forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2365 lines
		
	
	
		
			94 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2365 lines
		
	
	
		
			94 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InstCombineCasts.cpp -----------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the visit functions for cast operations.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombineInternal.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "instcombine"
 | |
| 
 | |
| /// Analyze 'Val', seeing if it is a simple linear expression.
 | |
| /// If so, decompose it, returning some value X, such that Val is
 | |
| /// X*Scale+Offset.
 | |
| ///
 | |
| static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
 | |
|                                         uint64_t &Offset) {
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
 | |
|     Offset = CI->getZExtValue();
 | |
|     Scale  = 0;
 | |
|     return ConstantInt::get(Val->getType(), 0);
 | |
|   }
 | |
| 
 | |
|   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
 | |
|     // Cannot look past anything that might overflow.
 | |
|     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
 | |
|     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
 | |
|       Scale = 1;
 | |
|       Offset = 0;
 | |
|       return Val;
 | |
|     }
 | |
| 
 | |
|     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|       if (I->getOpcode() == Instruction::Shl) {
 | |
|         // This is a value scaled by '1 << the shift amt'.
 | |
|         Scale = UINT64_C(1) << RHS->getZExtValue();
 | |
|         Offset = 0;
 | |
|         return I->getOperand(0);
 | |
|       }
 | |
| 
 | |
|       if (I->getOpcode() == Instruction::Mul) {
 | |
|         // This value is scaled by 'RHS'.
 | |
|         Scale = RHS->getZExtValue();
 | |
|         Offset = 0;
 | |
|         return I->getOperand(0);
 | |
|       }
 | |
| 
 | |
|       if (I->getOpcode() == Instruction::Add) {
 | |
|         // We have X+C.  Check to see if we really have (X*C2)+C1,
 | |
|         // where C1 is divisible by C2.
 | |
|         unsigned SubScale;
 | |
|         Value *SubVal =
 | |
|           decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
 | |
|         Offset += RHS->getZExtValue();
 | |
|         Scale = SubScale;
 | |
|         return SubVal;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we can't look past this.
 | |
|   Scale = 1;
 | |
|   Offset = 0;
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| /// If we find a cast of an allocation instruction, try to eliminate the cast by
 | |
| /// moving the type information into the alloc.
 | |
| Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
 | |
|                                                    AllocaInst &AI) {
 | |
|   PointerType *PTy = cast<PointerType>(CI.getType());
 | |
| 
 | |
|   BuilderTy AllocaBuilder(Builder);
 | |
|   AllocaBuilder.SetInsertPoint(&AI);
 | |
| 
 | |
|   // Get the type really allocated and the type casted to.
 | |
|   Type *AllocElTy = AI.getAllocatedType();
 | |
|   Type *CastElTy = PTy->getElementType();
 | |
|   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
 | |
| 
 | |
|   unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
 | |
|   unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
 | |
|   if (CastElTyAlign < AllocElTyAlign) return nullptr;
 | |
| 
 | |
|   // If the allocation has multiple uses, only promote it if we are strictly
 | |
|   // increasing the alignment of the resultant allocation.  If we keep it the
 | |
|   // same, we open the door to infinite loops of various kinds.
 | |
|   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
 | |
| 
 | |
|   uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
 | |
|   uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
 | |
|   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
 | |
| 
 | |
|   // If the allocation has multiple uses, only promote it if we're not
 | |
|   // shrinking the amount of memory being allocated.
 | |
|   uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
 | |
|   uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
 | |
|   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
 | |
| 
 | |
|   // See if we can satisfy the modulus by pulling a scale out of the array
 | |
|   // size argument.
 | |
|   unsigned ArraySizeScale;
 | |
|   uint64_t ArrayOffset;
 | |
|   Value *NumElements = // See if the array size is a decomposable linear expr.
 | |
|     decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
 | |
| 
 | |
|   // If we can now satisfy the modulus, by using a non-1 scale, we really can
 | |
|   // do the xform.
 | |
|   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
 | |
|       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
 | |
| 
 | |
|   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
 | |
|   Value *Amt = nullptr;
 | |
|   if (Scale == 1) {
 | |
|     Amt = NumElements;
 | |
|   } else {
 | |
|     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
 | |
|     // Insert before the alloca, not before the cast.
 | |
|     Amt = AllocaBuilder.CreateMul(Amt, NumElements);
 | |
|   }
 | |
| 
 | |
|   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
 | |
|     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
 | |
|                                   Offset, true);
 | |
|     Amt = AllocaBuilder.CreateAdd(Amt, Off);
 | |
|   }
 | |
| 
 | |
|   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
 | |
|   New->setAlignment(AI.getAlignment());
 | |
|   New->takeName(&AI);
 | |
|   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
 | |
| 
 | |
|   // If the allocation has multiple real uses, insert a cast and change all
 | |
|   // things that used it to use the new cast.  This will also hack on CI, but it
 | |
|   // will die soon.
 | |
|   if (!AI.hasOneUse()) {
 | |
|     // New is the allocation instruction, pointer typed. AI is the original
 | |
|     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
 | |
|     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
 | |
|     replaceInstUsesWith(AI, NewCast);
 | |
|   }
 | |
|   return replaceInstUsesWith(CI, New);
 | |
| }
 | |
| 
 | |
| /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
 | |
| /// true for, actually insert the code to evaluate the expression.
 | |
| Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
 | |
|                                              bool isSigned) {
 | |
|   if (Constant *C = dyn_cast<Constant>(V)) {
 | |
|     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
 | |
|     // If we got a constantexpr back, try to simplify it with DL info.
 | |
|     if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
 | |
|       C = FoldedC;
 | |
|     return C;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, it must be an instruction.
 | |
|   Instruction *I = cast<Instruction>(V);
 | |
|   Instruction *Res = nullptr;
 | |
|   unsigned Opc = I->getOpcode();
 | |
|   switch (Opc) {
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|   case Instruction::AShr:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::URem: {
 | |
|     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
 | |
|     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
 | |
|     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|     // If the source type of the cast is the type we're trying for then we can
 | |
|     // just return the source.  There's no need to insert it because it is not
 | |
|     // new.
 | |
|     if (I->getOperand(0)->getType() == Ty)
 | |
|       return I->getOperand(0);
 | |
| 
 | |
|     // Otherwise, must be the same type of cast, so just reinsert a new one.
 | |
|     // This also handles the case of zext(trunc(x)) -> zext(x).
 | |
|     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
 | |
|                                       Opc == Instruction::SExt);
 | |
|     break;
 | |
|   case Instruction::Select: {
 | |
|     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
 | |
|     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
 | |
|     Res = SelectInst::Create(I->getOperand(0), True, False);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::PHI: {
 | |
|     PHINode *OPN = cast<PHINode>(I);
 | |
|     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
 | |
|     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
 | |
|       Value *V =
 | |
|           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
 | |
|       NPN->addIncoming(V, OPN->getIncomingBlock(i));
 | |
|     }
 | |
|     Res = NPN;
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     // TODO: Can handle more cases here.
 | |
|     llvm_unreachable("Unreachable!");
 | |
|   }
 | |
| 
 | |
|   Res->takeName(I);
 | |
|   return InsertNewInstWith(Res, *I);
 | |
| }
 | |
| 
 | |
| Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1,
 | |
|                                                         const CastInst *CI2) {
 | |
|   Type *SrcTy = CI1->getSrcTy();
 | |
|   Type *MidTy = CI1->getDestTy();
 | |
|   Type *DstTy = CI2->getDestTy();
 | |
| 
 | |
|   Instruction::CastOps firstOp = CI1->getOpcode();
 | |
|   Instruction::CastOps secondOp = CI2->getOpcode();
 | |
|   Type *SrcIntPtrTy =
 | |
|       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
 | |
|   Type *MidIntPtrTy =
 | |
|       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
 | |
|   Type *DstIntPtrTy =
 | |
|       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
 | |
|   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
 | |
|                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
 | |
|                                                 DstIntPtrTy);
 | |
| 
 | |
|   // We don't want to form an inttoptr or ptrtoint that converts to an integer
 | |
|   // type that differs from the pointer size.
 | |
|   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
 | |
|       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
 | |
|     Res = 0;
 | |
| 
 | |
|   return Instruction::CastOps(Res);
 | |
| }
 | |
| 
 | |
| /// @brief Implement the transforms common to all CastInst visitors.
 | |
| Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
 | |
|   Value *Src = CI.getOperand(0);
 | |
| 
 | |
|   // Try to eliminate a cast of a cast.
 | |
|   if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
 | |
|     if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
 | |
|       // The first cast (CSrc) is eliminable so we need to fix up or replace
 | |
|       // the second cast (CI). CSrc will then have a good chance of being dead.
 | |
|       return CastInst::Create(NewOpc, CSrc->getOperand(0), CI.getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we are casting a select, then fold the cast into the select.
 | |
|   if (auto *SI = dyn_cast<SelectInst>(Src))
 | |
|     if (Instruction *NV = FoldOpIntoSelect(CI, SI))
 | |
|       return NV;
 | |
| 
 | |
|   // If we are casting a PHI, then fold the cast into the PHI.
 | |
|   if (auto *PN = dyn_cast<PHINode>(Src)) {
 | |
|     // Don't do this if it would create a PHI node with an illegal type from a
 | |
|     // legal type.
 | |
|     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
 | |
|         shouldChangeType(CI.getType(), Src->getType()))
 | |
|       if (Instruction *NV = foldOpIntoPhi(CI, PN))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Return true if we can evaluate the specified expression tree as type Ty
 | |
| /// instead of its larger type, and arrive with the same value.
 | |
| /// This is used by code that tries to eliminate truncates.
 | |
| ///
 | |
| /// Ty will always be a type smaller than V.  We should return true if trunc(V)
 | |
| /// can be computed by computing V in the smaller type.  If V is an instruction,
 | |
| /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
 | |
| /// makes sense if x and y can be efficiently truncated.
 | |
| ///
 | |
| /// This function works on both vectors and scalars.
 | |
| ///
 | |
| static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
 | |
|                                  Instruction *CxtI) {
 | |
|   // We can always evaluate constants in another type.
 | |
|   if (isa<Constant>(V))
 | |
|     return true;
 | |
| 
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return false;
 | |
| 
 | |
|   Type *OrigTy = V->getType();
 | |
| 
 | |
|   // If this is an extension from the dest type, we can eliminate it, even if it
 | |
|   // has multiple uses.
 | |
|   if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
 | |
|       I->getOperand(0)->getType() == Ty)
 | |
|     return true;
 | |
| 
 | |
|   // We can't extend or shrink something that has multiple uses: doing so would
 | |
|   // require duplicating the instruction in general, which isn't profitable.
 | |
|   if (!I->hasOneUse()) return false;
 | |
| 
 | |
|   unsigned Opc = I->getOpcode();
 | |
|   switch (Opc) {
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     // These operators can all arbitrarily be extended or truncated.
 | |
|     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
 | |
|            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
 | |
| 
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::URem: {
 | |
|     // UDiv and URem can be truncated if all the truncated bits are zero.
 | |
|     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
 | |
|     uint32_t BitWidth = Ty->getScalarSizeInBits();
 | |
|     if (BitWidth < OrigBitWidth) {
 | |
|       APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
 | |
|       if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
 | |
|           IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
 | |
|         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
 | |
|                canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Shl: {
 | |
|     // If we are truncating the result of this SHL, and if it's a shift of a
 | |
|     // constant amount, we can always perform a SHL in a smaller type.
 | |
|     const APInt *Amt;
 | |
|     if (match(I->getOperand(1), m_APInt(Amt))) {
 | |
|       uint32_t BitWidth = Ty->getScalarSizeInBits();
 | |
|       if (Amt->getLimitedValue(BitWidth) < BitWidth)
 | |
|         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::LShr: {
 | |
|     // If this is a truncate of a logical shr, we can truncate it to a smaller
 | |
|     // lshr iff we know that the bits we would otherwise be shifting in are
 | |
|     // already zeros.
 | |
|     const APInt *Amt;
 | |
|     if (match(I->getOperand(1), m_APInt(Amt))) {
 | |
|       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
 | |
|       uint32_t BitWidth = Ty->getScalarSizeInBits();
 | |
|       if (IC.MaskedValueIsZero(I->getOperand(0),
 | |
|             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) &&
 | |
|           Amt->getLimitedValue(BitWidth) < BitWidth) {
 | |
|         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::AShr: {
 | |
|     // If this is a truncate of an arithmetic shr, we can truncate it to a
 | |
|     // smaller ashr iff we know that all the bits from the sign bit of the
 | |
|     // original type and the sign bit of the truncate type are similar.
 | |
|     // TODO: It is enough to check that the bits we would be shifting in are
 | |
|     //       similar to sign bit of the truncate type.
 | |
|     const APInt *Amt;
 | |
|     if (match(I->getOperand(1), m_APInt(Amt))) {
 | |
|       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
 | |
|       uint32_t BitWidth = Ty->getScalarSizeInBits();
 | |
|       if (Amt->getLimitedValue(BitWidth) < BitWidth &&
 | |
|           OrigBitWidth - BitWidth <
 | |
|               IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
 | |
|         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Trunc:
 | |
|     // trunc(trunc(x)) -> trunc(x)
 | |
|     return true;
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
 | |
|     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
 | |
|     return true;
 | |
|   case Instruction::Select: {
 | |
|     SelectInst *SI = cast<SelectInst>(I);
 | |
|     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
 | |
|            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
 | |
|   }
 | |
|   case Instruction::PHI: {
 | |
|     // We can change a phi if we can change all operands.  Note that we never
 | |
|     // get into trouble with cyclic PHIs here because we only consider
 | |
|     // instructions with a single use.
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     for (Value *IncValue : PN->incoming_values())
 | |
|       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
|   default:
 | |
|     // TODO: Can handle more cases here.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Given a vector that is bitcast to an integer, optionally logically
 | |
| /// right-shifted, and truncated, convert it to an extractelement.
 | |
| /// Example (big endian):
 | |
| ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
 | |
| ///   --->
 | |
| ///   extractelement <4 x i32> %X, 1
 | |
| static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) {
 | |
|   Value *TruncOp = Trunc.getOperand(0);
 | |
|   Type *DestType = Trunc.getType();
 | |
|   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *VecInput = nullptr;
 | |
|   ConstantInt *ShiftVal = nullptr;
 | |
|   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
 | |
|                                   m_LShr(m_BitCast(m_Value(VecInput)),
 | |
|                                          m_ConstantInt(ShiftVal)))) ||
 | |
|       !isa<VectorType>(VecInput->getType()))
 | |
|     return nullptr;
 | |
| 
 | |
|   VectorType *VecType = cast<VectorType>(VecInput->getType());
 | |
|   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
 | |
|   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
 | |
|   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
 | |
| 
 | |
|   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
 | |
|     return nullptr;
 | |
| 
 | |
|   // If the element type of the vector doesn't match the result type,
 | |
|   // bitcast it to a vector type that we can extract from.
 | |
|   unsigned NumVecElts = VecWidth / DestWidth;
 | |
|   if (VecType->getElementType() != DestType) {
 | |
|     VecType = VectorType::get(DestType, NumVecElts);
 | |
|     VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
 | |
|   }
 | |
| 
 | |
|   unsigned Elt = ShiftAmount / DestWidth;
 | |
|   if (IC.getDataLayout().isBigEndian())
 | |
|     Elt = NumVecElts - 1 - Elt;
 | |
| 
 | |
|   return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
 | |
| }
 | |
| 
 | |
| /// Rotate left/right may occur in a wider type than necessary because of type
 | |
| /// promotion rules. Try to narrow all of the component instructions.
 | |
| Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) {
 | |
|   assert((isa<VectorType>(Trunc.getSrcTy()) ||
 | |
|           shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
 | |
|          "Don't narrow to an illegal scalar type");
 | |
| 
 | |
|   // First, find an or'd pair of opposite shifts with the same shifted operand:
 | |
|   // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1))
 | |
|   Value *Or0, *Or1;
 | |
|   if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *ShVal, *ShAmt0, *ShAmt1;
 | |
|   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
 | |
|       !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
 | |
|     return nullptr;
 | |
| 
 | |
|   auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
 | |
|   auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
 | |
|   if (ShiftOpcode0 == ShiftOpcode1)
 | |
|     return nullptr;
 | |
| 
 | |
|   // The shift amounts must add up to the narrow bit width.
 | |
|   Value *ShAmt;
 | |
|   bool SubIsOnLHS;
 | |
|   Type *DestTy = Trunc.getType();
 | |
|   unsigned NarrowWidth = DestTy->getScalarSizeInBits();
 | |
|   if (match(ShAmt0,
 | |
|             m_OneUse(m_Sub(m_SpecificInt(NarrowWidth), m_Specific(ShAmt1))))) {
 | |
|     ShAmt = ShAmt1;
 | |
|     SubIsOnLHS = true;
 | |
|   } else if (match(ShAmt1, m_OneUse(m_Sub(m_SpecificInt(NarrowWidth),
 | |
|                                           m_Specific(ShAmt0))))) {
 | |
|     ShAmt = ShAmt0;
 | |
|     SubIsOnLHS = false;
 | |
|   } else {
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // The shifted value must have high zeros in the wide type. Typically, this
 | |
|   // will be a zext, but it could also be the result of an 'and' or 'shift'.
 | |
|   unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
 | |
|   APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
 | |
|   if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc))
 | |
|     return nullptr;
 | |
| 
 | |
|   // We have an unnecessarily wide rotate!
 | |
|   // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt))
 | |
|   // Narrow it down to eliminate the zext/trunc:
 | |
|   // or (lshr trunc(ShVal), ShAmt0'), (shl trunc(ShVal), ShAmt1')
 | |
|   Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
 | |
|   Value *NegShAmt = Builder.CreateNeg(NarrowShAmt);
 | |
| 
 | |
|   // Mask both shift amounts to ensure there's no UB from oversized shifts.
 | |
|   Constant *MaskC = ConstantInt::get(DestTy, NarrowWidth - 1);
 | |
|   Value *MaskedShAmt = Builder.CreateAnd(NarrowShAmt, MaskC);
 | |
|   Value *MaskedNegShAmt = Builder.CreateAnd(NegShAmt, MaskC);
 | |
| 
 | |
|   // Truncate the original value and use narrow ops.
 | |
|   Value *X = Builder.CreateTrunc(ShVal, DestTy);
 | |
|   Value *NarrowShAmt0 = SubIsOnLHS ? MaskedNegShAmt : MaskedShAmt;
 | |
|   Value *NarrowShAmt1 = SubIsOnLHS ? MaskedShAmt : MaskedNegShAmt;
 | |
|   Value *NarrowSh0 = Builder.CreateBinOp(ShiftOpcode0, X, NarrowShAmt0);
 | |
|   Value *NarrowSh1 = Builder.CreateBinOp(ShiftOpcode1, X, NarrowShAmt1);
 | |
|   return BinaryOperator::CreateOr(NarrowSh0, NarrowSh1);
 | |
| }
 | |
| 
 | |
| /// Try to narrow the width of math or bitwise logic instructions by pulling a
 | |
| /// truncate ahead of binary operators.
 | |
| /// TODO: Transforms for truncated shifts should be moved into here.
 | |
| Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) {
 | |
|   Type *SrcTy = Trunc.getSrcTy();
 | |
|   Type *DestTy = Trunc.getType();
 | |
|   if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
 | |
|     return nullptr;
 | |
| 
 | |
|   BinaryOperator *BinOp;
 | |
|   if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
 | |
|     return nullptr;
 | |
| 
 | |
|   switch (BinOp->getOpcode()) {
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Mul: {
 | |
|     Constant *C;
 | |
|     if (match(BinOp->getOperand(1), m_Constant(C))) {
 | |
|       // trunc (binop X, C) --> binop (trunc X, C')
 | |
|       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
 | |
|       Value *TruncX = Builder.CreateTrunc(BinOp->getOperand(0), DestTy);
 | |
|       return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Sub: {
 | |
|     Constant *C;
 | |
|     if (match(BinOp->getOperand(0), m_Constant(C))) {
 | |
|       // trunc (binop C, X) --> binop (trunc C', X)
 | |
|       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
 | |
|       Value *TruncX = Builder.CreateTrunc(BinOp->getOperand(1), DestTy);
 | |
|       return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   default: break;
 | |
|   }
 | |
| 
 | |
|   if (Instruction *NarrowOr = narrowRotate(Trunc))
 | |
|     return NarrowOr;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Try to narrow the width of a splat shuffle. This could be generalized to any
 | |
| /// shuffle with a constant operand, but we limit the transform to avoid
 | |
| /// creating a shuffle type that targets may not be able to lower effectively.
 | |
| static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
 | |
|                                        InstCombiner::BuilderTy &Builder) {
 | |
|   auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
 | |
|   if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
 | |
|       Shuf->getMask()->getSplatValue() &&
 | |
|       Shuf->getType() == Shuf->getOperand(0)->getType()) {
 | |
|     // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
 | |
|     Constant *NarrowUndef = UndefValue::get(Trunc.getType());
 | |
|     Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
 | |
|     return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask());
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Try to narrow the width of an insert element. This could be generalized for
 | |
| /// any vector constant, but we limit the transform to insertion into undef to
 | |
| /// avoid potential backend problems from unsupported insertion widths. This
 | |
| /// could also be extended to handle the case of inserting a scalar constant
 | |
| /// into a vector variable.
 | |
| static Instruction *shrinkInsertElt(CastInst &Trunc,
 | |
|                                     InstCombiner::BuilderTy &Builder) {
 | |
|   Instruction::CastOps Opcode = Trunc.getOpcode();
 | |
|   assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
 | |
|          "Unexpected instruction for shrinking");
 | |
| 
 | |
|   auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
 | |
|   if (!InsElt || !InsElt->hasOneUse())
 | |
|     return nullptr;
 | |
| 
 | |
|   Type *DestTy = Trunc.getType();
 | |
|   Type *DestScalarTy = DestTy->getScalarType();
 | |
|   Value *VecOp = InsElt->getOperand(0);
 | |
|   Value *ScalarOp = InsElt->getOperand(1);
 | |
|   Value *Index = InsElt->getOperand(2);
 | |
| 
 | |
|   if (isa<UndefValue>(VecOp)) {
 | |
|     // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
 | |
|     // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
 | |
|     UndefValue *NarrowUndef = UndefValue::get(DestTy);
 | |
|     Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
 | |
|     return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
 | |
|   if (Instruction *Result = commonCastTransforms(CI))
 | |
|     return Result;
 | |
| 
 | |
|   // Test if the trunc is the user of a select which is part of a
 | |
|   // minimum or maximum operation. If so, don't do any more simplification.
 | |
|   // Even simplifying demanded bits can break the canonical form of a
 | |
|   // min/max.
 | |
|   Value *LHS, *RHS;
 | |
|   if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
 | |
|     if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
 | |
|       return nullptr;
 | |
| 
 | |
|   // See if we can simplify any instructions used by the input whose sole
 | |
|   // purpose is to compute bits we don't care about.
 | |
|   if (SimplifyDemandedInstructionBits(CI))
 | |
|     return &CI;
 | |
| 
 | |
|   Value *Src = CI.getOperand(0);
 | |
|   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
 | |
| 
 | |
|   // Attempt to truncate the entire input expression tree to the destination
 | |
|   // type.   Only do this if the dest type is a simple type, don't convert the
 | |
|   // expression tree to something weird like i93 unless the source is also
 | |
|   // strange.
 | |
|   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
 | |
|       canEvaluateTruncated(Src, DestTy, *this, &CI)) {
 | |
| 
 | |
|     // If this cast is a truncate, evaluting in a different type always
 | |
|     // eliminates the cast, so it is always a win.
 | |
|     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
 | |
|           " to avoid cast: " << CI << '\n');
 | |
|     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
 | |
|     assert(Res->getType() == DestTy);
 | |
|     return replaceInstUsesWith(CI, Res);
 | |
|   }
 | |
| 
 | |
|   // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
 | |
|   if (DestTy->getScalarSizeInBits() == 1) {
 | |
|     Constant *One = ConstantInt::get(SrcTy, 1);
 | |
|     Src = Builder.CreateAnd(Src, One);
 | |
|     Value *Zero = Constant::getNullValue(Src->getType());
 | |
|     return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
 | |
|   }
 | |
| 
 | |
|   // FIXME: Maybe combine the next two transforms to handle the no cast case
 | |
|   // more efficiently. Support vector types. Cleanup code by using m_OneUse.
 | |
| 
 | |
|   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
 | |
|   Value *A = nullptr; ConstantInt *Cst = nullptr;
 | |
|   if (Src->hasOneUse() &&
 | |
|       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
 | |
|     // We have three types to worry about here, the type of A, the source of
 | |
|     // the truncate (MidSize), and the destination of the truncate. We know that
 | |
|     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
 | |
|     // between ASize and ResultSize.
 | |
|     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
 | |
| 
 | |
|     // If the shift amount is larger than the size of A, then the result is
 | |
|     // known to be zero because all the input bits got shifted out.
 | |
|     if (Cst->getZExtValue() >= ASize)
 | |
|       return replaceInstUsesWith(CI, Constant::getNullValue(DestTy));
 | |
| 
 | |
|     // Since we're doing an lshr and a zero extend, and know that the shift
 | |
|     // amount is smaller than ASize, it is always safe to do the shift in A's
 | |
|     // type, then zero extend or truncate to the result.
 | |
|     Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue());
 | |
|     Shift->takeName(Src);
 | |
|     return CastInst::CreateIntegerCast(Shift, DestTy, false);
 | |
|   }
 | |
| 
 | |
|   // FIXME: We should canonicalize to zext/trunc and remove this transform.
 | |
|   // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
 | |
|   // conversion.
 | |
|   // It works because bits coming from sign extension have the same value as
 | |
|   // the sign bit of the original value; performing ashr instead of lshr
 | |
|   // generates bits of the same value as the sign bit.
 | |
|   if (Src->hasOneUse() &&
 | |
|       match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) {
 | |
|     Value *SExt = cast<Instruction>(Src)->getOperand(0);
 | |
|     const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits();
 | |
|     const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
 | |
|     const unsigned CISize = CI.getType()->getPrimitiveSizeInBits();
 | |
|     const unsigned MaxAmt = SExtSize - std::max(CISize, ASize);
 | |
|     unsigned ShiftAmt = Cst->getZExtValue();
 | |
| 
 | |
|     // This optimization can be only performed when zero bits generated by
 | |
|     // the original lshr aren't pulled into the value after truncation, so we
 | |
|     // can only shift by values no larger than the number of extension bits.
 | |
|     // FIXME: Instead of bailing when the shift is too large, use and to clear
 | |
|     // the extra bits.
 | |
|     if (ShiftAmt <= MaxAmt) {
 | |
|       if (CISize == ASize)
 | |
|         return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(),
 | |
|                                           std::min(ShiftAmt, ASize - 1)));
 | |
|       if (SExt->hasOneUse()) {
 | |
|         Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1));
 | |
|         Shift->takeName(Src);
 | |
|         return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Instruction *I = narrowBinOp(CI))
 | |
|     return I;
 | |
| 
 | |
|   if (Instruction *I = shrinkSplatShuffle(CI, Builder))
 | |
|     return I;
 | |
| 
 | |
|   if (Instruction *I = shrinkInsertElt(CI, Builder))
 | |
|     return I;
 | |
| 
 | |
|   if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
 | |
|       shouldChangeType(SrcTy, DestTy)) {
 | |
|     // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
 | |
|     // dest type is native and cst < dest size.
 | |
|     if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
 | |
|         !match(A, m_Shr(m_Value(), m_Constant()))) {
 | |
|       // Skip shifts of shift by constants. It undoes a combine in
 | |
|       // FoldShiftByConstant and is the extend in reg pattern.
 | |
|       const unsigned DestSize = DestTy->getScalarSizeInBits();
 | |
|       if (Cst->getValue().ult(DestSize)) {
 | |
|         Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
 | |
| 
 | |
|         return BinaryOperator::Create(
 | |
|           Instruction::Shl, NewTrunc,
 | |
|           ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize)));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Instruction *I = foldVecTruncToExtElt(CI, *this))
 | |
|     return I;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
 | |
|                                              bool DoTransform) {
 | |
|   // If we are just checking for a icmp eq of a single bit and zext'ing it
 | |
|   // to an integer, then shift the bit to the appropriate place and then
 | |
|   // cast to integer to avoid the comparison.
 | |
|   const APInt *Op1CV;
 | |
|   if (match(ICI->getOperand(1), m_APInt(Op1CV))) {
 | |
| 
 | |
|     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
 | |
|     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
 | |
|     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) ||
 | |
|         (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) {
 | |
|       if (!DoTransform) return ICI;
 | |
| 
 | |
|       Value *In = ICI->getOperand(0);
 | |
|       Value *Sh = ConstantInt::get(In->getType(),
 | |
|                                    In->getType()->getScalarSizeInBits() - 1);
 | |
|       In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
 | |
|       if (In->getType() != CI.getType())
 | |
|         In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/);
 | |
| 
 | |
|       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
 | |
|         Constant *One = ConstantInt::get(In->getType(), 1);
 | |
|         In = Builder.CreateXor(In, One, In->getName() + ".not");
 | |
|       }
 | |
| 
 | |
|       return replaceInstUsesWith(CI, In);
 | |
|     }
 | |
| 
 | |
|     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
 | |
|     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
 | |
|     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
 | |
|     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
 | |
|     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
 | |
|     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
 | |
|     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
 | |
|     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
 | |
|     if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) &&
 | |
|         // This only works for EQ and NE
 | |
|         ICI->isEquality()) {
 | |
|       // If Op1C some other power of two, convert:
 | |
|       KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI);
 | |
| 
 | |
|       APInt KnownZeroMask(~Known.Zero);
 | |
|       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
 | |
|         if (!DoTransform) return ICI;
 | |
| 
 | |
|         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
 | |
|         if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) {
 | |
|           // (X&4) == 2 --> false
 | |
|           // (X&4) != 2 --> true
 | |
|           Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
 | |
|                                            isNE);
 | |
|           Res = ConstantExpr::getZExt(Res, CI.getType());
 | |
|           return replaceInstUsesWith(CI, Res);
 | |
|         }
 | |
| 
 | |
|         uint32_t ShAmt = KnownZeroMask.logBase2();
 | |
|         Value *In = ICI->getOperand(0);
 | |
|         if (ShAmt) {
 | |
|           // Perform a logical shr by shiftamt.
 | |
|           // Insert the shift to put the result in the low bit.
 | |
|           In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
 | |
|                                   In->getName() + ".lobit");
 | |
|         }
 | |
| 
 | |
|         if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit.
 | |
|           Constant *One = ConstantInt::get(In->getType(), 1);
 | |
|           In = Builder.CreateXor(In, One);
 | |
|         }
 | |
| 
 | |
|         if (CI.getType() == In->getType())
 | |
|           return replaceInstUsesWith(CI, In);
 | |
| 
 | |
|         Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false);
 | |
|         return replaceInstUsesWith(CI, IntCast);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
 | |
|   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
 | |
|   // may lead to additional simplifications.
 | |
|   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
 | |
|     if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
 | |
|       Value *LHS = ICI->getOperand(0);
 | |
|       Value *RHS = ICI->getOperand(1);
 | |
| 
 | |
|       KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI);
 | |
|       KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI);
 | |
| 
 | |
|       if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
 | |
|         APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
 | |
|         APInt UnknownBit = ~KnownBits;
 | |
|         if (UnknownBit.countPopulation() == 1) {
 | |
|           if (!DoTransform) return ICI;
 | |
| 
 | |
|           Value *Result = Builder.CreateXor(LHS, RHS);
 | |
| 
 | |
|           // Mask off any bits that are set and won't be shifted away.
 | |
|           if (KnownLHS.One.uge(UnknownBit))
 | |
|             Result = Builder.CreateAnd(Result,
 | |
|                                         ConstantInt::get(ITy, UnknownBit));
 | |
| 
 | |
|           // Shift the bit we're testing down to the lsb.
 | |
|           Result = Builder.CreateLShr(
 | |
|                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
 | |
| 
 | |
|           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
 | |
|             Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
 | |
|           Result->takeName(ICI);
 | |
|           return replaceInstUsesWith(CI, Result);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Determine if the specified value can be computed in the specified wider type
 | |
| /// and produce the same low bits. If not, return false.
 | |
| ///
 | |
| /// If this function returns true, it can also return a non-zero number of bits
 | |
| /// (in BitsToClear) which indicates that the value it computes is correct for
 | |
| /// the zero extend, but that the additional BitsToClear bits need to be zero'd
 | |
| /// out.  For example, to promote something like:
 | |
| ///
 | |
| ///   %B = trunc i64 %A to i32
 | |
| ///   %C = lshr i32 %B, 8
 | |
| ///   %E = zext i32 %C to i64
 | |
| ///
 | |
| /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
 | |
| /// set to 8 to indicate that the promoted value needs to have bits 24-31
 | |
| /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
 | |
| /// clear the top bits anyway, doing this has no extra cost.
 | |
| ///
 | |
| /// This function works on both vectors and scalars.
 | |
| static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
 | |
|                              InstCombiner &IC, Instruction *CxtI) {
 | |
|   BitsToClear = 0;
 | |
|   if (isa<Constant>(V))
 | |
|     return true;
 | |
| 
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return false;
 | |
| 
 | |
|   // If the input is a truncate from the destination type, we can trivially
 | |
|   // eliminate it.
 | |
|   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
 | |
|     return true;
 | |
| 
 | |
|   // We can't extend or shrink something that has multiple uses: doing so would
 | |
|   // require duplicating the instruction in general, which isn't profitable.
 | |
|   if (!I->hasOneUse()) return false;
 | |
| 
 | |
|   unsigned Opc = I->getOpcode(), Tmp;
 | |
|   switch (Opc) {
 | |
|   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
 | |
|   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
 | |
|   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
 | |
|     return true;
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
 | |
|         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
 | |
|       return false;
 | |
|     // These can all be promoted if neither operand has 'bits to clear'.
 | |
|     if (BitsToClear == 0 && Tmp == 0)
 | |
|       return true;
 | |
| 
 | |
|     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
 | |
|     // other side, BitsToClear is ok.
 | |
|     if (Tmp == 0 && I->isBitwiseLogicOp()) {
 | |
|       // We use MaskedValueIsZero here for generality, but the case we care
 | |
|       // about the most is constant RHS.
 | |
|       unsigned VSize = V->getType()->getScalarSizeInBits();
 | |
|       if (IC.MaskedValueIsZero(I->getOperand(1),
 | |
|                                APInt::getHighBitsSet(VSize, BitsToClear),
 | |
|                                0, CxtI)) {
 | |
|         // If this is an And instruction and all of the BitsToClear are
 | |
|         // known to be zero we can reset BitsToClear.
 | |
|         if (Opc == Instruction::And)
 | |
|           BitsToClear = 0;
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we don't know how to analyze this BitsToClear case yet.
 | |
|     return false;
 | |
| 
 | |
|   case Instruction::Shl: {
 | |
|     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
 | |
|     // upper bits we can reduce BitsToClear by the shift amount.
 | |
|     const APInt *Amt;
 | |
|     if (match(I->getOperand(1), m_APInt(Amt))) {
 | |
|       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
 | |
|         return false;
 | |
|       uint64_t ShiftAmt = Amt->getZExtValue();
 | |
|       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   case Instruction::LShr: {
 | |
|     // We can promote lshr(x, cst) if we can promote x.  This requires the
 | |
|     // ultimate 'and' to clear out the high zero bits we're clearing out though.
 | |
|     const APInt *Amt;
 | |
|     if (match(I->getOperand(1), m_APInt(Amt))) {
 | |
|       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
 | |
|         return false;
 | |
|       BitsToClear += Amt->getZExtValue();
 | |
|       if (BitsToClear > V->getType()->getScalarSizeInBits())
 | |
|         BitsToClear = V->getType()->getScalarSizeInBits();
 | |
|       return true;
 | |
|     }
 | |
|     // Cannot promote variable LSHR.
 | |
|     return false;
 | |
|   }
 | |
|   case Instruction::Select:
 | |
|     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
 | |
|         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
 | |
|         // TODO: If important, we could handle the case when the BitsToClear are
 | |
|         // known zero in the disagreeing side.
 | |
|         Tmp != BitsToClear)
 | |
|       return false;
 | |
|     return true;
 | |
| 
 | |
|   case Instruction::PHI: {
 | |
|     // We can change a phi if we can change all operands.  Note that we never
 | |
|     // get into trouble with cyclic PHIs here because we only consider
 | |
|     // instructions with a single use.
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
 | |
|       return false;
 | |
|     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
 | |
|           // TODO: If important, we could handle the case when the BitsToClear
 | |
|           // are known zero in the disagreeing input.
 | |
|           Tmp != BitsToClear)
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
|   default:
 | |
|     // TODO: Can handle more cases here.
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
 | |
|   // If this zero extend is only used by a truncate, let the truncate be
 | |
|   // eliminated before we try to optimize this zext.
 | |
|   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
 | |
|     return nullptr;
 | |
| 
 | |
|   // If one of the common conversion will work, do it.
 | |
|   if (Instruction *Result = commonCastTransforms(CI))
 | |
|     return Result;
 | |
| 
 | |
|   Value *Src = CI.getOperand(0);
 | |
|   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
 | |
| 
 | |
|   // Attempt to extend the entire input expression tree to the destination
 | |
|   // type.   Only do this if the dest type is a simple type, don't convert the
 | |
|   // expression tree to something weird like i93 unless the source is also
 | |
|   // strange.
 | |
|   unsigned BitsToClear;
 | |
|   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
 | |
|       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
 | |
|     assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
 | |
|            "Can't clear more bits than in SrcTy");
 | |
| 
 | |
|     // Okay, we can transform this!  Insert the new expression now.
 | |
|     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
 | |
|           " to avoid zero extend: " << CI << '\n');
 | |
|     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
 | |
|     assert(Res->getType() == DestTy);
 | |
| 
 | |
|     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
 | |
|     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
 | |
| 
 | |
|     // If the high bits are already filled with zeros, just replace this
 | |
|     // cast with the result.
 | |
|     if (MaskedValueIsZero(Res,
 | |
|                           APInt::getHighBitsSet(DestBitSize,
 | |
|                                                 DestBitSize-SrcBitsKept),
 | |
|                              0, &CI))
 | |
|       return replaceInstUsesWith(CI, Res);
 | |
| 
 | |
|     // We need to emit an AND to clear the high bits.
 | |
|     Constant *C = ConstantInt::get(Res->getType(),
 | |
|                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
 | |
|     return BinaryOperator::CreateAnd(Res, C);
 | |
|   }
 | |
| 
 | |
|   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
 | |
|   // types and if the sizes are just right we can convert this into a logical
 | |
|   // 'and' which will be much cheaper than the pair of casts.
 | |
|   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
 | |
|     // TODO: Subsume this into EvaluateInDifferentType.
 | |
| 
 | |
|     // Get the sizes of the types involved.  We know that the intermediate type
 | |
|     // will be smaller than A or C, but don't know the relation between A and C.
 | |
|     Value *A = CSrc->getOperand(0);
 | |
|     unsigned SrcSize = A->getType()->getScalarSizeInBits();
 | |
|     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
 | |
|     unsigned DstSize = CI.getType()->getScalarSizeInBits();
 | |
|     // If we're actually extending zero bits, then if
 | |
|     // SrcSize <  DstSize: zext(a & mask)
 | |
|     // SrcSize == DstSize: a & mask
 | |
|     // SrcSize  > DstSize: trunc(a) & mask
 | |
|     if (SrcSize < DstSize) {
 | |
|       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
 | |
|       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
 | |
|       Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
 | |
|       return new ZExtInst(And, CI.getType());
 | |
|     }
 | |
| 
 | |
|     if (SrcSize == DstSize) {
 | |
|       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
 | |
|       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
 | |
|                                                            AndValue));
 | |
|     }
 | |
|     if (SrcSize > DstSize) {
 | |
|       Value *Trunc = Builder.CreateTrunc(A, CI.getType());
 | |
|       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
 | |
|       return BinaryOperator::CreateAnd(Trunc,
 | |
|                                        ConstantInt::get(Trunc->getType(),
 | |
|                                                         AndValue));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
 | |
|     return transformZExtICmp(ICI, CI);
 | |
| 
 | |
|   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
 | |
|   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
 | |
|     // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
 | |
|     // of the (zext icmp) can be eliminated. If so, immediately perform the
 | |
|     // according elimination.
 | |
|     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
 | |
|     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
 | |
|     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
 | |
|         (transformZExtICmp(LHS, CI, false) ||
 | |
|          transformZExtICmp(RHS, CI, false))) {
 | |
|       // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
 | |
|       Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
 | |
|       Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
 | |
|       BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast);
 | |
| 
 | |
|       // Perform the elimination.
 | |
|       if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
 | |
|         transformZExtICmp(LHS, *LZExt);
 | |
|       if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
 | |
|         transformZExtICmp(RHS, *RZExt);
 | |
| 
 | |
|       return Or;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // zext(trunc(X) & C) -> (X & zext(C)).
 | |
|   Constant *C;
 | |
|   Value *X;
 | |
|   if (SrcI &&
 | |
|       match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
 | |
|       X->getType() == CI.getType())
 | |
|     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
 | |
| 
 | |
|   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
 | |
|   Value *And;
 | |
|   if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
 | |
|       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
 | |
|       X->getType() == CI.getType()) {
 | |
|     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
 | |
|     return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
 | |
| Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
 | |
|   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
 | |
|   ICmpInst::Predicate Pred = ICI->getPredicate();
 | |
| 
 | |
|   // Don't bother if Op1 isn't of vector or integer type.
 | |
|   if (!Op1->getType()->isIntOrIntVectorTy())
 | |
|     return nullptr;
 | |
| 
 | |
|   if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
 | |
|     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
 | |
|     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
 | |
|     if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
 | |
|         (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
 | |
| 
 | |
|       Value *Sh = ConstantInt::get(Op0->getType(),
 | |
|                                    Op0->getType()->getScalarSizeInBits()-1);
 | |
|       Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
 | |
|       if (In->getType() != CI.getType())
 | |
|         In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
 | |
| 
 | |
|       if (Pred == ICmpInst::ICMP_SGT)
 | |
|         In = Builder.CreateNot(In, In->getName() + ".not");
 | |
|       return replaceInstUsesWith(CI, In);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
 | |
|     // If we know that only one bit of the LHS of the icmp can be set and we
 | |
|     // have an equality comparison with zero or a power of 2, we can transform
 | |
|     // the icmp and sext into bitwise/integer operations.
 | |
|     if (ICI->hasOneUse() &&
 | |
|         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
 | |
|       KnownBits Known = computeKnownBits(Op0, 0, &CI);
 | |
| 
 | |
|       APInt KnownZeroMask(~Known.Zero);
 | |
|       if (KnownZeroMask.isPowerOf2()) {
 | |
|         Value *In = ICI->getOperand(0);
 | |
| 
 | |
|         // If the icmp tests for a known zero bit we can constant fold it.
 | |
|         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
 | |
|           Value *V = Pred == ICmpInst::ICMP_NE ?
 | |
|                        ConstantInt::getAllOnesValue(CI.getType()) :
 | |
|                        ConstantInt::getNullValue(CI.getType());
 | |
|           return replaceInstUsesWith(CI, V);
 | |
|         }
 | |
| 
 | |
|         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
 | |
|           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
 | |
|           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
 | |
|           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
 | |
|           // Perform a right shift to place the desired bit in the LSB.
 | |
|           if (ShiftAmt)
 | |
|             In = Builder.CreateLShr(In,
 | |
|                                     ConstantInt::get(In->getType(), ShiftAmt));
 | |
| 
 | |
|           // At this point "In" is either 1 or 0. Subtract 1 to turn
 | |
|           // {1, 0} -> {0, -1}.
 | |
|           In = Builder.CreateAdd(In,
 | |
|                                  ConstantInt::getAllOnesValue(In->getType()),
 | |
|                                  "sext");
 | |
|         } else {
 | |
|           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
 | |
|           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
 | |
|           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
 | |
|           // Perform a left shift to place the desired bit in the MSB.
 | |
|           if (ShiftAmt)
 | |
|             In = Builder.CreateShl(In,
 | |
|                                    ConstantInt::get(In->getType(), ShiftAmt));
 | |
| 
 | |
|           // Distribute the bit over the whole bit width.
 | |
|           In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
 | |
|                                   KnownZeroMask.getBitWidth() - 1), "sext");
 | |
|         }
 | |
| 
 | |
|         if (CI.getType() == In->getType())
 | |
|           return replaceInstUsesWith(CI, In);
 | |
|         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Return true if we can take the specified value and return it as type Ty
 | |
| /// without inserting any new casts and without changing the value of the common
 | |
| /// low bits.  This is used by code that tries to promote integer operations to
 | |
| /// a wider types will allow us to eliminate the extension.
 | |
| ///
 | |
| /// This function works on both vectors and scalars.
 | |
| ///
 | |
| static bool canEvaluateSExtd(Value *V, Type *Ty) {
 | |
|   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
 | |
|          "Can't sign extend type to a smaller type");
 | |
|   // If this is a constant, it can be trivially promoted.
 | |
|   if (isa<Constant>(V))
 | |
|     return true;
 | |
| 
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return false;
 | |
| 
 | |
|   // If this is a truncate from the dest type, we can trivially eliminate it.
 | |
|   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
 | |
|     return true;
 | |
| 
 | |
|   // We can't extend or shrink something that has multiple uses: doing so would
 | |
|   // require duplicating the instruction in general, which isn't profitable.
 | |
|   if (!I->hasOneUse()) return false;
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
 | |
|   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
 | |
|   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
 | |
|     return true;
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|     // These operators can all arbitrarily be extended if their inputs can.
 | |
|     return canEvaluateSExtd(I->getOperand(0), Ty) &&
 | |
|            canEvaluateSExtd(I->getOperand(1), Ty);
 | |
| 
 | |
|   //case Instruction::Shl:   TODO
 | |
|   //case Instruction::LShr:  TODO
 | |
| 
 | |
|   case Instruction::Select:
 | |
|     return canEvaluateSExtd(I->getOperand(1), Ty) &&
 | |
|            canEvaluateSExtd(I->getOperand(2), Ty);
 | |
| 
 | |
|   case Instruction::PHI: {
 | |
|     // We can change a phi if we can change all operands.  Note that we never
 | |
|     // get into trouble with cyclic PHIs here because we only consider
 | |
|     // instructions with a single use.
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     for (Value *IncValue : PN->incoming_values())
 | |
|       if (!canEvaluateSExtd(IncValue, Ty)) return false;
 | |
|     return true;
 | |
|   }
 | |
|   default:
 | |
|     // TODO: Can handle more cases here.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSExt(SExtInst &CI) {
 | |
|   // If this sign extend is only used by a truncate, let the truncate be
 | |
|   // eliminated before we try to optimize this sext.
 | |
|   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
 | |
|     return nullptr;
 | |
| 
 | |
|   if (Instruction *I = commonCastTransforms(CI))
 | |
|     return I;
 | |
| 
 | |
|   Value *Src = CI.getOperand(0);
 | |
|   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
 | |
| 
 | |
|   // If we know that the value being extended is positive, we can use a zext
 | |
|   // instead.
 | |
|   KnownBits Known = computeKnownBits(Src, 0, &CI);
 | |
|   if (Known.isNonNegative()) {
 | |
|     Value *ZExt = Builder.CreateZExt(Src, DestTy);
 | |
|     return replaceInstUsesWith(CI, ZExt);
 | |
|   }
 | |
| 
 | |
|   // Attempt to extend the entire input expression tree to the destination
 | |
|   // type.   Only do this if the dest type is a simple type, don't convert the
 | |
|   // expression tree to something weird like i93 unless the source is also
 | |
|   // strange.
 | |
|   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
 | |
|       canEvaluateSExtd(Src, DestTy)) {
 | |
|     // Okay, we can transform this!  Insert the new expression now.
 | |
|     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
 | |
|           " to avoid sign extend: " << CI << '\n');
 | |
|     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
 | |
|     assert(Res->getType() == DestTy);
 | |
| 
 | |
|     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
 | |
|     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
 | |
| 
 | |
|     // If the high bits are already filled with sign bit, just replace this
 | |
|     // cast with the result.
 | |
|     if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
 | |
|       return replaceInstUsesWith(CI, Res);
 | |
| 
 | |
|     // We need to emit a shl + ashr to do the sign extend.
 | |
|     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
 | |
|     return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
 | |
|                                       ShAmt);
 | |
|   }
 | |
| 
 | |
|   // If the input is a trunc from the destination type, then turn sext(trunc(x))
 | |
|   // into shifts.
 | |
|   Value *X;
 | |
|   if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
 | |
|     // sext(trunc(X)) --> ashr(shl(X, C), C)
 | |
|     unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | |
|     unsigned DestBitSize = DestTy->getScalarSizeInBits();
 | |
|     Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
 | |
|     return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
 | |
|   }
 | |
| 
 | |
|   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
 | |
|     return transformSExtICmp(ICI, CI);
 | |
| 
 | |
|   // If the input is a shl/ashr pair of a same constant, then this is a sign
 | |
|   // extension from a smaller value.  If we could trust arbitrary bitwidth
 | |
|   // integers, we could turn this into a truncate to the smaller bit and then
 | |
|   // use a sext for the whole extension.  Since we don't, look deeper and check
 | |
|   // for a truncate.  If the source and dest are the same type, eliminate the
 | |
|   // trunc and extend and just do shifts.  For example, turn:
 | |
|   //   %a = trunc i32 %i to i8
 | |
|   //   %b = shl i8 %a, 6
 | |
|   //   %c = ashr i8 %b, 6
 | |
|   //   %d = sext i8 %c to i32
 | |
|   // into:
 | |
|   //   %a = shl i32 %i, 30
 | |
|   //   %d = ashr i32 %a, 30
 | |
|   Value *A = nullptr;
 | |
|   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
 | |
|   ConstantInt *BA = nullptr, *CA = nullptr;
 | |
|   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
 | |
|                         m_ConstantInt(CA))) &&
 | |
|       BA == CA && A->getType() == CI.getType()) {
 | |
|     unsigned MidSize = Src->getType()->getScalarSizeInBits();
 | |
|     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
 | |
|     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
 | |
|     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
 | |
|     A = Builder.CreateShl(A, ShAmtV, CI.getName());
 | |
|     return BinaryOperator::CreateAShr(A, ShAmtV);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Return a Constant* for the specified floating-point constant if it fits
 | |
| /// in the specified FP type without changing its value.
 | |
| static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
 | |
|   bool losesInfo;
 | |
|   APFloat F = CFP->getValueAPF();
 | |
|   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
 | |
|   if (!losesInfo)
 | |
|     return ConstantFP::get(CFP->getContext(), F);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Look through floating-point extensions until we get the source value.
 | |
| static Value *lookThroughFPExtensions(Value *V) {
 | |
|   while (auto *FPExt = dyn_cast<FPExtInst>(V))
 | |
|     V = FPExt->getOperand(0);
 | |
| 
 | |
|   // If this value is a constant, return the constant in the smallest FP type
 | |
|   // that can accurately represent it.  This allows us to turn
 | |
|   // (float)((double)X+2.0) into x+2.0f.
 | |
|   if (auto *CFP = dyn_cast<ConstantFP>(V)) {
 | |
|     if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
 | |
|       return V;  // No constant folding of this.
 | |
|     // See if the value can be truncated to half and then reextended.
 | |
|     if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf()))
 | |
|       return V;
 | |
|     // See if the value can be truncated to float and then reextended.
 | |
|     if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle()))
 | |
|       return V;
 | |
|     if (CFP->getType()->isDoubleTy())
 | |
|       return V;  // Won't shrink.
 | |
|     if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble()))
 | |
|       return V;
 | |
|     // Don't try to shrink to various long double types.
 | |
|   }
 | |
| 
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
 | |
|   if (Instruction *I = commonCastTransforms(CI))
 | |
|     return I;
 | |
|   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
 | |
|   // simplify this expression to avoid one or more of the trunc/extend
 | |
|   // operations if we can do so without changing the numerical results.
 | |
|   //
 | |
|   // The exact manner in which the widths of the operands interact to limit
 | |
|   // what we can and cannot do safely varies from operation to operation, and
 | |
|   // is explained below in the various case statements.
 | |
|   BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
 | |
|   if (OpI && OpI->hasOneUse()) {
 | |
|     Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0));
 | |
|     Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1));
 | |
|     unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
 | |
|     unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
 | |
|     unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
 | |
|     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
 | |
|     unsigned DstWidth = CI.getType()->getFPMantissaWidth();
 | |
|     switch (OpI->getOpcode()) {
 | |
|       default: break;
 | |
|       case Instruction::FAdd:
 | |
|       case Instruction::FSub:
 | |
|         // For addition and subtraction, the infinitely precise result can
 | |
|         // essentially be arbitrarily wide; proving that double rounding
 | |
|         // will not occur because the result of OpI is exact (as we will for
 | |
|         // FMul, for example) is hopeless.  However, we *can* nonetheless
 | |
|         // frequently know that double rounding cannot occur (or that it is
 | |
|         // innocuous) by taking advantage of the specific structure of
 | |
|         // infinitely-precise results that admit double rounding.
 | |
|         //
 | |
|         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
 | |
|         // to represent both sources, we can guarantee that the double
 | |
|         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
 | |
|         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
 | |
|         // for proof of this fact).
 | |
|         //
 | |
|         // Note: Figueroa does not consider the case where DstFormat !=
 | |
|         // SrcFormat.  It's possible (likely even!) that this analysis
 | |
|         // could be tightened for those cases, but they are rare (the main
 | |
|         // case of interest here is (float)((double)float + float)).
 | |
|         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
 | |
|           if (LHSOrig->getType() != CI.getType())
 | |
|             LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
 | |
|           if (RHSOrig->getType() != CI.getType())
 | |
|             RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
 | |
|           Instruction *RI =
 | |
|             BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
 | |
|           RI->copyFastMathFlags(OpI);
 | |
|           return RI;
 | |
|         }
 | |
|         break;
 | |
|       case Instruction::FMul:
 | |
|         // For multiplication, the infinitely precise result has at most
 | |
|         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
 | |
|         // that such a value can be exactly represented, then no double
 | |
|         // rounding can possibly occur; we can safely perform the operation
 | |
|         // in the destination format if it can represent both sources.
 | |
|         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
 | |
|           if (LHSOrig->getType() != CI.getType())
 | |
|             LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
 | |
|           if (RHSOrig->getType() != CI.getType())
 | |
|             RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
 | |
|           Instruction *RI =
 | |
|             BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
 | |
|           RI->copyFastMathFlags(OpI);
 | |
|           return RI;
 | |
|         }
 | |
|         break;
 | |
|       case Instruction::FDiv:
 | |
|         // For division, we use again use the bound from Figueroa's
 | |
|         // dissertation.  I am entirely certain that this bound can be
 | |
|         // tightened in the unbalanced operand case by an analysis based on
 | |
|         // the diophantine rational approximation bound, but the well-known
 | |
|         // condition used here is a good conservative first pass.
 | |
|         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
 | |
|         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
 | |
|           if (LHSOrig->getType() != CI.getType())
 | |
|             LHSOrig = Builder.CreateFPExt(LHSOrig, CI.getType());
 | |
|           if (RHSOrig->getType() != CI.getType())
 | |
|             RHSOrig = Builder.CreateFPExt(RHSOrig, CI.getType());
 | |
|           Instruction *RI =
 | |
|             BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
 | |
|           RI->copyFastMathFlags(OpI);
 | |
|           return RI;
 | |
|         }
 | |
|         break;
 | |
|       case Instruction::FRem:
 | |
|         // Remainder is straightforward.  Remainder is always exact, so the
 | |
|         // type of OpI doesn't enter into things at all.  We simply evaluate
 | |
|         // in whichever source type is larger, then convert to the
 | |
|         // destination type.
 | |
|         if (SrcWidth == OpWidth)
 | |
|           break;
 | |
|         if (LHSWidth < SrcWidth)
 | |
|           LHSOrig = Builder.CreateFPExt(LHSOrig, RHSOrig->getType());
 | |
|         else if (RHSWidth <= SrcWidth)
 | |
|           RHSOrig = Builder.CreateFPExt(RHSOrig, LHSOrig->getType());
 | |
|         if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) {
 | |
|           Value *ExactResult = Builder.CreateFRem(LHSOrig, RHSOrig);
 | |
|           if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
 | |
|             RI->copyFastMathFlags(OpI);
 | |
|           return CastInst::CreateFPCast(ExactResult, CI.getType());
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // (fptrunc (fneg x)) -> (fneg (fptrunc x))
 | |
|     if (BinaryOperator::isFNeg(OpI)) {
 | |
|       Value *InnerTrunc = Builder.CreateFPTrunc(OpI->getOperand(1),
 | |
|                                                 CI.getType());
 | |
|       Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
 | |
|       RI->copyFastMathFlags(OpI);
 | |
|       return RI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (fptrunc (select cond, R1, Cst)) -->
 | |
|   // (select cond, (fptrunc R1), (fptrunc Cst))
 | |
|   //
 | |
|   //  - but only if this isn't part of a min/max operation, else we'll
 | |
|   // ruin min/max canonical form which is to have the select and
 | |
|   // compare's operands be of the same type with no casts to look through.
 | |
|   Value *LHS, *RHS;
 | |
|   SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
 | |
|   if (SI &&
 | |
|       (isa<ConstantFP>(SI->getOperand(1)) ||
 | |
|        isa<ConstantFP>(SI->getOperand(2))) &&
 | |
|       matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) {
 | |
|     Value *LHSTrunc = Builder.CreateFPTrunc(SI->getOperand(1), CI.getType());
 | |
|     Value *RHSTrunc = Builder.CreateFPTrunc(SI->getOperand(2), CI.getType());
 | |
|     return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
 | |
|   }
 | |
| 
 | |
|   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
 | |
|   if (II) {
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     default: break;
 | |
|     case Intrinsic::fabs:
 | |
|     case Intrinsic::ceil:
 | |
|     case Intrinsic::floor:
 | |
|     case Intrinsic::rint:
 | |
|     case Intrinsic::round:
 | |
|     case Intrinsic::nearbyint:
 | |
|     case Intrinsic::trunc: {
 | |
|       Value *Src = II->getArgOperand(0);
 | |
|       if (!Src->hasOneUse())
 | |
|         break;
 | |
| 
 | |
|       // Except for fabs, this transformation requires the input of the unary FP
 | |
|       // operation to be itself an fpext from the type to which we're
 | |
|       // truncating.
 | |
|       if (II->getIntrinsicID() != Intrinsic::fabs) {
 | |
|         FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
 | |
|         if (!FPExtSrc || FPExtSrc->getOperand(0)->getType() != CI.getType())
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|       // Do unary FP operation on smaller type.
 | |
|       // (fptrunc (fabs x)) -> (fabs (fptrunc x))
 | |
|       Value *InnerTrunc = Builder.CreateFPTrunc(Src, CI.getType());
 | |
|       Type *IntrinsicType[] = { CI.getType() };
 | |
|       Function *Overload = Intrinsic::getDeclaration(
 | |
|         CI.getModule(), II->getIntrinsicID(), IntrinsicType);
 | |
| 
 | |
|       SmallVector<OperandBundleDef, 1> OpBundles;
 | |
|       II->getOperandBundlesAsDefs(OpBundles);
 | |
| 
 | |
|       Value *Args[] = { InnerTrunc };
 | |
|       CallInst *NewCI =  CallInst::Create(Overload, Args,
 | |
|                                           OpBundles, II->getName());
 | |
|       NewCI->copyFastMathFlags(II);
 | |
|       return NewCI;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Instruction *I = shrinkInsertElt(CI, Builder))
 | |
|     return I;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFPExt(CastInst &CI) {
 | |
|   return commonCastTransforms(CI);
 | |
| }
 | |
| 
 | |
| // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
 | |
| // This is safe if the intermediate type has enough bits in its mantissa to
 | |
| // accurately represent all values of X.  For example, this won't work with
 | |
| // i64 -> float -> i64.
 | |
| Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
 | |
|   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
 | |
|     return nullptr;
 | |
|   Instruction *OpI = cast<Instruction>(FI.getOperand(0));
 | |
| 
 | |
|   Value *SrcI = OpI->getOperand(0);
 | |
|   Type *FITy = FI.getType();
 | |
|   Type *OpITy = OpI->getType();
 | |
|   Type *SrcTy = SrcI->getType();
 | |
|   bool IsInputSigned = isa<SIToFPInst>(OpI);
 | |
|   bool IsOutputSigned = isa<FPToSIInst>(FI);
 | |
| 
 | |
|   // We can safely assume the conversion won't overflow the output range,
 | |
|   // because (for example) (uint8_t)18293.f is undefined behavior.
 | |
| 
 | |
|   // Since we can assume the conversion won't overflow, our decision as to
 | |
|   // whether the input will fit in the float should depend on the minimum
 | |
|   // of the input range and output range.
 | |
| 
 | |
|   // This means this is also safe for a signed input and unsigned output, since
 | |
|   // a negative input would lead to undefined behavior.
 | |
|   int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
 | |
|   int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
 | |
|   int ActualSize = std::min(InputSize, OutputSize);
 | |
| 
 | |
|   if (ActualSize <= OpITy->getFPMantissaWidth()) {
 | |
|     if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
 | |
|       if (IsInputSigned && IsOutputSigned)
 | |
|         return new SExtInst(SrcI, FITy);
 | |
|       return new ZExtInst(SrcI, FITy);
 | |
|     }
 | |
|     if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
 | |
|       return new TruncInst(SrcI, FITy);
 | |
|     if (SrcTy == FITy)
 | |
|       return replaceInstUsesWith(FI, SrcI);
 | |
|     return new BitCastInst(SrcI, FITy);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
 | |
|   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
 | |
|   if (!OpI)
 | |
|     return commonCastTransforms(FI);
 | |
| 
 | |
|   if (Instruction *I = FoldItoFPtoI(FI))
 | |
|     return I;
 | |
| 
 | |
|   return commonCastTransforms(FI);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
 | |
|   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
 | |
|   if (!OpI)
 | |
|     return commonCastTransforms(FI);
 | |
| 
 | |
|   if (Instruction *I = FoldItoFPtoI(FI))
 | |
|     return I;
 | |
| 
 | |
|   return commonCastTransforms(FI);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
 | |
|   return commonCastTransforms(CI);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
 | |
|   return commonCastTransforms(CI);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
 | |
|   // If the source integer type is not the intptr_t type for this target, do a
 | |
|   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
 | |
|   // cast to be exposed to other transforms.
 | |
|   unsigned AS = CI.getAddressSpace();
 | |
|   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
 | |
|       DL.getPointerSizeInBits(AS)) {
 | |
|     Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
 | |
|     if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
 | |
|       Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
 | |
| 
 | |
|     Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
 | |
|     return new IntToPtrInst(P, CI.getType());
 | |
|   }
 | |
| 
 | |
|   if (Instruction *I = commonCastTransforms(CI))
 | |
|     return I;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
 | |
| Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
 | |
|   Value *Src = CI.getOperand(0);
 | |
| 
 | |
|   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
 | |
|     // If casting the result of a getelementptr instruction with no offset, turn
 | |
|     // this into a cast of the original pointer!
 | |
|     if (GEP->hasAllZeroIndices() &&
 | |
|         // If CI is an addrspacecast and GEP changes the poiner type, merging
 | |
|         // GEP into CI would undo canonicalizing addrspacecast with different
 | |
|         // pointer types, causing infinite loops.
 | |
|         (!isa<AddrSpaceCastInst>(CI) ||
 | |
|          GEP->getType() == GEP->getPointerOperandType())) {
 | |
|       // Changing the cast operand is usually not a good idea but it is safe
 | |
|       // here because the pointer operand is being replaced with another
 | |
|       // pointer operand so the opcode doesn't need to change.
 | |
|       Worklist.Add(GEP);
 | |
|       CI.setOperand(0, GEP->getOperand(0));
 | |
|       return &CI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return commonCastTransforms(CI);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
 | |
|   // If the destination integer type is not the intptr_t type for this target,
 | |
|   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
 | |
|   // to be exposed to other transforms.
 | |
| 
 | |
|   Type *Ty = CI.getType();
 | |
|   unsigned AS = CI.getPointerAddressSpace();
 | |
| 
 | |
|   if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
 | |
|     return commonPointerCastTransforms(CI);
 | |
| 
 | |
|   Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
 | |
|   if (Ty->isVectorTy()) // Handle vectors of pointers.
 | |
|     PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
 | |
| 
 | |
|   Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy);
 | |
|   return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
 | |
| }
 | |
| 
 | |
| /// This input value (which is known to have vector type) is being zero extended
 | |
| /// or truncated to the specified vector type.
 | |
| /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
 | |
| ///
 | |
| /// The source and destination vector types may have different element types.
 | |
| static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
 | |
|                                          InstCombiner &IC) {
 | |
|   // We can only do this optimization if the output is a multiple of the input
 | |
|   // element size, or the input is a multiple of the output element size.
 | |
|   // Convert the input type to have the same element type as the output.
 | |
|   VectorType *SrcTy = cast<VectorType>(InVal->getType());
 | |
| 
 | |
|   if (SrcTy->getElementType() != DestTy->getElementType()) {
 | |
|     // The input types don't need to be identical, but for now they must be the
 | |
|     // same size.  There is no specific reason we couldn't handle things like
 | |
|     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
 | |
|     // there yet.
 | |
|     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
 | |
|         DestTy->getElementType()->getPrimitiveSizeInBits())
 | |
|       return nullptr;
 | |
| 
 | |
|     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
 | |
|     InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
 | |
|   }
 | |
| 
 | |
|   // Now that the element types match, get the shuffle mask and RHS of the
 | |
|   // shuffle to use, which depends on whether we're increasing or decreasing the
 | |
|   // size of the input.
 | |
|   SmallVector<uint32_t, 16> ShuffleMask;
 | |
|   Value *V2;
 | |
| 
 | |
|   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
 | |
|     // If we're shrinking the number of elements, just shuffle in the low
 | |
|     // elements from the input and use undef as the second shuffle input.
 | |
|     V2 = UndefValue::get(SrcTy);
 | |
|     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
 | |
|       ShuffleMask.push_back(i);
 | |
| 
 | |
|   } else {
 | |
|     // If we're increasing the number of elements, shuffle in all of the
 | |
|     // elements from InVal and fill the rest of the result elements with zeros
 | |
|     // from a constant zero.
 | |
|     V2 = Constant::getNullValue(SrcTy);
 | |
|     unsigned SrcElts = SrcTy->getNumElements();
 | |
|     for (unsigned i = 0, e = SrcElts; i != e; ++i)
 | |
|       ShuffleMask.push_back(i);
 | |
| 
 | |
|     // The excess elements reference the first element of the zero input.
 | |
|     for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
 | |
|       ShuffleMask.push_back(SrcElts);
 | |
|   }
 | |
| 
 | |
|   return new ShuffleVectorInst(InVal, V2,
 | |
|                                ConstantDataVector::get(V2->getContext(),
 | |
|                                                        ShuffleMask));
 | |
| }
 | |
| 
 | |
| static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
 | |
|   return Value % Ty->getPrimitiveSizeInBits() == 0;
 | |
| }
 | |
| 
 | |
| static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
 | |
|   return Value / Ty->getPrimitiveSizeInBits();
 | |
| }
 | |
| 
 | |
| /// V is a value which is inserted into a vector of VecEltTy.
 | |
| /// Look through the value to see if we can decompose it into
 | |
| /// insertions into the vector.  See the example in the comment for
 | |
| /// OptimizeIntegerToVectorInsertions for the pattern this handles.
 | |
| /// The type of V is always a non-zero multiple of VecEltTy's size.
 | |
| /// Shift is the number of bits between the lsb of V and the lsb of
 | |
| /// the vector.
 | |
| ///
 | |
| /// This returns false if the pattern can't be matched or true if it can,
 | |
| /// filling in Elements with the elements found here.
 | |
| static bool collectInsertionElements(Value *V, unsigned Shift,
 | |
|                                      SmallVectorImpl<Value *> &Elements,
 | |
|                                      Type *VecEltTy, bool isBigEndian) {
 | |
|   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
 | |
|          "Shift should be a multiple of the element type size");
 | |
| 
 | |
|   // Undef values never contribute useful bits to the result.
 | |
|   if (isa<UndefValue>(V)) return true;
 | |
| 
 | |
|   // If we got down to a value of the right type, we win, try inserting into the
 | |
|   // right element.
 | |
|   if (V->getType() == VecEltTy) {
 | |
|     // Inserting null doesn't actually insert any elements.
 | |
|     if (Constant *C = dyn_cast<Constant>(V))
 | |
|       if (C->isNullValue())
 | |
|         return true;
 | |
| 
 | |
|     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
 | |
|     if (isBigEndian)
 | |
|       ElementIndex = Elements.size() - ElementIndex - 1;
 | |
| 
 | |
|     // Fail if multiple elements are inserted into this slot.
 | |
|     if (Elements[ElementIndex])
 | |
|       return false;
 | |
| 
 | |
|     Elements[ElementIndex] = V;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (Constant *C = dyn_cast<Constant>(V)) {
 | |
|     // Figure out the # elements this provides, and bitcast it or slice it up
 | |
|     // as required.
 | |
|     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
 | |
|                                         VecEltTy);
 | |
|     // If the constant is the size of a vector element, we just need to bitcast
 | |
|     // it to the right type so it gets properly inserted.
 | |
|     if (NumElts == 1)
 | |
|       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
 | |
|                                       Shift, Elements, VecEltTy, isBigEndian);
 | |
| 
 | |
|     // Okay, this is a constant that covers multiple elements.  Slice it up into
 | |
|     // pieces and insert each element-sized piece into the vector.
 | |
|     if (!isa<IntegerType>(C->getType()))
 | |
|       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
 | |
|                                        C->getType()->getPrimitiveSizeInBits()));
 | |
|     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
 | |
|     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
 | |
| 
 | |
|     for (unsigned i = 0; i != NumElts; ++i) {
 | |
|       unsigned ShiftI = Shift+i*ElementSize;
 | |
|       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
 | |
|                                                                   ShiftI));
 | |
|       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
 | |
|       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
 | |
|                                     isBigEndian))
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!V->hasOneUse()) return false;
 | |
| 
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return false;
 | |
|   switch (I->getOpcode()) {
 | |
|   default: return false; // Unhandled case.
 | |
|   case Instruction::BitCast:
 | |
|     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
 | |
|                                     isBigEndian);
 | |
|   case Instruction::ZExt:
 | |
|     if (!isMultipleOfTypeSize(
 | |
|                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
 | |
|                               VecEltTy))
 | |
|       return false;
 | |
|     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
 | |
|                                     isBigEndian);
 | |
|   case Instruction::Or:
 | |
|     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
 | |
|                                     isBigEndian) &&
 | |
|            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
 | |
|                                     isBigEndian);
 | |
|   case Instruction::Shl: {
 | |
|     // Must be shifting by a constant that is a multiple of the element size.
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
 | |
|     if (!CI) return false;
 | |
|     Shift += CI->getZExtValue();
 | |
|     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
 | |
|     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
 | |
|                                     isBigEndian);
 | |
|   }
 | |
| 
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// If the input is an 'or' instruction, we may be doing shifts and ors to
 | |
| /// assemble the elements of the vector manually.
 | |
| /// Try to rip the code out and replace it with insertelements.  This is to
 | |
| /// optimize code like this:
 | |
| ///
 | |
| ///    %tmp37 = bitcast float %inc to i32
 | |
| ///    %tmp38 = zext i32 %tmp37 to i64
 | |
| ///    %tmp31 = bitcast float %inc5 to i32
 | |
| ///    %tmp32 = zext i32 %tmp31 to i64
 | |
| ///    %tmp33 = shl i64 %tmp32, 32
 | |
| ///    %ins35 = or i64 %tmp33, %tmp38
 | |
| ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
 | |
| ///
 | |
| /// Into two insertelements that do "buildvector{%inc, %inc5}".
 | |
| static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
 | |
|                                                 InstCombiner &IC) {
 | |
|   VectorType *DestVecTy = cast<VectorType>(CI.getType());
 | |
|   Value *IntInput = CI.getOperand(0);
 | |
| 
 | |
|   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
 | |
|   if (!collectInsertionElements(IntInput, 0, Elements,
 | |
|                                 DestVecTy->getElementType(),
 | |
|                                 IC.getDataLayout().isBigEndian()))
 | |
|     return nullptr;
 | |
| 
 | |
|   // If we succeeded, we know that all of the element are specified by Elements
 | |
|   // or are zero if Elements has a null entry.  Recast this as a set of
 | |
|   // insertions.
 | |
|   Value *Result = Constant::getNullValue(CI.getType());
 | |
|   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
 | |
|     if (!Elements[i]) continue;  // Unset element.
 | |
| 
 | |
|     Result = IC.Builder.CreateInsertElement(Result, Elements[i],
 | |
|                                             IC.Builder.getInt32(i));
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
 | |
| /// vector followed by extract element. The backend tends to handle bitcasts of
 | |
| /// vectors better than bitcasts of scalars because vector registers are
 | |
| /// usually not type-specific like scalar integer or scalar floating-point.
 | |
| static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
 | |
|                                               InstCombiner &IC) {
 | |
|   // TODO: Create and use a pattern matcher for ExtractElementInst.
 | |
|   auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
 | |
|   if (!ExtElt || !ExtElt->hasOneUse())
 | |
|     return nullptr;
 | |
| 
 | |
|   // The bitcast must be to a vectorizable type, otherwise we can't make a new
 | |
|   // type to extract from.
 | |
|   Type *DestType = BitCast.getType();
 | |
|   if (!VectorType::isValidElementType(DestType))
 | |
|     return nullptr;
 | |
| 
 | |
|   unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
 | |
|   auto *NewVecType = VectorType::get(DestType, NumElts);
 | |
|   auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
 | |
|                                          NewVecType, "bc");
 | |
|   return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
 | |
| }
 | |
| 
 | |
| /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
 | |
| static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
 | |
|                                             InstCombiner::BuilderTy &Builder) {
 | |
|   Type *DestTy = BitCast.getType();
 | |
|   BinaryOperator *BO;
 | |
|   if (!DestTy->isIntOrIntVectorTy() ||
 | |
|       !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
 | |
|       !BO->isBitwiseLogicOp())
 | |
|     return nullptr;
 | |
|   
 | |
|   // FIXME: This transform is restricted to vector types to avoid backend
 | |
|   // problems caused by creating potentially illegal operations. If a fix-up is
 | |
|   // added to handle that situation, we can remove this check.
 | |
|   if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
 | |
|     return nullptr;
 | |
|   
 | |
|   Value *X;
 | |
|   if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
 | |
|       X->getType() == DestTy && !isa<Constant>(X)) {
 | |
|     // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
 | |
|     Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
 | |
|     return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
 | |
|   }
 | |
| 
 | |
|   if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
 | |
|       X->getType() == DestTy && !isa<Constant>(X)) {
 | |
|     // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
 | |
|     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
 | |
|     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
 | |
|   }
 | |
| 
 | |
|   // Canonicalize vector bitcasts to come before vector bitwise logic with a
 | |
|   // constant. This eases recognition of special constants for later ops.
 | |
|   // Example:
 | |
|   // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
 | |
|   Constant *C;
 | |
|   if (match(BO->getOperand(1), m_Constant(C))) {
 | |
|     // bitcast (logic X, C) --> logic (bitcast X, C')
 | |
|     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
 | |
|     Value *CastedC = ConstantExpr::getBitCast(C, DestTy);
 | |
|     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Change the type of a select if we can eliminate a bitcast.
 | |
| static Instruction *foldBitCastSelect(BitCastInst &BitCast,
 | |
|                                       InstCombiner::BuilderTy &Builder) {
 | |
|   Value *Cond, *TVal, *FVal;
 | |
|   if (!match(BitCast.getOperand(0),
 | |
|              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // A vector select must maintain the same number of elements in its operands.
 | |
|   Type *CondTy = Cond->getType();
 | |
|   Type *DestTy = BitCast.getType();
 | |
|   if (CondTy->isVectorTy()) {
 | |
|     if (!DestTy->isVectorTy())
 | |
|       return nullptr;
 | |
|     if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements())
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   // FIXME: This transform is restricted from changing the select between
 | |
|   // scalars and vectors to avoid backend problems caused by creating
 | |
|   // potentially illegal operations. If a fix-up is added to handle that
 | |
|   // situation, we can remove this check.
 | |
|   if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *Sel = cast<Instruction>(BitCast.getOperand(0));
 | |
|   Value *X;
 | |
|   if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
 | |
|       !isa<Constant>(X)) {
 | |
|     // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
 | |
|     Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
 | |
|     return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
 | |
|   }
 | |
| 
 | |
|   if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
 | |
|       !isa<Constant>(X)) {
 | |
|     // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
 | |
|     Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
 | |
|     return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Check if all users of CI are StoreInsts.
 | |
| static bool hasStoreUsersOnly(CastInst &CI) {
 | |
|   for (User *U : CI.users()) {
 | |
|     if (!isa<StoreInst>(U))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// This function handles following case
 | |
| ///
 | |
| ///     A  ->  B    cast
 | |
| ///     PHI
 | |
| ///     B  ->  A    cast
 | |
| ///
 | |
| /// All the related PHI nodes can be replaced by new PHI nodes with type A.
 | |
| /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
 | |
| Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
 | |
|   // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
 | |
|   if (hasStoreUsersOnly(CI))
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *Src = CI.getOperand(0);
 | |
|   Type *SrcTy = Src->getType();         // Type B
 | |
|   Type *DestTy = CI.getType();          // Type A
 | |
| 
 | |
|   SmallVector<PHINode *, 4> PhiWorklist;
 | |
|   SmallSetVector<PHINode *, 4> OldPhiNodes;
 | |
| 
 | |
|   // Find all of the A->B casts and PHI nodes.
 | |
|   // We need to inpect all related PHI nodes, but PHIs can be cyclic, so
 | |
|   // OldPhiNodes is used to track all known PHI nodes, before adding a new
 | |
|   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
 | |
|   PhiWorklist.push_back(PN);
 | |
|   OldPhiNodes.insert(PN);
 | |
|   while (!PhiWorklist.empty()) {
 | |
|     auto *OldPN = PhiWorklist.pop_back_val();
 | |
|     for (Value *IncValue : OldPN->incoming_values()) {
 | |
|       if (isa<Constant>(IncValue))
 | |
|         continue;
 | |
| 
 | |
|       if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
 | |
|         // If there is a sequence of one or more load instructions, each loaded
 | |
|         // value is used as address of later load instruction, bitcast is
 | |
|         // necessary to change the value type, don't optimize it. For
 | |
|         // simplicity we give up if the load address comes from another load.
 | |
|         Value *Addr = LI->getOperand(0);
 | |
|         if (Addr == &CI || isa<LoadInst>(Addr))
 | |
|           return nullptr;
 | |
|         if (LI->hasOneUse() && LI->isSimple())
 | |
|           continue;
 | |
|         // If a LoadInst has more than one use, changing the type of loaded
 | |
|         // value may create another bitcast.
 | |
|         return nullptr;
 | |
|       }
 | |
| 
 | |
|       if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
 | |
|         if (OldPhiNodes.insert(PNode))
 | |
|           PhiWorklist.push_back(PNode);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       auto *BCI = dyn_cast<BitCastInst>(IncValue);
 | |
|       // We can't handle other instructions.
 | |
|       if (!BCI)
 | |
|         return nullptr;
 | |
| 
 | |
|       // Verify it's a A->B cast.
 | |
|       Type *TyA = BCI->getOperand(0)->getType();
 | |
|       Type *TyB = BCI->getType();
 | |
|       if (TyA != DestTy || TyB != SrcTy)
 | |
|         return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // For each old PHI node, create a corresponding new PHI node with a type A.
 | |
|   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
 | |
|   for (auto *OldPN : OldPhiNodes) {
 | |
|     Builder.SetInsertPoint(OldPN);
 | |
|     PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
 | |
|     NewPNodes[OldPN] = NewPN;
 | |
|   }
 | |
| 
 | |
|   // Fill in the operands of new PHI nodes.
 | |
|   for (auto *OldPN : OldPhiNodes) {
 | |
|     PHINode *NewPN = NewPNodes[OldPN];
 | |
|     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
 | |
|       Value *V = OldPN->getOperand(j);
 | |
|       Value *NewV = nullptr;
 | |
|       if (auto *C = dyn_cast<Constant>(V)) {
 | |
|         NewV = ConstantExpr::getBitCast(C, DestTy);
 | |
|       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
 | |
|         Builder.SetInsertPoint(LI->getNextNode());
 | |
|         NewV = Builder.CreateBitCast(LI, DestTy);
 | |
|         Worklist.Add(LI);
 | |
|       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
 | |
|         NewV = BCI->getOperand(0);
 | |
|       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
 | |
|         NewV = NewPNodes[PrevPN];
 | |
|       }
 | |
|       assert(NewV);
 | |
|       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there is a store with type B, change it to type A.
 | |
|   for (User *U : PN->users()) {
 | |
|     auto *SI = dyn_cast<StoreInst>(U);
 | |
|     if (SI && SI->isSimple() && SI->getOperand(0) == PN) {
 | |
|       Builder.SetInsertPoint(SI);
 | |
|       auto *NewBC =
 | |
|           cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy));
 | |
|       SI->setOperand(0, NewBC);
 | |
|       Worklist.Add(SI);
 | |
|       assert(hasStoreUsersOnly(*NewBC));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return replaceInstUsesWith(CI, NewPNodes[PN]);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
 | |
|   // If the operands are integer typed then apply the integer transforms,
 | |
|   // otherwise just apply the common ones.
 | |
|   Value *Src = CI.getOperand(0);
 | |
|   Type *SrcTy = Src->getType();
 | |
|   Type *DestTy = CI.getType();
 | |
| 
 | |
|   // Get rid of casts from one type to the same type. These are useless and can
 | |
|   // be replaced by the operand.
 | |
|   if (DestTy == Src->getType())
 | |
|     return replaceInstUsesWith(CI, Src);
 | |
| 
 | |
|   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
 | |
|     PointerType *SrcPTy = cast<PointerType>(SrcTy);
 | |
|     Type *DstElTy = DstPTy->getElementType();
 | |
|     Type *SrcElTy = SrcPTy->getElementType();
 | |
| 
 | |
|     // If we are casting a alloca to a pointer to a type of the same
 | |
|     // size, rewrite the allocation instruction to allocate the "right" type.
 | |
|     // There is no need to modify malloc calls because it is their bitcast that
 | |
|     // needs to be cleaned up.
 | |
|     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
 | |
|       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
 | |
|         return V;
 | |
| 
 | |
|     // When the type pointed to is not sized the cast cannot be
 | |
|     // turned into a gep.
 | |
|     Type *PointeeType =
 | |
|         cast<PointerType>(Src->getType()->getScalarType())->getElementType();
 | |
|     if (!PointeeType->isSized())
 | |
|       return nullptr;
 | |
| 
 | |
|     // If the source and destination are pointers, and this cast is equivalent
 | |
|     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
 | |
|     // This can enhance SROA and other transforms that want type-safe pointers.
 | |
|     unsigned NumZeros = 0;
 | |
|     while (SrcElTy != DstElTy &&
 | |
|            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
 | |
|            SrcElTy->getNumContainedTypes() /* not "{}" */) {
 | |
|       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
 | |
|       ++NumZeros;
 | |
|     }
 | |
| 
 | |
|     // If we found a path from the src to dest, create the getelementptr now.
 | |
|     if (SrcElTy == DstElTy) {
 | |
|       SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
 | |
|       return GetElementPtrInst::CreateInBounds(Src, Idxs);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
 | |
|     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
 | |
|       Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
 | |
|       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
 | |
|                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
 | |
|       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
 | |
|     }
 | |
| 
 | |
|     if (isa<IntegerType>(SrcTy)) {
 | |
|       // If this is a cast from an integer to vector, check to see if the input
 | |
|       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
 | |
|       // the casts with a shuffle and (potentially) a bitcast.
 | |
|       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
 | |
|         CastInst *SrcCast = cast<CastInst>(Src);
 | |
|         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
 | |
|           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
 | |
|             if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0),
 | |
|                                                cast<VectorType>(DestTy), *this))
 | |
|               return I;
 | |
|       }
 | |
| 
 | |
|       // If the input is an 'or' instruction, we may be doing shifts and ors to
 | |
|       // assemble the elements of the vector manually.  Try to rip the code out
 | |
|       // and replace it with insertelements.
 | |
|       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
 | |
|         return replaceInstUsesWith(CI, V);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
 | |
|     if (SrcVTy->getNumElements() == 1) {
 | |
|       // If our destination is not a vector, then make this a straight
 | |
|       // scalar-scalar cast.
 | |
|       if (!DestTy->isVectorTy()) {
 | |
|         Value *Elem =
 | |
|           Builder.CreateExtractElement(Src,
 | |
|                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
 | |
|         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
 | |
|       }
 | |
| 
 | |
|       // Otherwise, see if our source is an insert. If so, then use the scalar
 | |
|       // component directly.
 | |
|       if (InsertElementInst *IEI =
 | |
|             dyn_cast<InsertElementInst>(CI.getOperand(0)))
 | |
|         return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
 | |
|                                 DestTy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
 | |
|     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
 | |
|     // a bitcast to a vector with the same # elts.
 | |
|     if (SVI->hasOneUse() && DestTy->isVectorTy() &&
 | |
|         DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
 | |
|         SVI->getType()->getNumElements() ==
 | |
|         SVI->getOperand(0)->getType()->getVectorNumElements()) {
 | |
|       BitCastInst *Tmp;
 | |
|       // If either of the operands is a cast from CI.getType(), then
 | |
|       // evaluating the shuffle in the casted destination's type will allow
 | |
|       // us to eliminate at least one cast.
 | |
|       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
 | |
|            Tmp->getOperand(0)->getType() == DestTy) ||
 | |
|           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
 | |
|            Tmp->getOperand(0)->getType() == DestTy)) {
 | |
|         Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy);
 | |
|         Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy);
 | |
|         // Return a new shuffle vector.  Use the same element ID's, as we
 | |
|         // know the vector types match #elts.
 | |
|         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle the A->B->A cast, and there is an intervening PHI node.
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(Src))
 | |
|     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
 | |
|       return I;
 | |
| 
 | |
|   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
 | |
|     return I;
 | |
| 
 | |
|   if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
 | |
|     return I;
 | |
| 
 | |
|   if (Instruction *I = foldBitCastSelect(CI, Builder))
 | |
|     return I;
 | |
| 
 | |
|   if (SrcTy->isPointerTy())
 | |
|     return commonPointerCastTransforms(CI);
 | |
|   return commonCastTransforms(CI);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
 | |
|   // If the destination pointer element type is not the same as the source's
 | |
|   // first do a bitcast to the destination type, and then the addrspacecast.
 | |
|   // This allows the cast to be exposed to other transforms.
 | |
|   Value *Src = CI.getOperand(0);
 | |
|   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
 | |
|   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
 | |
| 
 | |
|   Type *DestElemTy = DestTy->getElementType();
 | |
|   if (SrcTy->getElementType() != DestElemTy) {
 | |
|     Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
 | |
|     if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
 | |
|       // Handle vectors of pointers.
 | |
|       MidTy = VectorType::get(MidTy, VT->getNumElements());
 | |
|     }
 | |
| 
 | |
|     Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
 | |
|     return new AddrSpaceCastInst(NewBitCast, CI.getType());
 | |
|   }
 | |
| 
 | |
|   return commonPointerCastTransforms(CI);
 | |
| }
 |