 1)
 | |
|       Known.Zero.setBitsFrom(1);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SHL:
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       unsigned ShAmt = SA->getZExtValue();
 | |
|       SDValue InOp = Op.getOperand(0);
 | |
| 
 | |
|       // If the shift count is an invalid immediate, don't do anything.
 | |
|       if (ShAmt >= BitWidth)
 | |
|         break;
 | |
| 
 | |
|       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
 | |
|       // single shift.  We can do this if the bottom bits (which are shifted
 | |
|       // out) are never demanded.
 | |
|       if (InOp.getOpcode() == ISD::SRL &&
 | |
|           isa<ConstantSDNode>(InOp.getOperand(1))) {
 | |
|         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
 | |
|           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
 | |
|           unsigned Opc = ISD::SHL;
 | |
|           int Diff = ShAmt-C1;
 | |
|           if (Diff < 0) {
 | |
|             Diff = -Diff;
 | |
|             Opc = ISD::SRL;
 | |
|           }
 | |
| 
 | |
|           SDValue NewSA =
 | |
|             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
 | |
|           EVT VT = Op.getValueType();
 | |
|           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
 | |
|                                                    InOp.getOperand(0), NewSA));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), Known, TLO, Depth+1))
 | |
|         return true;
 | |
| 
 | |
|       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
 | |
|       // are not demanded. This will likely allow the anyext to be folded away.
 | |
|       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
 | |
|         SDValue InnerOp = InOp.getOperand(0);
 | |
|         EVT InnerVT = InnerOp.getValueType();
 | |
|         unsigned InnerBits = InnerVT.getSizeInBits();
 | |
|         if (ShAmt < InnerBits && NewMask.getActiveBits() <= InnerBits &&
 | |
|             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
 | |
|           EVT ShTy = getShiftAmountTy(InnerVT, DL);
 | |
|           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
 | |
|             ShTy = InnerVT;
 | |
|           SDValue NarrowShl =
 | |
|             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
 | |
|                             TLO.DAG.getConstant(ShAmt, dl, ShTy));
 | |
|           return
 | |
|             TLO.CombineTo(Op,
 | |
|                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
 | |
|                                           NarrowShl));
 | |
|         }
 | |
|         // Repeat the SHL optimization above in cases where an extension
 | |
|         // intervenes: (shl (anyext (shr x, c1)), c2) to
 | |
|         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
 | |
|         // aren't demanded (as above) and that the shifted upper c1 bits of
 | |
|         // x aren't demanded.
 | |
|         if (InOp.hasOneUse() &&
 | |
|             InnerOp.getOpcode() == ISD::SRL &&
 | |
|             InnerOp.hasOneUse() &&
 | |
|             isa<ConstantSDNode>(InnerOp.getOperand(1))) {
 | |
|           unsigned InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1))
 | |
|             ->getZExtValue();
 | |
|           if (InnerShAmt < ShAmt &&
 | |
|               InnerShAmt < InnerBits &&
 | |
|               NewMask.getActiveBits() <= (InnerBits - InnerShAmt + ShAmt) &&
 | |
|               NewMask.countTrailingZeros() >= ShAmt) {
 | |
|             SDValue NewSA =
 | |
|               TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
 | |
|                                   Op.getOperand(1).getValueType());
 | |
|             EVT VT = Op.getValueType();
 | |
|             SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
 | |
|                                              InnerOp.getOperand(0));
 | |
|             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
 | |
|                                                      NewExt, NewSA));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       Known.Zero <<= SA->getZExtValue();
 | |
|       Known.One  <<= SA->getZExtValue();
 | |
|       // low bits known zero.
 | |
|       Known.Zero.setLowBits(SA->getZExtValue());
 | |
|     }
 | |
|     break;
 | |
|   case ISD::SRL:
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       EVT VT = Op.getValueType();
 | |
|       unsigned ShAmt = SA->getZExtValue();
 | |
|       unsigned VTSize = VT.getSizeInBits();
 | |
|       SDValue InOp = Op.getOperand(0);
 | |
| 
 | |
|       // If the shift count is an invalid immediate, don't do anything.
 | |
|       if (ShAmt >= BitWidth)
 | |
|         break;
 | |
| 
 | |
|       APInt InDemandedMask = (NewMask << ShAmt);
 | |
| 
 | |
|       // If the shift is exact, then it does demand the low bits (and knows that
 | |
|       // they are zero).
 | |
|       if (Op->getFlags().hasExact())
 | |
|         InDemandedMask.setLowBits(ShAmt);
 | |
| 
 | |
|       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
 | |
|       // single shift.  We can do this if the top bits (which are shifted out)
 | |
|       // are never demanded.
 | |
|       if (InOp.getOpcode() == ISD::SHL &&
 | |
|           isa<ConstantSDNode>(InOp.getOperand(1))) {
 | |
|         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
 | |
|           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
 | |
|           unsigned Opc = ISD::SRL;
 | |
|           int Diff = ShAmt-C1;
 | |
|           if (Diff < 0) {
 | |
|             Diff = -Diff;
 | |
|             Opc = ISD::SHL;
 | |
|           }
 | |
| 
 | |
|           SDValue NewSA =
 | |
|             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
 | |
|           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
 | |
|                                                    InOp.getOperand(0), NewSA));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute the new bits that are at the top now.
 | |
|       if (SimplifyDemandedBits(InOp, InDemandedMask, Known, TLO, Depth+1))
 | |
|         return true;
 | |
|       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | |
|       Known.Zero.lshrInPlace(ShAmt);
 | |
|       Known.One.lshrInPlace(ShAmt);
 | |
| 
 | |
|       Known.Zero.setHighBits(ShAmt);  // High bits known zero.
 | |
|     }
 | |
|     break;
 | |
|   case ISD::SRA:
 | |
|     // If this is an arithmetic shift right and only the low-bit is set, we can
 | |
|     // always convert this into a logical shr, even if the shift amount is
 | |
|     // variable.  The low bit of the shift cannot be an input sign bit unless
 | |
|     // the shift amount is >= the size of the datatype, which is undefined.
 | |
|     if (NewMask.isOneValue())
 | |
|       return TLO.CombineTo(Op,
 | |
|                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
 | |
|                                            Op.getOperand(0), Op.getOperand(1)));
 | |
| 
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       EVT VT = Op.getValueType();
 | |
|       unsigned ShAmt = SA->getZExtValue();
 | |
| 
 | |
|       // If the shift count is an invalid immediate, don't do anything.
 | |
|       if (ShAmt >= BitWidth)
 | |
|         break;
 | |
| 
 | |
|       APInt InDemandedMask = (NewMask << ShAmt);
 | |
| 
 | |
|       // If the shift is exact, then it does demand the low bits (and knows that
 | |
|       // they are zero).
 | |
|       if (Op->getFlags().hasExact())
 | |
|         InDemandedMask.setLowBits(ShAmt);
 | |
| 
 | |
|       // If any of the demanded bits are produced by the sign extension, we also
 | |
|       // demand the input sign bit.
 | |
|       if (NewMask.countLeadingZeros() < ShAmt)
 | |
|         InDemandedMask.setSignBit();
 | |
| 
 | |
|       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, Known, TLO,
 | |
|                                Depth+1))
 | |
|         return true;
 | |
|       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | |
|       Known.Zero.lshrInPlace(ShAmt);
 | |
|       Known.One.lshrInPlace(ShAmt);
 | |
| 
 | |
|       // If the input sign bit is known to be zero, or if none of the top bits
 | |
|       // are demanded, turn this into an unsigned shift right.
 | |
|       if (Known.Zero[BitWidth - ShAmt - 1] ||
 | |
|           NewMask.countLeadingZeros() >= ShAmt) {
 | |
|         SDNodeFlags Flags;
 | |
|         Flags.setExact(Op->getFlags().hasExact());
 | |
|         return TLO.CombineTo(Op,
 | |
|                              TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
 | |
|                                              Op.getOperand(1), Flags));
 | |
|       }
 | |
| 
 | |
|       int Log2 = NewMask.exactLogBase2();
 | |
|       if (Log2 >= 0) {
 | |
|         // The bit must come from the sign.
 | |
|         SDValue NewSA =
 | |
|           TLO.DAG.getConstant(BitWidth - 1 - Log2, dl,
 | |
|                               Op.getOperand(1).getValueType());
 | |
|         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
 | |
|                                                  Op.getOperand(0), NewSA));
 | |
|       }
 | |
| 
 | |
|       if (Known.One[BitWidth - ShAmt - 1])
 | |
|         // New bits are known one.
 | |
|         Known.One.setHighBits(ShAmt);
 | |
|     }
 | |
|     break;
 | |
|   case ISD::SIGN_EXTEND_INREG: {
 | |
|     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | |
| 
 | |
|     APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
 | |
|     // If we only care about the highest bit, don't bother shifting right.
 | |
|     if (MsbMask == NewMask) {
 | |
|       unsigned ShAmt = ExVT.getScalarSizeInBits();
 | |
|       SDValue InOp = Op.getOperand(0);
 | |
|       unsigned VTBits = Op->getValueType(0).getScalarSizeInBits();
 | |
|       bool AlreadySignExtended =
 | |
|         TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1;
 | |
|       // However if the input is already sign extended we expect the sign
 | |
|       // extension to be dropped altogether later and do not simplify.
 | |
|       if (!AlreadySignExtended) {
 | |
|         // Compute the correct shift amount type, which must be getShiftAmountTy
 | |
|         // for scalar types after legalization.
 | |
|         EVT ShiftAmtTy = Op.getValueType();
 | |
|         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
 | |
|           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
 | |
| 
 | |
|         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl,
 | |
|                                                ShiftAmtTy);
 | |
|         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
 | |
|                                                  Op.getValueType(), InOp,
 | |
|                                                  ShiftAmt));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Sign extension.  Compute the demanded bits in the result that are not
 | |
|     // present in the input.
 | |
|     APInt NewBits =
 | |
|       APInt::getHighBitsSet(BitWidth,
 | |
|                             BitWidth - ExVT.getScalarSizeInBits());
 | |
| 
 | |
|     // If none of the extended bits are demanded, eliminate the sextinreg.
 | |
|     if ((NewBits & NewMask) == 0)
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
| 
 | |
|     APInt InSignBit =
 | |
|       APInt::getSignMask(ExVT.getScalarSizeInBits()).zext(BitWidth);
 | |
|     APInt InputDemandedBits =
 | |
|       APInt::getLowBitsSet(BitWidth,
 | |
|                            ExVT.getScalarSizeInBits()) &
 | |
|       NewMask;
 | |
| 
 | |
|     // Since the sign extended bits are demanded, we know that the sign
 | |
|     // bit is demanded.
 | |
|     InputDemandedBits |= InSignBit;
 | |
| 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
 | |
|                              Known, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // If the sign bit of the input is known set or clear, then we know the
 | |
|     // top bits of the result.
 | |
| 
 | |
|     // If the input sign bit is known zero, convert this into a zero extension.
 | |
|     if (Known.Zero.intersects(InSignBit))
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(
 | |
|                                    Op.getOperand(0), dl, ExVT.getScalarType()));
 | |
| 
 | |
|     if (Known.One.intersects(InSignBit)) {    // Input sign bit known set
 | |
|       Known.One |= NewBits;
 | |
|       Known.Zero &= ~NewBits;
 | |
|     } else {                       // Input sign bit unknown
 | |
|       Known.Zero &= ~NewBits;
 | |
|       Known.One &= ~NewBits;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BUILD_PAIR: {
 | |
|     EVT HalfVT = Op.getOperand(0).getValueType();
 | |
|     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
 | |
| 
 | |
|     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
 | |
|     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
 | |
| 
 | |
|     KnownBits KnownLo, KnownHi;
 | |
| 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
 | |
|       return true;
 | |
| 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
 | |
|       return true;
 | |
| 
 | |
|     Known.Zero = KnownLo.Zero.zext(BitWidth) |
 | |
|                 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
 | |
| 
 | |
|     Known.One = KnownLo.One.zext(BitWidth) |
 | |
|                KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::ZERO_EXTEND: {
 | |
|     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
 | |
|     APInt InMask = NewMask.trunc(OperandBitWidth);
 | |
| 
 | |
|     // If none of the top bits are demanded, convert this into an any_extend.
 | |
|     APInt NewBits =
 | |
|       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
 | |
|     if (!NewBits.intersects(NewMask))
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
 | |
|                                                Op.getValueType(),
 | |
|                                                Op.getOperand(0)));
 | |
| 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | |
|     Known = Known.zext(BitWidth);
 | |
|     Known.Zero |= NewBits;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SIGN_EXTEND: {
 | |
|     EVT InVT = Op.getOperand(0).getValueType();
 | |
|     unsigned InBits = InVT.getScalarSizeInBits();
 | |
|     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
 | |
|     APInt InSignBit = APInt::getOneBitSet(BitWidth, InBits - 1);
 | |
|     APInt NewBits   = ~InMask & NewMask;
 | |
| 
 | |
|     // If none of the top bits are demanded, convert this into an any_extend.
 | |
|     if (NewBits == 0)
 | |
|       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
 | |
|                                               Op.getValueType(),
 | |
|                                               Op.getOperand(0)));
 | |
| 
 | |
|     // Since some of the sign extended bits are demanded, we know that the sign
 | |
|     // bit is demanded.
 | |
|     APInt InDemandedBits = InMask & NewMask;
 | |
|     InDemandedBits |= InSignBit;
 | |
|     InDemandedBits = InDemandedBits.trunc(InBits);
 | |
| 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, Known, TLO,
 | |
|                              Depth+1))
 | |
|       return true;
 | |
|     Known = Known.zext(BitWidth);
 | |
| 
 | |
|     // If the sign bit is known zero, convert this to a zero extend.
 | |
|     if (Known.Zero.intersects(InSignBit))
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
 | |
|                                                Op.getValueType(),
 | |
|                                                Op.getOperand(0)));
 | |
| 
 | |
|     // If the sign bit is known one, the top bits match.
 | |
|     if (Known.One.intersects(InSignBit)) {
 | |
|       Known.One |= NewBits;
 | |
|       assert((Known.Zero & NewBits) == 0);
 | |
|     } else {   // Otherwise, top bits aren't known.
 | |
|       assert((Known.One & NewBits) == 0);
 | |
|       assert((Known.Zero & NewBits) == 0);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::ANY_EXTEND: {
 | |
|     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
 | |
|     APInt InMask = NewMask.trunc(OperandBitWidth);
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | |
|     Known = Known.zext(BitWidth);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::TRUNCATE: {
 | |
|     // Simplify the input, using demanded bit information, and compute the known
 | |
|     // zero/one bits live out.
 | |
|     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
 | |
|     APInt TruncMask = NewMask.zext(OperandBitWidth);
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, Known, TLO, Depth+1))
 | |
|       return true;
 | |
|     Known = Known.trunc(BitWidth);
 | |
| 
 | |
|     // If the input is only used by this truncate, see if we can shrink it based
 | |
|     // on the known demanded bits.
 | |
|     if (Op.getOperand(0).getNode()->hasOneUse()) {
 | |
|       SDValue In = Op.getOperand(0);
 | |
|       switch (In.getOpcode()) {
 | |
|       default: break;
 | |
|       case ISD::SRL:
 | |
|         // Shrink SRL by a constant if none of the high bits shifted in are
 | |
|         // demanded.
 | |
|         if (TLO.LegalTypes() &&
 | |
|             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
 | |
|           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
 | |
|           // undesirable.
 | |
|           break;
 | |
|         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
 | |
|         if (!ShAmt)
 | |
|           break;
 | |
|         SDValue Shift = In.getOperand(1);
 | |
|         if (TLO.LegalTypes()) {
 | |
|           uint64_t ShVal = ShAmt->getZExtValue();
 | |
|           Shift = TLO.DAG.getConstant(ShVal, dl,
 | |
|                                       getShiftAmountTy(Op.getValueType(), DL));
 | |
|         }
 | |
| 
 | |
|         if (ShAmt->getZExtValue() < BitWidth) {
 | |
|           APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
 | |
|                                                  OperandBitWidth - BitWidth);
 | |
|           HighBits.lshrInPlace(ShAmt->getZExtValue());
 | |
|           HighBits = HighBits.trunc(BitWidth);
 | |
| 
 | |
|           if (!(HighBits & NewMask)) {
 | |
|             // None of the shifted in bits are needed.  Add a truncate of the
 | |
|             // shift input, then shift it.
 | |
|             SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
 | |
|                                                Op.getValueType(),
 | |
|                                                In.getOperand(0));
 | |
|             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
 | |
|                                                      Op.getValueType(),
 | |
|                                                      NewTrunc,
 | |
|                                                      Shift));
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | |
|     break;
 | |
|   }
 | |
|   case ISD::AssertZext: {
 | |
|     // AssertZext demands all of the high bits, plus any of the low bits
 | |
|     // demanded by its users.
 | |
|     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | |
|     APInt InMask = APInt::getLowBitsSet(BitWidth,
 | |
|                                         VT.getSizeInBits());
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
 | |
|                              Known, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | |
| 
 | |
|     Known.Zero |= ~InMask;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BITCAST:
 | |
|     // If this is an FP->Int bitcast and if the sign bit is the only
 | |
|     // thing demanded, turn this into a FGETSIGN.
 | |
|     if (!TLO.LegalOperations() &&
 | |
|         !Op.getValueType().isVector() &&
 | |
|         !Op.getOperand(0).getValueType().isVector() &&
 | |
|         NewMask == APInt::getSignMask(Op.getValueSizeInBits()) &&
 | |
|         Op.getOperand(0).getValueType().isFloatingPoint()) {
 | |
|       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
 | |
|       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
 | |
|       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() &&
 | |
|            Op.getOperand(0).getValueType() != MVT::f128) {
 | |
|         // Cannot eliminate/lower SHL for f128 yet.
 | |
|         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
 | |
|         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
 | |
|         // place.  We expect the SHL to be eliminated by other optimizations.
 | |
|         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
 | |
|         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
 | |
|         if (!OpVTLegal && OpVTSizeInBits > 32)
 | |
|           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
 | |
|         unsigned ShVal = Op.getValueSizeInBits() - 1;
 | |
|         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType());
 | |
|         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
 | |
|                                                  Op.getValueType(),
 | |
|                                                  Sign, ShAmt));
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case ISD::ADD:
 | |
|   case ISD::MUL:
 | |
|   case ISD::SUB: {
 | |
|     // Add, Sub, and Mul don't demand any bits in positions beyond that
 | |
|     // of the highest bit demanded of them.
 | |
|     APInt LoMask = APInt::getLowBitsSet(BitWidth,
 | |
|                                         BitWidth - NewMask.countLeadingZeros());
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, Known2, TLO, Depth+1) ||
 | |
|         SimplifyDemandedBits(Op.getOperand(1), LoMask, Known2, TLO, Depth+1) ||
 | |
|         // See if the operation should be performed at a smaller bit width.
 | |
|         ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) {
 | |
|       SDNodeFlags Flags = Op.getNode()->getFlags();
 | |
|       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
 | |
|         // Disable the nsw and nuw flags. We can no longer guarantee that we
 | |
|         // won't wrap after simplification.
 | |
|         Flags.setNoSignedWrap(false);
 | |
|         Flags.setNoUnsignedWrap(false);
 | |
|         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, Op.getValueType(),
 | |
|                                         Op.getOperand(0), Op.getOperand(1),
 | |
|                                         Flags);
 | |
|         return TLO.CombineTo(Op, NewOp);
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
|     LLVM_FALLTHROUGH;
 | |
|   }
 | |
|   default:
 | |
|     // Just use computeKnownBits to compute output bits.
 | |
|     TLO.DAG.computeKnownBits(Op, Known, Depth);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // If we know the value of all of the demanded bits, return this as a
 | |
|   // constant.
 | |
|   if (NewMask.isSubsetOf(Known.Zero|Known.One)) {
 | |
|     // Avoid folding to a constant if any OpaqueConstant is involved.
 | |
|     const SDNode *N = Op.getNode();
 | |
|     for (SDNodeIterator I = SDNodeIterator::begin(N),
 | |
|          E = SDNodeIterator::end(N); I != E; ++I) {
 | |
|       SDNode *Op = *I;
 | |
|       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
 | |
|         if (C->isOpaque())
 | |
|           return false;
 | |
|     }
 | |
|     return TLO.CombineTo(Op,
 | |
|                          TLO.DAG.getConstant(Known.One, dl, Op.getValueType()));
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Determine which of the bits specified in Mask are known to be either zero or
 | |
| /// one and return them in the Known.
 | |
| void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
 | |
|                                                    KnownBits &Known,
 | |
|                                                    const APInt &DemandedElts,
 | |
|                                                    const SelectionDAG &DAG,
 | |
|                                                    unsigned Depth) const {
 | |
|   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | |
|          "Should use MaskedValueIsZero if you don't know whether Op"
 | |
|          " is a target node!");
 | |
|   Known.resetAll();
 | |
| }
 | |
| 
 | |
| /// This method can be implemented by targets that want to expose additional
 | |
| /// information about sign bits to the DAG Combiner.
 | |
| unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
 | |
|                                                          const APInt &,
 | |
|                                                          const SelectionDAG &,
 | |
|                                                          unsigned Depth) const {
 | |
|   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | |
|          "Should use ComputeNumSignBits if you don't know whether Op"
 | |
|          " is a target node!");
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
 | |
| // work with truncating build vectors and vectors with elements of less than
 | |
| // 8 bits.
 | |
| bool TargetLowering::isConstTrueVal(const SDNode *N) const {
 | |
|   if (!N)
 | |
|     return false;
 | |
| 
 | |
|   APInt CVal;
 | |
|   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
 | |
|     CVal = CN->getAPIntValue();
 | |
|   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
 | |
|     auto *CN = BV->getConstantSplatNode();
 | |
|     if (!CN)
 | |
|       return false;
 | |
| 
 | |
|     // If this is a truncating build vector, truncate the splat value.
 | |
|     // Otherwise, we may fail to match the expected values below.
 | |
|     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
 | |
|     CVal = CN->getAPIntValue();
 | |
|     if (BVEltWidth < CVal.getBitWidth())
 | |
|       CVal = CVal.trunc(BVEltWidth);
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   switch (getBooleanContents(N->getValueType(0))) {
 | |
|   case UndefinedBooleanContent:
 | |
|     return CVal[0];
 | |
|   case ZeroOrOneBooleanContent:
 | |
|     return CVal.isOneValue();
 | |
|   case ZeroOrNegativeOneBooleanContent:
 | |
|     return CVal.isAllOnesValue();
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid boolean contents");
 | |
| }
 | |
| 
 | |
| SDValue TargetLowering::getConstTrueVal(SelectionDAG &DAG, EVT VT,
 | |
|                                         const SDLoc &DL) const {
 | |
|   unsigned ElementWidth = VT.getScalarSizeInBits();
 | |
|   APInt TrueInt =
 | |
|       getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent
 | |
|           ? APInt(ElementWidth, 1)
 | |
|           : APInt::getAllOnesValue(ElementWidth);
 | |
|   return DAG.getConstant(TrueInt, DL, VT);
 | |
| }
 | |
| 
 | |
| bool TargetLowering::isConstFalseVal(const SDNode *N) const {
 | |
|   if (!N)
 | |
|     return false;
 | |
| 
 | |
|   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
 | |
|   if (!CN) {
 | |
|     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
 | |
|     if (!BV)
 | |
|       return false;
 | |
| 
 | |
|     // Only interested in constant splats, we don't care about undef
 | |
|     // elements in identifying boolean constants and getConstantSplatNode
 | |
|     // returns NULL if all ops are undef;
 | |
|     CN = BV->getConstantSplatNode();
 | |
|     if (!CN)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
 | |
|     return !CN->getAPIntValue()[0];
 | |
| 
 | |
|   return CN->isNullValue();
 | |
| }
 | |
| 
 | |
| bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
 | |
|                                        bool SExt) const {
 | |
|   if (VT == MVT::i1)
 | |
|     return N->isOne();
 | |
| 
 | |
|   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
 | |
|   switch (Cnt) {
 | |
|   case TargetLowering::ZeroOrOneBooleanContent:
 | |
|     // An extended value of 1 is always true, unless its original type is i1,
 | |
|     // in which case it will be sign extended to -1.
 | |
|     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
 | |
|   case TargetLowering::UndefinedBooleanContent:
 | |
|   case TargetLowering::ZeroOrNegativeOneBooleanContent:
 | |
|     return N->isAllOnesValue() && SExt;
 | |
|   }
 | |
|   llvm_unreachable("Unexpected enumeration.");
 | |
| }
 | |
| 
 | |
| /// This helper function of SimplifySetCC tries to optimize the comparison when
 | |
| /// either operand of the SetCC node is a bitwise-and instruction.
 | |
| SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
 | |
|                                              ISD::CondCode Cond,
 | |
|                                              DAGCombinerInfo &DCI,
 | |
|                                              const SDLoc &DL) const {
 | |
|   // Match these patterns in any of their permutations:
 | |
|   // (X & Y) == Y
 | |
|   // (X & Y) != Y
 | |
|   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
 | |
|     std::swap(N0, N1);
 | |
| 
 | |
|   EVT OpVT = N0.getValueType();
 | |
|   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
 | |
|       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue X, Y;
 | |
|   if (N0.getOperand(0) == N1) {
 | |
|     X = N0.getOperand(1);
 | |
|     Y = N0.getOperand(0);
 | |
|   } else if (N0.getOperand(1) == N1) {
 | |
|     X = N0.getOperand(0);
 | |
|     Y = N0.getOperand(1);
 | |
|   } else {
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDValue Zero = DAG.getConstant(0, DL, OpVT);
 | |
|   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
 | |
|     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
 | |
|     // Note that where Y is variable and is known to have at most one bit set
 | |
|     // (for example, if it is Z & 1) we cannot do this; the expressions are not
 | |
|     // equivalent when Y == 0.
 | |
|     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
 | |
|     if (DCI.isBeforeLegalizeOps() ||
 | |
|         isCondCodeLegal(Cond, N0.getSimpleValueType()))
 | |
|       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
 | |
|   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
 | |
|     // If the target supports an 'and-not' or 'and-complement' logic operation,
 | |
|     // try to use that to make a comparison operation more efficient.
 | |
|     // But don't do this transform if the mask is a single bit because there are
 | |
|     // more efficient ways to deal with that case (for example, 'bt' on x86 or
 | |
|     // 'rlwinm' on PPC).
 | |
| 
 | |
|     // Bail out if the compare operand that we want to turn into a zero is
 | |
|     // already a zero (otherwise, infinite loop).
 | |
|     auto *YConst = dyn_cast<ConstantSDNode>(Y);
 | |
|     if (YConst && YConst->isNullValue())
 | |
|       return SDValue();
 | |
| 
 | |
|     // Transform this into: ~X & Y == 0.
 | |
|     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
 | |
|     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
 | |
|     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// Try to simplify a setcc built with the specified operands and cc. If it is
 | |
| /// unable to simplify it, return a null SDValue.
 | |
| SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
 | |
|                                       ISD::CondCode Cond, bool foldBooleans,
 | |
|                                       DAGCombinerInfo &DCI,
 | |
|                                       const SDLoc &dl) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
| 
 | |
|   // These setcc operations always fold.
 | |
|   switch (Cond) {
 | |
|   default: break;
 | |
|   case ISD::SETFALSE:
 | |
|   case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT);
 | |
|   case ISD::SETTRUE:
 | |
|   case ISD::SETTRUE2: {
 | |
|     TargetLowering::BooleanContent Cnt =
 | |
|         getBooleanContents(N0->getValueType(0));
 | |
|     return DAG.getConstant(
 | |
|         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
 | |
|         VT);
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   // Ensure that the constant occurs on the RHS and fold constant comparisons.
 | |
|   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
 | |
|   if (isa<ConstantSDNode>(N0.getNode()) &&
 | |
|       (DCI.isBeforeLegalizeOps() ||
 | |
|        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
 | |
|     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
 | |
| 
 | |
|   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
 | |
|     const APInt &C1 = N1C->getAPIntValue();
 | |
| 
 | |
|     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
 | |
|     // equality comparison, then we're just comparing whether X itself is
 | |
|     // zero.
 | |
|     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
 | |
|         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
 | |
|         N0.getOperand(1).getOpcode() == ISD::Constant) {
 | |
|       const APInt &ShAmt
 | |
|         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
 | |
|       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | |
|           ShAmt == Log2_32(N0.getValueSizeInBits())) {
 | |
|         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
 | |
|           // (srl (ctlz x), 5) == 0  -> X != 0
 | |
|           // (srl (ctlz x), 5) != 1  -> X != 0
 | |
|           Cond = ISD::SETNE;
 | |
|         } else {
 | |
|           // (srl (ctlz x), 5) != 0  -> X == 0
 | |
|           // (srl (ctlz x), 5) == 1  -> X == 0
 | |
|           Cond = ISD::SETEQ;
 | |
|         }
 | |
|         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
 | |
|         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
 | |
|                             Zero, Cond);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     SDValue CTPOP = N0;
 | |
|     // Look through truncs that don't change the value of a ctpop.
 | |
|     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
 | |
|       CTPOP = N0.getOperand(0);
 | |
| 
 | |
|     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
 | |
|         (N0 == CTPOP ||
 | |
|          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
 | |
|       EVT CTVT = CTPOP.getValueType();
 | |
|       SDValue CTOp = CTPOP.getOperand(0);
 | |
| 
 | |
|       // (ctpop x) u< 2 -> (x & x-1) == 0
 | |
|       // (ctpop x) u> 1 -> (x & x-1) != 0
 | |
|       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
 | |
|         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
 | |
|                                   DAG.getConstant(1, dl, CTVT));
 | |
|         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
 | |
|         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
 | |
|         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
 | |
|       }
 | |
| 
 | |
|       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
 | |
|     }
 | |
| 
 | |
|     // (zext x) == C --> x == (trunc C)
 | |
|     // (sext x) == C --> x == (trunc C)
 | |
|     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | |
|         DCI.isBeforeLegalize() && N0->hasOneUse()) {
 | |
|       unsigned MinBits = N0.getValueSizeInBits();
 | |
|       SDValue PreExt;
 | |
|       bool Signed = false;
 | |
|       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
 | |
|         // ZExt
 | |
|         MinBits = N0->getOperand(0).getValueSizeInBits();
 | |
|         PreExt = N0->getOperand(0);
 | |
|       } else if (N0->getOpcode() == ISD::AND) {
 | |
|         // DAGCombine turns costly ZExts into ANDs
 | |
|         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
 | |
|           if ((C->getAPIntValue()+1).isPowerOf2()) {
 | |
|             MinBits = C->getAPIntValue().countTrailingOnes();
 | |
|             PreExt = N0->getOperand(0);
 | |
|           }
 | |
|       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
 | |
|         // SExt
 | |
|         MinBits = N0->getOperand(0).getValueSizeInBits();
 | |
|         PreExt = N0->getOperand(0);
 | |
|         Signed = true;
 | |
|       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
 | |
|         // ZEXTLOAD / SEXTLOAD
 | |
|         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
 | |
|           MinBits = LN0->getMemoryVT().getSizeInBits();
 | |
|           PreExt = N0;
 | |
|         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
 | |
|           Signed = true;
 | |
|           MinBits = LN0->getMemoryVT().getSizeInBits();
 | |
|           PreExt = N0;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Figure out how many bits we need to preserve this constant.
 | |
|       unsigned ReqdBits = Signed ?
 | |
|         C1.getBitWidth() - C1.getNumSignBits() + 1 :
 | |
|         C1.getActiveBits();
 | |
| 
 | |
|       // Make sure we're not losing bits from the constant.
 | |
|       if (MinBits > 0 &&
 | |
|           MinBits < C1.getBitWidth() &&
 | |
|           MinBits >= ReqdBits) {
 | |
|         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
 | |
|         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
 | |
|           // Will get folded away.
 | |
|           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
 | |
|           if (MinBits == 1 && C1 == 1)
 | |
|             // Invert the condition.
 | |
|             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
 | |
|                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
 | |
|           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
 | |
|           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
 | |
|         }
 | |
| 
 | |
|         // If truncating the setcc operands is not desirable, we can still
 | |
|         // simplify the expression in some cases:
 | |
|         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
 | |
|         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
 | |
|         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
 | |
|         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
 | |
|         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
 | |
|         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
 | |
|         SDValue TopSetCC = N0->getOperand(0);
 | |
|         unsigned N0Opc = N0->getOpcode();
 | |
|         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
 | |
|         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
 | |
|             TopSetCC.getOpcode() == ISD::SETCC &&
 | |
|             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
 | |
|             (isConstFalseVal(N1C) ||
 | |
|              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
 | |
| 
 | |
|           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
 | |
|                          (!N1C->isNullValue() && Cond == ISD::SETNE);
 | |
| 
 | |
|           if (!Inverse)
 | |
|             return TopSetCC;
 | |
| 
 | |
|           ISD::CondCode InvCond = ISD::getSetCCInverse(
 | |
|               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
 | |
|               TopSetCC.getOperand(0).getValueType().isInteger());
 | |
|           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
 | |
|                                       TopSetCC.getOperand(1),
 | |
|                                       InvCond);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the LHS is '(and load, const)', the RHS is 0, the test is for
 | |
|     // equality or unsigned, and all 1 bits of the const are in the same
 | |
|     // partial word, see if we can shorten the load.
 | |
|     if (DCI.isBeforeLegalize() &&
 | |
|         !ISD::isSignedIntSetCC(Cond) &&
 | |
|         N0.getOpcode() == ISD::AND && C1 == 0 &&
 | |
|         N0.getNode()->hasOneUse() &&
 | |
|         isa<LoadSDNode>(N0.getOperand(0)) &&
 | |
|         N0.getOperand(0).getNode()->hasOneUse() &&
 | |
|         isa<ConstantSDNode>(N0.getOperand(1))) {
 | |
|       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
 | |
|       APInt bestMask;
 | |
|       unsigned bestWidth = 0, bestOffset = 0;
 | |
|       if (!Lod->isVolatile() && Lod->isUnindexed()) {
 | |
|         unsigned origWidth = N0.getValueSizeInBits();
 | |
|         unsigned maskWidth = origWidth;
 | |
|         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
 | |
|         // 8 bits, but have to be careful...
 | |
|         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
 | |
|           origWidth = Lod->getMemoryVT().getSizeInBits();
 | |
|         const APInt &Mask =
 | |
|           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
 | |
|         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
 | |
|           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
 | |
|           for (unsigned offset=0; offset<origWidth/width; offset++) {
 | |
|             if (Mask.isSubsetOf(newMask)) {
 | |
|               if (DAG.getDataLayout().isLittleEndian())
 | |
|                 bestOffset = (uint64_t)offset * (width/8);
 | |
|               else
 | |
|                 bestOffset = (origWidth/width - offset - 1) * (width/8);
 | |
|               bestMask = Mask.lshr(offset * (width/8) * 8);
 | |
|               bestWidth = width;
 | |
|               break;
 | |
|             }
 | |
|             newMask <<= width;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       if (bestWidth) {
 | |
|         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
 | |
|         if (newVT.isRound()) {
 | |
|           EVT PtrType = Lod->getOperand(1).getValueType();
 | |
|           SDValue Ptr = Lod->getBasePtr();
 | |
|           if (bestOffset != 0)
 | |
|             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
 | |
|                               DAG.getConstant(bestOffset, dl, PtrType));
 | |
|           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
 | |
|           SDValue NewLoad = DAG.getLoad(
 | |
|               newVT, dl, Lod->getChain(), Ptr,
 | |
|               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
 | |
|           return DAG.getSetCC(dl, VT,
 | |
|                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
 | |
|                                       DAG.getConstant(bestMask.trunc(bestWidth),
 | |
|                                                       dl, newVT)),
 | |
|                               DAG.getConstant(0LL, dl, newVT), Cond);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
 | |
|     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
 | |
|       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
 | |
| 
 | |
|       // If the comparison constant has bits in the upper part, the
 | |
|       // zero-extended value could never match.
 | |
|       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
 | |
|                                               C1.getBitWidth() - InSize))) {
 | |
|         switch (Cond) {
 | |
|         case ISD::SETUGT:
 | |
|         case ISD::SETUGE:
 | |
|         case ISD::SETEQ:
 | |
|           return DAG.getConstant(0, dl, VT);
 | |
|         case ISD::SETULT:
 | |
|         case ISD::SETULE:
 | |
|         case ISD::SETNE:
 | |
|           return DAG.getConstant(1, dl, VT);
 | |
|         case ISD::SETGT:
 | |
|         case ISD::SETGE:
 | |
|           // True if the sign bit of C1 is set.
 | |
|           return DAG.getConstant(C1.isNegative(), dl, VT);
 | |
|         case ISD::SETLT:
 | |
|         case ISD::SETLE:
 | |
|           // True if the sign bit of C1 isn't set.
 | |
|           return DAG.getConstant(C1.isNonNegative(), dl, VT);
 | |
|         default:
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Otherwise, we can perform the comparison with the low bits.
 | |
|       switch (Cond) {
 | |
|       case ISD::SETEQ:
 | |
|       case ISD::SETNE:
 | |
|       case ISD::SETUGT:
 | |
|       case ISD::SETUGE:
 | |
|       case ISD::SETULT:
 | |
|       case ISD::SETULE: {
 | |
|         EVT newVT = N0.getOperand(0).getValueType();
 | |
|         if (DCI.isBeforeLegalizeOps() ||
 | |
|             (isOperationLegal(ISD::SETCC, newVT) &&
 | |
|              getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) {
 | |
|           EVT NewSetCCVT =
 | |
|               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
 | |
|           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
 | |
| 
 | |
|           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
 | |
|                                           NewConst, Cond);
 | |
|           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       default:
 | |
|         break;   // todo, be more careful with signed comparisons
 | |
|       }
 | |
|     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
 | |
|                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
 | |
|       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
 | |
|       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
 | |
|       EVT ExtDstTy = N0.getValueType();
 | |
|       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
 | |
| 
 | |
|       // If the constant doesn't fit into the number of bits for the source of
 | |
|       // the sign extension, it is impossible for both sides to be equal.
 | |
|       if (C1.getMinSignedBits() > ExtSrcTyBits)
 | |
|         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
 | |
| 
 | |
|       SDValue ZextOp;
 | |
|       EVT Op0Ty = N0.getOperand(0).getValueType();
 | |
|       if (Op0Ty == ExtSrcTy) {
 | |
|         ZextOp = N0.getOperand(0);
 | |
|       } else {
 | |
|         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
 | |
|         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
 | |
|                               DAG.getConstant(Imm, dl, Op0Ty));
 | |
|       }
 | |
|       if (!DCI.isCalledByLegalizer())
 | |
|         DCI.AddToWorklist(ZextOp.getNode());
 | |
|       // Otherwise, make this a use of a zext.
 | |
|       return DAG.getSetCC(dl, VT, ZextOp,
 | |
|                           DAG.getConstant(C1 & APInt::getLowBitsSet(
 | |
|                                                               ExtDstTyBits,
 | |
|                                                               ExtSrcTyBits),
 | |
|                                           dl, ExtDstTy),
 | |
|                           Cond);
 | |
|     } else if ((N1C->isNullValue() || N1C->isOne()) &&
 | |
|                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
 | |
|       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
 | |
|       if (N0.getOpcode() == ISD::SETCC &&
 | |
|           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
 | |
|         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
 | |
|         if (TrueWhenTrue)
 | |
|           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
 | |
|         // Invert the condition.
 | |
|         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
 | |
|         CC = ISD::getSetCCInverse(CC,
 | |
|                                   N0.getOperand(0).getValueType().isInteger());
 | |
|         if (DCI.isBeforeLegalizeOps() ||
 | |
|             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
 | |
|           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
 | |
|       }
 | |
| 
 | |
|       if ((N0.getOpcode() == ISD::XOR ||
 | |
|            (N0.getOpcode() == ISD::AND &&
 | |
|             N0.getOperand(0).getOpcode() == ISD::XOR &&
 | |
|             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
 | |
|           isa<ConstantSDNode>(N0.getOperand(1)) &&
 | |
|           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
 | |
|         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
 | |
|         // can only do this if the top bits are known zero.
 | |
|         unsigned BitWidth = N0.getValueSizeInBits();
 | |
|         if (DAG.MaskedValueIsZero(N0,
 | |
|                                   APInt::getHighBitsSet(BitWidth,
 | |
|                                                         BitWidth-1))) {
 | |
|           // Okay, get the un-inverted input value.
 | |
|           SDValue Val;
 | |
|           if (N0.getOpcode() == ISD::XOR) {
 | |
|             Val = N0.getOperand(0);
 | |
|           } else {
 | |
|             assert(N0.getOpcode() == ISD::AND &&
 | |
|                     N0.getOperand(0).getOpcode() == ISD::XOR);
 | |
|             // ((X^1)&1)^1 -> X & 1
 | |
|             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
 | |
|                               N0.getOperand(0).getOperand(0),
 | |
|                               N0.getOperand(1));
 | |
|           }
 | |
| 
 | |
|           return DAG.getSetCC(dl, VT, Val, N1,
 | |
|                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
 | |
|         }
 | |
|       } else if (N1C->isOne() &&
 | |
|                  (VT == MVT::i1 ||
 | |
|                   getBooleanContents(N0->getValueType(0)) ==
 | |
|                       ZeroOrOneBooleanContent)) {
 | |
|         SDValue Op0 = N0;
 | |
|         if (Op0.getOpcode() == ISD::TRUNCATE)
 | |
|           Op0 = Op0.getOperand(0);
 | |
| 
 | |
|         if ((Op0.getOpcode() == ISD::XOR) &&
 | |
|             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
 | |
|             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
 | |
|           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
 | |
|           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
 | |
|           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
 | |
|                               Cond);
 | |
|         }
 | |
|         if (Op0.getOpcode() == ISD::AND &&
 | |
|             isa<ConstantSDNode>(Op0.getOperand(1)) &&
 | |
|             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
 | |
|           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
 | |
|           if (Op0.getValueType().bitsGT(VT))
 | |
|             Op0 = DAG.getNode(ISD::AND, dl, VT,
 | |
|                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
 | |
|                           DAG.getConstant(1, dl, VT));
 | |
|           else if (Op0.getValueType().bitsLT(VT))
 | |
|             Op0 = DAG.getNode(ISD::AND, dl, VT,
 | |
|                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
 | |
|                         DAG.getConstant(1, dl, VT));
 | |
| 
 | |
|           return DAG.getSetCC(dl, VT, Op0,
 | |
|                               DAG.getConstant(0, dl, Op0.getValueType()),
 | |
|                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
 | |
|         }
 | |
|         if (Op0.getOpcode() == ISD::AssertZext &&
 | |
|             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
 | |
|           return DAG.getSetCC(dl, VT, Op0,
 | |
|                               DAG.getConstant(0, dl, Op0.getValueType()),
 | |
|                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     APInt MinVal, MaxVal;
 | |
|     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
 | |
|     if (ISD::isSignedIntSetCC(Cond)) {
 | |
|       MinVal = APInt::getSignedMinValue(OperandBitSize);
 | |
|       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
 | |
|     } else {
 | |
|       MinVal = APInt::getMinValue(OperandBitSize);
 | |
|       MaxVal = APInt::getMaxValue(OperandBitSize);
 | |
|     }
 | |
| 
 | |
|     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
 | |
|     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
 | |
|       // X >= MIN --> true
 | |
|       if (C1 == MinVal)
 | |
|         return DAG.getConstant(1, dl, VT);
 | |
| 
 | |
|       // X >= C0 --> X > (C0 - 1)
 | |
|       APInt C = C1 - 1;
 | |
|       ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
 | |
|       if ((DCI.isBeforeLegalizeOps() ||
 | |
|            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
 | |
|           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
 | |
|                                 isLegalICmpImmediate(C.getSExtValue())))) {
 | |
|         return DAG.getSetCC(dl, VT, N0,
 | |
|                             DAG.getConstant(C, dl, N1.getValueType()),
 | |
|                             NewCC);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
 | |
|       // X <= MAX --> true
 | |
|       if (C1 == MaxVal)
 | |
|           return DAG.getConstant(1, dl, VT);
 | |
| 
 | |
|       // X <= C0 --> X < (C0 + 1)
 | |
|       APInt C = C1 + 1;
 | |
|       ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
 | |
|       if ((DCI.isBeforeLegalizeOps() ||
 | |
|            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
 | |
|           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
 | |
|                                 isLegalICmpImmediate(C.getSExtValue())))) {
 | |
|         return DAG.getSetCC(dl, VT, N0,
 | |
|                             DAG.getConstant(C, dl, N1.getValueType()),
 | |
|                             NewCC);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
 | |
|       return DAG.getConstant(0, dl, VT);      // X < MIN --> false
 | |
|     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
 | |
|       return DAG.getConstant(1, dl, VT);      // X >= MIN --> true
 | |
|     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
 | |
|       return DAG.getConstant(0, dl, VT);      // X > MAX --> false
 | |
|     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
 | |
|       return DAG.getConstant(1, dl, VT);      // X <= MAX --> true
 | |
| 
 | |
|     // Canonicalize setgt X, Min --> setne X, Min
 | |
|     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
 | |
|       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
 | |
|     // Canonicalize setlt X, Max --> setne X, Max
 | |
|     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
 | |
|       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
 | |
| 
 | |
|     // If we have setult X, 1, turn it into seteq X, 0
 | |
|     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
 | |
|       return DAG.getSetCC(dl, VT, N0,
 | |
|                           DAG.getConstant(MinVal, dl, N0.getValueType()),
 | |
|                           ISD::SETEQ);
 | |
|     // If we have setugt X, Max-1, turn it into seteq X, Max
 | |
|     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
 | |
|       return DAG.getSetCC(dl, VT, N0,
 | |
|                           DAG.getConstant(MaxVal, dl, N0.getValueType()),
 | |
|                           ISD::SETEQ);
 | |
| 
 | |
|     // If we have "setcc X, C0", check to see if we can shrink the immediate
 | |
|     // by changing cc.
 | |
| 
 | |
|     // SETUGT X, SINTMAX  -> SETLT X, 0
 | |
|     if (Cond == ISD::SETUGT &&
 | |
|         C1 == APInt::getSignedMaxValue(OperandBitSize))
 | |
|       return DAG.getSetCC(dl, VT, N0,
 | |
|                           DAG.getConstant(0, dl, N1.getValueType()),
 | |
|                           ISD::SETLT);
 | |
| 
 | |
|     // SETULT X, SINTMIN  -> SETGT X, -1
 | |
|     if (Cond == ISD::SETULT &&
 | |
|         C1 == APInt::getSignedMinValue(OperandBitSize)) {
 | |
|       SDValue ConstMinusOne =
 | |
|           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
 | |
|                           N1.getValueType());
 | |
|       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
 | |
|     }
 | |
| 
 | |
|     // Fold bit comparisons when we can.
 | |
|     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | |
|         (VT == N0.getValueType() ||
 | |
|          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
 | |
|         N0.getOpcode() == ISD::AND) {
 | |
|       auto &DL = DAG.getDataLayout();
 | |
|       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
 | |
|         EVT ShiftTy = DCI.isBeforeLegalize()
 | |
|                           ? getPointerTy(DL)
 | |
|                           : getShiftAmountTy(N0.getValueType(), DL);
 | |
|         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
 | |
|           // Perform the xform if the AND RHS is a single bit.
 | |
|           if (AndRHS->getAPIntValue().isPowerOf2()) {
 | |
|             return DAG.getNode(ISD::TRUNCATE, dl, VT,
 | |
|                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
 | |
|                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
 | |
|                                    ShiftTy)));
 | |
|           }
 | |
|         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
 | |
|           // (X & 8) == 8  -->  (X & 8) >> 3
 | |
|           // Perform the xform if C1 is a single bit.
 | |
|           if (C1.isPowerOf2()) {
 | |
|             return DAG.getNode(ISD::TRUNCATE, dl, VT,
 | |
|                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
 | |
|                                       DAG.getConstant(C1.logBase2(), dl,
 | |
|                                                       ShiftTy)));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (C1.getMinSignedBits() <= 64 &&
 | |
|         !isLegalICmpImmediate(C1.getSExtValue())) {
 | |
|       // (X & -256) == 256 -> (X >> 8) == 1
 | |
|       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | |
|           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
 | |
|         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
 | |
|           const APInt &AndRHSC = AndRHS->getAPIntValue();
 | |
|           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
 | |
|             unsigned ShiftBits = AndRHSC.countTrailingZeros();
 | |
|             auto &DL = DAG.getDataLayout();
 | |
|             EVT ShiftTy = DCI.isBeforeLegalize()
 | |
|                               ? getPointerTy(DL)
 | |
|                               : getShiftAmountTy(N0.getValueType(), DL);
 | |
|             EVT CmpTy = N0.getValueType();
 | |
|             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
 | |
|                                         DAG.getConstant(ShiftBits, dl,
 | |
|                                                         ShiftTy));
 | |
|             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
 | |
|             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
 | |
|           }
 | |
|         }
 | |
|       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
 | |
|                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
 | |
|         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
 | |
|         // X <  0x100000000 -> (X >> 32) <  1
 | |
|         // X >= 0x100000000 -> (X >> 32) >= 1
 | |
|         // X <= 0x0ffffffff -> (X >> 32) <  1
 | |
|         // X >  0x0ffffffff -> (X >> 32) >= 1
 | |
|         unsigned ShiftBits;
 | |
|         APInt NewC = C1;
 | |
|         ISD::CondCode NewCond = Cond;
 | |
|         if (AdjOne) {
 | |
|           ShiftBits = C1.countTrailingOnes();
 | |
|           NewC = NewC + 1;
 | |
|           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
 | |
|         } else {
 | |
|           ShiftBits = C1.countTrailingZeros();
 | |
|         }
 | |
|         NewC.lshrInPlace(ShiftBits);
 | |
|         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
 | |
|           isLegalICmpImmediate(NewC.getSExtValue())) {
 | |
|           auto &DL = DAG.getDataLayout();
 | |
|           EVT ShiftTy = DCI.isBeforeLegalize()
 | |
|                             ? getPointerTy(DL)
 | |
|                             : getShiftAmountTy(N0.getValueType(), DL);
 | |
|           EVT CmpTy = N0.getValueType();
 | |
|           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
 | |
|                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
 | |
|           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
 | |
|           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isa<ConstantFPSDNode>(N0.getNode())) {
 | |
|     // Constant fold or commute setcc.
 | |
|     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
 | |
|     if (O.getNode()) return O;
 | |
|   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
 | |
|     // If the RHS of an FP comparison is a constant, simplify it away in
 | |
|     // some cases.
 | |
|     if (CFP->getValueAPF().isNaN()) {
 | |
|       // If an operand is known to be a nan, we can fold it.
 | |
|       switch (ISD::getUnorderedFlavor(Cond)) {
 | |
|       default: llvm_unreachable("Unknown flavor!");
 | |
|       case 0:  // Known false.
 | |
|         return DAG.getConstant(0, dl, VT);
 | |
|       case 1:  // Known true.
 | |
|         return DAG.getConstant(1, dl, VT);
 | |
|       case 2:  // Undefined.
 | |
|         return DAG.getUNDEF(VT);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
 | |
|     // constant if knowing that the operand is non-nan is enough.  We prefer to
 | |
|     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
 | |
|     // materialize 0.0.
 | |
|     if (Cond == ISD::SETO || Cond == ISD::SETUO)
 | |
|       return DAG.getSetCC(dl, VT, N0, N0, Cond);
 | |
| 
 | |
|     // setcc (fneg x), C -> setcc swap(pred) x, -C
 | |
|     if (N0.getOpcode() == ISD::FNEG) {
 | |
|       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
 | |
|       if (DCI.isBeforeLegalizeOps() ||
 | |
|           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
 | |
|         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
 | |
|         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the condition is not legal, see if we can find an equivalent one
 | |
|     // which is legal.
 | |
|     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
 | |
|       // If the comparison was an awkward floating-point == or != and one of
 | |
|       // the comparison operands is infinity or negative infinity, convert the
 | |
|       // condition to a less-awkward <= or >=.
 | |
|       if (CFP->getValueAPF().isInfinity()) {
 | |
|         if (CFP->getValueAPF().isNegative()) {
 | |
|           if (Cond == ISD::SETOEQ &&
 | |
|               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
 | |
|           if (Cond == ISD::SETUEQ &&
 | |
|               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
 | |
|           if (Cond == ISD::SETUNE &&
 | |
|               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
 | |
|           if (Cond == ISD::SETONE &&
 | |
|               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
 | |
|         } else {
 | |
|           if (Cond == ISD::SETOEQ &&
 | |
|               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
 | |
|           if (Cond == ISD::SETUEQ &&
 | |
|               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
 | |
|           if (Cond == ISD::SETUNE &&
 | |
|               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
 | |
|           if (Cond == ISD::SETONE &&
 | |
|               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (N0 == N1) {
 | |
|     // The sext(setcc()) => setcc() optimization relies on the appropriate
 | |
|     // constant being emitted.
 | |
|     uint64_t EqVal = 0;
 | |
|     switch (getBooleanContents(N0.getValueType())) {
 | |
|     case UndefinedBooleanContent:
 | |
|     case ZeroOrOneBooleanContent:
 | |
|       EqVal = ISD::isTrueWhenEqual(Cond);
 | |
|       break;
 | |
|     case ZeroOrNegativeOneBooleanContent:
 | |
|       EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // We can always fold X == X for integer setcc's.
 | |
|     if (N0.getValueType().isInteger()) {
 | |
|       return DAG.getConstant(EqVal, dl, VT);
 | |
|     }
 | |
|     unsigned UOF = ISD::getUnorderedFlavor(Cond);
 | |
|     if (UOF == 2)   // FP operators that are undefined on NaNs.
 | |
|       return DAG.getConstant(EqVal, dl, VT);
 | |
|     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
 | |
|       return DAG.getConstant(EqVal, dl, VT);
 | |
|     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
 | |
|     // if it is not already.
 | |
|     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
 | |
|     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
 | |
|           getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
 | |
|       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
 | |
|   }
 | |
| 
 | |
|   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | |
|       N0.getValueType().isInteger()) {
 | |
|     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
 | |
|         N0.getOpcode() == ISD::XOR) {
 | |
|       // Simplify (X+Y) == (X+Z) -->  Y == Z
 | |
|       if (N0.getOpcode() == N1.getOpcode()) {
 | |
|         if (N0.getOperand(0) == N1.getOperand(0))
 | |
|           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
 | |
|         if (N0.getOperand(1) == N1.getOperand(1))
 | |
|           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
 | |
|         if (isCommutativeBinOp(N0.getOpcode())) {
 | |
|           // If X op Y == Y op X, try other combinations.
 | |
|           if (N0.getOperand(0) == N1.getOperand(1))
 | |
|             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
 | |
|                                 Cond);
 | |
|           if (N0.getOperand(1) == N1.getOperand(0))
 | |
|             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
 | |
|                                 Cond);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If RHS is a legal immediate value for a compare instruction, we need
 | |
|       // to be careful about increasing register pressure needlessly.
 | |
|       bool LegalRHSImm = false;
 | |
| 
 | |
|       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
 | |
|         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
 | |
|           // Turn (X+C1) == C2 --> X == C2-C1
 | |
|           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
 | |
|             return DAG.getSetCC(dl, VT, N0.getOperand(0),
 | |
|                                 DAG.getConstant(RHSC->getAPIntValue()-
 | |
|                                                 LHSR->getAPIntValue(),
 | |
|                                 dl, N0.getValueType()), Cond);
 | |
|           }
 | |
| 
 | |
|           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
 | |
|           if (N0.getOpcode() == ISD::XOR)
 | |
|             // If we know that all of the inverted bits are zero, don't bother
 | |
|             // performing the inversion.
 | |
|             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
 | |
|               return
 | |
|                 DAG.getSetCC(dl, VT, N0.getOperand(0),
 | |
|                              DAG.getConstant(LHSR->getAPIntValue() ^
 | |
|                                                RHSC->getAPIntValue(),
 | |
|                                              dl, N0.getValueType()),
 | |
|                              Cond);
 | |
|         }
 | |
| 
 | |
|         // Turn (C1-X) == C2 --> X == C1-C2
 | |
|         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
 | |
|           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
 | |
|             return
 | |
|               DAG.getSetCC(dl, VT, N0.getOperand(1),
 | |
|                            DAG.getConstant(SUBC->getAPIntValue() -
 | |
|                                              RHSC->getAPIntValue(),
 | |
|                                            dl, N0.getValueType()),
 | |
|                            Cond);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Could RHSC fold directly into a compare?
 | |
|         if (RHSC->getValueType(0).getSizeInBits() <= 64)
 | |
|           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
 | |
|       }
 | |
| 
 | |
|       // Simplify (X+Z) == X -->  Z == 0
 | |
|       // Don't do this if X is an immediate that can fold into a cmp
 | |
|       // instruction and X+Z has other uses. It could be an induction variable
 | |
|       // chain, and the transform would increase register pressure.
 | |
|       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
 | |
|         if (N0.getOperand(0) == N1)
 | |
|           return DAG.getSetCC(dl, VT, N0.getOperand(1),
 | |
|                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
 | |
|         if (N0.getOperand(1) == N1) {
 | |
|           if (isCommutativeBinOp(N0.getOpcode()))
 | |
|             return DAG.getSetCC(dl, VT, N0.getOperand(0),
 | |
|                                 DAG.getConstant(0, dl, N0.getValueType()),
 | |
|                                 Cond);
 | |
|           if (N0.getNode()->hasOneUse()) {
 | |
|             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
 | |
|             auto &DL = DAG.getDataLayout();
 | |
|             // (Z-X) == X  --> Z == X<<1
 | |
|             SDValue SH = DAG.getNode(
 | |
|                 ISD::SHL, dl, N1.getValueType(), N1,
 | |
|                 DAG.getConstant(1, dl,
 | |
|                                 getShiftAmountTy(N1.getValueType(), DL)));
 | |
|             if (!DCI.isCalledByLegalizer())
 | |
|               DCI.AddToWorklist(SH.getNode());
 | |
|             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
 | |
|         N1.getOpcode() == ISD::XOR) {
 | |
|       // Simplify  X == (X+Z) -->  Z == 0
 | |
|       if (N1.getOperand(0) == N0)
 | |
|         return DAG.getSetCC(dl, VT, N1.getOperand(1),
 | |
|                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
 | |
|       if (N1.getOperand(1) == N0) {
 | |
|         if (isCommutativeBinOp(N1.getOpcode()))
 | |
|           return DAG.getSetCC(dl, VT, N1.getOperand(0),
 | |
|                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
 | |
|         if (N1.getNode()->hasOneUse()) {
 | |
|           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
 | |
|           auto &DL = DAG.getDataLayout();
 | |
|           // X == (Z-X)  --> X<<1 == Z
 | |
|           SDValue SH = DAG.getNode(
 | |
|               ISD::SHL, dl, N1.getValueType(), N0,
 | |
|               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL)));
 | |
|           if (!DCI.isCalledByLegalizer())
 | |
|             DCI.AddToWorklist(SH.getNode());
 | |
|           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
 | |
|       return V;
 | |
|   }
 | |
| 
 | |
|   // Fold away ALL boolean setcc's.
 | |
|   SDValue Temp;
 | |
|   if (N0.getValueType() == MVT::i1 && foldBooleans) {
 | |
|     switch (Cond) {
 | |
|     default: llvm_unreachable("Unknown integer setcc!");
 | |
|     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
 | |
|       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
 | |
|       N0 = DAG.getNOT(dl, Temp, MVT::i1);
 | |
|       if (!DCI.isCalledByLegalizer())
 | |
|         DCI.AddToWorklist(Temp.getNode());
 | |
|       break;
 | |
|     case ISD::SETNE:  // X != Y   -->  (X^Y)
 | |
|       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
 | |
|       break;
 | |
|     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
 | |
|     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
 | |
|       Temp = DAG.getNOT(dl, N0, MVT::i1);
 | |
|       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
 | |
|       if (!DCI.isCalledByLegalizer())
 | |
|         DCI.AddToWorklist(Temp.getNode());
 | |
|       break;
 | |
|     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
 | |
|     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
 | |
|       Temp = DAG.getNOT(dl, N1, MVT::i1);
 | |
|       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
 | |
|       if (!DCI.isCalledByLegalizer())
 | |
|         DCI.AddToWorklist(Temp.getNode());
 | |
|       break;
 | |
|     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
 | |
|     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
 | |
|       Temp = DAG.getNOT(dl, N0, MVT::i1);
 | |
|       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
 | |
|       if (!DCI.isCalledByLegalizer())
 | |
|         DCI.AddToWorklist(Temp.getNode());
 | |
|       break;
 | |
|     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
 | |
|     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
 | |
|       Temp = DAG.getNOT(dl, N1, MVT::i1);
 | |
|       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
 | |
|       break;
 | |
|     }
 | |
|     if (VT != MVT::i1) {
 | |
|       if (!DCI.isCalledByLegalizer())
 | |
|         DCI.AddToWorklist(N0.getNode());
 | |
|       // FIXME: If running after legalize, we probably can't do this.
 | |
|       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
 | |
|     }
 | |
|     return N0;
 | |
|   }
 | |
| 
 | |
|   // Could not fold it.
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// Returns true (and the GlobalValue and the offset) if the node is a
 | |
| /// GlobalAddress + offset.
 | |
| bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
 | |
|                                     int64_t &Offset) const {
 | |
|   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
 | |
|     GA = GASD->getGlobal();
 | |
|     Offset += GASD->getOffset();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (N->getOpcode() == ISD::ADD) {
 | |
|     SDValue N1 = N->getOperand(0);
 | |
|     SDValue N2 = N->getOperand(1);
 | |
|     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
 | |
|       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
 | |
|         Offset += V->getSExtValue();
 | |
|         return true;
 | |
|       }
 | |
|     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
 | |
|       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
 | |
|         Offset += V->getSExtValue();
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SDValue TargetLowering::PerformDAGCombine(SDNode *N,
 | |
|                                           DAGCombinerInfo &DCI) const {
 | |
|   // Default implementation: no optimization.
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Inline Assembler Implementation Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| TargetLowering::ConstraintType
 | |
| TargetLowering::getConstraintType(StringRef Constraint) const {
 | |
|   unsigned S = Constraint.size();
 | |
| 
 | |
|   if (S == 1) {
 | |
|     switch (Constraint[0]) {
 | |
|     default: break;
 | |
|     case 'r': return C_RegisterClass;
 | |
|     case 'm':    // memory
 | |
|     case 'o':    // offsetable
 | |
|     case 'V':    // not offsetable
 | |
|       return C_Memory;
 | |
|     case 'i':    // Simple Integer or Relocatable Constant
 | |
|     case 'n':    // Simple Integer
 | |
|     case 'E':    // Floating Point Constant
 | |
|     case 'F':    // Floating Point Constant
 | |
|     case 's':    // Relocatable Constant
 | |
|     case 'p':    // Address.
 | |
|     case 'X':    // Allow ANY value.
 | |
|     case 'I':    // Target registers.
 | |
|     case 'J':
 | |
|     case 'K':
 | |
|     case 'L':
 | |
|     case 'M':
 | |
|     case 'N':
 | |
|     case 'O':
 | |
|     case 'P':
 | |
|     case '<':
 | |
|     case '>':
 | |
|       return C_Other;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
 | |
|     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
 | |
|       return C_Memory;
 | |
|     return C_Register;
 | |
|   }
 | |
|   return C_Unknown;
 | |
| }
 | |
| 
 | |
| /// Try to replace an X constraint, which matches anything, with another that
 | |
| /// has more specific requirements based on the type of the corresponding
 | |
| /// operand.
 | |
| const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
 | |
|   if (ConstraintVT.isInteger())
 | |
|     return "r";
 | |
|   if (ConstraintVT.isFloatingPoint())
 | |
|     return "f";      // works for many targets
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Lower the specified operand into the Ops vector.
 | |
| /// If it is invalid, don't add anything to Ops.
 | |
| void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
 | |
|                                                   std::string &Constraint,
 | |
|                                                   std::vector<SDValue> &Ops,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
| 
 | |
|   if (Constraint.length() > 1) return;
 | |
| 
 | |
|   char ConstraintLetter = Constraint[0];
 | |
|   switch (ConstraintLetter) {
 | |
|   default: break;
 | |
|   case 'X':     // Allows any operand; labels (basic block) use this.
 | |
|     if (Op.getOpcode() == ISD::BasicBlock) {
 | |
|       Ops.push_back(Op);
 | |
|       return;
 | |
|     }
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case 'i':    // Simple Integer or Relocatable Constant
 | |
|   case 'n':    // Simple Integer
 | |
|   case 's': {  // Relocatable Constant
 | |
|     // These operands are interested in values of the form (GV+C), where C may
 | |
|     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
 | |
|     // is possible and fine if either GV or C are missing.
 | |
|     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
 | |
|     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
 | |
| 
 | |
|     // If we have "(add GV, C)", pull out GV/C
 | |
|     if (Op.getOpcode() == ISD::ADD) {
 | |
|       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
 | |
|       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
 | |
|       if (!C || !GA) {
 | |
|         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
 | |
|         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
 | |
|       }
 | |
|       if (!C || !GA) {
 | |
|         C = nullptr;
 | |
|         GA = nullptr;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we find a valid operand, map to the TargetXXX version so that the
 | |
|     // value itself doesn't get selected.
 | |
|     if (GA) {   // Either &GV   or   &GV+C
 | |
|       if (ConstraintLetter != 'n') {
 | |
|         int64_t Offs = GA->getOffset();
 | |
|         if (C) Offs += C->getZExtValue();
 | |
|         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
 | |
|                                                  C ? SDLoc(C) : SDLoc(),
 | |
|                                                  Op.getValueType(), Offs));
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     if (C) {   // just C, no GV.
 | |
|       // Simple constants are not allowed for 's'.
 | |
|       if (ConstraintLetter != 's') {
 | |
|         // gcc prints these as sign extended.  Sign extend value to 64 bits
 | |
|         // now; without this it would get ZExt'd later in
 | |
|         // ScheduleDAGSDNodes::EmitNode, which is very generic.
 | |
|         Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
 | |
|                                             SDLoc(C), MVT::i64));
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::pair<unsigned, const TargetRegisterClass *>
 | |
| TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
 | |
|                                              StringRef Constraint,
 | |
|                                              MVT VT) const {
 | |
|   if (Constraint.empty() || Constraint[0] != '{')
 | |
|     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
 | |
|   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
 | |
| 
 | |
|   // Remove the braces from around the name.
 | |
|   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
 | |
| 
 | |
|   std::pair<unsigned, const TargetRegisterClass*> R =
 | |
|     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
 | |
| 
 | |
|   // Figure out which register class contains this reg.
 | |
|   for (const TargetRegisterClass *RC : RI->regclasses()) {
 | |
|     // If none of the value types for this register class are valid, we
 | |
|     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
 | |
|     if (!isLegalRC(*RI, *RC))
 | |
|       continue;
 | |
| 
 | |
|     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
 | |
|          I != E; ++I) {
 | |
|       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
 | |
|         std::pair<unsigned, const TargetRegisterClass*> S =
 | |
|           std::make_pair(*I, RC);
 | |
| 
 | |
|         // If this register class has the requested value type, return it,
 | |
|         // otherwise keep searching and return the first class found
 | |
|         // if no other is found which explicitly has the requested type.
 | |
|         if (RI->isTypeLegalForClass(*RC, VT))
 | |
|           return S;
 | |
|         if (!R.second)
 | |
|           R = S;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Constraint Selection.
 | |
| 
 | |
| /// Return true of this is an input operand that is a matching constraint like
 | |
| /// "4".
 | |
| bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
 | |
|   assert(!ConstraintCode.empty() && "No known constraint!");
 | |
|   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
 | |
| }
 | |
| 
 | |
| /// If this is an input matching constraint, this method returns the output
 | |
| /// operand it matches.
 | |
| unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
 | |
|   assert(!ConstraintCode.empty() && "No known constraint!");
 | |
|   return atoi(ConstraintCode.c_str());
 | |
| }
 | |
| 
 | |
| /// Split up the constraint string from the inline assembly value into the
 | |
| /// specific constraints and their prefixes, and also tie in the associated
 | |
| /// operand values.
 | |
| /// If this returns an empty vector, and if the constraint string itself
 | |
| /// isn't empty, there was an error parsing.
 | |
| TargetLowering::AsmOperandInfoVector
 | |
| TargetLowering::ParseConstraints(const DataLayout &DL,
 | |
|                                  const TargetRegisterInfo *TRI,
 | |
|                                  ImmutableCallSite CS) const {
 | |
|   /// Information about all of the constraints.
 | |
|   AsmOperandInfoVector ConstraintOperands;
 | |
|   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
 | |
|   unsigned maCount = 0; // Largest number of multiple alternative constraints.
 | |
| 
 | |
|   // Do a prepass over the constraints, canonicalizing them, and building up the
 | |
|   // ConstraintOperands list.
 | |
|   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
 | |
|   unsigned ResNo = 0;   // ResNo - The result number of the next output.
 | |
| 
 | |
|   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
 | |
|     ConstraintOperands.emplace_back(std::move(CI));
 | |
|     AsmOperandInfo &OpInfo = ConstraintOperands.back();
 | |
| 
 | |
|     // Update multiple alternative constraint count.
 | |
|     if (OpInfo.multipleAlternatives.size() > maCount)
 | |
|       maCount = OpInfo.multipleAlternatives.size();
 | |
| 
 | |
|     OpInfo.ConstraintVT = MVT::Other;
 | |
| 
 | |
|     // Compute the value type for each operand.
 | |
|     switch (OpInfo.Type) {
 | |
|     case InlineAsm::isOutput:
 | |
|       // Indirect outputs just consume an argument.
 | |
|       if (OpInfo.isIndirect) {
 | |
|         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // The return value of the call is this value.  As such, there is no
 | |
|       // corresponding argument.
 | |
|       assert(!CS.getType()->isVoidTy() &&
 | |
|              "Bad inline asm!");
 | |
|       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
 | |
|         OpInfo.ConstraintVT =
 | |
|             getSimpleValueType(DL, STy->getElementType(ResNo));
 | |
|       } else {
 | |
|         assert(ResNo == 0 && "Asm only has one result!");
 | |
|         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
 | |
|       }
 | |
|       ++ResNo;
 | |
|       break;
 | |
|     case InlineAsm::isInput:
 | |
|       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
 | |
|       break;
 | |
|     case InlineAsm::isClobber:
 | |
|       // Nothing to do.
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (OpInfo.CallOperandVal) {
 | |
|       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
 | |
|       if (OpInfo.isIndirect) {
 | |
|         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
 | |
|         if (!PtrTy)
 | |
|           report_fatal_error("Indirect operand for inline asm not a pointer!");
 | |
|         OpTy = PtrTy->getElementType();
 | |
|       }
 | |
| 
 | |
|       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
 | |
|       if (StructType *STy = dyn_cast<StructType>(OpTy))
 | |
|         if (STy->getNumElements() == 1)
 | |
|           OpTy = STy->getElementType(0);
 | |
| 
 | |
|       // If OpTy is not a single value, it may be a struct/union that we
 | |
|       // can tile with integers.
 | |
|       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
 | |
|         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
 | |
|         switch (BitSize) {
 | |
|         default: break;
 | |
|         case 1:
 | |
|         case 8:
 | |
|         case 16:
 | |
|         case 32:
 | |
|         case 64:
 | |
|         case 128:
 | |
|           OpInfo.ConstraintVT =
 | |
|             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
 | |
|           break;
 | |
|         }
 | |
|       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
 | |
|         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
 | |
|         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
 | |
|       } else {
 | |
|         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we have multiple alternative constraints, select the best alternative.
 | |
|   if (!ConstraintOperands.empty()) {
 | |
|     if (maCount) {
 | |
|       unsigned bestMAIndex = 0;
 | |
|       int bestWeight = -1;
 | |
|       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
 | |
|       int weight = -1;
 | |
|       unsigned maIndex;
 | |
|       // Compute the sums of the weights for each alternative, keeping track
 | |
|       // of the best (highest weight) one so far.
 | |
|       for (maIndex = 0; maIndex < maCount; ++maIndex) {
 | |
|         int weightSum = 0;
 | |
|         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
 | |
|             cIndex != eIndex; ++cIndex) {
 | |
|           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
 | |
|           if (OpInfo.Type == InlineAsm::isClobber)
 | |
|             continue;
 | |
| 
 | |
|           // If this is an output operand with a matching input operand,
 | |
|           // look up the matching input. If their types mismatch, e.g. one
 | |
|           // is an integer, the other is floating point, or their sizes are
 | |
|           // different, flag it as an maCantMatch.
 | |
|           if (OpInfo.hasMatchingInput()) {
 | |
|             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
 | |
|             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
 | |
|               if ((OpInfo.ConstraintVT.isInteger() !=
 | |
|                    Input.ConstraintVT.isInteger()) ||
 | |
|                   (OpInfo.ConstraintVT.getSizeInBits() !=
 | |
|                    Input.ConstraintVT.getSizeInBits())) {
 | |
|                 weightSum = -1;  // Can't match.
 | |
|                 break;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
 | |
|           if (weight == -1) {
 | |
|             weightSum = -1;
 | |
|             break;
 | |
|           }
 | |
|           weightSum += weight;
 | |
|         }
 | |
|         // Update best.
 | |
|         if (weightSum > bestWeight) {
 | |
|           bestWeight = weightSum;
 | |
|           bestMAIndex = maIndex;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Now select chosen alternative in each constraint.
 | |
|       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
 | |
|           cIndex != eIndex; ++cIndex) {
 | |
|         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
 | |
|         if (cInfo.Type == InlineAsm::isClobber)
 | |
|           continue;
 | |
|         cInfo.selectAlternative(bestMAIndex);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check and hook up tied operands, choose constraint code to use.
 | |
|   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
 | |
|       cIndex != eIndex; ++cIndex) {
 | |
|     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
 | |
| 
 | |
|     // If this is an output operand with a matching input operand, look up the
 | |
|     // matching input. If their types mismatch, e.g. one is an integer, the
 | |
|     // other is floating point, or their sizes are different, flag it as an
 | |
|     // error.
 | |
|     if (OpInfo.hasMatchingInput()) {
 | |
|       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
 | |
| 
 | |
|       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
 | |
|         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
 | |
|             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
 | |
|                                          OpInfo.ConstraintVT);
 | |
|         std::pair<unsigned, const TargetRegisterClass *> InputRC =
 | |
|             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
 | |
|                                          Input.ConstraintVT);
 | |
|         if ((OpInfo.ConstraintVT.isInteger() !=
 | |
|              Input.ConstraintVT.isInteger()) ||
 | |
|             (MatchRC.second != InputRC.second)) {
 | |
|           report_fatal_error("Unsupported asm: input constraint"
 | |
|                              " with a matching output constraint of"
 | |
|                              " incompatible type!");
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return ConstraintOperands;
 | |
| }
 | |
| 
 | |
| /// Return an integer indicating how general CT is.
 | |
| static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
 | |
|   switch (CT) {
 | |
|   case TargetLowering::C_Other:
 | |
|   case TargetLowering::C_Unknown:
 | |
|     return 0;
 | |
|   case TargetLowering::C_Register:
 | |
|     return 1;
 | |
|   case TargetLowering::C_RegisterClass:
 | |
|     return 2;
 | |
|   case TargetLowering::C_Memory:
 | |
|     return 3;
 | |
|   }
 | |
|   llvm_unreachable("Invalid constraint type");
 | |
| }
 | |
| 
 | |
| /// Examine constraint type and operand type and determine a weight value.
 | |
| /// This object must already have been set up with the operand type
 | |
| /// and the current alternative constraint selected.
 | |
| TargetLowering::ConstraintWeight
 | |
|   TargetLowering::getMultipleConstraintMatchWeight(
 | |
|     AsmOperandInfo &info, int maIndex) const {
 | |
|   InlineAsm::ConstraintCodeVector *rCodes;
 | |
|   if (maIndex >= (int)info.multipleAlternatives.size())
 | |
|     rCodes = &info.Codes;
 | |
|   else
 | |
|     rCodes = &info.multipleAlternatives[maIndex].Codes;
 | |
|   ConstraintWeight BestWeight = CW_Invalid;
 | |
| 
 | |
|   // Loop over the options, keeping track of the most general one.
 | |
|   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
 | |
|     ConstraintWeight weight =
 | |
|       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
 | |
|     if (weight > BestWeight)
 | |
|       BestWeight = weight;
 | |
|   }
 | |
| 
 | |
|   return BestWeight;
 | |
| }
 | |
| 
 | |
| /// Examine constraint type and operand type and determine a weight value.
 | |
| /// This object must already have been set up with the operand type
 | |
| /// and the current alternative constraint selected.
 | |
| TargetLowering::ConstraintWeight
 | |
|   TargetLowering::getSingleConstraintMatchWeight(
 | |
|     AsmOperandInfo &info, const char *constraint) const {
 | |
|   ConstraintWeight weight = CW_Invalid;
 | |
|   Value *CallOperandVal = info.CallOperandVal;
 | |
|     // If we don't have a value, we can't do a match,
 | |
|     // but allow it at the lowest weight.
 | |
|   if (!CallOperandVal)
 | |
|     return CW_Default;
 | |
|   // Look at the constraint type.
 | |
|   switch (*constraint) {
 | |
|     case 'i': // immediate integer.
 | |
|     case 'n': // immediate integer with a known value.
 | |
|       if (isa<ConstantInt>(CallOperandVal))
 | |
|         weight = CW_Constant;
 | |
|       break;
 | |
|     case 's': // non-explicit intregal immediate.
 | |
|       if (isa<GlobalValue>(CallOperandVal))
 | |
|         weight = CW_Constant;
 | |
|       break;
 | |
|     case 'E': // immediate float if host format.
 | |
|     case 'F': // immediate float.
 | |
|       if (isa<ConstantFP>(CallOperandVal))
 | |
|         weight = CW_Constant;
 | |
|       break;
 | |
|     case '<': // memory operand with autodecrement.
 | |
|     case '>': // memory operand with autoincrement.
 | |
|     case 'm': // memory operand.
 | |
|     case 'o': // offsettable memory operand
 | |
|     case 'V': // non-offsettable memory operand
 | |
|       weight = CW_Memory;
 | |
|       break;
 | |
|     case 'r': // general register.
 | |
|     case 'g': // general register, memory operand or immediate integer.
 | |
|               // note: Clang converts "g" to "imr".
 | |
|       if (CallOperandVal->getType()->isIntegerTy())
 | |
|         weight = CW_Register;
 | |
|       break;
 | |
|     case 'X': // any operand.
 | |
|     default:
 | |
|       weight = CW_Default;
 | |
|       break;
 | |
|   }
 | |
|   return weight;
 | |
| }
 | |
| 
 | |
| /// If there are multiple different constraints that we could pick for this
 | |
| /// operand (e.g. "imr") try to pick the 'best' one.
 | |
| /// This is somewhat tricky: constraints fall into four classes:
 | |
| ///    Other         -> immediates and magic values
 | |
| ///    Register      -> one specific register
 | |
| ///    RegisterClass -> a group of regs
 | |
| ///    Memory        -> memory
 | |
| /// Ideally, we would pick the most specific constraint possible: if we have
 | |
| /// something that fits into a register, we would pick it.  The problem here
 | |
| /// is that if we have something that could either be in a register or in
 | |
| /// memory that use of the register could cause selection of *other*
 | |
| /// operands to fail: they might only succeed if we pick memory.  Because of
 | |
| /// this the heuristic we use is:
 | |
| ///
 | |
| ///  1) If there is an 'other' constraint, and if the operand is valid for
 | |
| ///     that constraint, use it.  This makes us take advantage of 'i'
 | |
| ///     constraints when available.
 | |
| ///  2) Otherwise, pick the most general constraint present.  This prefers
 | |
| ///     'm' over 'r', for example.
 | |
| ///
 | |
| static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
 | |
|                              const TargetLowering &TLI,
 | |
|                              SDValue Op, SelectionDAG *DAG) {
 | |
|   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
 | |
|   unsigned BestIdx = 0;
 | |
|   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
 | |
|   int BestGenerality = -1;
 | |
| 
 | |
|   // Loop over the options, keeping track of the most general one.
 | |
|   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
 | |
|     TargetLowering::ConstraintType CType =
 | |
|       TLI.getConstraintType(OpInfo.Codes[i]);
 | |
| 
 | |
|     // If this is an 'other' constraint, see if the operand is valid for it.
 | |
|     // For example, on X86 we might have an 'rI' constraint.  If the operand
 | |
|     // is an integer in the range [0..31] we want to use I (saving a load
 | |
|     // of a register), otherwise we must use 'r'.
 | |
|     if (CType == TargetLowering::C_Other && Op.getNode()) {
 | |
|       assert(OpInfo.Codes[i].size() == 1 &&
 | |
|              "Unhandled multi-letter 'other' constraint");
 | |
|       std::vector<SDValue> ResultOps;
 | |
|       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
 | |
|                                        ResultOps, *DAG);
 | |
|       if (!ResultOps.empty()) {
 | |
|         BestType = CType;
 | |
|         BestIdx = i;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Things with matching constraints can only be registers, per gcc
 | |
|     // documentation.  This mainly affects "g" constraints.
 | |
|     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
 | |
|       continue;
 | |
| 
 | |
|     // This constraint letter is more general than the previous one, use it.
 | |
|     int Generality = getConstraintGenerality(CType);
 | |
|     if (Generality > BestGenerality) {
 | |
|       BestType = CType;
 | |
|       BestIdx = i;
 | |
|       BestGenerality = Generality;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
 | |
|   OpInfo.ConstraintType = BestType;
 | |
| }
 | |
| 
 | |
| /// Determines the constraint code and constraint type to use for the specific
 | |
| /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
 | |
| void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
 | |
|                                             SDValue Op,
 | |
|                                             SelectionDAG *DAG) const {
 | |
|   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
 | |
| 
 | |
|   // Single-letter constraints ('r') are very common.
 | |
|   if (OpInfo.Codes.size() == 1) {
 | |
|     OpInfo.ConstraintCode = OpInfo.Codes[0];
 | |
|     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
 | |
|   } else {
 | |
|     ChooseConstraint(OpInfo, *this, Op, DAG);
 | |
|   }
 | |
| 
 | |
|   // 'X' matches anything.
 | |
|   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
 | |
|     // Labels and constants are handled elsewhere ('X' is the only thing
 | |
|     // that matches labels).  For Functions, the type here is the type of
 | |
|     // the result, which is not what we want to look at; leave them alone.
 | |
|     Value *v = OpInfo.CallOperandVal;
 | |
|     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
 | |
|       OpInfo.CallOperandVal = v;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, try to resolve it to something we know about by looking at
 | |
|     // the actual operand type.
 | |
|     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
 | |
|       OpInfo.ConstraintCode = Repl;
 | |
|       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Given an exact SDIV by a constant, create a multiplication
 | |
| /// with the multiplicative inverse of the constant.
 | |
| static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d,
 | |
|                               const SDLoc &dl, SelectionDAG &DAG,
 | |
|                               std::vector<SDNode *> &Created) {
 | |
|   assert(d != 0 && "Division by zero!");
 | |
| 
 | |
|   // Shift the value upfront if it is even, so the LSB is one.
 | |
|   unsigned ShAmt = d.countTrailingZeros();
 | |
|   if (ShAmt) {
 | |
|     // TODO: For UDIV use SRL instead of SRA.
 | |
|     SDValue Amt =
 | |
|         DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(),
 | |
|                                                         DAG.getDataLayout()));
 | |
|     SDNodeFlags Flags;
 | |
|     Flags.setExact(true);
 | |
|     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, Flags);
 | |
|     Created.push_back(Op1.getNode());
 | |
|     d.ashrInPlace(ShAmt);
 | |
|   }
 | |
| 
 | |
|   // Calculate the multiplicative inverse, using Newton's method.
 | |
|   APInt t, xn = d;
 | |
|   while ((t = d*xn) != 1)
 | |
|     xn *= APInt(d.getBitWidth(), 2) - t;
 | |
| 
 | |
|   SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType());
 | |
|   SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
 | |
|   Created.push_back(Mul.getNode());
 | |
|   return Mul;
 | |
| }
 | |
| 
 | |
| SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
 | |
|                                       SelectionDAG &DAG,
 | |
|                                       std::vector<SDNode *> *Created) const {
 | |
|   AttributeList Attr = DAG.getMachineFunction().getFunction()->getAttributes();
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
 | |
|     return SDValue(N,0); // Lower SDIV as SDIV
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// \brief Given an ISD::SDIV node expressing a divide by constant,
 | |
| /// return a DAG expression to select that will generate the same value by
 | |
| /// multiplying by a magic number.
 | |
| /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
 | |
| SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
 | |
|                                   SelectionDAG &DAG, bool IsAfterLegalization,
 | |
|                                   std::vector<SDNode *> *Created) const {
 | |
|   assert(Created && "No vector to hold sdiv ops.");
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   // Check to see if we can do this.
 | |
|   // FIXME: We should be more aggressive here.
 | |
|   if (!isTypeLegal(VT))
 | |
|     return SDValue();
 | |
| 
 | |
|   // If the sdiv has an 'exact' bit we can use a simpler lowering.
 | |
|   if (N->getFlags().hasExact())
 | |
|     return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created);
 | |
| 
 | |
|   APInt::ms magics = Divisor.magic();
 | |
| 
 | |
|   // Multiply the numerator (operand 0) by the magic value
 | |
|   // FIXME: We should support doing a MUL in a wider type
 | |
|   SDValue Q;
 | |
|   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
 | |
|                             isOperationLegalOrCustom(ISD::MULHS, VT))
 | |
|     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
 | |
|                     DAG.getConstant(magics.m, dl, VT));
 | |
|   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
 | |
|                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
 | |
|     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
 | |
|                               N->getOperand(0),
 | |
|                               DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
 | |
|   else
 | |
|     return SDValue();       // No mulhs or equvialent
 | |
|   // If d > 0 and m < 0, add the numerator
 | |
|   if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
 | |
|     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
 | |
|     Created->push_back(Q.getNode());
 | |
|   }
 | |
|   // If d < 0 and m > 0, subtract the numerator.
 | |
|   if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
 | |
|     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
 | |
|     Created->push_back(Q.getNode());
 | |
|   }
 | |
|   auto &DL = DAG.getDataLayout();
 | |
|   // Shift right algebraic if shift value is nonzero
 | |
|   if (magics.s > 0) {
 | |
|     Q = DAG.getNode(
 | |
|         ISD::SRA, dl, VT, Q,
 | |
|         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
 | |
|     Created->push_back(Q.getNode());
 | |
|   }
 | |
|   // Extract the sign bit and add it to the quotient
 | |
|   SDValue T =
 | |
|       DAG.getNode(ISD::SRL, dl, VT, Q,
 | |
|                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl,
 | |
|                                   getShiftAmountTy(Q.getValueType(), DL)));
 | |
|   Created->push_back(T.getNode());
 | |
|   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
 | |
| }
 | |
| 
 | |
| /// \brief Given an ISD::UDIV node expressing a divide by constant,
 | |
| /// return a DAG expression to select that will generate the same value by
 | |
| /// multiplying by a magic number.
 | |
| /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
 | |
| SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
 | |
|                                   SelectionDAG &DAG, bool IsAfterLegalization,
 | |
|                                   std::vector<SDNode *> *Created) const {
 | |
|   assert(Created && "No vector to hold udiv ops.");
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDLoc dl(N);
 | |
|   auto &DL = DAG.getDataLayout();
 | |
| 
 | |
|   // Check to see if we can do this.
 | |
|   // FIXME: We should be more aggressive here.
 | |
|   if (!isTypeLegal(VT))
 | |
|     return SDValue();
 | |
| 
 | |
|   // FIXME: We should use a narrower constant when the upper
 | |
|   // bits are known to be zero.
 | |
|   APInt::mu magics = Divisor.magicu();
 | |
| 
 | |
|   SDValue Q = N->getOperand(0);
 | |
| 
 | |
|   // If the divisor is even, we can avoid using the expensive fixup by shifting
 | |
|   // the divided value upfront.
 | |
|   if (magics.a != 0 && !Divisor[0]) {
 | |
|     unsigned Shift = Divisor.countTrailingZeros();
 | |
|     Q = DAG.getNode(
 | |
|         ISD::SRL, dl, VT, Q,
 | |
|         DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL)));
 | |
|     Created->push_back(Q.getNode());
 | |
| 
 | |
|     // Get magic number for the shifted divisor.
 | |
|     magics = Divisor.lshr(Shift).magicu(Shift);
 | |
|     assert(magics.a == 0 && "Should use cheap fixup now");
 | |
|   }
 | |
| 
 | |
|   // Multiply the numerator (operand 0) by the magic value
 | |
|   // FIXME: We should support doing a MUL in a wider type
 | |
|   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
 | |
|                             isOperationLegalOrCustom(ISD::MULHU, VT))
 | |
|     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT));
 | |
|   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
 | |
|                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
 | |
|     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
 | |
|                             DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
 | |
|   else
 | |
|     return SDValue();       // No mulhu or equivalent
 | |
| 
 | |
|   Created->push_back(Q.getNode());
 | |
| 
 | |
|   if (magics.a == 0) {
 | |
|     assert(magics.s < Divisor.getBitWidth() &&
 | |
|            "We shouldn't generate an undefined shift!");
 | |
|     return DAG.getNode(
 | |
|         ISD::SRL, dl, VT, Q,
 | |
|         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
 | |
|   } else {
 | |
|     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
 | |
|     Created->push_back(NPQ.getNode());
 | |
|     NPQ = DAG.getNode(
 | |
|         ISD::SRL, dl, VT, NPQ,
 | |
|         DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL)));
 | |
|     Created->push_back(NPQ.getNode());
 | |
|     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
 | |
|     Created->push_back(NPQ.getNode());
 | |
|     return DAG.getNode(
 | |
|         ISD::SRL, dl, VT, NPQ,
 | |
|         DAG.getConstant(magics.s - 1, dl,
 | |
|                         getShiftAmountTy(NPQ.getValueType(), DL)));
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool TargetLowering::
 | |
| verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
 | |
|   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
 | |
|     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
 | |
|                                 "be a constant integer");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Legalization Utilities
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
 | |
|                                     SDValue LHS, SDValue RHS,
 | |
|                                     SmallVectorImpl<SDValue> &Result,
 | |
|                                     EVT HiLoVT, SelectionDAG &DAG,
 | |
|                                     MulExpansionKind Kind, SDValue LL,
 | |
|                                     SDValue LH, SDValue RL, SDValue RH) const {
 | |
|   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
 | |
|          Opcode == ISD::SMUL_LOHI);
 | |
| 
 | |
|   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
 | |
|                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
 | |
|   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
 | |
|                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
 | |
|   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
 | |
|                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
 | |
|   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
 | |
|                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
 | |
| 
 | |
|   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
 | |
|     return false;
 | |
| 
 | |
|   unsigned OuterBitSize = VT.getScalarSizeInBits();
 | |
|   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
 | |
|   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
 | |
|   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
 | |
| 
 | |
|   // LL, LH, RL, and RH must be either all NULL or all set to a value.
 | |
|   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
 | |
|          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
 | |
| 
 | |
|   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
 | |
|   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
 | |
|                           bool Signed) -> bool {
 | |
|     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
 | |
|       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
 | |
|       Hi = SDValue(Lo.getNode(), 1);
 | |
|       return true;
 | |
|     }
 | |
|     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
 | |
|       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
 | |
|       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   SDValue Lo, Hi;
 | |
| 
 | |
|   if (!LL.getNode() && !RL.getNode() &&
 | |
|       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
 | |
|     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
 | |
|     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
 | |
|   }
 | |
| 
 | |
|   if (!LL.getNode())
 | |
|     return false;
 | |
| 
 | |
|   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
 | |
|   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
 | |
|       DAG.MaskedValueIsZero(RHS, HighMask)) {
 | |
|     // The inputs are both zero-extended.
 | |
|     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
 | |
|       Result.push_back(Lo);
 | |
|       Result.push_back(Hi);
 | |
|       if (Opcode != ISD::MUL) {
 | |
|         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
 | |
|         Result.push_back(Zero);
 | |
|         Result.push_back(Zero);
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
 | |
|       RHSSB > InnerBitSize) {
 | |
|     // The input values are both sign-extended.
 | |
|     // TODO non-MUL case?
 | |
|     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
 | |
|       Result.push_back(Lo);
 | |
|       Result.push_back(Hi);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
 | |
|   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
 | |
|   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
 | |
|     // FIXME getShiftAmountTy does not always return a sensible result when VT
 | |
|     // is an illegal type, and so the type may be too small to fit the shift
 | |
|     // amount. Override it with i32. The shift will have to be legalized.
 | |
|     ShiftAmountTy = MVT::i32;
 | |
|   }
 | |
|   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
 | |
| 
 | |
|   if (!LH.getNode() && !RH.getNode() &&
 | |
|       isOperationLegalOrCustom(ISD::SRL, VT) &&
 | |
|       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
 | |
|     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
 | |
|     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
 | |
|     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
 | |
|     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
 | |
|   }
 | |
| 
 | |
|   if (!LH.getNode())
 | |
|     return false;
 | |
| 
 | |
|   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
 | |
|     return false;
 | |
| 
 | |
|   Result.push_back(Lo);
 | |
| 
 | |
|   if (Opcode == ISD::MUL) {
 | |
|     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
 | |
|     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
 | |
|     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
 | |
|     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
 | |
|     Result.push_back(Hi);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Compute the full width result.
 | |
|   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
 | |
|     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
 | |
|     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
 | |
|     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
 | |
|     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
 | |
|   };
 | |
| 
 | |
|   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
 | |
|   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
 | |
|     return false;
 | |
| 
 | |
|   // This is effectively the add part of a multiply-add of half-sized operands,
 | |
|   // so it cannot overflow.
 | |
|   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
 | |
| 
 | |
|   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
 | |
|     return false;
 | |
| 
 | |
|   Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
 | |
|                      Merge(Lo, Hi));
 | |
| 
 | |
|   SDValue Carry = Next.getValue(1);
 | |
|   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
 | |
|   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
 | |
| 
 | |
|   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
 | |
|     return false;
 | |
| 
 | |
|   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
 | |
|   Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
 | |
|                    Carry);
 | |
|   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
 | |
| 
 | |
|   if (Opcode == ISD::SMUL_LOHI) {
 | |
|     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
 | |
|                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
 | |
|     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
 | |
| 
 | |
|     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
 | |
|                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
 | |
|     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
 | |
|   }
 | |
| 
 | |
|   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
 | |
|   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
 | |
|   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
 | |
|                                SelectionDAG &DAG, MulExpansionKind Kind,
 | |
|                                SDValue LL, SDValue LH, SDValue RL,
 | |
|                                SDValue RH) const {
 | |
|   SmallVector<SDValue, 2> Result;
 | |
|   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
 | |
|                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
 | |
|                            DAG, Kind, LL, LH, RL, RH);
 | |
|   if (Ok) {
 | |
|     assert(Result.size() == 2);
 | |
|     Lo = Result[0];
 | |
|     Hi = Result[1];
 | |
|   }
 | |
|   return Ok;
 | |
| }
 | |
| 
 | |
| bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
 | |
|                                SelectionDAG &DAG) const {
 | |
|   EVT VT = Node->getOperand(0).getValueType();
 | |
|   EVT NVT = Node->getValueType(0);
 | |
|   SDLoc dl(SDValue(Node, 0));
 | |
| 
 | |
|   // FIXME: Only f32 to i64 conversions are supported.
 | |
|   if (VT != MVT::f32 || NVT != MVT::i64)
 | |
|     return false;
 | |
| 
 | |
|   // Expand f32 -> i64 conversion
 | |
|   // This algorithm comes from compiler-rt's implementation of fixsfdi:
 | |
|   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
 | |
|   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
 | |
|                                 VT.getSizeInBits());
 | |
|   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
 | |
|   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
 | |
|   SDValue Bias = DAG.getConstant(127, dl, IntVT);
 | |
|   SDValue SignMask = DAG.getConstant(APInt::getSignMask(VT.getSizeInBits()), dl,
 | |
|                                      IntVT);
 | |
|   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT);
 | |
|   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
 | |
| 
 | |
|   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
 | |
| 
 | |
|   auto &DL = DAG.getDataLayout();
 | |
|   SDValue ExponentBits = DAG.getNode(
 | |
|       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
 | |
|       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL)));
 | |
|   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
 | |
| 
 | |
|   SDValue Sign = DAG.getNode(
 | |
|       ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
 | |
|       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL)));
 | |
|   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
 | |
| 
 | |
|   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
 | |
|       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
 | |
|       DAG.getConstant(0x00800000, dl, IntVT));
 | |
| 
 | |
|   R = DAG.getZExtOrTrunc(R, dl, NVT);
 | |
| 
 | |
|   R = DAG.getSelectCC(
 | |
|       dl, Exponent, ExponentLoBit,
 | |
|       DAG.getNode(ISD::SHL, dl, NVT, R,
 | |
|                   DAG.getZExtOrTrunc(
 | |
|                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
 | |
|                       dl, getShiftAmountTy(IntVT, DL))),
 | |
|       DAG.getNode(ISD::SRL, dl, NVT, R,
 | |
|                   DAG.getZExtOrTrunc(
 | |
|                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
 | |
|                       dl, getShiftAmountTy(IntVT, DL))),
 | |
|       ISD::SETGT);
 | |
| 
 | |
|   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
 | |
|       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
 | |
|       Sign);
 | |
| 
 | |
|   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
 | |
|       DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   SDLoc SL(LD);
 | |
|   SDValue Chain = LD->getChain();
 | |
|   SDValue BasePTR = LD->getBasePtr();
 | |
|   EVT SrcVT = LD->getMemoryVT();
 | |
|   ISD::LoadExtType ExtType = LD->getExtensionType();
 | |
| 
 | |
|   unsigned NumElem = SrcVT.getVectorNumElements();
 | |
| 
 | |
|   EVT SrcEltVT = SrcVT.getScalarType();
 | |
|   EVT DstEltVT = LD->getValueType(0).getScalarType();
 | |
| 
 | |
|   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
 | |
|   assert(SrcEltVT.isByteSized());
 | |
| 
 | |
|   EVT PtrVT = BasePTR.getValueType();
 | |
| 
 | |
|   SmallVector<SDValue, 8> Vals;
 | |
|   SmallVector<SDValue, 8> LoadChains;
 | |
| 
 | |
|   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
 | |
|     SDValue ScalarLoad =
 | |
|         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
 | |
|                        LD->getPointerInfo().getWithOffset(Idx * Stride),
 | |
|                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
 | |
|                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
 | |
| 
 | |
|     BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR,
 | |
|                           DAG.getConstant(Stride, SL, PtrVT));
 | |
| 
 | |
|     Vals.push_back(ScalarLoad.getValue(0));
 | |
|     LoadChains.push_back(ScalarLoad.getValue(1));
 | |
|   }
 | |
| 
 | |
|   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
 | |
|   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
 | |
| 
 | |
|   return DAG.getMergeValues({ Value, NewChain }, SL);
 | |
| }
 | |
| 
 | |
| // FIXME: This relies on each element having a byte size, otherwise the stride
 | |
| // is 0 and just overwrites the same location. ExpandStore currently expects
 | |
| // this broken behavior.
 | |
| SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   SDLoc SL(ST);
 | |
| 
 | |
|   SDValue Chain = ST->getChain();
 | |
|   SDValue BasePtr = ST->getBasePtr();
 | |
|   SDValue Value = ST->getValue();
 | |
|   EVT StVT = ST->getMemoryVT();
 | |
| 
 | |
|   // The type of the data we want to save
 | |
|   EVT RegVT = Value.getValueType();
 | |
|   EVT RegSclVT = RegVT.getScalarType();
 | |
| 
 | |
|   // The type of data as saved in memory.
 | |
|   EVT MemSclVT = StVT.getScalarType();
 | |
| 
 | |
|   EVT PtrVT = BasePtr.getValueType();
 | |
| 
 | |
|   // Store Stride in bytes
 | |
|   unsigned Stride = MemSclVT.getSizeInBits() / 8;
 | |
|   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
 | |
|   unsigned NumElem = StVT.getVectorNumElements();
 | |
| 
 | |
|   // Extract each of the elements from the original vector and save them into
 | |
|   // memory individually.
 | |
|   SmallVector<SDValue, 8> Stores;
 | |
|   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
 | |
|     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
 | |
|                               DAG.getConstant(Idx, SL, IdxVT));
 | |
| 
 | |
|     SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
 | |
|                               DAG.getConstant(Idx * Stride, SL, PtrVT));
 | |
| 
 | |
|     // This scalar TruncStore may be illegal, but we legalize it later.
 | |
|     SDValue Store = DAG.getTruncStore(
 | |
|         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
 | |
|         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
 | |
|         ST->getMemOperand()->getFlags(), ST->getAAInfo());
 | |
| 
 | |
|     Stores.push_back(Store);
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
 | |
| }
 | |
| 
 | |
| std::pair<SDValue, SDValue>
 | |
| TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
 | |
|   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
 | |
|          "unaligned indexed loads not implemented!");
 | |
|   SDValue Chain = LD->getChain();
 | |
|   SDValue Ptr = LD->getBasePtr();
 | |
|   EVT VT = LD->getValueType(0);
 | |
|   EVT LoadedVT = LD->getMemoryVT();
 | |
|   SDLoc dl(LD);
 | |
|   if (VT.isFloatingPoint() || VT.isVector()) {
 | |
|     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
 | |
|     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
 | |
|       if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) {
 | |
|         // Scalarize the load and let the individual components be handled.
 | |
|         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
 | |
|         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
 | |
|       }
 | |
| 
 | |
|       // Expand to a (misaligned) integer load of the same size,
 | |
|       // then bitconvert to floating point or vector.
 | |
|       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
 | |
|                                     LD->getMemOperand());
 | |
|       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
 | |
|       if (LoadedVT != VT)
 | |
|         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
 | |
|                              ISD::ANY_EXTEND, dl, VT, Result);
 | |
| 
 | |
|       return std::make_pair(Result, newLoad.getValue(1));
 | |
|     }
 | |
| 
 | |
|     // Copy the value to a (aligned) stack slot using (unaligned) integer
 | |
|     // loads and stores, then do a (aligned) load from the stack slot.
 | |
|     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
 | |
|     unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
 | |
|     unsigned RegBytes = RegVT.getSizeInBits() / 8;
 | |
|     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
 | |
| 
 | |
|     // Make sure the stack slot is also aligned for the register type.
 | |
|     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
 | |
| 
 | |
|     SmallVector<SDValue, 8> Stores;
 | |
|     SDValue StackPtr = StackBase;
 | |
|     unsigned Offset = 0;
 | |
| 
 | |
|     EVT PtrVT = Ptr.getValueType();
 | |
|     EVT StackPtrVT = StackPtr.getValueType();
 | |
| 
 | |
|     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
 | |
|     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
 | |
| 
 | |
|     // Do all but one copies using the full register width.
 | |
|     for (unsigned i = 1; i < NumRegs; i++) {
 | |
|       // Load one integer register's worth from the original location.
 | |
|       SDValue Load = DAG.getLoad(
 | |
|           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
 | |
|           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
 | |
|           LD->getAAInfo());
 | |
|       // Follow the load with a store to the stack slot.  Remember the store.
 | |
|       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
 | |
|                                     MachinePointerInfo()));
 | |
|       // Increment the pointers.
 | |
|       Offset += RegBytes;
 | |
|       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
 | |
|       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr,
 | |
|                              StackPtrIncrement);
 | |
|     }
 | |
| 
 | |
|     // The last copy may be partial.  Do an extending load.
 | |
|     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
 | |
|                                   8 * (LoadedBytes - Offset));
 | |
|     SDValue Load =
 | |
|         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
 | |
|                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
 | |
|                        MinAlign(LD->getAlignment(), Offset),
 | |
|                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
 | |
|     // Follow the load with a store to the stack slot.  Remember the store.
 | |
|     // On big-endian machines this requires a truncating store to ensure
 | |
|     // that the bits end up in the right place.
 | |
|     Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
 | |
|                                        MachinePointerInfo(), MemVT));
 | |
| 
 | |
|     // The order of the stores doesn't matter - say it with a TokenFactor.
 | |
|     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
 | |
| 
 | |
|     // Finally, perform the original load only redirected to the stack slot.
 | |
|     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
 | |
|                           MachinePointerInfo(), LoadedVT);
 | |
| 
 | |
|     // Callers expect a MERGE_VALUES node.
 | |
|     return std::make_pair(Load, TF);
 | |
|   }
 | |
| 
 | |
|   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
 | |
|          "Unaligned load of unsupported type.");
 | |
| 
 | |
|   // Compute the new VT that is half the size of the old one.  This is an
 | |
|   // integer MVT.
 | |
|   unsigned NumBits = LoadedVT.getSizeInBits();
 | |
|   EVT NewLoadedVT;
 | |
|   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
 | |
|   NumBits >>= 1;
 | |
| 
 | |
|   unsigned Alignment = LD->getAlignment();
 | |
|   unsigned IncrementSize = NumBits / 8;
 | |
|   ISD::LoadExtType HiExtType = LD->getExtensionType();
 | |
| 
 | |
|   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
 | |
|   if (HiExtType == ISD::NON_EXTLOAD)
 | |
|     HiExtType = ISD::ZEXTLOAD;
 | |
| 
 | |
|   // Load the value in two parts
 | |
|   SDValue Lo, Hi;
 | |
|   if (DAG.getDataLayout().isLittleEndian()) {
 | |
|     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
 | |
|                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
 | |
|                         LD->getAAInfo());
 | |
|     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
 | |
|                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
 | |
|     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
 | |
|                         LD->getPointerInfo().getWithOffset(IncrementSize),
 | |
|                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
 | |
|                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
 | |
|   } else {
 | |
|     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
 | |
|                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
 | |
|                         LD->getAAInfo());
 | |
|     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
 | |
|                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
 | |
|     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
 | |
|                         LD->getPointerInfo().getWithOffset(IncrementSize),
 | |
|                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
 | |
|                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
 | |
|   }
 | |
| 
 | |
|   // aggregate the two parts
 | |
|   SDValue ShiftAmount =
 | |
|       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
 | |
|                                                     DAG.getDataLayout()));
 | |
|   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
 | |
|   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
 | |
| 
 | |
|   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
 | |
|                              Hi.getValue(1));
 | |
| 
 | |
|   return std::make_pair(Result, TF);
 | |
| }
 | |
| 
 | |
| SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
 | |
|          "unaligned indexed stores not implemented!");
 | |
|   SDValue Chain = ST->getChain();
 | |
|   SDValue Ptr = ST->getBasePtr();
 | |
|   SDValue Val = ST->getValue();
 | |
|   EVT VT = Val.getValueType();
 | |
|   int Alignment = ST->getAlignment();
 | |
| 
 | |
|   SDLoc dl(ST);
 | |
|   if (ST->getMemoryVT().isFloatingPoint() ||
 | |
|       ST->getMemoryVT().isVector()) {
 | |
|     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
 | |
|     if (isTypeLegal(intVT)) {
 | |
|       if (!isOperationLegalOrCustom(ISD::STORE, intVT)) {
 | |
|         // Scalarize the store and let the individual components be handled.
 | |
|         SDValue Result = scalarizeVectorStore(ST, DAG);
 | |
| 
 | |
|         return Result;
 | |
|       }
 | |
|       // Expand to a bitconvert of the value to the integer type of the
 | |
|       // same size, then a (misaligned) int store.
 | |
|       // FIXME: Does not handle truncating floating point stores!
 | |
|       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
 | |
|       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
 | |
|                             Alignment, ST->getMemOperand()->getFlags());
 | |
|       return Result;
 | |
|     }
 | |
|     // Do a (aligned) store to a stack slot, then copy from the stack slot
 | |
|     // to the final destination using (unaligned) integer loads and stores.
 | |
|     EVT StoredVT = ST->getMemoryVT();
 | |
|     MVT RegVT =
 | |
|       getRegisterType(*DAG.getContext(),
 | |
|                       EVT::getIntegerVT(*DAG.getContext(),
 | |
|                                         StoredVT.getSizeInBits()));
 | |
|     EVT PtrVT = Ptr.getValueType();
 | |
|     unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
 | |
|     unsigned RegBytes = RegVT.getSizeInBits() / 8;
 | |
|     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
 | |
| 
 | |
|     // Make sure the stack slot is also aligned for the register type.
 | |
|     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
 | |
| 
 | |
|     // Perform the original store, only redirected to the stack slot.
 | |
|     SDValue Store = DAG.getTruncStore(Chain, dl, Val, StackPtr,
 | |
|                                       MachinePointerInfo(), StoredVT);
 | |
| 
 | |
|     EVT StackPtrVT = StackPtr.getValueType();
 | |
| 
 | |
|     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
 | |
|     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
 | |
|     SmallVector<SDValue, 8> Stores;
 | |
|     unsigned Offset = 0;
 | |
| 
 | |
|     // Do all but one copies using the full register width.
 | |
|     for (unsigned i = 1; i < NumRegs; i++) {
 | |
|       // Load one integer register's worth from the stack slot.
 | |
|       SDValue Load =
 | |
|           DAG.getLoad(RegVT, dl, Store, StackPtr, MachinePointerInfo());
 | |
|       // Store it to the final location.  Remember the store.
 | |
|       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
 | |
|                                     ST->getPointerInfo().getWithOffset(Offset),
 | |
|                                     MinAlign(ST->getAlignment(), Offset),
 | |
|                                     ST->getMemOperand()->getFlags()));
 | |
|       // Increment the pointers.
 | |
|       Offset += RegBytes;
 | |
|       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT,
 | |
|                              StackPtr, StackPtrIncrement);
 | |
|       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
 | |
|     }
 | |
| 
 | |
|     // The last store may be partial.  Do a truncating store.  On big-endian
 | |
|     // machines this requires an extending load from the stack slot to ensure
 | |
|     // that the bits are in the right place.
 | |
|     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
 | |
|                                   8 * (StoredBytes - Offset));
 | |
| 
 | |
|     // Load from the stack slot.
 | |
|     SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
 | |
|                                   MachinePointerInfo(), MemVT);
 | |
| 
 | |
|     Stores.push_back(
 | |
|         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
 | |
|                           ST->getPointerInfo().getWithOffset(Offset), MemVT,
 | |
|                           MinAlign(ST->getAlignment(), Offset),
 | |
|                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
 | |
|     // The order of the stores doesn't matter - say it with a TokenFactor.
 | |
|     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   assert(ST->getMemoryVT().isInteger() &&
 | |
|          !ST->getMemoryVT().isVector() &&
 | |
|          "Unaligned store of unknown type.");
 | |
|   // Get the half-size VT
 | |
|   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
 | |
|   int NumBits = NewStoredVT.getSizeInBits();
 | |
|   int IncrementSize = NumBits / 8;
 | |
| 
 | |
|   // Divide the stored value in two parts.
 | |
|   SDValue ShiftAmount =
 | |
|       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
 | |
|                                                     DAG.getDataLayout()));
 | |
|   SDValue Lo = Val;
 | |
|   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
 | |
| 
 | |
|   // Store the two parts
 | |
|   SDValue Store1, Store2;
 | |
|   Store1 = DAG.getTruncStore(Chain, dl,
 | |
|                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
 | |
|                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
 | |
|                              ST->getMemOperand()->getFlags());
 | |
| 
 | |
|   EVT PtrVT = Ptr.getValueType();
 | |
|   Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
 | |
|                     DAG.getConstant(IncrementSize, dl, PtrVT));
 | |
|   Alignment = MinAlign(Alignment, IncrementSize);
 | |
|   Store2 = DAG.getTruncStore(
 | |
|       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
 | |
|       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
 | |
|       ST->getMemOperand()->getFlags(), ST->getAAInfo());
 | |
| 
 | |
|   SDValue Result =
 | |
|     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
 | |
|                                        const SDLoc &DL, EVT DataVT,
 | |
|                                        SelectionDAG &DAG,
 | |
|                                        bool IsCompressedMemory) const {
 | |
|   SDValue Increment;
 | |
|   EVT AddrVT = Addr.getValueType();
 | |
|   EVT MaskVT = Mask.getValueType();
 | |
|   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
 | |
|          "Incompatible types of Data and Mask");
 | |
|   if (IsCompressedMemory) {
 | |
|     // Incrementing the pointer according to number of '1's in the mask.
 | |
|     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
 | |
|     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
 | |
|     if (MaskIntVT.getSizeInBits() < 32) {
 | |
|       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
 | |
|       MaskIntVT = MVT::i32;
 | |
|     }
 | |
| 
 | |
|     // Count '1's with POPCNT.
 | |
|     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
 | |
|     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
 | |
|     // Scale is an element size in bytes.
 | |
|     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
 | |
|                                     AddrVT);
 | |
|     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
 | |
|   } else
 | |
|     Increment = DAG.getConstant(DataVT.getSizeInBits() / 8, DL, AddrVT);
 | |
| 
 | |
|   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
 | |
| }
 | |
| 
 | |
| static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
 | |
|                                        SDValue Idx,
 | |
|                                        EVT VecVT,
 | |
|                                        const SDLoc &dl) {
 | |
|   if (isa<ConstantSDNode>(Idx))
 | |
|     return Idx;
 | |
| 
 | |
|   EVT IdxVT = Idx.getValueType();
 | |
|   unsigned NElts = VecVT.getVectorNumElements();
 | |
|   if (isPowerOf2_32(NElts)) {
 | |
|     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
 | |
|                                      Log2_32(NElts));
 | |
|     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
 | |
|                        DAG.getConstant(Imm, dl, IdxVT));
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
 | |
|                      DAG.getConstant(NElts - 1, dl, IdxVT));
 | |
| }
 | |
| 
 | |
| SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
 | |
|                                                 SDValue VecPtr, EVT VecVT,
 | |
|                                                 SDValue Index) const {
 | |
|   SDLoc dl(Index);
 | |
|   // Make sure the index type is big enough to compute in.
 | |
|   Index = DAG.getZExtOrTrunc(Index, dl, getPointerTy(DAG.getDataLayout()));
 | |
| 
 | |
|   EVT EltVT = VecVT.getVectorElementType();
 | |
| 
 | |
|   // Calculate the element offset and add it to the pointer.
 | |
|   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
 | |
|   assert(EltSize * 8 == EltVT.getSizeInBits() &&
 | |
|          "Converting bits to bytes lost precision");
 | |
| 
 | |
|   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
 | |
| 
 | |
|   EVT IdxVT = Index.getValueType();
 | |
| 
 | |
|   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
 | |
|                       DAG.getConstant(EltSize, dl, IdxVT));
 | |
|   return DAG.getNode(ISD::ADD, dl, IdxVT, Index, VecPtr);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Implementation of Emulated TLS Model
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   // Access to address of TLS varialbe xyz is lowered to a function call:
 | |
|   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
 | |
|   SDLoc dl(GA);
 | |
| 
 | |
|   ArgListTy Args;
 | |
|   ArgListEntry Entry;
 | |
|   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
 | |
|   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
 | |
|   StringRef EmuTlsVarName(NameString);
 | |
|   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
 | |
|   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
 | |
|   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
 | |
|   Entry.Ty = VoidPtrType;
 | |
|   Args.push_back(Entry);
 | |
| 
 | |
|   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
 | |
| 
 | |
|   TargetLowering::CallLoweringInfo CLI(DAG);
 | |
|   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
 | |
|   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
 | |
|   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
 | |
| 
 | |
|   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
 | |
|   // At last for X86 targets, maybe good for other targets too?
 | |
|   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|   MFI.setAdjustsStack(true);  // Is this only for X86 target?
 | |
|   MFI.setHasCalls(true);
 | |
| 
 | |
|   assert((GA->getOffset() == 0) &&
 | |
|          "Emulated TLS must have zero offset in GlobalAddressSDNode");
 | |
|   return CallResult.first;
 | |
| }
 | |
| 
 | |
| SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
 | |
|   if (!isCtlzFast())
 | |
|     return SDValue();
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | |
|   SDLoc dl(Op);
 | |
|   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|     if (C->isNullValue() && CC == ISD::SETEQ) {
 | |
|       EVT VT = Op.getOperand(0).getValueType();
 | |
|       SDValue Zext = Op.getOperand(0);
 | |
|       if (VT.bitsLT(MVT::i32)) {
 | |
|         VT = MVT::i32;
 | |
|         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
 | |
|       }
 | |
|       unsigned Log2b = Log2_32(VT.getSizeInBits());
 | |
|       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
 | |
|       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
 | |
|                                 DAG.getConstant(Log2b, dl, MVT::i32));
 | |
|       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
 | |
|     }
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 |