forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			304 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			304 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- UDTLayout.cpp ------------------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/DebugInfo/PDB/UDTLayout.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/DebugInfo/PDB/IPDBRawSymbol.h"
 | |
| #include "llvm/DebugInfo/PDB/IPDBSession.h"
 | |
| #include "llvm/DebugInfo/PDB/PDBSymbol.h"
 | |
| #include "llvm/DebugInfo/PDB/PDBSymbolData.h"
 | |
| #include "llvm/DebugInfo/PDB/PDBSymbolFunc.h"
 | |
| #include "llvm/DebugInfo/PDB/PDBSymbolTypeBaseClass.h"
 | |
| #include "llvm/DebugInfo/PDB/PDBSymbolTypeBuiltin.h"
 | |
| #include "llvm/DebugInfo/PDB/PDBSymbolTypePointer.h"
 | |
| #include "llvm/DebugInfo/PDB/PDBSymbolTypeUDT.h"
 | |
| #include "llvm/DebugInfo/PDB/PDBSymbolTypeVTable.h"
 | |
| #include "llvm/DebugInfo/PDB/PDBTypes.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <memory>
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace llvm::pdb;
 | |
| 
 | |
| static std::unique_ptr<PDBSymbol> getSymbolType(const PDBSymbol &Symbol) {
 | |
|   const IPDBSession &Session = Symbol.getSession();
 | |
|   const IPDBRawSymbol &RawSymbol = Symbol.getRawSymbol();
 | |
|   uint32_t TypeId = RawSymbol.getTypeId();
 | |
|   return Session.getSymbolById(TypeId);
 | |
| }
 | |
| 
 | |
| static uint32_t getTypeLength(const PDBSymbol &Symbol) {
 | |
|   auto SymbolType = getSymbolType(Symbol);
 | |
|   const IPDBRawSymbol &RawType = SymbolType->getRawSymbol();
 | |
| 
 | |
|   return RawType.getLength();
 | |
| }
 | |
| 
 | |
| LayoutItemBase::LayoutItemBase(const UDTLayoutBase *Parent,
 | |
|                                const PDBSymbol *Symbol, const std::string &Name,
 | |
|                                uint32_t OffsetInParent, uint32_t Size,
 | |
|                                bool IsElided)
 | |
|     : Symbol(Symbol), Parent(Parent), Name(Name),
 | |
|       OffsetInParent(OffsetInParent), SizeOf(Size), LayoutSize(Size),
 | |
|       IsElided(IsElided) {
 | |
|   UsedBytes.resize(SizeOf, true);
 | |
| }
 | |
| 
 | |
| uint32_t LayoutItemBase::deepPaddingSize() const {
 | |
|   return UsedBytes.size() - UsedBytes.count();
 | |
| }
 | |
| 
 | |
| uint32_t LayoutItemBase::tailPadding() const {
 | |
|   int Last = UsedBytes.find_last();
 | |
| 
 | |
|   return UsedBytes.size() - (Last + 1);
 | |
| }
 | |
| 
 | |
| DataMemberLayoutItem::DataMemberLayoutItem(
 | |
|     const UDTLayoutBase &Parent, std::unique_ptr<PDBSymbolData> Member)
 | |
|     : LayoutItemBase(&Parent, Member.get(), Member->getName(),
 | |
|                      Member->getOffset(), getTypeLength(*Member), false),
 | |
|       DataMember(std::move(Member)) {
 | |
|   auto Type = DataMember->getType();
 | |
|   if (auto UDT = unique_dyn_cast<PDBSymbolTypeUDT>(Type)) {
 | |
|     UdtLayout = llvm::make_unique<ClassLayout>(std::move(UDT));
 | |
|     UsedBytes = UdtLayout->usedBytes();
 | |
|   }
 | |
| }
 | |
| 
 | |
| VBPtrLayoutItem::VBPtrLayoutItem(const UDTLayoutBase &Parent,
 | |
|                                  std::unique_ptr<PDBSymbolTypeBuiltin> Sym,
 | |
|                                  uint32_t Offset, uint32_t Size)
 | |
|     : LayoutItemBase(&Parent, Sym.get(), "<vbptr>", Offset, Size, false),
 | |
|       Type(std::move(Sym)) {
 | |
| }
 | |
| 
 | |
| const PDBSymbolData &DataMemberLayoutItem::getDataMember() {
 | |
|   return *dyn_cast<PDBSymbolData>(Symbol);
 | |
| }
 | |
| 
 | |
| bool DataMemberLayoutItem::hasUDTLayout() const { return UdtLayout != nullptr; }
 | |
| 
 | |
| const ClassLayout &DataMemberLayoutItem::getUDTLayout() const {
 | |
|   return *UdtLayout;
 | |
| }
 | |
| 
 | |
| VTableLayoutItem::VTableLayoutItem(const UDTLayoutBase &Parent,
 | |
|                                    std::unique_ptr<PDBSymbolTypeVTable> VT)
 | |
|     : LayoutItemBase(&Parent, VT.get(), "<vtbl>", 0, getTypeLength(*VT), false),
 | |
|       VTable(std::move(VT)) {
 | |
|   auto VTableType = cast<PDBSymbolTypePointer>(VTable->getType());
 | |
|   ElementSize = VTableType->getLength();
 | |
| }
 | |
| 
 | |
| UDTLayoutBase::UDTLayoutBase(const UDTLayoutBase *Parent, const PDBSymbol &Sym,
 | |
|                              const std::string &Name, uint32_t OffsetInParent,
 | |
|                              uint32_t Size, bool IsElided)
 | |
|     : LayoutItemBase(Parent, &Sym, Name, OffsetInParent, Size, IsElided) {
 | |
|   // UDT storage comes from a union of all the children's storage, so start out
 | |
|   // uninitialized.
 | |
|   UsedBytes.reset(0, Size);
 | |
| 
 | |
|   initializeChildren(Sym);
 | |
|   if (LayoutSize < Size)
 | |
|     UsedBytes.resize(LayoutSize);
 | |
| }
 | |
| 
 | |
| uint32_t UDTLayoutBase::tailPadding() const {
 | |
|   uint32_t Abs = LayoutItemBase::tailPadding();
 | |
|   if (!LayoutItems.empty()) {
 | |
|     const LayoutItemBase *Back = LayoutItems.back();
 | |
|     uint32_t ChildPadding = Back->LayoutItemBase::tailPadding();
 | |
|     if (Abs < ChildPadding)
 | |
|       Abs = 0;
 | |
|     else
 | |
|       Abs -= ChildPadding;
 | |
|   }
 | |
|   return Abs;
 | |
| }
 | |
| 
 | |
| ClassLayout::ClassLayout(const PDBSymbolTypeUDT &UDT)
 | |
|     : UDTLayoutBase(nullptr, UDT, UDT.getName(), 0, UDT.getLength(), false),
 | |
|       UDT(UDT) {
 | |
|   ImmediateUsedBytes.resize(SizeOf, false);
 | |
|   for (auto &LI : LayoutItems) {
 | |
|     uint32_t Begin = LI->getOffsetInParent();
 | |
|     uint32_t End = Begin + LI->getLayoutSize();
 | |
|     End = std::min(SizeOf, End);
 | |
|     ImmediateUsedBytes.set(Begin, End);
 | |
|   }
 | |
| }
 | |
| 
 | |
| ClassLayout::ClassLayout(std::unique_ptr<PDBSymbolTypeUDT> UDT)
 | |
|     : ClassLayout(*UDT) {
 | |
|   OwnedStorage = std::move(UDT);
 | |
| }
 | |
| 
 | |
| uint32_t ClassLayout::immediatePadding() const {
 | |
|   return SizeOf - ImmediateUsedBytes.count();
 | |
| }
 | |
| 
 | |
| BaseClassLayout::BaseClassLayout(const UDTLayoutBase &Parent,
 | |
|                                  uint32_t OffsetInParent, bool Elide,
 | |
|                                  std::unique_ptr<PDBSymbolTypeBaseClass> B)
 | |
|     : UDTLayoutBase(&Parent, *B, B->getName(), OffsetInParent, B->getLength(),
 | |
|                     Elide),
 | |
|       Base(std::move(B)) {
 | |
|   if (isEmptyBase()) {
 | |
|     // Special case an empty base so that it doesn't get treated as padding.
 | |
|     UsedBytes.resize(1);
 | |
|     UsedBytes.set(0);
 | |
|   }
 | |
|   IsVirtualBase = Base->isVirtualBaseClass();
 | |
| }
 | |
| 
 | |
| void UDTLayoutBase::initializeChildren(const PDBSymbol &Sym) {
 | |
|   // Handled bases first, followed by VTables, followed by data members,
 | |
|   // followed by functions, followed by other.  This ordering is necessary
 | |
|   // so that bases and vtables get initialized before any functions which
 | |
|   // may override them.
 | |
|   UniquePtrVector<PDBSymbolTypeBaseClass> Bases;
 | |
|   UniquePtrVector<PDBSymbolTypeVTable> VTables;
 | |
|   UniquePtrVector<PDBSymbolData> Members;
 | |
|   UniquePtrVector<PDBSymbolTypeBaseClass> VirtualBaseSyms;
 | |
| 
 | |
|   auto Children = Sym.findAllChildren();
 | |
|   while (auto Child = Children->getNext()) {
 | |
|     if (auto Base = unique_dyn_cast<PDBSymbolTypeBaseClass>(Child)) {
 | |
|       if (Base->isVirtualBaseClass())
 | |
|         VirtualBaseSyms.push_back(std::move(Base));
 | |
|       else
 | |
|         Bases.push_back(std::move(Base));
 | |
|     }
 | |
|     else if (auto Data = unique_dyn_cast<PDBSymbolData>(Child)) {
 | |
|       if (Data->getDataKind() == PDB_DataKind::Member)
 | |
|         Members.push_back(std::move(Data));
 | |
|       else
 | |
|         Other.push_back(std::move(Data));
 | |
|     } else if (auto VT = unique_dyn_cast<PDBSymbolTypeVTable>(Child))
 | |
|       VTables.push_back(std::move(VT));
 | |
|     else if (auto Func = unique_dyn_cast<PDBSymbolFunc>(Child))
 | |
|       Funcs.push_back(std::move(Func));
 | |
|     else {
 | |
|       Other.push_back(std::move(Child));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We don't want to have any re-allocations in the list of bases, so make
 | |
|   // sure to reserve enough space so that our ArrayRefs don't get invalidated.
 | |
|   AllBases.reserve(Bases.size() + VirtualBaseSyms.size());
 | |
| 
 | |
|   // Only add non-virtual bases to the class first.  Only at the end of the
 | |
|   // class, after all non-virtual bases and data members have been added do we
 | |
|   // add virtual bases.  This way the offsets are correctly aligned when we go
 | |
|   // to lay out virtual bases.
 | |
|   for (auto &Base : Bases) {
 | |
|     uint32_t Offset = Base->getOffset();
 | |
|     // Non-virtual bases never get elided.
 | |
|     auto BL = llvm::make_unique<BaseClassLayout>(*this, Offset, false,
 | |
|                                                  std::move(Base));
 | |
| 
 | |
|     AllBases.push_back(BL.get());
 | |
|     addChildToLayout(std::move(BL));
 | |
|   }
 | |
|   NonVirtualBases = AllBases;
 | |
| 
 | |
|   assert(VTables.size() <= 1);
 | |
|   if (!VTables.empty()) {
 | |
|     auto VTLayout =
 | |
|         llvm::make_unique<VTableLayoutItem>(*this, std::move(VTables[0]));
 | |
| 
 | |
|     VTable = VTLayout.get();
 | |
| 
 | |
|     addChildToLayout(std::move(VTLayout));
 | |
|   }
 | |
| 
 | |
|   for (auto &Data : Members) {
 | |
|     auto DM = llvm::make_unique<DataMemberLayoutItem>(*this, std::move(Data));
 | |
| 
 | |
|     addChildToLayout(std::move(DM));
 | |
|   }
 | |
| 
 | |
|   // Make sure add virtual bases before adding functions, since functions may be
 | |
|   // overrides of virtual functions declared in a virtual base, so the VTables
 | |
|   // and virtual intros need to be correctly initialized.
 | |
|   for (auto &VB : VirtualBaseSyms) {
 | |
|     int VBPO = VB->getVirtualBasePointerOffset();
 | |
|     if (!hasVBPtrAtOffset(VBPO)) {
 | |
|       if (auto VBP = VB->getRawSymbol().getVirtualBaseTableType()) {
 | |
|         auto VBPL = llvm::make_unique<VBPtrLayoutItem>(*this, std::move(VBP),
 | |
|                                                        VBPO, VBP->getLength());
 | |
|         VBPtr = VBPL.get();
 | |
|         addChildToLayout(std::move(VBPL));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Virtual bases always go at the end.  So just look for the last place we
 | |
|     // ended when writing something, and put our virtual base there.
 | |
|     // Note that virtual bases get elided unless this is a top-most derived
 | |
|     // class.
 | |
|     uint32_t Offset = UsedBytes.find_last() + 1;
 | |
|     bool Elide = (Parent != nullptr);
 | |
|     auto BL =
 | |
|         llvm::make_unique<BaseClassLayout>(*this, Offset, Elide, std::move(VB));
 | |
|     AllBases.push_back(BL.get());
 | |
| 
 | |
|     // Only lay this virtual base out directly inside of *this* class if this
 | |
|     // is a top-most derived class.  Keep track of it regardless, but only
 | |
|     // physically lay it out if it's a topmost derived class.
 | |
|     addChildToLayout(std::move(BL));
 | |
|   }
 | |
|   VirtualBases = makeArrayRef(AllBases).drop_front(NonVirtualBases.size());
 | |
| 
 | |
|   if (Parent != nullptr)
 | |
|     LayoutSize = UsedBytes.find_last() + 1;
 | |
| }
 | |
| 
 | |
| bool UDTLayoutBase::hasVBPtrAtOffset(uint32_t Off) const {
 | |
|   if (VBPtr && VBPtr->getOffsetInParent() == Off)
 | |
|     return true;
 | |
|   for (BaseClassLayout *BL : AllBases) {
 | |
|     if (BL->hasVBPtrAtOffset(Off - BL->getOffsetInParent()))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void UDTLayoutBase::addChildToLayout(std::unique_ptr<LayoutItemBase> Child) {
 | |
|   uint32_t Begin = Child->getOffsetInParent();
 | |
| 
 | |
|   if (!Child->isElided()) {
 | |
|     BitVector ChildBytes = Child->usedBytes();
 | |
| 
 | |
|     // Suppose the child occupies 4 bytes starting at offset 12 in a 32 byte
 | |
|     // class.  When we call ChildBytes.resize(32), the Child's storage will
 | |
|     // still begin at offset 0, so we need to shift it left by offset bytes
 | |
|     // to get it into the right position.
 | |
|     ChildBytes.resize(UsedBytes.size());
 | |
|     ChildBytes <<= Child->getOffsetInParent();
 | |
|     UsedBytes |= ChildBytes;
 | |
| 
 | |
|     if (ChildBytes.count() > 0) {
 | |
|       auto Loc = std::upper_bound(LayoutItems.begin(), LayoutItems.end(), Begin,
 | |
|                                   [](uint32_t Off, const LayoutItemBase *Item) {
 | |
|                                     return (Off < Item->getOffsetInParent());
 | |
|                                   });
 | |
| 
 | |
|       LayoutItems.insert(Loc, Child.get());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ChildStorage.push_back(std::move(Child));
 | |
| }
 |