forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1532 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1532 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass implements whole program optimization of virtual calls in cases
 | 
						|
// where we know (via !type metadata) that the list of callees is fixed. This
 | 
						|
// includes the following:
 | 
						|
// - Single implementation devirtualization: if a virtual call has a single
 | 
						|
//   possible callee, replace all calls with a direct call to that callee.
 | 
						|
// - Virtual constant propagation: if the virtual function's return type is an
 | 
						|
//   integer <=64 bits and all possible callees are readnone, for each class and
 | 
						|
//   each list of constant arguments: evaluate the function, store the return
 | 
						|
//   value alongside the virtual table, and rewrite each virtual call as a load
 | 
						|
//   from the virtual table.
 | 
						|
// - Uniform return value optimization: if the conditions for virtual constant
 | 
						|
//   propagation hold and each function returns the same constant value, replace
 | 
						|
//   each virtual call with that constant.
 | 
						|
// - Unique return value optimization for i1 return values: if the conditions
 | 
						|
//   for virtual constant propagation hold and a single vtable's function
 | 
						|
//   returns 0, or a single vtable's function returns 1, replace each virtual
 | 
						|
//   call with a comparison of the vptr against that vtable's address.
 | 
						|
//
 | 
						|
// This pass is intended to be used during the regular and thin LTO pipelines.
 | 
						|
// During regular LTO, the pass determines the best optimization for each
 | 
						|
// virtual call and applies the resolutions directly to virtual calls that are
 | 
						|
// eligible for virtual call optimization (i.e. calls that use either of the
 | 
						|
// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). During
 | 
						|
// ThinLTO, the pass operates in two phases:
 | 
						|
// - Export phase: this is run during the thin link over a single merged module
 | 
						|
//   that contains all vtables with !type metadata that participate in the link.
 | 
						|
//   The pass computes a resolution for each virtual call and stores it in the
 | 
						|
//   type identifier summary.
 | 
						|
// - Import phase: this is run during the thin backends over the individual
 | 
						|
//   modules. The pass applies the resolutions previously computed during the
 | 
						|
//   import phase to each eligible virtual call.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DenseMapInfo.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/MapVector.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/iterator_range.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/BasicAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
 | 
						|
#include "llvm/Analysis/TypeMetadataUtils.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DebugInfoMetadata.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GlobalAlias.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/ModuleSummaryIndexYAML.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/PassRegistry.h"
 | 
						|
#include "llvm/PassSupport.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/Error.h"
 | 
						|
#include "llvm/Support/FileSystem.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Transforms/IPO.h"
 | 
						|
#include "llvm/Transforms/IPO/FunctionAttrs.h"
 | 
						|
#include "llvm/Transforms/Utils/Evaluator.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cstddef>
 | 
						|
#include <map>
 | 
						|
#include <set>
 | 
						|
#include <string>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace wholeprogramdevirt;
 | 
						|
 | 
						|
#define DEBUG_TYPE "wholeprogramdevirt"
 | 
						|
 | 
						|
static cl::opt<PassSummaryAction> ClSummaryAction(
 | 
						|
    "wholeprogramdevirt-summary-action",
 | 
						|
    cl::desc("What to do with the summary when running this pass"),
 | 
						|
    cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
 | 
						|
               clEnumValN(PassSummaryAction::Import, "import",
 | 
						|
                          "Import typeid resolutions from summary and globals"),
 | 
						|
               clEnumValN(PassSummaryAction::Export, "export",
 | 
						|
                          "Export typeid resolutions to summary and globals")),
 | 
						|
    cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<std::string> ClReadSummary(
 | 
						|
    "wholeprogramdevirt-read-summary",
 | 
						|
    cl::desc("Read summary from given YAML file before running pass"),
 | 
						|
    cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<std::string> ClWriteSummary(
 | 
						|
    "wholeprogramdevirt-write-summary",
 | 
						|
    cl::desc("Write summary to given YAML file after running pass"),
 | 
						|
    cl::Hidden);
 | 
						|
 | 
						|
// Find the minimum offset that we may store a value of size Size bits at. If
 | 
						|
// IsAfter is set, look for an offset before the object, otherwise look for an
 | 
						|
// offset after the object.
 | 
						|
uint64_t
 | 
						|
wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
 | 
						|
                                     bool IsAfter, uint64_t Size) {
 | 
						|
  // Find a minimum offset taking into account only vtable sizes.
 | 
						|
  uint64_t MinByte = 0;
 | 
						|
  for (const VirtualCallTarget &Target : Targets) {
 | 
						|
    if (IsAfter)
 | 
						|
      MinByte = std::max(MinByte, Target.minAfterBytes());
 | 
						|
    else
 | 
						|
      MinByte = std::max(MinByte, Target.minBeforeBytes());
 | 
						|
  }
 | 
						|
 | 
						|
  // Build a vector of arrays of bytes covering, for each target, a slice of the
 | 
						|
  // used region (see AccumBitVector::BytesUsed in
 | 
						|
  // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
 | 
						|
  // this aligns the used regions to start at MinByte.
 | 
						|
  //
 | 
						|
  // In this example, A, B and C are vtables, # is a byte already allocated for
 | 
						|
  // a virtual function pointer, AAAA... (etc.) are the used regions for the
 | 
						|
  // vtables and Offset(X) is the value computed for the Offset variable below
 | 
						|
  // for X.
 | 
						|
  //
 | 
						|
  //                    Offset(A)
 | 
						|
  //                    |       |
 | 
						|
  //                            |MinByte
 | 
						|
  // A: ################AAAAAAAA|AAAAAAAA
 | 
						|
  // B: ########BBBBBBBBBBBBBBBB|BBBB
 | 
						|
  // C: ########################|CCCCCCCCCCCCCCCC
 | 
						|
  //            |   Offset(B)   |
 | 
						|
  //
 | 
						|
  // This code produces the slices of A, B and C that appear after the divider
 | 
						|
  // at MinByte.
 | 
						|
  std::vector<ArrayRef<uint8_t>> Used;
 | 
						|
  for (const VirtualCallTarget &Target : Targets) {
 | 
						|
    ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
 | 
						|
                                       : Target.TM->Bits->Before.BytesUsed;
 | 
						|
    uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
 | 
						|
                              : MinByte - Target.minBeforeBytes();
 | 
						|
 | 
						|
    // Disregard used regions that are smaller than Offset. These are
 | 
						|
    // effectively all-free regions that do not need to be checked.
 | 
						|
    if (VTUsed.size() > Offset)
 | 
						|
      Used.push_back(VTUsed.slice(Offset));
 | 
						|
  }
 | 
						|
 | 
						|
  if (Size == 1) {
 | 
						|
    // Find a free bit in each member of Used.
 | 
						|
    for (unsigned I = 0;; ++I) {
 | 
						|
      uint8_t BitsUsed = 0;
 | 
						|
      for (auto &&B : Used)
 | 
						|
        if (I < B.size())
 | 
						|
          BitsUsed |= B[I];
 | 
						|
      if (BitsUsed != 0xff)
 | 
						|
        return (MinByte + I) * 8 +
 | 
						|
               countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Find a free (Size/8) byte region in each member of Used.
 | 
						|
    // FIXME: see if alignment helps.
 | 
						|
    for (unsigned I = 0;; ++I) {
 | 
						|
      for (auto &&B : Used) {
 | 
						|
        unsigned Byte = 0;
 | 
						|
        while ((I + Byte) < B.size() && Byte < (Size / 8)) {
 | 
						|
          if (B[I + Byte])
 | 
						|
            goto NextI;
 | 
						|
          ++Byte;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return (MinByte + I) * 8;
 | 
						|
    NextI:;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void wholeprogramdevirt::setBeforeReturnValues(
 | 
						|
    MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
 | 
						|
    unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
 | 
						|
  if (BitWidth == 1)
 | 
						|
    OffsetByte = -(AllocBefore / 8 + 1);
 | 
						|
  else
 | 
						|
    OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
 | 
						|
  OffsetBit = AllocBefore % 8;
 | 
						|
 | 
						|
  for (VirtualCallTarget &Target : Targets) {
 | 
						|
    if (BitWidth == 1)
 | 
						|
      Target.setBeforeBit(AllocBefore);
 | 
						|
    else
 | 
						|
      Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void wholeprogramdevirt::setAfterReturnValues(
 | 
						|
    MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
 | 
						|
    unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
 | 
						|
  if (BitWidth == 1)
 | 
						|
    OffsetByte = AllocAfter / 8;
 | 
						|
  else
 | 
						|
    OffsetByte = (AllocAfter + 7) / 8;
 | 
						|
  OffsetBit = AllocAfter % 8;
 | 
						|
 | 
						|
  for (VirtualCallTarget &Target : Targets) {
 | 
						|
    if (BitWidth == 1)
 | 
						|
      Target.setAfterBit(AllocAfter);
 | 
						|
    else
 | 
						|
      Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
 | 
						|
    : Fn(Fn), TM(TM),
 | 
						|
      IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// A slot in a set of virtual tables. The TypeID identifies the set of virtual
 | 
						|
// tables, and the ByteOffset is the offset in bytes from the address point to
 | 
						|
// the virtual function pointer.
 | 
						|
struct VTableSlot {
 | 
						|
  Metadata *TypeID;
 | 
						|
  uint64_t ByteOffset;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
template <> struct DenseMapInfo<VTableSlot> {
 | 
						|
  static VTableSlot getEmptyKey() {
 | 
						|
    return {DenseMapInfo<Metadata *>::getEmptyKey(),
 | 
						|
            DenseMapInfo<uint64_t>::getEmptyKey()};
 | 
						|
  }
 | 
						|
  static VTableSlot getTombstoneKey() {
 | 
						|
    return {DenseMapInfo<Metadata *>::getTombstoneKey(),
 | 
						|
            DenseMapInfo<uint64_t>::getTombstoneKey()};
 | 
						|
  }
 | 
						|
  static unsigned getHashValue(const VTableSlot &I) {
 | 
						|
    return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
 | 
						|
           DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
 | 
						|
  }
 | 
						|
  static bool isEqual(const VTableSlot &LHS,
 | 
						|
                      const VTableSlot &RHS) {
 | 
						|
    return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// A virtual call site. VTable is the loaded virtual table pointer, and CS is
 | 
						|
// the indirect virtual call.
 | 
						|
struct VirtualCallSite {
 | 
						|
  Value *VTable;
 | 
						|
  CallSite CS;
 | 
						|
 | 
						|
  // If non-null, this field points to the associated unsafe use count stored in
 | 
						|
  // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
 | 
						|
  // of that field for details.
 | 
						|
  unsigned *NumUnsafeUses;
 | 
						|
 | 
						|
  void
 | 
						|
  emitRemark(const StringRef OptName, const StringRef TargetName,
 | 
						|
             function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
 | 
						|
    Function *F = CS.getCaller();
 | 
						|
    DebugLoc DLoc = CS->getDebugLoc();
 | 
						|
    BasicBlock *Block = CS.getParent();
 | 
						|
 | 
						|
    // In the new pass manager, we can request the optimization
 | 
						|
    // remark emitter pass on a per-function-basis, which the
 | 
						|
    // OREGetter will do for us.
 | 
						|
    // In the old pass manager, this is harder, so we just build
 | 
						|
    // a optimization remark emitter on the fly, when we need it.
 | 
						|
    std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
 | 
						|
    OptimizationRemarkEmitter *ORE;
 | 
						|
    if (OREGetter)
 | 
						|
      ORE = &OREGetter(F);
 | 
						|
    else {
 | 
						|
      OwnedORE = make_unique<OptimizationRemarkEmitter>(F);
 | 
						|
      ORE = OwnedORE.get();
 | 
						|
    }
 | 
						|
 | 
						|
    using namespace ore;
 | 
						|
    ORE->emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
 | 
						|
              << NV("Optimization", OptName) << ": devirtualized a call to "
 | 
						|
              << NV("FunctionName", TargetName));
 | 
						|
  }
 | 
						|
 | 
						|
  void replaceAndErase(
 | 
						|
      const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
 | 
						|
      function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
 | 
						|
      Value *New) {
 | 
						|
    if (RemarksEnabled)
 | 
						|
      emitRemark(OptName, TargetName, OREGetter);
 | 
						|
    CS->replaceAllUsesWith(New);
 | 
						|
    if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
 | 
						|
      BranchInst::Create(II->getNormalDest(), CS.getInstruction());
 | 
						|
      II->getUnwindDest()->removePredecessor(II->getParent());
 | 
						|
    }
 | 
						|
    CS->eraseFromParent();
 | 
						|
    // This use is no longer unsafe.
 | 
						|
    if (NumUnsafeUses)
 | 
						|
      --*NumUnsafeUses;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Call site information collected for a specific VTableSlot and possibly a list
 | 
						|
// of constant integer arguments. The grouping by arguments is handled by the
 | 
						|
// VTableSlotInfo class.
 | 
						|
struct CallSiteInfo {
 | 
						|
  /// The set of call sites for this slot. Used during regular LTO and the
 | 
						|
  /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
 | 
						|
  /// call sites that appear in the merged module itself); in each of these
 | 
						|
  /// cases we are directly operating on the call sites at the IR level.
 | 
						|
  std::vector<VirtualCallSite> CallSites;
 | 
						|
 | 
						|
  // These fields are used during the export phase of ThinLTO and reflect
 | 
						|
  // information collected from function summaries.
 | 
						|
 | 
						|
  /// Whether any function summary contains an llvm.assume(llvm.type.test) for
 | 
						|
  /// this slot.
 | 
						|
  bool SummaryHasTypeTestAssumeUsers;
 | 
						|
 | 
						|
  /// CFI-specific: a vector containing the list of function summaries that use
 | 
						|
  /// the llvm.type.checked.load intrinsic and therefore will require
 | 
						|
  /// resolutions for llvm.type.test in order to implement CFI checks if
 | 
						|
  /// devirtualization was unsuccessful. If devirtualization was successful, the
 | 
						|
  /// pass will clear this vector by calling markDevirt(). If at the end of the
 | 
						|
  /// pass the vector is non-empty, we will need to add a use of llvm.type.test
 | 
						|
  /// to each of the function summaries in the vector.
 | 
						|
  std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
 | 
						|
 | 
						|
  bool isExported() const {
 | 
						|
    return SummaryHasTypeTestAssumeUsers ||
 | 
						|
           !SummaryTypeCheckedLoadUsers.empty();
 | 
						|
  }
 | 
						|
 | 
						|
  /// As explained in the comment for SummaryTypeCheckedLoadUsers.
 | 
						|
  void markDevirt() { SummaryTypeCheckedLoadUsers.clear(); }
 | 
						|
};
 | 
						|
 | 
						|
// Call site information collected for a specific VTableSlot.
 | 
						|
struct VTableSlotInfo {
 | 
						|
  // The set of call sites which do not have all constant integer arguments
 | 
						|
  // (excluding "this").
 | 
						|
  CallSiteInfo CSInfo;
 | 
						|
 | 
						|
  // The set of call sites with all constant integer arguments (excluding
 | 
						|
  // "this"), grouped by argument list.
 | 
						|
  std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
 | 
						|
 | 
						|
  void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses);
 | 
						|
 | 
						|
private:
 | 
						|
  CallSiteInfo &findCallSiteInfo(CallSite CS);
 | 
						|
};
 | 
						|
 | 
						|
CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) {
 | 
						|
  std::vector<uint64_t> Args;
 | 
						|
  auto *CI = dyn_cast<IntegerType>(CS.getType());
 | 
						|
  if (!CI || CI->getBitWidth() > 64 || CS.arg_empty())
 | 
						|
    return CSInfo;
 | 
						|
  for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) {
 | 
						|
    auto *CI = dyn_cast<ConstantInt>(Arg);
 | 
						|
    if (!CI || CI->getBitWidth() > 64)
 | 
						|
      return CSInfo;
 | 
						|
    Args.push_back(CI->getZExtValue());
 | 
						|
  }
 | 
						|
  return ConstCSInfo[Args];
 | 
						|
}
 | 
						|
 | 
						|
void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS,
 | 
						|
                                 unsigned *NumUnsafeUses) {
 | 
						|
  findCallSiteInfo(CS).CallSites.push_back({VTable, CS, NumUnsafeUses});
 | 
						|
}
 | 
						|
 | 
						|
struct DevirtModule {
 | 
						|
  Module &M;
 | 
						|
  function_ref<AAResults &(Function &)> AARGetter;
 | 
						|
 | 
						|
  ModuleSummaryIndex *ExportSummary;
 | 
						|
  const ModuleSummaryIndex *ImportSummary;
 | 
						|
 | 
						|
  IntegerType *Int8Ty;
 | 
						|
  PointerType *Int8PtrTy;
 | 
						|
  IntegerType *Int32Ty;
 | 
						|
  IntegerType *Int64Ty;
 | 
						|
  IntegerType *IntPtrTy;
 | 
						|
 | 
						|
  bool RemarksEnabled;
 | 
						|
  function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
 | 
						|
 | 
						|
  MapVector<VTableSlot, VTableSlotInfo> CallSlots;
 | 
						|
 | 
						|
  // This map keeps track of the number of "unsafe" uses of a loaded function
 | 
						|
  // pointer. The key is the associated llvm.type.test intrinsic call generated
 | 
						|
  // by this pass. An unsafe use is one that calls the loaded function pointer
 | 
						|
  // directly. Every time we eliminate an unsafe use (for example, by
 | 
						|
  // devirtualizing it or by applying virtual constant propagation), we
 | 
						|
  // decrement the value stored in this map. If a value reaches zero, we can
 | 
						|
  // eliminate the type check by RAUWing the associated llvm.type.test call with
 | 
						|
  // true.
 | 
						|
  std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
 | 
						|
 | 
						|
  DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
 | 
						|
               function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
 | 
						|
               ModuleSummaryIndex *ExportSummary,
 | 
						|
               const ModuleSummaryIndex *ImportSummary)
 | 
						|
      : M(M), AARGetter(AARGetter), ExportSummary(ExportSummary),
 | 
						|
        ImportSummary(ImportSummary), Int8Ty(Type::getInt8Ty(M.getContext())),
 | 
						|
        Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
 | 
						|
        Int32Ty(Type::getInt32Ty(M.getContext())),
 | 
						|
        Int64Ty(Type::getInt64Ty(M.getContext())),
 | 
						|
        IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
 | 
						|
        RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
 | 
						|
    assert(!(ExportSummary && ImportSummary));
 | 
						|
  }
 | 
						|
 | 
						|
  bool areRemarksEnabled();
 | 
						|
 | 
						|
  void scanTypeTestUsers(Function *TypeTestFunc, Function *AssumeFunc);
 | 
						|
  void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
 | 
						|
 | 
						|
  void buildTypeIdentifierMap(
 | 
						|
      std::vector<VTableBits> &Bits,
 | 
						|
      DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
 | 
						|
  Constant *getPointerAtOffset(Constant *I, uint64_t Offset);
 | 
						|
  bool
 | 
						|
  tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
 | 
						|
                            const std::set<TypeMemberInfo> &TypeMemberInfos,
 | 
						|
                            uint64_t ByteOffset);
 | 
						|
 | 
						|
  void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
 | 
						|
                             bool &IsExported);
 | 
						|
  bool trySingleImplDevirt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
 | 
						|
                           VTableSlotInfo &SlotInfo,
 | 
						|
                           WholeProgramDevirtResolution *Res);
 | 
						|
 | 
						|
  bool tryEvaluateFunctionsWithArgs(
 | 
						|
      MutableArrayRef<VirtualCallTarget> TargetsForSlot,
 | 
						|
      ArrayRef<uint64_t> Args);
 | 
						|
 | 
						|
  void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
 | 
						|
                             uint64_t TheRetVal);
 | 
						|
  bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
 | 
						|
                           CallSiteInfo &CSInfo,
 | 
						|
                           WholeProgramDevirtResolution::ByArg *Res);
 | 
						|
 | 
						|
  // Returns the global symbol name that is used to export information about the
 | 
						|
  // given vtable slot and list of arguments.
 | 
						|
  std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
 | 
						|
                            StringRef Name);
 | 
						|
 | 
						|
  bool shouldExportConstantsAsAbsoluteSymbols();
 | 
						|
 | 
						|
  // This function is called during the export phase to create a symbol
 | 
						|
  // definition containing information about the given vtable slot and list of
 | 
						|
  // arguments.
 | 
						|
  void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
 | 
						|
                    Constant *C);
 | 
						|
  void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
 | 
						|
                      uint32_t Const, uint32_t &Storage);
 | 
						|
 | 
						|
  // This function is called during the import phase to create a reference to
 | 
						|
  // the symbol definition created during the export phase.
 | 
						|
  Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
 | 
						|
                         StringRef Name);
 | 
						|
  Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
 | 
						|
                           StringRef Name, IntegerType *IntTy,
 | 
						|
                           uint32_t Storage);
 | 
						|
 | 
						|
  void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
 | 
						|
                            Constant *UniqueMemberAddr);
 | 
						|
  bool tryUniqueRetValOpt(unsigned BitWidth,
 | 
						|
                          MutableArrayRef<VirtualCallTarget> TargetsForSlot,
 | 
						|
                          CallSiteInfo &CSInfo,
 | 
						|
                          WholeProgramDevirtResolution::ByArg *Res,
 | 
						|
                          VTableSlot Slot, ArrayRef<uint64_t> Args);
 | 
						|
 | 
						|
  void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
 | 
						|
                             Constant *Byte, Constant *Bit);
 | 
						|
  bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
 | 
						|
                           VTableSlotInfo &SlotInfo,
 | 
						|
                           WholeProgramDevirtResolution *Res, VTableSlot Slot);
 | 
						|
 | 
						|
  void rebuildGlobal(VTableBits &B);
 | 
						|
 | 
						|
  // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
 | 
						|
  void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
 | 
						|
 | 
						|
  // If we were able to eliminate all unsafe uses for a type checked load,
 | 
						|
  // eliminate the associated type tests by replacing them with true.
 | 
						|
  void removeRedundantTypeTests();
 | 
						|
 | 
						|
  bool run();
 | 
						|
 | 
						|
  // Lower the module using the action and summary passed as command line
 | 
						|
  // arguments. For testing purposes only.
 | 
						|
  static bool runForTesting(
 | 
						|
      Module &M, function_ref<AAResults &(Function &)> AARGetter,
 | 
						|
      function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter);
 | 
						|
};
 | 
						|
 | 
						|
struct WholeProgramDevirt : public ModulePass {
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  bool UseCommandLine = false;
 | 
						|
 | 
						|
  ModuleSummaryIndex *ExportSummary;
 | 
						|
  const ModuleSummaryIndex *ImportSummary;
 | 
						|
 | 
						|
  WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
 | 
						|
    initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
 | 
						|
                     const ModuleSummaryIndex *ImportSummary)
 | 
						|
      : ModulePass(ID), ExportSummary(ExportSummary),
 | 
						|
        ImportSummary(ImportSummary) {
 | 
						|
    initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnModule(Module &M) override {
 | 
						|
    if (skipModule(M))
 | 
						|
      return false;
 | 
						|
 | 
						|
    auto OREGetter = function_ref<OptimizationRemarkEmitter &(Function *)>();
 | 
						|
 | 
						|
    if (UseCommandLine)
 | 
						|
      return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter);
 | 
						|
 | 
						|
    return DevirtModule(M, LegacyAARGetter(*this), OREGetter, ExportSummary,
 | 
						|
                        ImportSummary)
 | 
						|
        .run();
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<AssumptionCacheTracker>();
 | 
						|
    AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",
 | 
						|
                      "Whole program devirtualization", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",
 | 
						|
                    "Whole program devirtualization", false, false)
 | 
						|
char WholeProgramDevirt::ID = 0;
 | 
						|
 | 
						|
ModulePass *
 | 
						|
llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
 | 
						|
                                   const ModuleSummaryIndex *ImportSummary) {
 | 
						|
  return new WholeProgramDevirt(ExportSummary, ImportSummary);
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
 | 
						|
                                              ModuleAnalysisManager &AM) {
 | 
						|
  auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
 | 
						|
  auto AARGetter = [&](Function &F) -> AAResults & {
 | 
						|
    return FAM.getResult<AAManager>(F);
 | 
						|
  };
 | 
						|
  auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
 | 
						|
    return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
 | 
						|
  };
 | 
						|
  if (!DevirtModule(M, AARGetter, OREGetter, nullptr, nullptr).run())
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
  return PreservedAnalyses::none();
 | 
						|
}
 | 
						|
 | 
						|
bool DevirtModule::runForTesting(
 | 
						|
    Module &M, function_ref<AAResults &(Function &)> AARGetter,
 | 
						|
    function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
 | 
						|
  ModuleSummaryIndex Summary;
 | 
						|
 | 
						|
  // Handle the command-line summary arguments. This code is for testing
 | 
						|
  // purposes only, so we handle errors directly.
 | 
						|
  if (!ClReadSummary.empty()) {
 | 
						|
    ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
 | 
						|
                          ": ");
 | 
						|
    auto ReadSummaryFile =
 | 
						|
        ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
 | 
						|
 | 
						|
    yaml::Input In(ReadSummaryFile->getBuffer());
 | 
						|
    In >> Summary;
 | 
						|
    ExitOnErr(errorCodeToError(In.error()));
 | 
						|
  }
 | 
						|
 | 
						|
  bool Changed =
 | 
						|
      DevirtModule(
 | 
						|
          M, AARGetter, OREGetter,
 | 
						|
          ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
 | 
						|
          ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr)
 | 
						|
          .run();
 | 
						|
 | 
						|
  if (!ClWriteSummary.empty()) {
 | 
						|
    ExitOnError ExitOnErr(
 | 
						|
        "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
 | 
						|
    std::error_code EC;
 | 
						|
    raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::F_Text);
 | 
						|
    ExitOnErr(errorCodeToError(EC));
 | 
						|
 | 
						|
    yaml::Output Out(OS);
 | 
						|
    Out << Summary;
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
void DevirtModule::buildTypeIdentifierMap(
 | 
						|
    std::vector<VTableBits> &Bits,
 | 
						|
    DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
 | 
						|
  DenseMap<GlobalVariable *, VTableBits *> GVToBits;
 | 
						|
  Bits.reserve(M.getGlobalList().size());
 | 
						|
  SmallVector<MDNode *, 2> Types;
 | 
						|
  for (GlobalVariable &GV : M.globals()) {
 | 
						|
    Types.clear();
 | 
						|
    GV.getMetadata(LLVMContext::MD_type, Types);
 | 
						|
    if (Types.empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    VTableBits *&BitsPtr = GVToBits[&GV];
 | 
						|
    if (!BitsPtr) {
 | 
						|
      Bits.emplace_back();
 | 
						|
      Bits.back().GV = &GV;
 | 
						|
      Bits.back().ObjectSize =
 | 
						|
          M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
 | 
						|
      BitsPtr = &Bits.back();
 | 
						|
    }
 | 
						|
 | 
						|
    for (MDNode *Type : Types) {
 | 
						|
      auto TypeID = Type->getOperand(1).get();
 | 
						|
 | 
						|
      uint64_t Offset =
 | 
						|
          cast<ConstantInt>(
 | 
						|
              cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
 | 
						|
              ->getZExtValue();
 | 
						|
 | 
						|
      TypeIdMap[TypeID].insert({BitsPtr, Offset});
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Constant *DevirtModule::getPointerAtOffset(Constant *I, uint64_t Offset) {
 | 
						|
  if (I->getType()->isPointerTy()) {
 | 
						|
    if (Offset == 0)
 | 
						|
      return I;
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  const DataLayout &DL = M.getDataLayout();
 | 
						|
 | 
						|
  if (auto *C = dyn_cast<ConstantStruct>(I)) {
 | 
						|
    const StructLayout *SL = DL.getStructLayout(C->getType());
 | 
						|
    if (Offset >= SL->getSizeInBytes())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    unsigned Op = SL->getElementContainingOffset(Offset);
 | 
						|
    return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
 | 
						|
                              Offset - SL->getElementOffset(Op));
 | 
						|
  }
 | 
						|
  if (auto *C = dyn_cast<ConstantArray>(I)) {
 | 
						|
    ArrayType *VTableTy = C->getType();
 | 
						|
    uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType());
 | 
						|
 | 
						|
    unsigned Op = Offset / ElemSize;
 | 
						|
    if (Op >= C->getNumOperands())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
 | 
						|
                              Offset % ElemSize);
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool DevirtModule::tryFindVirtualCallTargets(
 | 
						|
    std::vector<VirtualCallTarget> &TargetsForSlot,
 | 
						|
    const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
 | 
						|
  for (const TypeMemberInfo &TM : TypeMemberInfos) {
 | 
						|
    if (!TM.Bits->GV->isConstant())
 | 
						|
      return false;
 | 
						|
 | 
						|
    Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
 | 
						|
                                       TM.Offset + ByteOffset);
 | 
						|
    if (!Ptr)
 | 
						|
      return false;
 | 
						|
 | 
						|
    auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
 | 
						|
    if (!Fn)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // We can disregard __cxa_pure_virtual as a possible call target, as
 | 
						|
    // calls to pure virtuals are UB.
 | 
						|
    if (Fn->getName() == "__cxa_pure_virtual")
 | 
						|
      continue;
 | 
						|
 | 
						|
    TargetsForSlot.push_back({Fn, &TM});
 | 
						|
  }
 | 
						|
 | 
						|
  // Give up if we couldn't find any targets.
 | 
						|
  return !TargetsForSlot.empty();
 | 
						|
}
 | 
						|
 | 
						|
void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
 | 
						|
                                         Constant *TheFn, bool &IsExported) {
 | 
						|
  auto Apply = [&](CallSiteInfo &CSInfo) {
 | 
						|
    for (auto &&VCallSite : CSInfo.CallSites) {
 | 
						|
      if (RemarksEnabled)
 | 
						|
        VCallSite.emitRemark("single-impl", TheFn->getName(), OREGetter);
 | 
						|
      VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
 | 
						|
          TheFn, VCallSite.CS.getCalledValue()->getType()));
 | 
						|
      // This use is no longer unsafe.
 | 
						|
      if (VCallSite.NumUnsafeUses)
 | 
						|
        --*VCallSite.NumUnsafeUses;
 | 
						|
    }
 | 
						|
    if (CSInfo.isExported()) {
 | 
						|
      IsExported = true;
 | 
						|
      CSInfo.markDevirt();
 | 
						|
    }
 | 
						|
  };
 | 
						|
  Apply(SlotInfo.CSInfo);
 | 
						|
  for (auto &P : SlotInfo.ConstCSInfo)
 | 
						|
    Apply(P.second);
 | 
						|
}
 | 
						|
 | 
						|
bool DevirtModule::trySingleImplDevirt(
 | 
						|
    MutableArrayRef<VirtualCallTarget> TargetsForSlot,
 | 
						|
    VTableSlotInfo &SlotInfo, WholeProgramDevirtResolution *Res) {
 | 
						|
  // See if the program contains a single implementation of this virtual
 | 
						|
  // function.
 | 
						|
  Function *TheFn = TargetsForSlot[0].Fn;
 | 
						|
  for (auto &&Target : TargetsForSlot)
 | 
						|
    if (TheFn != Target.Fn)
 | 
						|
      return false;
 | 
						|
 | 
						|
  // If so, update each call site to call that implementation directly.
 | 
						|
  if (RemarksEnabled)
 | 
						|
    TargetsForSlot[0].WasDevirt = true;
 | 
						|
 | 
						|
  bool IsExported = false;
 | 
						|
  applySingleImplDevirt(SlotInfo, TheFn, IsExported);
 | 
						|
  if (!IsExported)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the only implementation has local linkage, we must promote to external
 | 
						|
  // to make it visible to thin LTO objects. We can only get here during the
 | 
						|
  // ThinLTO export phase.
 | 
						|
  if (TheFn->hasLocalLinkage()) {
 | 
						|
    std::string NewName = (TheFn->getName() + "$merged").str();
 | 
						|
 | 
						|
    // Since we are renaming the function, any comdats with the same name must
 | 
						|
    // also be renamed. This is required when targeting COFF, as the comdat name
 | 
						|
    // must match one of the names of the symbols in the comdat.
 | 
						|
    if (Comdat *C = TheFn->getComdat()) {
 | 
						|
      if (C->getName() == TheFn->getName()) {
 | 
						|
        Comdat *NewC = M.getOrInsertComdat(NewName);
 | 
						|
        NewC->setSelectionKind(C->getSelectionKind());
 | 
						|
        for (GlobalObject &GO : M.global_objects())
 | 
						|
          if (GO.getComdat() == C)
 | 
						|
            GO.setComdat(NewC);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    TheFn->setLinkage(GlobalValue::ExternalLinkage);
 | 
						|
    TheFn->setVisibility(GlobalValue::HiddenVisibility);
 | 
						|
    TheFn->setName(NewName);
 | 
						|
  }
 | 
						|
 | 
						|
  Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
 | 
						|
  Res->SingleImplName = TheFn->getName();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool DevirtModule::tryEvaluateFunctionsWithArgs(
 | 
						|
    MutableArrayRef<VirtualCallTarget> TargetsForSlot,
 | 
						|
    ArrayRef<uint64_t> Args) {
 | 
						|
  // Evaluate each function and store the result in each target's RetVal
 | 
						|
  // field.
 | 
						|
  for (VirtualCallTarget &Target : TargetsForSlot) {
 | 
						|
    if (Target.Fn->arg_size() != Args.size() + 1)
 | 
						|
      return false;
 | 
						|
 | 
						|
    Evaluator Eval(M.getDataLayout(), nullptr);
 | 
						|
    SmallVector<Constant *, 2> EvalArgs;
 | 
						|
    EvalArgs.push_back(
 | 
						|
        Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
 | 
						|
    for (unsigned I = 0; I != Args.size(); ++I) {
 | 
						|
      auto *ArgTy = dyn_cast<IntegerType>(
 | 
						|
          Target.Fn->getFunctionType()->getParamType(I + 1));
 | 
						|
      if (!ArgTy)
 | 
						|
        return false;
 | 
						|
      EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
 | 
						|
    }
 | 
						|
 | 
						|
    Constant *RetVal;
 | 
						|
    if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
 | 
						|
        !isa<ConstantInt>(RetVal))
 | 
						|
      return false;
 | 
						|
    Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
 | 
						|
                                         uint64_t TheRetVal) {
 | 
						|
  for (auto Call : CSInfo.CallSites)
 | 
						|
    Call.replaceAndErase(
 | 
						|
        "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
 | 
						|
        ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal));
 | 
						|
  CSInfo.markDevirt();
 | 
						|
}
 | 
						|
 | 
						|
bool DevirtModule::tryUniformRetValOpt(
 | 
						|
    MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
 | 
						|
    WholeProgramDevirtResolution::ByArg *Res) {
 | 
						|
  // Uniform return value optimization. If all functions return the same
 | 
						|
  // constant, replace all calls with that constant.
 | 
						|
  uint64_t TheRetVal = TargetsForSlot[0].RetVal;
 | 
						|
  for (const VirtualCallTarget &Target : TargetsForSlot)
 | 
						|
    if (Target.RetVal != TheRetVal)
 | 
						|
      return false;
 | 
						|
 | 
						|
  if (CSInfo.isExported()) {
 | 
						|
    Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
 | 
						|
    Res->Info = TheRetVal;
 | 
						|
  }
 | 
						|
 | 
						|
  applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
 | 
						|
  if (RemarksEnabled)
 | 
						|
    for (auto &&Target : TargetsForSlot)
 | 
						|
      Target.WasDevirt = true;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
std::string DevirtModule::getGlobalName(VTableSlot Slot,
 | 
						|
                                        ArrayRef<uint64_t> Args,
 | 
						|
                                        StringRef Name) {
 | 
						|
  std::string FullName = "__typeid_";
 | 
						|
  raw_string_ostream OS(FullName);
 | 
						|
  OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
 | 
						|
  for (uint64_t Arg : Args)
 | 
						|
    OS << '_' << Arg;
 | 
						|
  OS << '_' << Name;
 | 
						|
  return OS.str();
 | 
						|
}
 | 
						|
 | 
						|
bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
 | 
						|
  Triple T(M.getTargetTriple());
 | 
						|
  return (T.getArch() == Triple::x86 || T.getArch() == Triple::x86_64) &&
 | 
						|
         T.getObjectFormat() == Triple::ELF;
 | 
						|
}
 | 
						|
 | 
						|
void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
 | 
						|
                                StringRef Name, Constant *C) {
 | 
						|
  GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
 | 
						|
                                        getGlobalName(Slot, Args, Name), C, &M);
 | 
						|
  GA->setVisibility(GlobalValue::HiddenVisibility);
 | 
						|
}
 | 
						|
 | 
						|
void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
 | 
						|
                                  StringRef Name, uint32_t Const,
 | 
						|
                                  uint32_t &Storage) {
 | 
						|
  if (shouldExportConstantsAsAbsoluteSymbols()) {
 | 
						|
    exportGlobal(
 | 
						|
        Slot, Args, Name,
 | 
						|
        ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Storage = Const;
 | 
						|
}
 | 
						|
 | 
						|
Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
 | 
						|
                                     StringRef Name) {
 | 
						|
  Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty);
 | 
						|
  auto *GV = dyn_cast<GlobalVariable>(C);
 | 
						|
  if (GV)
 | 
						|
    GV->setVisibility(GlobalValue::HiddenVisibility);
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
 | 
						|
                                       StringRef Name, IntegerType *IntTy,
 | 
						|
                                       uint32_t Storage) {
 | 
						|
  if (!shouldExportConstantsAsAbsoluteSymbols())
 | 
						|
    return ConstantInt::get(IntTy, Storage);
 | 
						|
 | 
						|
  Constant *C = importGlobal(Slot, Args, Name);
 | 
						|
  auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
 | 
						|
  C = ConstantExpr::getPtrToInt(C, IntTy);
 | 
						|
 | 
						|
  // We only need to set metadata if the global is newly created, in which
 | 
						|
  // case it would not have hidden visibility.
 | 
						|
  if (GV->getMetadata(LLVMContext::MD_absolute_symbol))
 | 
						|
    return C;
 | 
						|
 | 
						|
  auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
 | 
						|
    auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
 | 
						|
    auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
 | 
						|
    GV->setMetadata(LLVMContext::MD_absolute_symbol,
 | 
						|
                    MDNode::get(M.getContext(), {MinC, MaxC}));
 | 
						|
  };
 | 
						|
  unsigned AbsWidth = IntTy->getBitWidth();
 | 
						|
  if (AbsWidth == IntPtrTy->getBitWidth())
 | 
						|
    SetAbsRange(~0ull, ~0ull); // Full set.
 | 
						|
  else
 | 
						|
    SetAbsRange(0, 1ull << AbsWidth);
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
 | 
						|
                                        bool IsOne,
 | 
						|
                                        Constant *UniqueMemberAddr) {
 | 
						|
  for (auto &&Call : CSInfo.CallSites) {
 | 
						|
    IRBuilder<> B(Call.CS.getInstruction());
 | 
						|
    Value *Cmp =
 | 
						|
        B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
 | 
						|
                     B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr);
 | 
						|
    Cmp = B.CreateZExt(Cmp, Call.CS->getType());
 | 
						|
    Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
 | 
						|
                         Cmp);
 | 
						|
  }
 | 
						|
  CSInfo.markDevirt();
 | 
						|
}
 | 
						|
 | 
						|
bool DevirtModule::tryUniqueRetValOpt(
 | 
						|
    unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
 | 
						|
    CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
 | 
						|
    VTableSlot Slot, ArrayRef<uint64_t> Args) {
 | 
						|
  // IsOne controls whether we look for a 0 or a 1.
 | 
						|
  auto tryUniqueRetValOptFor = [&](bool IsOne) {
 | 
						|
    const TypeMemberInfo *UniqueMember = nullptr;
 | 
						|
    for (const VirtualCallTarget &Target : TargetsForSlot) {
 | 
						|
      if (Target.RetVal == (IsOne ? 1 : 0)) {
 | 
						|
        if (UniqueMember)
 | 
						|
          return false;
 | 
						|
        UniqueMember = Target.TM;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // We should have found a unique member or bailed out by now. We already
 | 
						|
    // checked for a uniform return value in tryUniformRetValOpt.
 | 
						|
    assert(UniqueMember);
 | 
						|
 | 
						|
    Constant *UniqueMemberAddr =
 | 
						|
        ConstantExpr::getBitCast(UniqueMember->Bits->GV, Int8PtrTy);
 | 
						|
    UniqueMemberAddr = ConstantExpr::getGetElementPtr(
 | 
						|
        Int8Ty, UniqueMemberAddr,
 | 
						|
        ConstantInt::get(Int64Ty, UniqueMember->Offset));
 | 
						|
 | 
						|
    if (CSInfo.isExported()) {
 | 
						|
      Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
 | 
						|
      Res->Info = IsOne;
 | 
						|
 | 
						|
      exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
 | 
						|
    }
 | 
						|
 | 
						|
    // Replace each call with the comparison.
 | 
						|
    applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
 | 
						|
                         UniqueMemberAddr);
 | 
						|
 | 
						|
    // Update devirtualization statistics for targets.
 | 
						|
    if (RemarksEnabled)
 | 
						|
      for (auto &&Target : TargetsForSlot)
 | 
						|
        Target.WasDevirt = true;
 | 
						|
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
 | 
						|
  if (BitWidth == 1) {
 | 
						|
    if (tryUniqueRetValOptFor(true))
 | 
						|
      return true;
 | 
						|
    if (tryUniqueRetValOptFor(false))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
 | 
						|
                                         Constant *Byte, Constant *Bit) {
 | 
						|
  for (auto Call : CSInfo.CallSites) {
 | 
						|
    auto *RetType = cast<IntegerType>(Call.CS.getType());
 | 
						|
    IRBuilder<> B(Call.CS.getInstruction());
 | 
						|
    Value *Addr =
 | 
						|
        B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
 | 
						|
    if (RetType->getBitWidth() == 1) {
 | 
						|
      Value *Bits = B.CreateLoad(Addr);
 | 
						|
      Value *BitsAndBit = B.CreateAnd(Bits, Bit);
 | 
						|
      auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
 | 
						|
      Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
 | 
						|
                           OREGetter, IsBitSet);
 | 
						|
    } else {
 | 
						|
      Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
 | 
						|
      Value *Val = B.CreateLoad(RetType, ValAddr);
 | 
						|
      Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
 | 
						|
                           OREGetter, Val);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  CSInfo.markDevirt();
 | 
						|
}
 | 
						|
 | 
						|
bool DevirtModule::tryVirtualConstProp(
 | 
						|
    MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
 | 
						|
    WholeProgramDevirtResolution *Res, VTableSlot Slot) {
 | 
						|
  // This only works if the function returns an integer.
 | 
						|
  auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
 | 
						|
  if (!RetType)
 | 
						|
    return false;
 | 
						|
  unsigned BitWidth = RetType->getBitWidth();
 | 
						|
  if (BitWidth > 64)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure that each function is defined, does not access memory, takes at
 | 
						|
  // least one argument, does not use its first argument (which we assume is
 | 
						|
  // 'this'), and has the same return type.
 | 
						|
  //
 | 
						|
  // Note that we test whether this copy of the function is readnone, rather
 | 
						|
  // than testing function attributes, which must hold for any copy of the
 | 
						|
  // function, even a less optimized version substituted at link time. This is
 | 
						|
  // sound because the virtual constant propagation optimizations effectively
 | 
						|
  // inline all implementations of the virtual function into each call site,
 | 
						|
  // rather than using function attributes to perform local optimization.
 | 
						|
  for (VirtualCallTarget &Target : TargetsForSlot) {
 | 
						|
    if (Target.Fn->isDeclaration() ||
 | 
						|
        computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
 | 
						|
            MAK_ReadNone ||
 | 
						|
        Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
 | 
						|
        Target.Fn->getReturnType() != RetType)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
 | 
						|
    if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
 | 
						|
      continue;
 | 
						|
 | 
						|
    WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
 | 
						|
    if (Res)
 | 
						|
      ResByArg = &Res->ResByArg[CSByConstantArg.first];
 | 
						|
 | 
						|
    if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
 | 
						|
                           ResByArg, Slot, CSByConstantArg.first))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Find an allocation offset in bits in all vtables associated with the
 | 
						|
    // type.
 | 
						|
    uint64_t AllocBefore =
 | 
						|
        findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
 | 
						|
    uint64_t AllocAfter =
 | 
						|
        findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
 | 
						|
 | 
						|
    // Calculate the total amount of padding needed to store a value at both
 | 
						|
    // ends of the object.
 | 
						|
    uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
 | 
						|
    for (auto &&Target : TargetsForSlot) {
 | 
						|
      TotalPaddingBefore += std::max<int64_t>(
 | 
						|
          (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
 | 
						|
      TotalPaddingAfter += std::max<int64_t>(
 | 
						|
          (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    // If the amount of padding is too large, give up.
 | 
						|
    // FIXME: do something smarter here.
 | 
						|
    if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Calculate the offset to the value as a (possibly negative) byte offset
 | 
						|
    // and (if applicable) a bit offset, and store the values in the targets.
 | 
						|
    int64_t OffsetByte;
 | 
						|
    uint64_t OffsetBit;
 | 
						|
    if (TotalPaddingBefore <= TotalPaddingAfter)
 | 
						|
      setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
 | 
						|
                            OffsetBit);
 | 
						|
    else
 | 
						|
      setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
 | 
						|
                           OffsetBit);
 | 
						|
 | 
						|
    if (RemarksEnabled)
 | 
						|
      for (auto &&Target : TargetsForSlot)
 | 
						|
        Target.WasDevirt = true;
 | 
						|
 | 
						|
 | 
						|
    if (CSByConstantArg.second.isExported()) {
 | 
						|
      ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
 | 
						|
      exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
 | 
						|
                     ResByArg->Byte);
 | 
						|
      exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
 | 
						|
                     ResByArg->Bit);
 | 
						|
    }
 | 
						|
 | 
						|
    // Rewrite each call to a load from OffsetByte/OffsetBit.
 | 
						|
    Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
 | 
						|
    Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
 | 
						|
    applyVirtualConstProp(CSByConstantArg.second,
 | 
						|
                          TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void DevirtModule::rebuildGlobal(VTableBits &B) {
 | 
						|
  if (B.Before.Bytes.empty() && B.After.Bytes.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Align each byte array to pointer width.
 | 
						|
  unsigned PointerSize = M.getDataLayout().getPointerSize();
 | 
						|
  B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize));
 | 
						|
  B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize));
 | 
						|
 | 
						|
  // Before was stored in reverse order; flip it now.
 | 
						|
  for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
 | 
						|
    std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
 | 
						|
 | 
						|
  // Build an anonymous global containing the before bytes, followed by the
 | 
						|
  // original initializer, followed by the after bytes.
 | 
						|
  auto NewInit = ConstantStruct::getAnon(
 | 
						|
      {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
 | 
						|
       B.GV->getInitializer(),
 | 
						|
       ConstantDataArray::get(M.getContext(), B.After.Bytes)});
 | 
						|
  auto NewGV =
 | 
						|
      new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
 | 
						|
                         GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
 | 
						|
  NewGV->setSection(B.GV->getSection());
 | 
						|
  NewGV->setComdat(B.GV->getComdat());
 | 
						|
 | 
						|
  // Copy the original vtable's metadata to the anonymous global, adjusting
 | 
						|
  // offsets as required.
 | 
						|
  NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
 | 
						|
 | 
						|
  // Build an alias named after the original global, pointing at the second
 | 
						|
  // element (the original initializer).
 | 
						|
  auto Alias = GlobalAlias::create(
 | 
						|
      B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
 | 
						|
      ConstantExpr::getGetElementPtr(
 | 
						|
          NewInit->getType(), NewGV,
 | 
						|
          ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
 | 
						|
                               ConstantInt::get(Int32Ty, 1)}),
 | 
						|
      &M);
 | 
						|
  Alias->setVisibility(B.GV->getVisibility());
 | 
						|
  Alias->takeName(B.GV);
 | 
						|
 | 
						|
  B.GV->replaceAllUsesWith(Alias);
 | 
						|
  B.GV->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
bool DevirtModule::areRemarksEnabled() {
 | 
						|
  const auto &FL = M.getFunctionList();
 | 
						|
  if (FL.empty())
 | 
						|
    return false;
 | 
						|
  const Function &Fn = FL.front();
 | 
						|
 | 
						|
  const auto &BBL = Fn.getBasicBlockList();
 | 
						|
  if (BBL.empty())
 | 
						|
    return false;
 | 
						|
  auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front());
 | 
						|
  return DI.isEnabled();
 | 
						|
}
 | 
						|
 | 
						|
void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc,
 | 
						|
                                     Function *AssumeFunc) {
 | 
						|
  // Find all virtual calls via a virtual table pointer %p under an assumption
 | 
						|
  // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
 | 
						|
  // points to a member of the type identifier %md. Group calls by (type ID,
 | 
						|
  // offset) pair (effectively the identity of the virtual function) and store
 | 
						|
  // to CallSlots.
 | 
						|
  DenseSet<Value *> SeenPtrs;
 | 
						|
  for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
 | 
						|
       I != E;) {
 | 
						|
    auto CI = dyn_cast<CallInst>(I->getUser());
 | 
						|
    ++I;
 | 
						|
    if (!CI)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Search for virtual calls based on %p and add them to DevirtCalls.
 | 
						|
    SmallVector<DevirtCallSite, 1> DevirtCalls;
 | 
						|
    SmallVector<CallInst *, 1> Assumes;
 | 
						|
    findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI);
 | 
						|
 | 
						|
    // If we found any, add them to CallSlots. Only do this if we haven't seen
 | 
						|
    // the vtable pointer before, as it may have been CSE'd with pointers from
 | 
						|
    // other call sites, and we don't want to process call sites multiple times.
 | 
						|
    if (!Assumes.empty()) {
 | 
						|
      Metadata *TypeId =
 | 
						|
          cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
 | 
						|
      Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
 | 
						|
      if (SeenPtrs.insert(Ptr).second) {
 | 
						|
        for (DevirtCallSite Call : DevirtCalls) {
 | 
						|
          CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // We no longer need the assumes or the type test.
 | 
						|
    for (auto Assume : Assumes)
 | 
						|
      Assume->eraseFromParent();
 | 
						|
    // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
 | 
						|
    // may use the vtable argument later.
 | 
						|
    if (CI->use_empty())
 | 
						|
      CI->eraseFromParent();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
 | 
						|
  Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
 | 
						|
 | 
						|
  for (auto I = TypeCheckedLoadFunc->use_begin(),
 | 
						|
            E = TypeCheckedLoadFunc->use_end();
 | 
						|
       I != E;) {
 | 
						|
    auto CI = dyn_cast<CallInst>(I->getUser());
 | 
						|
    ++I;
 | 
						|
    if (!CI)
 | 
						|
      continue;
 | 
						|
 | 
						|
    Value *Ptr = CI->getArgOperand(0);
 | 
						|
    Value *Offset = CI->getArgOperand(1);
 | 
						|
    Value *TypeIdValue = CI->getArgOperand(2);
 | 
						|
    Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
 | 
						|
 | 
						|
    SmallVector<DevirtCallSite, 1> DevirtCalls;
 | 
						|
    SmallVector<Instruction *, 1> LoadedPtrs;
 | 
						|
    SmallVector<Instruction *, 1> Preds;
 | 
						|
    bool HasNonCallUses = false;
 | 
						|
    findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
 | 
						|
                                               HasNonCallUses, CI);
 | 
						|
 | 
						|
    // Start by generating "pessimistic" code that explicitly loads the function
 | 
						|
    // pointer from the vtable and performs the type check. If possible, we will
 | 
						|
    // eliminate the load and the type check later.
 | 
						|
 | 
						|
    // If possible, only generate the load at the point where it is used.
 | 
						|
    // This helps avoid unnecessary spills.
 | 
						|
    IRBuilder<> LoadB(
 | 
						|
        (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
 | 
						|
    Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
 | 
						|
    Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
 | 
						|
    Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
 | 
						|
 | 
						|
    for (Instruction *LoadedPtr : LoadedPtrs) {
 | 
						|
      LoadedPtr->replaceAllUsesWith(LoadedValue);
 | 
						|
      LoadedPtr->eraseFromParent();
 | 
						|
    }
 | 
						|
 | 
						|
    // Likewise for the type test.
 | 
						|
    IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
 | 
						|
    CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
 | 
						|
 | 
						|
    for (Instruction *Pred : Preds) {
 | 
						|
      Pred->replaceAllUsesWith(TypeTestCall);
 | 
						|
      Pred->eraseFromParent();
 | 
						|
    }
 | 
						|
 | 
						|
    // We have already erased any extractvalue instructions that refer to the
 | 
						|
    // intrinsic call, but the intrinsic may have other non-extractvalue uses
 | 
						|
    // (although this is unlikely). In that case, explicitly build a pair and
 | 
						|
    // RAUW it.
 | 
						|
    if (!CI->use_empty()) {
 | 
						|
      Value *Pair = UndefValue::get(CI->getType());
 | 
						|
      IRBuilder<> B(CI);
 | 
						|
      Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
 | 
						|
      Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
 | 
						|
      CI->replaceAllUsesWith(Pair);
 | 
						|
    }
 | 
						|
 | 
						|
    // The number of unsafe uses is initially the number of uses.
 | 
						|
    auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
 | 
						|
    NumUnsafeUses = DevirtCalls.size();
 | 
						|
 | 
						|
    // If the function pointer has a non-call user, we cannot eliminate the type
 | 
						|
    // check, as one of those users may eventually call the pointer. Increment
 | 
						|
    // the unsafe use count to make sure it cannot reach zero.
 | 
						|
    if (HasNonCallUses)
 | 
						|
      ++NumUnsafeUses;
 | 
						|
    for (DevirtCallSite Call : DevirtCalls) {
 | 
						|
      CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS,
 | 
						|
                                                   &NumUnsafeUses);
 | 
						|
    }
 | 
						|
 | 
						|
    CI->eraseFromParent();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
 | 
						|
  const TypeIdSummary *TidSummary =
 | 
						|
      ImportSummary->getTypeIdSummary(cast<MDString>(Slot.TypeID)->getString());
 | 
						|
  if (!TidSummary)
 | 
						|
    return;
 | 
						|
  auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
 | 
						|
  if (ResI == TidSummary->WPDRes.end())
 | 
						|
    return;
 | 
						|
  const WholeProgramDevirtResolution &Res = ResI->second;
 | 
						|
 | 
						|
  if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
 | 
						|
    // The type of the function in the declaration is irrelevant because every
 | 
						|
    // call site will cast it to the correct type.
 | 
						|
    auto *SingleImpl = M.getOrInsertFunction(
 | 
						|
        Res.SingleImplName, Type::getVoidTy(M.getContext()));
 | 
						|
 | 
						|
    // This is the import phase so we should not be exporting anything.
 | 
						|
    bool IsExported = false;
 | 
						|
    applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
 | 
						|
    assert(!IsExported);
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
 | 
						|
    auto I = Res.ResByArg.find(CSByConstantArg.first);
 | 
						|
    if (I == Res.ResByArg.end())
 | 
						|
      continue;
 | 
						|
    auto &ResByArg = I->second;
 | 
						|
    // FIXME: We should figure out what to do about the "function name" argument
 | 
						|
    // to the apply* functions, as the function names are unavailable during the
 | 
						|
    // importing phase. For now we just pass the empty string. This does not
 | 
						|
    // impact correctness because the function names are just used for remarks.
 | 
						|
    switch (ResByArg.TheKind) {
 | 
						|
    case WholeProgramDevirtResolution::ByArg::UniformRetVal:
 | 
						|
      applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
 | 
						|
      break;
 | 
						|
    case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
 | 
						|
      Constant *UniqueMemberAddr =
 | 
						|
          importGlobal(Slot, CSByConstantArg.first, "unique_member");
 | 
						|
      applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
 | 
						|
                           UniqueMemberAddr);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
 | 
						|
      Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
 | 
						|
                                      Int32Ty, ResByArg.Byte);
 | 
						|
      Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
 | 
						|
                                     ResByArg.Bit);
 | 
						|
      applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void DevirtModule::removeRedundantTypeTests() {
 | 
						|
  auto True = ConstantInt::getTrue(M.getContext());
 | 
						|
  for (auto &&U : NumUnsafeUsesForTypeTest) {
 | 
						|
    if (U.second == 0) {
 | 
						|
      U.first->replaceAllUsesWith(True);
 | 
						|
      U.first->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool DevirtModule::run() {
 | 
						|
  Function *TypeTestFunc =
 | 
						|
      M.getFunction(Intrinsic::getName(Intrinsic::type_test));
 | 
						|
  Function *TypeCheckedLoadFunc =
 | 
						|
      M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
 | 
						|
  Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
 | 
						|
 | 
						|
  // Normally if there are no users of the devirtualization intrinsics in the
 | 
						|
  // module, this pass has nothing to do. But if we are exporting, we also need
 | 
						|
  // to handle any users that appear only in the function summaries.
 | 
						|
  if (!ExportSummary &&
 | 
						|
      (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
 | 
						|
       AssumeFunc->use_empty()) &&
 | 
						|
      (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (TypeTestFunc && AssumeFunc)
 | 
						|
    scanTypeTestUsers(TypeTestFunc, AssumeFunc);
 | 
						|
 | 
						|
  if (TypeCheckedLoadFunc)
 | 
						|
    scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
 | 
						|
 | 
						|
  if (ImportSummary) {
 | 
						|
    for (auto &S : CallSlots)
 | 
						|
      importResolution(S.first, S.second);
 | 
						|
 | 
						|
    removeRedundantTypeTests();
 | 
						|
 | 
						|
    // The rest of the code is only necessary when exporting or during regular
 | 
						|
    // LTO, so we are done.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Rebuild type metadata into a map for easy lookup.
 | 
						|
  std::vector<VTableBits> Bits;
 | 
						|
  DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
 | 
						|
  buildTypeIdentifierMap(Bits, TypeIdMap);
 | 
						|
  if (TypeIdMap.empty())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Collect information from summary about which calls to try to devirtualize.
 | 
						|
  if (ExportSummary) {
 | 
						|
    DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
 | 
						|
    for (auto &P : TypeIdMap) {
 | 
						|
      if (auto *TypeId = dyn_cast<MDString>(P.first))
 | 
						|
        MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
 | 
						|
            TypeId);
 | 
						|
    }
 | 
						|
 | 
						|
    for (auto &P : *ExportSummary) {
 | 
						|
      for (auto &S : P.second.SummaryList) {
 | 
						|
        auto *FS = dyn_cast<FunctionSummary>(S.get());
 | 
						|
        if (!FS)
 | 
						|
          continue;
 | 
						|
        // FIXME: Only add live functions.
 | 
						|
        for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
 | 
						|
          for (Metadata *MD : MetadataByGUID[VF.GUID]) {
 | 
						|
            CallSlots[{MD, VF.Offset}].CSInfo.SummaryHasTypeTestAssumeUsers =
 | 
						|
                true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
 | 
						|
          for (Metadata *MD : MetadataByGUID[VF.GUID]) {
 | 
						|
            CallSlots[{MD, VF.Offset}]
 | 
						|
                .CSInfo.SummaryTypeCheckedLoadUsers.push_back(FS);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        for (const FunctionSummary::ConstVCall &VC :
 | 
						|
             FS->type_test_assume_const_vcalls()) {
 | 
						|
          for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
 | 
						|
            CallSlots[{MD, VC.VFunc.Offset}]
 | 
						|
                .ConstCSInfo[VC.Args]
 | 
						|
                .SummaryHasTypeTestAssumeUsers = true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        for (const FunctionSummary::ConstVCall &VC :
 | 
						|
             FS->type_checked_load_const_vcalls()) {
 | 
						|
          for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
 | 
						|
            CallSlots[{MD, VC.VFunc.Offset}]
 | 
						|
                .ConstCSInfo[VC.Args]
 | 
						|
                .SummaryTypeCheckedLoadUsers.push_back(FS);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // For each (type, offset) pair:
 | 
						|
  bool DidVirtualConstProp = false;
 | 
						|
  std::map<std::string, Function*> DevirtTargets;
 | 
						|
  for (auto &S : CallSlots) {
 | 
						|
    // Search each of the members of the type identifier for the virtual
 | 
						|
    // function implementation at offset S.first.ByteOffset, and add to
 | 
						|
    // TargetsForSlot.
 | 
						|
    std::vector<VirtualCallTarget> TargetsForSlot;
 | 
						|
    if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID],
 | 
						|
                                  S.first.ByteOffset)) {
 | 
						|
      WholeProgramDevirtResolution *Res = nullptr;
 | 
						|
      if (ExportSummary && isa<MDString>(S.first.TypeID))
 | 
						|
        Res = &ExportSummary
 | 
						|
                   ->getOrInsertTypeIdSummary(
 | 
						|
                       cast<MDString>(S.first.TypeID)->getString())
 | 
						|
                   .WPDRes[S.first.ByteOffset];
 | 
						|
 | 
						|
      if (!trySingleImplDevirt(TargetsForSlot, S.second, Res) &&
 | 
						|
          tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first))
 | 
						|
        DidVirtualConstProp = true;
 | 
						|
 | 
						|
      // Collect functions devirtualized at least for one call site for stats.
 | 
						|
      if (RemarksEnabled)
 | 
						|
        for (const auto &T : TargetsForSlot)
 | 
						|
          if (T.WasDevirt)
 | 
						|
            DevirtTargets[T.Fn->getName()] = T.Fn;
 | 
						|
    }
 | 
						|
 | 
						|
    // CFI-specific: if we are exporting and any llvm.type.checked.load
 | 
						|
    // intrinsics were *not* devirtualized, we need to add the resulting
 | 
						|
    // llvm.type.test intrinsics to the function summaries so that the
 | 
						|
    // LowerTypeTests pass will export them.
 | 
						|
    if (ExportSummary && isa<MDString>(S.first.TypeID)) {
 | 
						|
      auto GUID =
 | 
						|
          GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
 | 
						|
      for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
 | 
						|
        FS->addTypeTest(GUID);
 | 
						|
      for (auto &CCS : S.second.ConstCSInfo)
 | 
						|
        for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
 | 
						|
          FS->addTypeTest(GUID);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (RemarksEnabled) {
 | 
						|
    // Generate remarks for each devirtualized function.
 | 
						|
    for (const auto &DT : DevirtTargets) {
 | 
						|
      Function *F = DT.second;
 | 
						|
 | 
						|
      // In the new pass manager, we can request the optimization
 | 
						|
      // remark emitter pass on a per-function-basis, which the
 | 
						|
      // OREGetter will do for us.
 | 
						|
      // In the old pass manager, this is harder, so we just build
 | 
						|
      // a optimization remark emitter on the fly, when we need it.
 | 
						|
      std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
 | 
						|
      OptimizationRemarkEmitter *ORE;
 | 
						|
      if (OREGetter)
 | 
						|
        ORE = &OREGetter(F);
 | 
						|
      else {
 | 
						|
        OwnedORE = make_unique<OptimizationRemarkEmitter>(F);
 | 
						|
        ORE = OwnedORE.get();
 | 
						|
      }
 | 
						|
 | 
						|
      using namespace ore;
 | 
						|
      ORE->emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
 | 
						|
                << "devirtualized " << NV("FunctionName", F->getName()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  removeRedundantTypeTests();
 | 
						|
 | 
						|
  // Rebuild each global we touched as part of virtual constant propagation to
 | 
						|
  // include the before and after bytes.
 | 
						|
  if (DidVirtualConstProp)
 | 
						|
    for (VTableBits &B : Bits)
 | 
						|
      rebuildGlobal(B);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 |