forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1199 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1199 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Implementation of the MC-JIT runtime dynamic linker.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ExecutionEngine/RuntimeDyld.h"
 | |
| #include "RuntimeDyldCOFF.h"
 | |
| #include "RuntimeDyldCheckerImpl.h"
 | |
| #include "RuntimeDyldELF.h"
 | |
| #include "RuntimeDyldImpl.h"
 | |
| #include "RuntimeDyldMachO.h"
 | |
| #include "llvm/Object/COFF.h"
 | |
| #include "llvm/Object/ELFObjectFile.h"
 | |
| #include "llvm/Support/ManagedStatic.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/MutexGuard.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace llvm::object;
 | |
| 
 | |
| #define DEBUG_TYPE "dyld"
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| enum RuntimeDyldErrorCode {
 | |
|   GenericRTDyldError = 1
 | |
| };
 | |
| 
 | |
| // FIXME: This class is only here to support the transition to llvm::Error. It
 | |
| // will be removed once this transition is complete. Clients should prefer to
 | |
| // deal with the Error value directly, rather than converting to error_code.
 | |
| class RuntimeDyldErrorCategory : public std::error_category {
 | |
| public:
 | |
|   const char *name() const noexcept override { return "runtimedyld"; }
 | |
| 
 | |
|   std::string message(int Condition) const override {
 | |
|     switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
 | |
|       case GenericRTDyldError: return "Generic RuntimeDyld error";
 | |
|     }
 | |
|     llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
 | |
|   }
 | |
| };
 | |
| 
 | |
| static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
 | |
| 
 | |
| }
 | |
| 
 | |
| char RuntimeDyldError::ID = 0;
 | |
| 
 | |
| void RuntimeDyldError::log(raw_ostream &OS) const {
 | |
|   OS << ErrMsg << "\n";
 | |
| }
 | |
| 
 | |
| std::error_code RuntimeDyldError::convertToErrorCode() const {
 | |
|   return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
 | |
| }
 | |
| 
 | |
| // Empty out-of-line virtual destructor as the key function.
 | |
| RuntimeDyldImpl::~RuntimeDyldImpl() {}
 | |
| 
 | |
| // Pin LoadedObjectInfo's vtables to this file.
 | |
| void RuntimeDyld::LoadedObjectInfo::anchor() {}
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| void RuntimeDyldImpl::registerEHFrames() {}
 | |
| 
 | |
| void RuntimeDyldImpl::deregisterEHFrames() {
 | |
|   MemMgr.deregisterEHFrames();
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
 | |
|   dbgs() << "----- Contents of section " << S.getName() << " " << State
 | |
|          << " -----";
 | |
| 
 | |
|   if (S.getAddress() == nullptr) {
 | |
|     dbgs() << "\n          <section not emitted>\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const unsigned ColsPerRow = 16;
 | |
| 
 | |
|   uint8_t *DataAddr = S.getAddress();
 | |
|   uint64_t LoadAddr = S.getLoadAddress();
 | |
| 
 | |
|   unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
 | |
|   unsigned BytesRemaining = S.getSize();
 | |
| 
 | |
|   if (StartPadding) {
 | |
|     dbgs() << "\n" << format("0x%016" PRIx64,
 | |
|                              LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
 | |
|     while (StartPadding--)
 | |
|       dbgs() << "   ";
 | |
|   }
 | |
| 
 | |
|   while (BytesRemaining > 0) {
 | |
|     if ((LoadAddr & (ColsPerRow - 1)) == 0)
 | |
|       dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
 | |
| 
 | |
|     dbgs() << " " << format("%02x", *DataAddr);
 | |
| 
 | |
|     ++DataAddr;
 | |
|     ++LoadAddr;
 | |
|     --BytesRemaining;
 | |
|   }
 | |
| 
 | |
|   dbgs() << "\n";
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // Resolve the relocations for all symbols we currently know about.
 | |
| void RuntimeDyldImpl::resolveRelocations() {
 | |
|   MutexGuard locked(lock);
 | |
| 
 | |
|   // Print out the sections prior to relocation.
 | |
|   DEBUG(
 | |
|     for (int i = 0, e = Sections.size(); i != e; ++i)
 | |
|       dumpSectionMemory(Sections[i], "before relocations");
 | |
|   );
 | |
| 
 | |
|   // First, resolve relocations associated with external symbols.
 | |
|   if (auto Err = resolveExternalSymbols()) {
 | |
|     HasError = true;
 | |
|     ErrorStr = toString(std::move(Err));
 | |
|   }
 | |
| 
 | |
|   // Iterate over all outstanding relocations
 | |
|   for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
 | |
|     // The Section here (Sections[i]) refers to the section in which the
 | |
|     // symbol for the relocation is located.  The SectionID in the relocation
 | |
|     // entry provides the section to which the relocation will be applied.
 | |
|     int Idx = it->first;
 | |
|     uint64_t Addr = Sections[Idx].getLoadAddress();
 | |
|     DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
 | |
|                  << format("%p", (uintptr_t)Addr) << "\n");
 | |
|     resolveRelocationList(it->second, Addr);
 | |
|   }
 | |
|   Relocations.clear();
 | |
| 
 | |
|   // Print out sections after relocation.
 | |
|   DEBUG(
 | |
|     for (int i = 0, e = Sections.size(); i != e; ++i)
 | |
|       dumpSectionMemory(Sections[i], "after relocations");
 | |
|   );
 | |
| 
 | |
| }
 | |
| 
 | |
| void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
 | |
|                                         uint64_t TargetAddress) {
 | |
|   MutexGuard locked(lock);
 | |
|   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
 | |
|     if (Sections[i].getAddress() == LocalAddress) {
 | |
|       reassignSectionAddress(i, TargetAddress);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   llvm_unreachable("Attempting to remap address of unknown section!");
 | |
| }
 | |
| 
 | |
| static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
 | |
|                        uint64_t &Result) {
 | |
|   Expected<uint64_t> AddressOrErr = Sym.getAddress();
 | |
|   if (!AddressOrErr)
 | |
|     return AddressOrErr.takeError();
 | |
|   Result = *AddressOrErr - Sec.getAddress();
 | |
|   return Error::success();
 | |
| }
 | |
| 
 | |
| Expected<RuntimeDyldImpl::ObjSectionToIDMap>
 | |
| RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
 | |
|   MutexGuard locked(lock);
 | |
| 
 | |
|   // Save information about our target
 | |
|   Arch = (Triple::ArchType)Obj.getArch();
 | |
|   IsTargetLittleEndian = Obj.isLittleEndian();
 | |
|   setMipsABI(Obj);
 | |
| 
 | |
|   // Compute the memory size required to load all sections to be loaded
 | |
|   // and pass this information to the memory manager
 | |
|   if (MemMgr.needsToReserveAllocationSpace()) {
 | |
|     uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
 | |
|     uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
 | |
|     if (auto Err = computeTotalAllocSize(Obj,
 | |
|                                          CodeSize, CodeAlign,
 | |
|                                          RODataSize, RODataAlign,
 | |
|                                          RWDataSize, RWDataAlign))
 | |
|       return std::move(Err);
 | |
|     MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
 | |
|                                   RWDataSize, RWDataAlign);
 | |
|   }
 | |
| 
 | |
|   // Used sections from the object file
 | |
|   ObjSectionToIDMap LocalSections;
 | |
| 
 | |
|   // Common symbols requiring allocation, with their sizes and alignments
 | |
|   CommonSymbolList CommonSymbols;
 | |
| 
 | |
|   // Parse symbols
 | |
|   DEBUG(dbgs() << "Parse symbols:\n");
 | |
|   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
 | |
|        ++I) {
 | |
|     uint32_t Flags = I->getFlags();
 | |
| 
 | |
|     // Skip undefined symbols.
 | |
|     if (Flags & SymbolRef::SF_Undefined)
 | |
|       continue;
 | |
| 
 | |
|     if (Flags & SymbolRef::SF_Common)
 | |
|       CommonSymbols.push_back(*I);
 | |
|     else {
 | |
| 
 | |
|       // Get the symbol type.
 | |
|       object::SymbolRef::Type SymType;
 | |
|       if (auto SymTypeOrErr = I->getType())
 | |
|         SymType =  *SymTypeOrErr;
 | |
|       else
 | |
|         return SymTypeOrErr.takeError();
 | |
| 
 | |
|       // Get symbol name.
 | |
|       StringRef Name;
 | |
|       if (auto NameOrErr = I->getName())
 | |
|         Name = *NameOrErr;
 | |
|       else
 | |
|         return NameOrErr.takeError();
 | |
| 
 | |
|       // Compute JIT symbol flags.
 | |
|       JITSymbolFlags JITSymFlags = getJITSymbolFlags(*I);
 | |
| 
 | |
|       // If this is a weak definition, check to see if there's a strong one.
 | |
|       // If there is, skip this symbol (we won't be providing it: the strong
 | |
|       // definition will). If there's no strong definition, make this definition
 | |
|       // strong.
 | |
|       if (JITSymFlags.isWeak()) {
 | |
|         // First check whether there's already a definition in this instance.
 | |
|         // FIXME: Override existing weak definitions with strong ones.
 | |
|         if (GlobalSymbolTable.count(Name))
 | |
|           continue;
 | |
|         // Then check the symbol resolver to see if there's a definition
 | |
|         // elsewhere in this logical dylib.
 | |
|         if (auto Sym = Resolver.findSymbolInLogicalDylib(Name)) {
 | |
|           if (Sym.getFlags().isStrongDefinition())
 | |
|             continue;
 | |
|         } else if (auto Err = Sym.takeError())
 | |
|           return std::move(Err);
 | |
|         // else
 | |
|         JITSymFlags &= ~JITSymbolFlags::Weak;
 | |
|       }
 | |
| 
 | |
|       if (Flags & SymbolRef::SF_Absolute &&
 | |
|           SymType != object::SymbolRef::ST_File) {
 | |
|         uint64_t Addr = 0;
 | |
|         if (auto AddrOrErr = I->getAddress())
 | |
|           Addr = *AddrOrErr;
 | |
|         else
 | |
|           return AddrOrErr.takeError();
 | |
| 
 | |
|         unsigned SectionID = AbsoluteSymbolSection;
 | |
| 
 | |
|         DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
 | |
|                      << " SID: " << SectionID << " Offset: "
 | |
|                      << format("%p", (uintptr_t)Addr)
 | |
|                      << " flags: " << Flags << "\n");
 | |
|         GlobalSymbolTable[Name] =
 | |
|           SymbolTableEntry(SectionID, Addr, JITSymFlags);
 | |
|       } else if (SymType == object::SymbolRef::ST_Function ||
 | |
|                  SymType == object::SymbolRef::ST_Data ||
 | |
|                  SymType == object::SymbolRef::ST_Unknown ||
 | |
|                  SymType == object::SymbolRef::ST_Other) {
 | |
| 
 | |
|         section_iterator SI = Obj.section_end();
 | |
|         if (auto SIOrErr = I->getSection())
 | |
|           SI = *SIOrErr;
 | |
|         else
 | |
|           return SIOrErr.takeError();
 | |
| 
 | |
|         if (SI == Obj.section_end())
 | |
|           continue;
 | |
| 
 | |
|         // Get symbol offset.
 | |
|         uint64_t SectOffset;
 | |
|         if (auto Err = getOffset(*I, *SI, SectOffset))
 | |
|           return std::move(Err);
 | |
| 
 | |
|         bool IsCode = SI->isText();
 | |
|         unsigned SectionID;
 | |
|         if (auto SectionIDOrErr = findOrEmitSection(Obj, *SI, IsCode,
 | |
|                                                     LocalSections))
 | |
|           SectionID = *SectionIDOrErr;
 | |
|         else
 | |
|           return SectionIDOrErr.takeError();
 | |
| 
 | |
|         DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
 | |
|                      << " SID: " << SectionID << " Offset: "
 | |
|                      << format("%p", (uintptr_t)SectOffset)
 | |
|                      << " flags: " << Flags << "\n");
 | |
|         GlobalSymbolTable[Name] =
 | |
|           SymbolTableEntry(SectionID, SectOffset, JITSymFlags);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Allocate common symbols
 | |
|   if (auto Err = emitCommonSymbols(Obj, CommonSymbols))
 | |
|     return std::move(Err);
 | |
| 
 | |
|   // Parse and process relocations
 | |
|   DEBUG(dbgs() << "Parse relocations:\n");
 | |
|   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
 | |
|        SI != SE; ++SI) {
 | |
|     StubMap Stubs;
 | |
|     section_iterator RelocatedSection = SI->getRelocatedSection();
 | |
| 
 | |
|     if (RelocatedSection == SE)
 | |
|       continue;
 | |
| 
 | |
|     relocation_iterator I = SI->relocation_begin();
 | |
|     relocation_iterator E = SI->relocation_end();
 | |
| 
 | |
|     if (I == E && !ProcessAllSections)
 | |
|       continue;
 | |
| 
 | |
|     bool IsCode = RelocatedSection->isText();
 | |
|     unsigned SectionID = 0;
 | |
|     if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
 | |
|                                                 LocalSections))
 | |
|       SectionID = *SectionIDOrErr;
 | |
|     else
 | |
|       return SectionIDOrErr.takeError();
 | |
| 
 | |
|     DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
 | |
| 
 | |
|     for (; I != E;)
 | |
|       if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
 | |
|         I = *IOrErr;
 | |
|       else
 | |
|         return IOrErr.takeError();
 | |
| 
 | |
|     // If there is an attached checker, notify it about the stubs for this
 | |
|     // section so that they can be verified.
 | |
|     if (Checker)
 | |
|       Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs);
 | |
|   }
 | |
| 
 | |
|   // Give the subclasses a chance to tie-up any loose ends.
 | |
|   if (auto Err = finalizeLoad(Obj, LocalSections))
 | |
|     return std::move(Err);
 | |
| 
 | |
| //   for (auto E : LocalSections)
 | |
| //     llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
 | |
| 
 | |
|   return LocalSections;
 | |
| }
 | |
| 
 | |
| // A helper method for computeTotalAllocSize.
 | |
| // Computes the memory size required to allocate sections with the given sizes,
 | |
| // assuming that all sections are allocated with the given alignment
 | |
| static uint64_t
 | |
| computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
 | |
|                                  uint64_t Alignment) {
 | |
|   uint64_t TotalSize = 0;
 | |
|   for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
 | |
|     uint64_t AlignedSize =
 | |
|         (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
 | |
|     TotalSize += AlignedSize;
 | |
|   }
 | |
|   return TotalSize;
 | |
| }
 | |
| 
 | |
| static bool isRequiredForExecution(const SectionRef Section) {
 | |
|   const ObjectFile *Obj = Section.getObject();
 | |
|   if (isa<object::ELFObjectFileBase>(Obj))
 | |
|     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
 | |
|   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
 | |
|     const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
 | |
|     // Avoid loading zero-sized COFF sections.
 | |
|     // In PE files, VirtualSize gives the section size, and SizeOfRawData
 | |
|     // may be zero for sections with content. In Obj files, SizeOfRawData
 | |
|     // gives the section size, and VirtualSize is always zero. Hence
 | |
|     // the need to check for both cases below.
 | |
|     bool HasContent =
 | |
|         (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
 | |
|     bool IsDiscardable =
 | |
|         CoffSection->Characteristics &
 | |
|         (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
 | |
|     return HasContent && !IsDiscardable;
 | |
|   }
 | |
| 
 | |
|   assert(isa<MachOObjectFile>(Obj));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isReadOnlyData(const SectionRef Section) {
 | |
|   const ObjectFile *Obj = Section.getObject();
 | |
|   if (isa<object::ELFObjectFileBase>(Obj))
 | |
|     return !(ELFSectionRef(Section).getFlags() &
 | |
|              (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
 | |
|   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
 | |
|     return ((COFFObj->getCOFFSection(Section)->Characteristics &
 | |
|              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
 | |
|              | COFF::IMAGE_SCN_MEM_READ
 | |
|              | COFF::IMAGE_SCN_MEM_WRITE))
 | |
|              ==
 | |
|              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
 | |
|              | COFF::IMAGE_SCN_MEM_READ));
 | |
| 
 | |
|   assert(isa<MachOObjectFile>(Obj));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isZeroInit(const SectionRef Section) {
 | |
|   const ObjectFile *Obj = Section.getObject();
 | |
|   if (isa<object::ELFObjectFileBase>(Obj))
 | |
|     return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
 | |
|   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
 | |
|     return COFFObj->getCOFFSection(Section)->Characteristics &
 | |
|             COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
 | |
| 
 | |
|   auto *MachO = cast<MachOObjectFile>(Obj);
 | |
|   unsigned SectionType = MachO->getSectionType(Section);
 | |
|   return SectionType == MachO::S_ZEROFILL ||
 | |
|          SectionType == MachO::S_GB_ZEROFILL;
 | |
| }
 | |
| 
 | |
| // Compute an upper bound of the memory size that is required to load all
 | |
| // sections
 | |
| Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
 | |
|                                              uint64_t &CodeSize,
 | |
|                                              uint32_t &CodeAlign,
 | |
|                                              uint64_t &RODataSize,
 | |
|                                              uint32_t &RODataAlign,
 | |
|                                              uint64_t &RWDataSize,
 | |
|                                              uint32_t &RWDataAlign) {
 | |
|   // Compute the size of all sections required for execution
 | |
|   std::vector<uint64_t> CodeSectionSizes;
 | |
|   std::vector<uint64_t> ROSectionSizes;
 | |
|   std::vector<uint64_t> RWSectionSizes;
 | |
| 
 | |
|   // Collect sizes of all sections to be loaded;
 | |
|   // also determine the max alignment of all sections
 | |
|   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
 | |
|        SI != SE; ++SI) {
 | |
|     const SectionRef &Section = *SI;
 | |
| 
 | |
|     bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
 | |
| 
 | |
|     // Consider only the sections that are required to be loaded for execution
 | |
|     if (IsRequired) {
 | |
|       uint64_t DataSize = Section.getSize();
 | |
|       uint64_t Alignment64 = Section.getAlignment();
 | |
|       unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
 | |
|       bool IsCode = Section.isText();
 | |
|       bool IsReadOnly = isReadOnlyData(Section);
 | |
| 
 | |
|       StringRef Name;
 | |
|       if (auto EC = Section.getName(Name))
 | |
|         return errorCodeToError(EC);
 | |
| 
 | |
|       uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
 | |
|       uint64_t SectionSize = DataSize + StubBufSize;
 | |
| 
 | |
|       // The .eh_frame section (at least on Linux) needs an extra four bytes
 | |
|       // padded
 | |
|       // with zeroes added at the end.  For MachO objects, this section has a
 | |
|       // slightly different name, so this won't have any effect for MachO
 | |
|       // objects.
 | |
|       if (Name == ".eh_frame")
 | |
|         SectionSize += 4;
 | |
| 
 | |
|       if (!SectionSize)
 | |
|         SectionSize = 1;
 | |
| 
 | |
|       if (IsCode) {
 | |
|         CodeAlign = std::max(CodeAlign, Alignment);
 | |
|         CodeSectionSizes.push_back(SectionSize);
 | |
|       } else if (IsReadOnly) {
 | |
|         RODataAlign = std::max(RODataAlign, Alignment);
 | |
|         ROSectionSizes.push_back(SectionSize);
 | |
|       } else {
 | |
|         RWDataAlign = std::max(RWDataAlign, Alignment);
 | |
|         RWSectionSizes.push_back(SectionSize);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Compute Global Offset Table size. If it is not zero we
 | |
|   // also update alignment, which is equal to a size of a
 | |
|   // single GOT entry.
 | |
|   if (unsigned GotSize = computeGOTSize(Obj)) {
 | |
|     RWSectionSizes.push_back(GotSize);
 | |
|     RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
 | |
|   }
 | |
| 
 | |
|   // Compute the size of all common symbols
 | |
|   uint64_t CommonSize = 0;
 | |
|   uint32_t CommonAlign = 1;
 | |
|   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
 | |
|        ++I) {
 | |
|     uint32_t Flags = I->getFlags();
 | |
|     if (Flags & SymbolRef::SF_Common) {
 | |
|       // Add the common symbols to a list.  We'll allocate them all below.
 | |
|       uint64_t Size = I->getCommonSize();
 | |
|       uint32_t Align = I->getAlignment();
 | |
|       // If this is the first common symbol, use its alignment as the alignment
 | |
|       // for the common symbols section.
 | |
|       if (CommonSize == 0)
 | |
|         CommonAlign = Align;
 | |
|       CommonSize = alignTo(CommonSize, Align) + Size;
 | |
|     }
 | |
|   }
 | |
|   if (CommonSize != 0) {
 | |
|     RWSectionSizes.push_back(CommonSize);
 | |
|     RWDataAlign = std::max(RWDataAlign, CommonAlign);
 | |
|   }
 | |
| 
 | |
|   // Compute the required allocation space for each different type of sections
 | |
|   // (code, read-only data, read-write data) assuming that all sections are
 | |
|   // allocated with the max alignment. Note that we cannot compute with the
 | |
|   // individual alignments of the sections, because then the required size
 | |
|   // depends on the order, in which the sections are allocated.
 | |
|   CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
 | |
|   RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
 | |
|   RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
 | |
| 
 | |
|   return Error::success();
 | |
| }
 | |
| 
 | |
| // compute GOT size
 | |
| unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
 | |
|   size_t GotEntrySize = getGOTEntrySize();
 | |
|   if (!GotEntrySize)
 | |
|     return 0;
 | |
| 
 | |
|   size_t GotSize = 0;
 | |
|   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
 | |
|        SI != SE; ++SI) {
 | |
| 
 | |
|     for (const RelocationRef &Reloc : SI->relocations())
 | |
|       if (relocationNeedsGot(Reloc))
 | |
|         GotSize += GotEntrySize;
 | |
|   }
 | |
| 
 | |
|   return GotSize;
 | |
| }
 | |
| 
 | |
| // compute stub buffer size for the given section
 | |
| unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
 | |
|                                                     const SectionRef &Section) {
 | |
|   unsigned StubSize = getMaxStubSize();
 | |
|   if (StubSize == 0) {
 | |
|     return 0;
 | |
|   }
 | |
|   // FIXME: this is an inefficient way to handle this. We should computed the
 | |
|   // necessary section allocation size in loadObject by walking all the sections
 | |
|   // once.
 | |
|   unsigned StubBufSize = 0;
 | |
|   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
 | |
|        SI != SE; ++SI) {
 | |
|     section_iterator RelSecI = SI->getRelocatedSection();
 | |
|     if (!(RelSecI == Section))
 | |
|       continue;
 | |
| 
 | |
|     for (const RelocationRef &Reloc : SI->relocations())
 | |
|       if (relocationNeedsStub(Reloc))
 | |
|         StubBufSize += StubSize;
 | |
|   }
 | |
| 
 | |
|   // Get section data size and alignment
 | |
|   uint64_t DataSize = Section.getSize();
 | |
|   uint64_t Alignment64 = Section.getAlignment();
 | |
| 
 | |
|   // Add stubbuf size alignment
 | |
|   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
 | |
|   unsigned StubAlignment = getStubAlignment();
 | |
|   unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
 | |
|   if (StubAlignment > EndAlignment)
 | |
|     StubBufSize += StubAlignment - EndAlignment;
 | |
|   return StubBufSize;
 | |
| }
 | |
| 
 | |
| uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
 | |
|                                              unsigned Size) const {
 | |
|   uint64_t Result = 0;
 | |
|   if (IsTargetLittleEndian) {
 | |
|     Src += Size - 1;
 | |
|     while (Size--)
 | |
|       Result = (Result << 8) | *Src--;
 | |
|   } else
 | |
|     while (Size--)
 | |
|       Result = (Result << 8) | *Src++;
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
 | |
|                                           unsigned Size) const {
 | |
|   if (IsTargetLittleEndian) {
 | |
|     while (Size--) {
 | |
|       *Dst++ = Value & 0xFF;
 | |
|       Value >>= 8;
 | |
|     }
 | |
|   } else {
 | |
|     Dst += Size - 1;
 | |
|     while (Size--) {
 | |
|       *Dst-- = Value & 0xFF;
 | |
|       Value >>= 8;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| JITSymbolFlags RuntimeDyldImpl::getJITSymbolFlags(const BasicSymbolRef &SR) {
 | |
|   return JITSymbolFlags::fromObjectSymbol(SR);
 | |
| }
 | |
| 
 | |
| Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
 | |
|                                          CommonSymbolList &CommonSymbols) {
 | |
|   if (CommonSymbols.empty())
 | |
|     return Error::success();
 | |
| 
 | |
|   uint64_t CommonSize = 0;
 | |
|   uint32_t CommonAlign = CommonSymbols.begin()->getAlignment();
 | |
|   CommonSymbolList SymbolsToAllocate;
 | |
| 
 | |
|   DEBUG(dbgs() << "Processing common symbols...\n");
 | |
| 
 | |
|   for (const auto &Sym : CommonSymbols) {
 | |
|     StringRef Name;
 | |
|     if (auto NameOrErr = Sym.getName())
 | |
|       Name = *NameOrErr;
 | |
|     else
 | |
|       return NameOrErr.takeError();
 | |
| 
 | |
|     // Skip common symbols already elsewhere.
 | |
|     if (GlobalSymbolTable.count(Name)) {
 | |
|       DEBUG(dbgs() << "\tSkipping already emitted common symbol '" << Name
 | |
|                    << "'\n");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (auto Sym = Resolver.findSymbolInLogicalDylib(Name)) {
 | |
|       if (!Sym.getFlags().isCommon()) {
 | |
|         DEBUG(dbgs() << "\tSkipping common symbol '" << Name
 | |
|                      << "' in favor of stronger definition.\n");
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     uint32_t Align = Sym.getAlignment();
 | |
|     uint64_t Size = Sym.getCommonSize();
 | |
| 
 | |
|     CommonSize = alignTo(CommonSize, Align) + Size;
 | |
| 
 | |
|     SymbolsToAllocate.push_back(Sym);
 | |
|   }
 | |
| 
 | |
|   // Allocate memory for the section
 | |
|   unsigned SectionID = Sections.size();
 | |
|   uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
 | |
|                                              "<common symbols>", false);
 | |
|   if (!Addr)
 | |
|     report_fatal_error("Unable to allocate memory for common symbols!");
 | |
|   uint64_t Offset = 0;
 | |
|   Sections.push_back(
 | |
|       SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
 | |
|   memset(Addr, 0, CommonSize);
 | |
| 
 | |
|   DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: "
 | |
|                << format("%p", Addr) << " DataSize: " << CommonSize << "\n");
 | |
| 
 | |
|   // Assign the address of each symbol
 | |
|   for (auto &Sym : SymbolsToAllocate) {
 | |
|     uint32_t Align = Sym.getAlignment();
 | |
|     uint64_t Size = Sym.getCommonSize();
 | |
|     StringRef Name;
 | |
|     if (auto NameOrErr = Sym.getName())
 | |
|       Name = *NameOrErr;
 | |
|     else
 | |
|       return NameOrErr.takeError();
 | |
|     if (Align) {
 | |
|       // This symbol has an alignment requirement.
 | |
|       uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
 | |
|       Addr += AlignOffset;
 | |
|       Offset += AlignOffset;
 | |
|     }
 | |
|     JITSymbolFlags JITSymFlags = getJITSymbolFlags(Sym);
 | |
|     DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
 | |
|                  << format("%p", Addr) << "\n");
 | |
|     GlobalSymbolTable[Name] =
 | |
|       SymbolTableEntry(SectionID, Offset, JITSymFlags);
 | |
|     Offset += Size;
 | |
|     Addr += Size;
 | |
|   }
 | |
| 
 | |
|   if (Checker)
 | |
|     Checker->registerSection(Obj.getFileName(), SectionID);
 | |
| 
 | |
|   return Error::success();
 | |
| }
 | |
| 
 | |
| Expected<unsigned>
 | |
| RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
 | |
|                              const SectionRef &Section,
 | |
|                              bool IsCode) {
 | |
|   StringRef data;
 | |
|   uint64_t Alignment64 = Section.getAlignment();
 | |
| 
 | |
|   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
 | |
|   unsigned PaddingSize = 0;
 | |
|   unsigned StubBufSize = 0;
 | |
|   bool IsRequired = isRequiredForExecution(Section);
 | |
|   bool IsVirtual = Section.isVirtual();
 | |
|   bool IsZeroInit = isZeroInit(Section);
 | |
|   bool IsReadOnly = isReadOnlyData(Section);
 | |
|   uint64_t DataSize = Section.getSize();
 | |
| 
 | |
|   StringRef Name;
 | |
|   if (auto EC = Section.getName(Name))
 | |
|     return errorCodeToError(EC);
 | |
| 
 | |
|   StubBufSize = computeSectionStubBufSize(Obj, Section);
 | |
| 
 | |
|   // The .eh_frame section (at least on Linux) needs an extra four bytes padded
 | |
|   // with zeroes added at the end.  For MachO objects, this section has a
 | |
|   // slightly different name, so this won't have any effect for MachO objects.
 | |
|   if (Name == ".eh_frame")
 | |
|     PaddingSize = 4;
 | |
| 
 | |
|   uintptr_t Allocate;
 | |
|   unsigned SectionID = Sections.size();
 | |
|   uint8_t *Addr;
 | |
|   const char *pData = nullptr;
 | |
| 
 | |
|   // If this section contains any bits (i.e. isn't a virtual or bss section),
 | |
|   // grab a reference to them.
 | |
|   if (!IsVirtual && !IsZeroInit) {
 | |
|     // In either case, set the location of the unrelocated section in memory,
 | |
|     // since we still process relocations for it even if we're not applying them.
 | |
|     if (auto EC = Section.getContents(data))
 | |
|       return errorCodeToError(EC);
 | |
|     pData = data.data();
 | |
|   }
 | |
| 
 | |
|   // Code section alignment needs to be at least as high as stub alignment or
 | |
|   // padding calculations may by incorrect when the section is remapped to a
 | |
|   // higher alignment.
 | |
|   if (IsCode) {
 | |
|     Alignment = std::max(Alignment, getStubAlignment());
 | |
|     if (StubBufSize > 0)
 | |
|       PaddingSize += getStubAlignment() - 1;
 | |
|   }
 | |
| 
 | |
|   // Some sections, such as debug info, don't need to be loaded for execution.
 | |
|   // Process those only if explicitly requested.
 | |
|   if (IsRequired || ProcessAllSections) {
 | |
|     Allocate = DataSize + PaddingSize + StubBufSize;
 | |
|     if (!Allocate)
 | |
|       Allocate = 1;
 | |
|     Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
 | |
|                                                Name)
 | |
|                   : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
 | |
|                                                Name, IsReadOnly);
 | |
|     if (!Addr)
 | |
|       report_fatal_error("Unable to allocate section memory!");
 | |
| 
 | |
|     // Zero-initialize or copy the data from the image
 | |
|     if (IsZeroInit || IsVirtual)
 | |
|       memset(Addr, 0, DataSize);
 | |
|     else
 | |
|       memcpy(Addr, pData, DataSize);
 | |
| 
 | |
|     // Fill in any extra bytes we allocated for padding
 | |
|     if (PaddingSize != 0) {
 | |
|       memset(Addr + DataSize, 0, PaddingSize);
 | |
|       // Update the DataSize variable to include padding.
 | |
|       DataSize += PaddingSize;
 | |
| 
 | |
|       // Align DataSize to stub alignment if we have any stubs (PaddingSize will
 | |
|       // have been increased above to account for this).
 | |
|       if (StubBufSize > 0)
 | |
|         DataSize &= ~(getStubAlignment() - 1);
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
 | |
|                  << " obj addr: " << format("%p", pData)
 | |
|                  << " new addr: " << format("%p", Addr)
 | |
|                  << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
 | |
|                  << " Allocate: " << Allocate << "\n");
 | |
|   } else {
 | |
|     // Even if we didn't load the section, we need to record an entry for it
 | |
|     // to handle later processing (and by 'handle' I mean don't do anything
 | |
|     // with these sections).
 | |
|     Allocate = 0;
 | |
|     Addr = nullptr;
 | |
|     DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
 | |
|                  << " obj addr: " << format("%p", data.data()) << " new addr: 0"
 | |
|                  << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
 | |
|                  << " Allocate: " << Allocate << "\n");
 | |
|   }
 | |
| 
 | |
|   Sections.push_back(
 | |
|       SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
 | |
| 
 | |
|   // Debug info sections are linked as if their load address was zero
 | |
|   if (!IsRequired)
 | |
|     Sections.back().setLoadAddress(0);
 | |
| 
 | |
|   if (Checker)
 | |
|     Checker->registerSection(Obj.getFileName(), SectionID);
 | |
| 
 | |
|   return SectionID;
 | |
| }
 | |
| 
 | |
| Expected<unsigned>
 | |
| RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
 | |
|                                    const SectionRef &Section,
 | |
|                                    bool IsCode,
 | |
|                                    ObjSectionToIDMap &LocalSections) {
 | |
| 
 | |
|   unsigned SectionID = 0;
 | |
|   ObjSectionToIDMap::iterator i = LocalSections.find(Section);
 | |
|   if (i != LocalSections.end())
 | |
|     SectionID = i->second;
 | |
|   else {
 | |
|     if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
 | |
|       SectionID = *SectionIDOrErr;
 | |
|     else
 | |
|       return SectionIDOrErr.takeError();
 | |
|     LocalSections[Section] = SectionID;
 | |
|   }
 | |
|   return SectionID;
 | |
| }
 | |
| 
 | |
| void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
 | |
|                                               unsigned SectionID) {
 | |
|   Relocations[SectionID].push_back(RE);
 | |
| }
 | |
| 
 | |
| void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
 | |
|                                              StringRef SymbolName) {
 | |
|   // Relocation by symbol.  If the symbol is found in the global symbol table,
 | |
|   // create an appropriate section relocation.  Otherwise, add it to
 | |
|   // ExternalSymbolRelocations.
 | |
|   RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
 | |
|   if (Loc == GlobalSymbolTable.end()) {
 | |
|     ExternalSymbolRelocations[SymbolName].push_back(RE);
 | |
|   } else {
 | |
|     // Copy the RE since we want to modify its addend.
 | |
|     RelocationEntry RECopy = RE;
 | |
|     const auto &SymInfo = Loc->second;
 | |
|     RECopy.Addend += SymInfo.getOffset();
 | |
|     Relocations[SymInfo.getSectionID()].push_back(RECopy);
 | |
|   }
 | |
| }
 | |
| 
 | |
| uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
 | |
|                                              unsigned AbiVariant) {
 | |
|   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
 | |
|     // This stub has to be able to access the full address space,
 | |
|     // since symbol lookup won't necessarily find a handy, in-range,
 | |
|     // PLT stub for functions which could be anywhere.
 | |
|     // Stub can use ip0 (== x16) to calculate address
 | |
|     writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr>
 | |
|     writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr>
 | |
|     writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr>
 | |
|     writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
 | |
|     writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
 | |
| 
 | |
|     return Addr;
 | |
|   } else if (Arch == Triple::arm || Arch == Triple::armeb) {
 | |
|     // TODO: There is only ARM far stub now. We should add the Thumb stub,
 | |
|     // and stubs for branches Thumb - ARM and ARM - Thumb.
 | |
|     writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
 | |
|     return Addr + 4;
 | |
|   } else if (IsMipsO32ABI) {
 | |
|     // 0:   3c190000        lui     t9,%hi(addr).
 | |
|     // 4:   27390000        addiu   t9,t9,%lo(addr).
 | |
|     // 8:   03200008        jr      t9.
 | |
|     // c:   00000000        nop.
 | |
|     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
 | |
|     const unsigned NopInstr = 0x0;
 | |
|     unsigned JrT9Instr = 0x03200008;
 | |
|     if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6)
 | |
|         JrT9Instr = 0x03200009;
 | |
| 
 | |
|     writeBytesUnaligned(LuiT9Instr, Addr, 4);
 | |
|     writeBytesUnaligned(AdduiT9Instr, Addr+4, 4);
 | |
|     writeBytesUnaligned(JrT9Instr, Addr+8, 4);
 | |
|     writeBytesUnaligned(NopInstr, Addr+12, 4);
 | |
|     return Addr;
 | |
|   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
 | |
|     // Depending on which version of the ELF ABI is in use, we need to
 | |
|     // generate one of two variants of the stub.  They both start with
 | |
|     // the same sequence to load the target address into r12.
 | |
|     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
 | |
|     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
 | |
|     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
 | |
|     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
 | |
|     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
 | |
|     if (AbiVariant == 2) {
 | |
|       // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
 | |
|       // The address is already in r12 as required by the ABI.  Branch to it.
 | |
|       writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1)
 | |
|       writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
 | |
|       writeInt32BE(Addr+28, 0x4E800420); // bctr
 | |
|     } else {
 | |
|       // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
 | |
|       // Load the function address on r11 and sets it to control register. Also
 | |
|       // loads the function TOC in r2 and environment pointer to r11.
 | |
|       writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
 | |
|       writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
 | |
|       writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
 | |
|       writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
 | |
|       writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
 | |
|       writeInt32BE(Addr+40, 0x4E800420); // bctr
 | |
|     }
 | |
|     return Addr;
 | |
|   } else if (Arch == Triple::systemz) {
 | |
|     writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
 | |
|     writeInt16BE(Addr+2,  0x0000);
 | |
|     writeInt16BE(Addr+4,  0x0004);
 | |
|     writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
 | |
|     // 8-byte address stored at Addr + 8
 | |
|     return Addr;
 | |
|   } else if (Arch == Triple::x86_64) {
 | |
|     *Addr      = 0xFF; // jmp
 | |
|     *(Addr+1)  = 0x25; // rip
 | |
|     // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
 | |
|   } else if (Arch == Triple::x86) {
 | |
|     *Addr      = 0xE9; // 32-bit pc-relative jump.
 | |
|   }
 | |
|   return Addr;
 | |
| }
 | |
| 
 | |
| // Assign an address to a symbol name and resolve all the relocations
 | |
| // associated with it.
 | |
| void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
 | |
|                                              uint64_t Addr) {
 | |
|   // The address to use for relocation resolution is not
 | |
|   // the address of the local section buffer. We must be doing
 | |
|   // a remote execution environment of some sort. Relocations can't
 | |
|   // be applied until all the sections have been moved.  The client must
 | |
|   // trigger this with a call to MCJIT::finalize() or
 | |
|   // RuntimeDyld::resolveRelocations().
 | |
|   //
 | |
|   // Addr is a uint64_t because we can't assume the pointer width
 | |
|   // of the target is the same as that of the host. Just use a generic
 | |
|   // "big enough" type.
 | |
|   DEBUG(dbgs() << "Reassigning address for section " << SectionID << " ("
 | |
|                << Sections[SectionID].getName() << "): "
 | |
|                << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
 | |
|                << " -> " << format("0x%016" PRIx64, Addr) << "\n");
 | |
|   Sections[SectionID].setLoadAddress(Addr);
 | |
| }
 | |
| 
 | |
| void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
 | |
|                                             uint64_t Value) {
 | |
|   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
 | |
|     const RelocationEntry &RE = Relocs[i];
 | |
|     // Ignore relocations for sections that were not loaded
 | |
|     if (Sections[RE.SectionID].getAddress() == nullptr)
 | |
|       continue;
 | |
|     resolveRelocation(RE, Value);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Error RuntimeDyldImpl::resolveExternalSymbols() {
 | |
|   while (!ExternalSymbolRelocations.empty()) {
 | |
|     StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
 | |
| 
 | |
|     StringRef Name = i->first();
 | |
|     if (Name.size() == 0) {
 | |
|       // This is an absolute symbol, use an address of zero.
 | |
|       DEBUG(dbgs() << "Resolving absolute relocations."
 | |
|                    << "\n");
 | |
|       RelocationList &Relocs = i->second;
 | |
|       resolveRelocationList(Relocs, 0);
 | |
|     } else {
 | |
|       uint64_t Addr = 0;
 | |
|       JITSymbolFlags Flags;
 | |
|       RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
 | |
|       if (Loc == GlobalSymbolTable.end()) {
 | |
|         // This is an external symbol, try to get its address from the symbol
 | |
|         // resolver.
 | |
|         // First search for the symbol in this logical dylib.
 | |
|         if (auto Sym = Resolver.findSymbolInLogicalDylib(Name.data())) {
 | |
|           if (auto AddrOrErr = Sym.getAddress()) {
 | |
|             Addr = *AddrOrErr;
 | |
|             Flags = Sym.getFlags();
 | |
|           } else
 | |
|             return AddrOrErr.takeError();
 | |
|         } else if (auto Err = Sym.takeError())
 | |
|           return Err;
 | |
| 
 | |
|         // If that fails, try searching for an external symbol.
 | |
|         if (!Addr) {
 | |
|           if (auto Sym = Resolver.findSymbol(Name.data())) {
 | |
|             if (auto AddrOrErr = Sym.getAddress()) {
 | |
|               Addr = *AddrOrErr;
 | |
|               Flags = Sym.getFlags();
 | |
|             } else
 | |
|               return AddrOrErr.takeError();
 | |
|           } else if (auto Err = Sym.takeError())
 | |
|             return Err;
 | |
|         }
 | |
|         // The call to getSymbolAddress may have caused additional modules to
 | |
|         // be loaded, which may have added new entries to the
 | |
|         // ExternalSymbolRelocations map.  Consquently, we need to update our
 | |
|         // iterator.  This is also why retrieval of the relocation list
 | |
|         // associated with this symbol is deferred until below this point.
 | |
|         // New entries may have been added to the relocation list.
 | |
|         i = ExternalSymbolRelocations.find(Name);
 | |
|       } else {
 | |
|         // We found the symbol in our global table.  It was probably in a
 | |
|         // Module that we loaded previously.
 | |
|         const auto &SymInfo = Loc->second;
 | |
|         Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
 | |
|                SymInfo.getOffset();
 | |
|         Flags = SymInfo.getFlags();
 | |
|       }
 | |
| 
 | |
|       // FIXME: Implement error handling that doesn't kill the host program!
 | |
|       if (!Addr)
 | |
|         report_fatal_error("Program used external function '" + Name +
 | |
|                            "' which could not be resolved!");
 | |
| 
 | |
|       // If Resolver returned UINT64_MAX, the client wants to handle this symbol
 | |
|       // manually and we shouldn't resolve its relocations.
 | |
|       if (Addr != UINT64_MAX) {
 | |
| 
 | |
|         // Tweak the address based on the symbol flags if necessary.
 | |
|         // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
 | |
|         // if the target symbol is Thumb.
 | |
|         Addr = modifyAddressBasedOnFlags(Addr, Flags);
 | |
| 
 | |
|         DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
 | |
|                      << format("0x%lx", Addr) << "\n");
 | |
|         // This list may have been updated when we called getSymbolAddress, so
 | |
|         // don't change this code to get the list earlier.
 | |
|         RelocationList &Relocs = i->second;
 | |
|         resolveRelocationList(Relocs, Addr);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     ExternalSymbolRelocations.erase(i);
 | |
|   }
 | |
| 
 | |
|   return Error::success();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // RuntimeDyld class implementation
 | |
| 
 | |
| uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
 | |
|                                           const object::SectionRef &Sec) const {
 | |
| 
 | |
|   auto I = ObjSecToIDMap.find(Sec);
 | |
|   if (I != ObjSecToIDMap.end())
 | |
|     return RTDyld.Sections[I->second].getLoadAddress();
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void RuntimeDyld::MemoryManager::anchor() {}
 | |
| void JITSymbolResolver::anchor() {}
 | |
| 
 | |
| RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
 | |
|                          JITSymbolResolver &Resolver)
 | |
|     : MemMgr(MemMgr), Resolver(Resolver) {
 | |
|   // FIXME: There's a potential issue lurking here if a single instance of
 | |
|   // RuntimeDyld is used to load multiple objects.  The current implementation
 | |
|   // associates a single memory manager with a RuntimeDyld instance.  Even
 | |
|   // though the public class spawns a new 'impl' instance for each load,
 | |
|   // they share a single memory manager.  This can become a problem when page
 | |
|   // permissions are applied.
 | |
|   Dyld = nullptr;
 | |
|   ProcessAllSections = false;
 | |
|   Checker = nullptr;
 | |
| }
 | |
| 
 | |
| RuntimeDyld::~RuntimeDyld() {}
 | |
| 
 | |
| static std::unique_ptr<RuntimeDyldCOFF>
 | |
| createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
 | |
|                       JITSymbolResolver &Resolver, bool ProcessAllSections,
 | |
|                       RuntimeDyldCheckerImpl *Checker) {
 | |
|   std::unique_ptr<RuntimeDyldCOFF> Dyld =
 | |
|     RuntimeDyldCOFF::create(Arch, MM, Resolver);
 | |
|   Dyld->setProcessAllSections(ProcessAllSections);
 | |
|   Dyld->setRuntimeDyldChecker(Checker);
 | |
|   return Dyld;
 | |
| }
 | |
| 
 | |
| static std::unique_ptr<RuntimeDyldELF>
 | |
| createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
 | |
|                      JITSymbolResolver &Resolver, bool ProcessAllSections,
 | |
|                      RuntimeDyldCheckerImpl *Checker) {
 | |
|   std::unique_ptr<RuntimeDyldELF> Dyld =
 | |
|       RuntimeDyldELF::create(Arch, MM, Resolver);
 | |
|   Dyld->setProcessAllSections(ProcessAllSections);
 | |
|   Dyld->setRuntimeDyldChecker(Checker);
 | |
|   return Dyld;
 | |
| }
 | |
| 
 | |
| static std::unique_ptr<RuntimeDyldMachO>
 | |
| createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
 | |
|                        JITSymbolResolver &Resolver,
 | |
|                        bool ProcessAllSections,
 | |
|                        RuntimeDyldCheckerImpl *Checker) {
 | |
|   std::unique_ptr<RuntimeDyldMachO> Dyld =
 | |
|     RuntimeDyldMachO::create(Arch, MM, Resolver);
 | |
|   Dyld->setProcessAllSections(ProcessAllSections);
 | |
|   Dyld->setRuntimeDyldChecker(Checker);
 | |
|   return Dyld;
 | |
| }
 | |
| 
 | |
| std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
 | |
| RuntimeDyld::loadObject(const ObjectFile &Obj) {
 | |
|   if (!Dyld) {
 | |
|     if (Obj.isELF())
 | |
|       Dyld =
 | |
|           createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
 | |
|                                MemMgr, Resolver, ProcessAllSections, Checker);
 | |
|     else if (Obj.isMachO())
 | |
|       Dyld = createRuntimeDyldMachO(
 | |
|                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
 | |
|                ProcessAllSections, Checker);
 | |
|     else if (Obj.isCOFF())
 | |
|       Dyld = createRuntimeDyldCOFF(
 | |
|                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
 | |
|                ProcessAllSections, Checker);
 | |
|     else
 | |
|       report_fatal_error("Incompatible object format!");
 | |
|   }
 | |
| 
 | |
|   if (!Dyld->isCompatibleFile(Obj))
 | |
|     report_fatal_error("Incompatible object format!");
 | |
| 
 | |
|   auto LoadedObjInfo = Dyld->loadObject(Obj);
 | |
|   MemMgr.notifyObjectLoaded(*this, Obj);
 | |
|   return LoadedObjInfo;
 | |
| }
 | |
| 
 | |
| void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
 | |
|   if (!Dyld)
 | |
|     return nullptr;
 | |
|   return Dyld->getSymbolLocalAddress(Name);
 | |
| }
 | |
| 
 | |
| JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
 | |
|   if (!Dyld)
 | |
|     return nullptr;
 | |
|   return Dyld->getSymbol(Name);
 | |
| }
 | |
| 
 | |
| void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
 | |
| 
 | |
| void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
 | |
|   Dyld->reassignSectionAddress(SectionID, Addr);
 | |
| }
 | |
| 
 | |
| void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
 | |
|                                     uint64_t TargetAddress) {
 | |
|   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
 | |
| }
 | |
| 
 | |
| bool RuntimeDyld::hasError() { return Dyld->hasError(); }
 | |
| 
 | |
| StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
 | |
| 
 | |
| void RuntimeDyld::finalizeWithMemoryManagerLocking() {
 | |
|   bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
 | |
|   MemMgr.FinalizationLocked = true;
 | |
|   resolveRelocations();
 | |
|   registerEHFrames();
 | |
|   if (!MemoryFinalizationLocked) {
 | |
|     MemMgr.finalizeMemory();
 | |
|     MemMgr.FinalizationLocked = false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RuntimeDyld::registerEHFrames() {
 | |
|   if (Dyld)
 | |
|     Dyld->registerEHFrames();
 | |
| }
 | |
| 
 | |
| void RuntimeDyld::deregisterEHFrames() {
 | |
|   if (Dyld)
 | |
|     Dyld->deregisterEHFrames();
 | |
| }
 | |
| 
 | |
| } // end namespace llvm
 |