forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			5117 lines
		
	
	
		
			198 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			5117 lines
		
	
	
		
			198 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InstCombineCompares.cpp --------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the visitICmp and visitFCmp functions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombineInternal.h"
 | |
| #include "llvm/ADT/APSInt.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/VectorUtils.h"
 | |
| #include "llvm/IR/ConstantRange.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "instcombine"
 | |
| 
 | |
| // How many times is a select replaced by one of its operands?
 | |
| STATISTIC(NumSel, "Number of select opts");
 | |
| 
 | |
| 
 | |
| static ConstantInt *extractElement(Constant *V, Constant *Idx) {
 | |
|   return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
 | |
| }
 | |
| 
 | |
| static bool hasAddOverflow(ConstantInt *Result,
 | |
|                            ConstantInt *In1, ConstantInt *In2,
 | |
|                            bool IsSigned) {
 | |
|   if (!IsSigned)
 | |
|     return Result->getValue().ult(In1->getValue());
 | |
| 
 | |
|   if (In2->isNegative())
 | |
|     return Result->getValue().sgt(In1->getValue());
 | |
|   return Result->getValue().slt(In1->getValue());
 | |
| }
 | |
| 
 | |
| /// Compute Result = In1+In2, returning true if the result overflowed for this
 | |
| /// type.
 | |
| static bool addWithOverflow(Constant *&Result, Constant *In1,
 | |
|                             Constant *In2, bool IsSigned = false) {
 | |
|   Result = ConstantExpr::getAdd(In1, In2);
 | |
| 
 | |
|   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
 | |
|     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
 | |
|       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
 | |
|       if (hasAddOverflow(extractElement(Result, Idx),
 | |
|                          extractElement(In1, Idx),
 | |
|                          extractElement(In2, Idx),
 | |
|                          IsSigned))
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return hasAddOverflow(cast<ConstantInt>(Result),
 | |
|                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
 | |
|                         IsSigned);
 | |
| }
 | |
| 
 | |
| static bool hasSubOverflow(ConstantInt *Result,
 | |
|                            ConstantInt *In1, ConstantInt *In2,
 | |
|                            bool IsSigned) {
 | |
|   if (!IsSigned)
 | |
|     return Result->getValue().ugt(In1->getValue());
 | |
| 
 | |
|   if (In2->isNegative())
 | |
|     return Result->getValue().slt(In1->getValue());
 | |
| 
 | |
|   return Result->getValue().sgt(In1->getValue());
 | |
| }
 | |
| 
 | |
| /// Compute Result = In1-In2, returning true if the result overflowed for this
 | |
| /// type.
 | |
| static bool subWithOverflow(Constant *&Result, Constant *In1,
 | |
|                             Constant *In2, bool IsSigned = false) {
 | |
|   Result = ConstantExpr::getSub(In1, In2);
 | |
| 
 | |
|   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
 | |
|     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
 | |
|       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
 | |
|       if (hasSubOverflow(extractElement(Result, Idx),
 | |
|                          extractElement(In1, Idx),
 | |
|                          extractElement(In2, Idx),
 | |
|                          IsSigned))
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return hasSubOverflow(cast<ConstantInt>(Result),
 | |
|                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
 | |
|                         IsSigned);
 | |
| }
 | |
| 
 | |
| /// Given an icmp instruction, return true if any use of this comparison is a
 | |
| /// branch on sign bit comparison.
 | |
| static bool hasBranchUse(ICmpInst &I) {
 | |
|   for (auto *U : I.users())
 | |
|     if (isa<BranchInst>(U))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Given an exploded icmp instruction, return true if the comparison only
 | |
| /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
 | |
| /// result of the comparison is true when the input value is signed.
 | |
| static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
 | |
|                            bool &TrueIfSigned) {
 | |
|   switch (Pred) {
 | |
|   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
 | |
|     TrueIfSigned = true;
 | |
|     return RHS.isNullValue();
 | |
|   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
 | |
|     TrueIfSigned = true;
 | |
|     return RHS.isAllOnesValue();
 | |
|   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
 | |
|     TrueIfSigned = false;
 | |
|     return RHS.isAllOnesValue();
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|     // True if LHS u> RHS and RHS == high-bit-mask - 1
 | |
|     TrueIfSigned = true;
 | |
|     return RHS.isMaxSignedValue();
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
 | |
|     TrueIfSigned = true;
 | |
|     return RHS.isSignMask();
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Returns true if the exploded icmp can be expressed as a signed comparison
 | |
| /// to zero and updates the predicate accordingly.
 | |
| /// The signedness of the comparison is preserved.
 | |
| /// TODO: Refactor with decomposeBitTestICmp()?
 | |
| static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
 | |
|   if (!ICmpInst::isSigned(Pred))
 | |
|     return false;
 | |
| 
 | |
|   if (C.isNullValue())
 | |
|     return ICmpInst::isRelational(Pred);
 | |
| 
 | |
|   if (C.isOneValue()) {
 | |
|     if (Pred == ICmpInst::ICMP_SLT) {
 | |
|       Pred = ICmpInst::ICMP_SLE;
 | |
|       return true;
 | |
|     }
 | |
|   } else if (C.isAllOnesValue()) {
 | |
|     if (Pred == ICmpInst::ICMP_SGT) {
 | |
|       Pred = ICmpInst::ICMP_SGE;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Given a signed integer type and a set of known zero and one bits, compute
 | |
| /// the maximum and minimum values that could have the specified known zero and
 | |
| /// known one bits, returning them in Min/Max.
 | |
| /// TODO: Move to method on KnownBits struct?
 | |
| static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known,
 | |
|                                                    APInt &Min, APInt &Max) {
 | |
|   assert(Known.getBitWidth() == Min.getBitWidth() &&
 | |
|          Known.getBitWidth() == Max.getBitWidth() &&
 | |
|          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
 | |
|   APInt UnknownBits = ~(Known.Zero|Known.One);
 | |
| 
 | |
|   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
 | |
|   // bit if it is unknown.
 | |
|   Min = Known.One;
 | |
|   Max = Known.One|UnknownBits;
 | |
| 
 | |
|   if (UnknownBits.isNegative()) { // Sign bit is unknown
 | |
|     Min.setSignBit();
 | |
|     Max.clearSignBit();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Given an unsigned integer type and a set of known zero and one bits, compute
 | |
| /// the maximum and minimum values that could have the specified known zero and
 | |
| /// known one bits, returning them in Min/Max.
 | |
| /// TODO: Move to method on KnownBits struct?
 | |
| static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known,
 | |
|                                                      APInt &Min, APInt &Max) {
 | |
|   assert(Known.getBitWidth() == Min.getBitWidth() &&
 | |
|          Known.getBitWidth() == Max.getBitWidth() &&
 | |
|          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
 | |
|   APInt UnknownBits = ~(Known.Zero|Known.One);
 | |
| 
 | |
|   // The minimum value is when the unknown bits are all zeros.
 | |
|   Min = Known.One;
 | |
|   // The maximum value is when the unknown bits are all ones.
 | |
|   Max = Known.One|UnknownBits;
 | |
| }
 | |
| 
 | |
| /// This is called when we see this pattern:
 | |
| ///   cmp pred (load (gep GV, ...)), cmpcst
 | |
| /// where GV is a global variable with a constant initializer. Try to simplify
 | |
| /// this into some simple computation that does not need the load. For example
 | |
| /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
 | |
| ///
 | |
| /// If AndCst is non-null, then the loaded value is masked with that constant
 | |
| /// before doing the comparison. This handles cases like "A[i]&4 == 0".
 | |
| Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
 | |
|                                                         GlobalVariable *GV,
 | |
|                                                         CmpInst &ICI,
 | |
|                                                         ConstantInt *AndCst) {
 | |
|   Constant *Init = GV->getInitializer();
 | |
|   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
 | |
|     return nullptr;
 | |
| 
 | |
|   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
 | |
|   // Don't blow up on huge arrays.
 | |
|   if (ArrayElementCount > MaxArraySizeForCombine)
 | |
|     return nullptr;
 | |
| 
 | |
|   // There are many forms of this optimization we can handle, for now, just do
 | |
|   // the simple index into a single-dimensional array.
 | |
|   //
 | |
|   // Require: GEP GV, 0, i {{, constant indices}}
 | |
|   if (GEP->getNumOperands() < 3 ||
 | |
|       !isa<ConstantInt>(GEP->getOperand(1)) ||
 | |
|       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
 | |
|       isa<Constant>(GEP->getOperand(2)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check that indices after the variable are constants and in-range for the
 | |
|   // type they index.  Collect the indices.  This is typically for arrays of
 | |
|   // structs.
 | |
|   SmallVector<unsigned, 4> LaterIndices;
 | |
| 
 | |
|   Type *EltTy = Init->getType()->getArrayElementType();
 | |
|   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
 | |
|     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
 | |
|     if (!Idx) return nullptr;  // Variable index.
 | |
| 
 | |
|     uint64_t IdxVal = Idx->getZExtValue();
 | |
|     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
 | |
| 
 | |
|     if (StructType *STy = dyn_cast<StructType>(EltTy))
 | |
|       EltTy = STy->getElementType(IdxVal);
 | |
|     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
 | |
|       if (IdxVal >= ATy->getNumElements()) return nullptr;
 | |
|       EltTy = ATy->getElementType();
 | |
|     } else {
 | |
|       return nullptr; // Unknown type.
 | |
|     }
 | |
| 
 | |
|     LaterIndices.push_back(IdxVal);
 | |
|   }
 | |
| 
 | |
|   enum { Overdefined = -3, Undefined = -2 };
 | |
| 
 | |
|   // Variables for our state machines.
 | |
| 
 | |
|   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
 | |
|   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
 | |
|   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
 | |
|   // undefined, otherwise set to the first true element.  SecondTrueElement is
 | |
|   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
 | |
|   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
 | |
| 
 | |
|   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
 | |
|   // form "i != 47 & i != 87".  Same state transitions as for true elements.
 | |
|   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
 | |
| 
 | |
|   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
 | |
|   /// define a state machine that triggers for ranges of values that the index
 | |
|   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
 | |
|   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
 | |
|   /// index in the range (inclusive).  We use -2 for undefined here because we
 | |
|   /// use relative comparisons and don't want 0-1 to match -1.
 | |
|   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
 | |
| 
 | |
|   // MagicBitvector - This is a magic bitvector where we set a bit if the
 | |
|   // comparison is true for element 'i'.  If there are 64 elements or less in
 | |
|   // the array, this will fully represent all the comparison results.
 | |
|   uint64_t MagicBitvector = 0;
 | |
| 
 | |
|   // Scan the array and see if one of our patterns matches.
 | |
|   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
 | |
|   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
 | |
|     Constant *Elt = Init->getAggregateElement(i);
 | |
|     if (!Elt) return nullptr;
 | |
| 
 | |
|     // If this is indexing an array of structures, get the structure element.
 | |
|     if (!LaterIndices.empty())
 | |
|       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
 | |
| 
 | |
|     // If the element is masked, handle it.
 | |
|     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
 | |
| 
 | |
|     // Find out if the comparison would be true or false for the i'th element.
 | |
|     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
 | |
|                                                   CompareRHS, DL, &TLI);
 | |
|     // If the result is undef for this element, ignore it.
 | |
|     if (isa<UndefValue>(C)) {
 | |
|       // Extend range state machines to cover this element in case there is an
 | |
|       // undef in the middle of the range.
 | |
|       if (TrueRangeEnd == (int)i-1)
 | |
|         TrueRangeEnd = i;
 | |
|       if (FalseRangeEnd == (int)i-1)
 | |
|         FalseRangeEnd = i;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If we can't compute the result for any of the elements, we have to give
 | |
|     // up evaluating the entire conditional.
 | |
|     if (!isa<ConstantInt>(C)) return nullptr;
 | |
| 
 | |
|     // Otherwise, we know if the comparison is true or false for this element,
 | |
|     // update our state machines.
 | |
|     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
 | |
| 
 | |
|     // State machine for single/double/range index comparison.
 | |
|     if (IsTrueForElt) {
 | |
|       // Update the TrueElement state machine.
 | |
|       if (FirstTrueElement == Undefined)
 | |
|         FirstTrueElement = TrueRangeEnd = i;  // First true element.
 | |
|       else {
 | |
|         // Update double-compare state machine.
 | |
|         if (SecondTrueElement == Undefined)
 | |
|           SecondTrueElement = i;
 | |
|         else
 | |
|           SecondTrueElement = Overdefined;
 | |
| 
 | |
|         // Update range state machine.
 | |
|         if (TrueRangeEnd == (int)i-1)
 | |
|           TrueRangeEnd = i;
 | |
|         else
 | |
|           TrueRangeEnd = Overdefined;
 | |
|       }
 | |
|     } else {
 | |
|       // Update the FalseElement state machine.
 | |
|       if (FirstFalseElement == Undefined)
 | |
|         FirstFalseElement = FalseRangeEnd = i; // First false element.
 | |
|       else {
 | |
|         // Update double-compare state machine.
 | |
|         if (SecondFalseElement == Undefined)
 | |
|           SecondFalseElement = i;
 | |
|         else
 | |
|           SecondFalseElement = Overdefined;
 | |
| 
 | |
|         // Update range state machine.
 | |
|         if (FalseRangeEnd == (int)i-1)
 | |
|           FalseRangeEnd = i;
 | |
|         else
 | |
|           FalseRangeEnd = Overdefined;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If this element is in range, update our magic bitvector.
 | |
|     if (i < 64 && IsTrueForElt)
 | |
|       MagicBitvector |= 1ULL << i;
 | |
| 
 | |
|     // If all of our states become overdefined, bail out early.  Since the
 | |
|     // predicate is expensive, only check it every 8 elements.  This is only
 | |
|     // really useful for really huge arrays.
 | |
|     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
 | |
|         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
 | |
|         FalseRangeEnd == Overdefined)
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Now that we've scanned the entire array, emit our new comparison(s).  We
 | |
|   // order the state machines in complexity of the generated code.
 | |
|   Value *Idx = GEP->getOperand(2);
 | |
| 
 | |
|   // If the index is larger than the pointer size of the target, truncate the
 | |
|   // index down like the GEP would do implicitly.  We don't have to do this for
 | |
|   // an inbounds GEP because the index can't be out of range.
 | |
|   if (!GEP->isInBounds()) {
 | |
|     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
 | |
|     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
 | |
|     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
 | |
|       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
 | |
|   }
 | |
| 
 | |
|   // If the comparison is only true for one or two elements, emit direct
 | |
|   // comparisons.
 | |
|   if (SecondTrueElement != Overdefined) {
 | |
|     // None true -> false.
 | |
|     if (FirstTrueElement == Undefined)
 | |
|       return replaceInstUsesWith(ICI, Builder.getFalse());
 | |
| 
 | |
|     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
 | |
| 
 | |
|     // True for one element -> 'i == 47'.
 | |
|     if (SecondTrueElement == Undefined)
 | |
|       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
 | |
| 
 | |
|     // True for two elements -> 'i == 47 | i == 72'.
 | |
|     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
 | |
|     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
 | |
|     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
 | |
|     return BinaryOperator::CreateOr(C1, C2);
 | |
|   }
 | |
| 
 | |
|   // If the comparison is only false for one or two elements, emit direct
 | |
|   // comparisons.
 | |
|   if (SecondFalseElement != Overdefined) {
 | |
|     // None false -> true.
 | |
|     if (FirstFalseElement == Undefined)
 | |
|       return replaceInstUsesWith(ICI, Builder.getTrue());
 | |
| 
 | |
|     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
 | |
| 
 | |
|     // False for one element -> 'i != 47'.
 | |
|     if (SecondFalseElement == Undefined)
 | |
|       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
 | |
| 
 | |
|     // False for two elements -> 'i != 47 & i != 72'.
 | |
|     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
 | |
|     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
 | |
|     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
 | |
|     return BinaryOperator::CreateAnd(C1, C2);
 | |
|   }
 | |
| 
 | |
|   // If the comparison can be replaced with a range comparison for the elements
 | |
|   // where it is true, emit the range check.
 | |
|   if (TrueRangeEnd != Overdefined) {
 | |
|     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
 | |
| 
 | |
|     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
 | |
|     if (FirstTrueElement) {
 | |
|       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
 | |
|       Idx = Builder.CreateAdd(Idx, Offs);
 | |
|     }
 | |
| 
 | |
|     Value *End = ConstantInt::get(Idx->getType(),
 | |
|                                   TrueRangeEnd-FirstTrueElement+1);
 | |
|     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
 | |
|   }
 | |
| 
 | |
|   // False range check.
 | |
|   if (FalseRangeEnd != Overdefined) {
 | |
|     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
 | |
|     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
 | |
|     if (FirstFalseElement) {
 | |
|       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
 | |
|       Idx = Builder.CreateAdd(Idx, Offs);
 | |
|     }
 | |
| 
 | |
|     Value *End = ConstantInt::get(Idx->getType(),
 | |
|                                   FalseRangeEnd-FirstFalseElement);
 | |
|     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
 | |
|   }
 | |
| 
 | |
|   // If a magic bitvector captures the entire comparison state
 | |
|   // of this load, replace it with computation that does:
 | |
|   //   ((magic_cst >> i) & 1) != 0
 | |
|   {
 | |
|     Type *Ty = nullptr;
 | |
| 
 | |
|     // Look for an appropriate type:
 | |
|     // - The type of Idx if the magic fits
 | |
|     // - The smallest fitting legal type if we have a DataLayout
 | |
|     // - Default to i32
 | |
|     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
 | |
|       Ty = Idx->getType();
 | |
|     else
 | |
|       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
 | |
| 
 | |
|     if (Ty) {
 | |
|       Value *V = Builder.CreateIntCast(Idx, Ty, false);
 | |
|       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
 | |
|       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
 | |
|       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Return a value that can be used to compare the *offset* implied by a GEP to
 | |
| /// zero. For example, if we have &A[i], we want to return 'i' for
 | |
| /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
 | |
| /// are involved. The above expression would also be legal to codegen as
 | |
| /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
 | |
| /// This latter form is less amenable to optimization though, and we are allowed
 | |
| /// to generate the first by knowing that pointer arithmetic doesn't overflow.
 | |
| ///
 | |
| /// If we can't emit an optimized form for this expression, this returns null.
 | |
| ///
 | |
| static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
 | |
|                                           const DataLayout &DL) {
 | |
|   gep_type_iterator GTI = gep_type_begin(GEP);
 | |
| 
 | |
|   // Check to see if this gep only has a single variable index.  If so, and if
 | |
|   // any constant indices are a multiple of its scale, then we can compute this
 | |
|   // in terms of the scale of the variable index.  For example, if the GEP
 | |
|   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
 | |
|   // because the expression will cross zero at the same point.
 | |
|   unsigned i, e = GEP->getNumOperands();
 | |
|   int64_t Offset = 0;
 | |
|   for (i = 1; i != e; ++i, ++GTI) {
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
 | |
|       // Compute the aggregate offset of constant indices.
 | |
|       if (CI->isZero()) continue;
 | |
| 
 | |
|       // Handle a struct index, which adds its field offset to the pointer.
 | |
|       if (StructType *STy = GTI.getStructTypeOrNull()) {
 | |
|         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
 | |
|       } else {
 | |
|         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
 | |
|         Offset += Size*CI->getSExtValue();
 | |
|       }
 | |
|     } else {
 | |
|       // Found our variable index.
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there are no variable indices, we must have a constant offset, just
 | |
|   // evaluate it the general way.
 | |
|   if (i == e) return nullptr;
 | |
| 
 | |
|   Value *VariableIdx = GEP->getOperand(i);
 | |
|   // Determine the scale factor of the variable element.  For example, this is
 | |
|   // 4 if the variable index is into an array of i32.
 | |
|   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
 | |
| 
 | |
|   // Verify that there are no other variable indices.  If so, emit the hard way.
 | |
|   for (++i, ++GTI; i != e; ++i, ++GTI) {
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
 | |
|     if (!CI) return nullptr;
 | |
| 
 | |
|     // Compute the aggregate offset of constant indices.
 | |
|     if (CI->isZero()) continue;
 | |
| 
 | |
|     // Handle a struct index, which adds its field offset to the pointer.
 | |
|     if (StructType *STy = GTI.getStructTypeOrNull()) {
 | |
|       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
 | |
|     } else {
 | |
|       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
 | |
|       Offset += Size*CI->getSExtValue();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Okay, we know we have a single variable index, which must be a
 | |
|   // pointer/array/vector index.  If there is no offset, life is simple, return
 | |
|   // the index.
 | |
|   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
 | |
|   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
 | |
|   if (Offset == 0) {
 | |
|     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
 | |
|     // we don't need to bother extending: the extension won't affect where the
 | |
|     // computation crosses zero.
 | |
|     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
 | |
|       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
 | |
|     }
 | |
|     return VariableIdx;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, there is an index.  The computation we will do will be modulo
 | |
|   // the pointer size, so get it.
 | |
|   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
 | |
| 
 | |
|   Offset &= PtrSizeMask;
 | |
|   VariableScale &= PtrSizeMask;
 | |
| 
 | |
|   // To do this transformation, any constant index must be a multiple of the
 | |
|   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
 | |
|   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
 | |
|   // multiple of the variable scale.
 | |
|   int64_t NewOffs = Offset / (int64_t)VariableScale;
 | |
|   if (Offset != NewOffs*(int64_t)VariableScale)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Okay, we can do this evaluation.  Start by converting the index to intptr.
 | |
|   if (VariableIdx->getType() != IntPtrTy)
 | |
|     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
 | |
|                                             true /*Signed*/);
 | |
|   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
 | |
|   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
 | |
| }
 | |
| 
 | |
| /// Returns true if we can rewrite Start as a GEP with pointer Base
 | |
| /// and some integer offset. The nodes that need to be re-written
 | |
| /// for this transformation will be added to Explored.
 | |
| static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
 | |
|                                   const DataLayout &DL,
 | |
|                                   SetVector<Value *> &Explored) {
 | |
|   SmallVector<Value *, 16> WorkList(1, Start);
 | |
|   Explored.insert(Base);
 | |
| 
 | |
|   // The following traversal gives us an order which can be used
 | |
|   // when doing the final transformation. Since in the final
 | |
|   // transformation we create the PHI replacement instructions first,
 | |
|   // we don't have to get them in any particular order.
 | |
|   //
 | |
|   // However, for other instructions we will have to traverse the
 | |
|   // operands of an instruction first, which means that we have to
 | |
|   // do a post-order traversal.
 | |
|   while (!WorkList.empty()) {
 | |
|     SetVector<PHINode *> PHIs;
 | |
| 
 | |
|     while (!WorkList.empty()) {
 | |
|       if (Explored.size() >= 100)
 | |
|         return false;
 | |
| 
 | |
|       Value *V = WorkList.back();
 | |
| 
 | |
|       if (Explored.count(V) != 0) {
 | |
|         WorkList.pop_back();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
 | |
|           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
 | |
|         // We've found some value that we can't explore which is different from
 | |
|         // the base. Therefore we can't do this transformation.
 | |
|         return false;
 | |
| 
 | |
|       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
 | |
|         auto *CI = dyn_cast<CastInst>(V);
 | |
|         if (!CI->isNoopCast(DL))
 | |
|           return false;
 | |
| 
 | |
|         if (Explored.count(CI->getOperand(0)) == 0)
 | |
|           WorkList.push_back(CI->getOperand(0));
 | |
|       }
 | |
| 
 | |
|       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
 | |
|         // We're limiting the GEP to having one index. This will preserve
 | |
|         // the original pointer type. We could handle more cases in the
 | |
|         // future.
 | |
|         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
 | |
|             GEP->getType() != Start->getType())
 | |
|           return false;
 | |
| 
 | |
|         if (Explored.count(GEP->getOperand(0)) == 0)
 | |
|           WorkList.push_back(GEP->getOperand(0));
 | |
|       }
 | |
| 
 | |
|       if (WorkList.back() == V) {
 | |
|         WorkList.pop_back();
 | |
|         // We've finished visiting this node, mark it as such.
 | |
|         Explored.insert(V);
 | |
|       }
 | |
| 
 | |
|       if (auto *PN = dyn_cast<PHINode>(V)) {
 | |
|         // We cannot transform PHIs on unsplittable basic blocks.
 | |
|         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
 | |
|           return false;
 | |
|         Explored.insert(PN);
 | |
|         PHIs.insert(PN);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Explore the PHI nodes further.
 | |
|     for (auto *PN : PHIs)
 | |
|       for (Value *Op : PN->incoming_values())
 | |
|         if (Explored.count(Op) == 0)
 | |
|           WorkList.push_back(Op);
 | |
|   }
 | |
| 
 | |
|   // Make sure that we can do this. Since we can't insert GEPs in a basic
 | |
|   // block before a PHI node, we can't easily do this transformation if
 | |
|   // we have PHI node users of transformed instructions.
 | |
|   for (Value *Val : Explored) {
 | |
|     for (Value *Use : Val->uses()) {
 | |
| 
 | |
|       auto *PHI = dyn_cast<PHINode>(Use);
 | |
|       auto *Inst = dyn_cast<Instruction>(Val);
 | |
| 
 | |
|       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
 | |
|           Explored.count(PHI) == 0)
 | |
|         continue;
 | |
| 
 | |
|       if (PHI->getParent() == Inst->getParent())
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Sets the appropriate insert point on Builder where we can add
 | |
| // a replacement Instruction for V (if that is possible).
 | |
| static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
 | |
|                               bool Before = true) {
 | |
|   if (auto *PHI = dyn_cast<PHINode>(V)) {
 | |
|     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
 | |
|     return;
 | |
|   }
 | |
|   if (auto *I = dyn_cast<Instruction>(V)) {
 | |
|     if (!Before)
 | |
|       I = &*std::next(I->getIterator());
 | |
|     Builder.SetInsertPoint(I);
 | |
|     return;
 | |
|   }
 | |
|   if (auto *A = dyn_cast<Argument>(V)) {
 | |
|     // Set the insertion point in the entry block.
 | |
|     BasicBlock &Entry = A->getParent()->getEntryBlock();
 | |
|     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
 | |
|     return;
 | |
|   }
 | |
|   // Otherwise, this is a constant and we don't need to set a new
 | |
|   // insertion point.
 | |
|   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
 | |
| }
 | |
| 
 | |
| /// Returns a re-written value of Start as an indexed GEP using Base as a
 | |
| /// pointer.
 | |
| static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
 | |
|                                  const DataLayout &DL,
 | |
|                                  SetVector<Value *> &Explored) {
 | |
|   // Perform all the substitutions. This is a bit tricky because we can
 | |
|   // have cycles in our use-def chains.
 | |
|   // 1. Create the PHI nodes without any incoming values.
 | |
|   // 2. Create all the other values.
 | |
|   // 3. Add the edges for the PHI nodes.
 | |
|   // 4. Emit GEPs to get the original pointers.
 | |
|   // 5. Remove the original instructions.
 | |
|   Type *IndexType = IntegerType::get(
 | |
|       Base->getContext(), DL.getPointerTypeSizeInBits(Start->getType()));
 | |
| 
 | |
|   DenseMap<Value *, Value *> NewInsts;
 | |
|   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
 | |
| 
 | |
|   // Create the new PHI nodes, without adding any incoming values.
 | |
|   for (Value *Val : Explored) {
 | |
|     if (Val == Base)
 | |
|       continue;
 | |
|     // Create empty phi nodes. This avoids cyclic dependencies when creating
 | |
|     // the remaining instructions.
 | |
|     if (auto *PHI = dyn_cast<PHINode>(Val))
 | |
|       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
 | |
|                                       PHI->getName() + ".idx", PHI);
 | |
|   }
 | |
|   IRBuilder<> Builder(Base->getContext());
 | |
| 
 | |
|   // Create all the other instructions.
 | |
|   for (Value *Val : Explored) {
 | |
| 
 | |
|     if (NewInsts.find(Val) != NewInsts.end())
 | |
|       continue;
 | |
| 
 | |
|     if (auto *CI = dyn_cast<CastInst>(Val)) {
 | |
|       NewInsts[CI] = NewInsts[CI->getOperand(0)];
 | |
|       continue;
 | |
|     }
 | |
|     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
 | |
|       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
 | |
|                                                   : GEP->getOperand(1);
 | |
|       setInsertionPoint(Builder, GEP);
 | |
|       // Indices might need to be sign extended. GEPs will magically do
 | |
|       // this, but we need to do it ourselves here.
 | |
|       if (Index->getType()->getScalarSizeInBits() !=
 | |
|           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
 | |
|         Index = Builder.CreateSExtOrTrunc(
 | |
|             Index, NewInsts[GEP->getOperand(0)]->getType(),
 | |
|             GEP->getOperand(0)->getName() + ".sext");
 | |
|       }
 | |
| 
 | |
|       auto *Op = NewInsts[GEP->getOperand(0)];
 | |
|       if (isa<ConstantInt>(Op) && dyn_cast<ConstantInt>(Op)->isZero())
 | |
|         NewInsts[GEP] = Index;
 | |
|       else
 | |
|         NewInsts[GEP] = Builder.CreateNSWAdd(
 | |
|             Op, Index, GEP->getOperand(0)->getName() + ".add");
 | |
|       continue;
 | |
|     }
 | |
|     if (isa<PHINode>(Val))
 | |
|       continue;
 | |
| 
 | |
|     llvm_unreachable("Unexpected instruction type");
 | |
|   }
 | |
| 
 | |
|   // Add the incoming values to the PHI nodes.
 | |
|   for (Value *Val : Explored) {
 | |
|     if (Val == Base)
 | |
|       continue;
 | |
|     // All the instructions have been created, we can now add edges to the
 | |
|     // phi nodes.
 | |
|     if (auto *PHI = dyn_cast<PHINode>(Val)) {
 | |
|       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
 | |
|       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
 | |
|         Value *NewIncoming = PHI->getIncomingValue(I);
 | |
| 
 | |
|         if (NewInsts.find(NewIncoming) != NewInsts.end())
 | |
|           NewIncoming = NewInsts[NewIncoming];
 | |
| 
 | |
|         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (Value *Val : Explored) {
 | |
|     if (Val == Base)
 | |
|       continue;
 | |
| 
 | |
|     // Depending on the type, for external users we have to emit
 | |
|     // a GEP or a GEP + ptrtoint.
 | |
|     setInsertionPoint(Builder, Val, false);
 | |
| 
 | |
|     // If required, create an inttoptr instruction for Base.
 | |
|     Value *NewBase = Base;
 | |
|     if (!Base->getType()->isPointerTy())
 | |
|       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
 | |
|                                                Start->getName() + "to.ptr");
 | |
| 
 | |
|     Value *GEP = Builder.CreateInBoundsGEP(
 | |
|         Start->getType()->getPointerElementType(), NewBase,
 | |
|         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
 | |
| 
 | |
|     if (!Val->getType()->isPointerTy()) {
 | |
|       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
 | |
|                                               Val->getName() + ".conv");
 | |
|       GEP = Cast;
 | |
|     }
 | |
|     Val->replaceAllUsesWith(GEP);
 | |
|   }
 | |
| 
 | |
|   return NewInsts[Start];
 | |
| }
 | |
| 
 | |
| /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
 | |
| /// the input Value as a constant indexed GEP. Returns a pair containing
 | |
| /// the GEPs Pointer and Index.
 | |
| static std::pair<Value *, Value *>
 | |
| getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
 | |
|   Type *IndexType = IntegerType::get(V->getContext(),
 | |
|                                      DL.getPointerTypeSizeInBits(V->getType()));
 | |
| 
 | |
|   Constant *Index = ConstantInt::getNullValue(IndexType);
 | |
|   while (true) {
 | |
|     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
 | |
|       // We accept only inbouds GEPs here to exclude the possibility of
 | |
|       // overflow.
 | |
|       if (!GEP->isInBounds())
 | |
|         break;
 | |
|       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
 | |
|           GEP->getType() == V->getType()) {
 | |
|         V = GEP->getOperand(0);
 | |
|         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
 | |
|         Index = ConstantExpr::getAdd(
 | |
|             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
 | |
|         continue;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
 | |
|       if (!CI->isNoopCast(DL))
 | |
|         break;
 | |
|       V = CI->getOperand(0);
 | |
|       continue;
 | |
|     }
 | |
|     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
 | |
|       if (!CI->isNoopCast(DL))
 | |
|         break;
 | |
|       V = CI->getOperand(0);
 | |
|       continue;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return {V, Index};
 | |
| }
 | |
| 
 | |
| /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
 | |
| /// We can look through PHIs, GEPs and casts in order to determine a common base
 | |
| /// between GEPLHS and RHS.
 | |
| static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
 | |
|                                               ICmpInst::Predicate Cond,
 | |
|                                               const DataLayout &DL) {
 | |
|   if (!GEPLHS->hasAllConstantIndices())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Make sure the pointers have the same type.
 | |
|   if (GEPLHS->getType() != RHS->getType())
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *PtrBase, *Index;
 | |
|   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
 | |
| 
 | |
|   // The set of nodes that will take part in this transformation.
 | |
|   SetVector<Value *> Nodes;
 | |
| 
 | |
|   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
 | |
|     return nullptr;
 | |
| 
 | |
|   // We know we can re-write this as
 | |
|   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
 | |
|   // Since we've only looked through inbouds GEPs we know that we
 | |
|   // can't have overflow on either side. We can therefore re-write
 | |
|   // this as:
 | |
|   //   OFFSET1 cmp OFFSET2
 | |
|   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
 | |
| 
 | |
|   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
 | |
|   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
 | |
|   // offset. Since Index is the offset of LHS to the base pointer, we will now
 | |
|   // compare the offsets instead of comparing the pointers.
 | |
|   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
 | |
| }
 | |
| 
 | |
| /// Fold comparisons between a GEP instruction and something else. At this point
 | |
| /// we know that the GEP is on the LHS of the comparison.
 | |
| Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
 | |
|                                        ICmpInst::Predicate Cond,
 | |
|                                        Instruction &I) {
 | |
|   // Don't transform signed compares of GEPs into index compares. Even if the
 | |
|   // GEP is inbounds, the final add of the base pointer can have signed overflow
 | |
|   // and would change the result of the icmp.
 | |
|   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
 | |
|   // the maximum signed value for the pointer type.
 | |
|   if (ICmpInst::isSigned(Cond))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Look through bitcasts and addrspacecasts. We do not however want to remove
 | |
|   // 0 GEPs.
 | |
|   if (!isa<GetElementPtrInst>(RHS))
 | |
|     RHS = RHS->stripPointerCasts();
 | |
| 
 | |
|   Value *PtrBase = GEPLHS->getOperand(0);
 | |
|   if (PtrBase == RHS && GEPLHS->isInBounds()) {
 | |
|     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
 | |
|     // This transformation (ignoring the base and scales) is valid because we
 | |
|     // know pointers can't overflow since the gep is inbounds.  See if we can
 | |
|     // output an optimized form.
 | |
|     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
 | |
| 
 | |
|     // If not, synthesize the offset the hard way.
 | |
|     if (!Offset)
 | |
|       Offset = EmitGEPOffset(GEPLHS);
 | |
|     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
 | |
|                         Constant::getNullValue(Offset->getType()));
 | |
|   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
 | |
|     // If the base pointers are different, but the indices are the same, just
 | |
|     // compare the base pointer.
 | |
|     if (PtrBase != GEPRHS->getOperand(0)) {
 | |
|       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
 | |
|       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
 | |
|                         GEPRHS->getOperand(0)->getType();
 | |
|       if (IndicesTheSame)
 | |
|         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
 | |
|           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
 | |
|             IndicesTheSame = false;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|       // If all indices are the same, just compare the base pointers.
 | |
|       if (IndicesTheSame)
 | |
|         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
 | |
| 
 | |
|       // If we're comparing GEPs with two base pointers that only differ in type
 | |
|       // and both GEPs have only constant indices or just one use, then fold
 | |
|       // the compare with the adjusted indices.
 | |
|       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
 | |
|           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
 | |
|           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
 | |
|           PtrBase->stripPointerCasts() ==
 | |
|               GEPRHS->getOperand(0)->stripPointerCasts()) {
 | |
|         Value *LOffset = EmitGEPOffset(GEPLHS);
 | |
|         Value *ROffset = EmitGEPOffset(GEPRHS);
 | |
| 
 | |
|         // If we looked through an addrspacecast between different sized address
 | |
|         // spaces, the LHS and RHS pointers are different sized
 | |
|         // integers. Truncate to the smaller one.
 | |
|         Type *LHSIndexTy = LOffset->getType();
 | |
|         Type *RHSIndexTy = ROffset->getType();
 | |
|         if (LHSIndexTy != RHSIndexTy) {
 | |
|           if (LHSIndexTy->getPrimitiveSizeInBits() <
 | |
|               RHSIndexTy->getPrimitiveSizeInBits()) {
 | |
|             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
 | |
|           } else
 | |
|             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
 | |
|         }
 | |
| 
 | |
|         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
 | |
|                                         LOffset, ROffset);
 | |
|         return replaceInstUsesWith(I, Cmp);
 | |
|       }
 | |
| 
 | |
|       // Otherwise, the base pointers are different and the indices are
 | |
|       // different. Try convert this to an indexed compare by looking through
 | |
|       // PHIs/casts.
 | |
|       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
 | |
|     }
 | |
| 
 | |
|     // If one of the GEPs has all zero indices, recurse.
 | |
|     if (GEPLHS->hasAllZeroIndices())
 | |
|       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
 | |
|                          ICmpInst::getSwappedPredicate(Cond), I);
 | |
| 
 | |
|     // If the other GEP has all zero indices, recurse.
 | |
|     if (GEPRHS->hasAllZeroIndices())
 | |
|       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
 | |
| 
 | |
|     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
 | |
|     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
 | |
|       // If the GEPs only differ by one index, compare it.
 | |
|       unsigned NumDifferences = 0;  // Keep track of # differences.
 | |
|       unsigned DiffOperand = 0;     // The operand that differs.
 | |
|       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
 | |
|         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
 | |
|           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
 | |
|                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
 | |
|             // Irreconcilable differences.
 | |
|             NumDifferences = 2;
 | |
|             break;
 | |
|           } else {
 | |
|             if (NumDifferences++) break;
 | |
|             DiffOperand = i;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|       if (NumDifferences == 0)   // SAME GEP?
 | |
|         return replaceInstUsesWith(I, // No comparison is needed here.
 | |
|                              Builder.getInt1(ICmpInst::isTrueWhenEqual(Cond)));
 | |
| 
 | |
|       else if (NumDifferences == 1 && GEPsInBounds) {
 | |
|         Value *LHSV = GEPLHS->getOperand(DiffOperand);
 | |
|         Value *RHSV = GEPRHS->getOperand(DiffOperand);
 | |
|         // Make sure we do a signed comparison here.
 | |
|         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Only lower this if the icmp is the only user of the GEP or if we expect
 | |
|     // the result to fold to a constant!
 | |
|     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
 | |
|         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
 | |
|       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
 | |
|       Value *L = EmitGEPOffset(GEPLHS);
 | |
|       Value *R = EmitGEPOffset(GEPRHS);
 | |
|       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Try convert this to an indexed compare by looking through PHIs/casts as a
 | |
|   // last resort.
 | |
|   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
 | |
|                                          const AllocaInst *Alloca,
 | |
|                                          const Value *Other) {
 | |
|   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
 | |
| 
 | |
|   // It would be tempting to fold away comparisons between allocas and any
 | |
|   // pointer not based on that alloca (e.g. an argument). However, even
 | |
|   // though such pointers cannot alias, they can still compare equal.
 | |
|   //
 | |
|   // But LLVM doesn't specify where allocas get their memory, so if the alloca
 | |
|   // doesn't escape we can argue that it's impossible to guess its value, and we
 | |
|   // can therefore act as if any such guesses are wrong.
 | |
|   //
 | |
|   // The code below checks that the alloca doesn't escape, and that it's only
 | |
|   // used in a comparison once (the current instruction). The
 | |
|   // single-comparison-use condition ensures that we're trivially folding all
 | |
|   // comparisons against the alloca consistently, and avoids the risk of
 | |
|   // erroneously folding a comparison of the pointer with itself.
 | |
| 
 | |
|   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
 | |
| 
 | |
|   SmallVector<const Use *, 32> Worklist;
 | |
|   for (const Use &U : Alloca->uses()) {
 | |
|     if (Worklist.size() >= MaxIter)
 | |
|       return nullptr;
 | |
|     Worklist.push_back(&U);
 | |
|   }
 | |
| 
 | |
|   unsigned NumCmps = 0;
 | |
|   while (!Worklist.empty()) {
 | |
|     assert(Worklist.size() <= MaxIter);
 | |
|     const Use *U = Worklist.pop_back_val();
 | |
|     const Value *V = U->getUser();
 | |
|     --MaxIter;
 | |
| 
 | |
|     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
 | |
|         isa<SelectInst>(V)) {
 | |
|       // Track the uses.
 | |
|     } else if (isa<LoadInst>(V)) {
 | |
|       // Loading from the pointer doesn't escape it.
 | |
|       continue;
 | |
|     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
 | |
|       // Storing *to* the pointer is fine, but storing the pointer escapes it.
 | |
|       if (SI->getValueOperand() == U->get())
 | |
|         return nullptr;
 | |
|       continue;
 | |
|     } else if (isa<ICmpInst>(V)) {
 | |
|       if (NumCmps++)
 | |
|         return nullptr; // Found more than one cmp.
 | |
|       continue;
 | |
|     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
 | |
|       switch (Intrin->getIntrinsicID()) {
 | |
|         // These intrinsics don't escape or compare the pointer. Memset is safe
 | |
|         // because we don't allow ptrtoint. Memcpy and memmove are safe because
 | |
|         // we don't allow stores, so src cannot point to V.
 | |
|         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
 | |
|         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
 | |
|           continue;
 | |
|         default:
 | |
|           return nullptr;
 | |
|       }
 | |
|     } else {
 | |
|       return nullptr;
 | |
|     }
 | |
|     for (const Use &U : V->uses()) {
 | |
|       if (Worklist.size() >= MaxIter)
 | |
|         return nullptr;
 | |
|       Worklist.push_back(&U);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
 | |
|   return replaceInstUsesWith(
 | |
|       ICI,
 | |
|       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
 | |
| }
 | |
| 
 | |
| /// Fold "icmp pred (X+CI), X".
 | |
| Instruction *InstCombiner::foldICmpAddOpConst(Value *X, ConstantInt *CI,
 | |
|                                               ICmpInst::Predicate Pred) {
 | |
|   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
 | |
|   // so the values can never be equal.  Similarly for all other "or equals"
 | |
|   // operators.
 | |
| 
 | |
|   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
 | |
|   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
 | |
|   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
 | |
|   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
 | |
|     Value *R =
 | |
|       ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
 | |
|     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
 | |
|   }
 | |
| 
 | |
|   // (X+1) >u X        --> X <u (0-1)        --> X != 255
 | |
|   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
 | |
|   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
 | |
|   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
 | |
|     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
 | |
| 
 | |
|   unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
 | |
|   ConstantInt *SMax = ConstantInt::get(X->getContext(),
 | |
|                                        APInt::getSignedMaxValue(BitWidth));
 | |
| 
 | |
|   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
 | |
|   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
 | |
|   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
 | |
|   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
 | |
|   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
 | |
|   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
 | |
|   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
 | |
|     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
 | |
| 
 | |
|   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
 | |
|   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
 | |
|   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
 | |
|   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
 | |
|   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
 | |
|   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
 | |
| 
 | |
|   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
 | |
|   Constant *C = Builder.getInt(CI->getValue() - 1);
 | |
|   return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
 | |
| }
 | |
| 
 | |
| /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
 | |
| /// (icmp eq/ne A, Log2(AP2/AP1)) ->
 | |
| /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
 | |
| Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
 | |
|                                                  const APInt &AP1,
 | |
|                                                  const APInt &AP2) {
 | |
|   assert(I.isEquality() && "Cannot fold icmp gt/lt");
 | |
| 
 | |
|   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
 | |
|     if (I.getPredicate() == I.ICMP_NE)
 | |
|       Pred = CmpInst::getInversePredicate(Pred);
 | |
|     return new ICmpInst(Pred, LHS, RHS);
 | |
|   };
 | |
| 
 | |
|   // Don't bother doing any work for cases which InstSimplify handles.
 | |
|   if (AP2.isNullValue())
 | |
|     return nullptr;
 | |
| 
 | |
|   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
 | |
|   if (IsAShr) {
 | |
|     if (AP2.isAllOnesValue())
 | |
|       return nullptr;
 | |
|     if (AP2.isNegative() != AP1.isNegative())
 | |
|       return nullptr;
 | |
|     if (AP2.sgt(AP1))
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   if (!AP1)
 | |
|     // 'A' must be large enough to shift out the highest set bit.
 | |
|     return getICmp(I.ICMP_UGT, A,
 | |
|                    ConstantInt::get(A->getType(), AP2.logBase2()));
 | |
| 
 | |
|   if (AP1 == AP2)
 | |
|     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
 | |
| 
 | |
|   int Shift;
 | |
|   if (IsAShr && AP1.isNegative())
 | |
|     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
 | |
|   else
 | |
|     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
 | |
| 
 | |
|   if (Shift > 0) {
 | |
|     if (IsAShr && AP1 == AP2.ashr(Shift)) {
 | |
|       // There are multiple solutions if we are comparing against -1 and the LHS
 | |
|       // of the ashr is not a power of two.
 | |
|       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
 | |
|         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
 | |
|       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
 | |
|     } else if (AP1 == AP2.lshr(Shift)) {
 | |
|       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Shifting const2 will never be equal to const1.
 | |
|   // FIXME: This should always be handled by InstSimplify?
 | |
|   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
 | |
|   return replaceInstUsesWith(I, TorF);
 | |
| }
 | |
| 
 | |
| /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
 | |
| /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
 | |
| Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
 | |
|                                                  const APInt &AP1,
 | |
|                                                  const APInt &AP2) {
 | |
|   assert(I.isEquality() && "Cannot fold icmp gt/lt");
 | |
| 
 | |
|   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
 | |
|     if (I.getPredicate() == I.ICMP_NE)
 | |
|       Pred = CmpInst::getInversePredicate(Pred);
 | |
|     return new ICmpInst(Pred, LHS, RHS);
 | |
|   };
 | |
| 
 | |
|   // Don't bother doing any work for cases which InstSimplify handles.
 | |
|   if (AP2.isNullValue())
 | |
|     return nullptr;
 | |
| 
 | |
|   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
 | |
| 
 | |
|   if (!AP1 && AP2TrailingZeros != 0)
 | |
|     return getICmp(
 | |
|         I.ICMP_UGE, A,
 | |
|         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
 | |
| 
 | |
|   if (AP1 == AP2)
 | |
|     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
 | |
| 
 | |
|   // Get the distance between the lowest bits that are set.
 | |
|   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
 | |
| 
 | |
|   if (Shift > 0 && AP2.shl(Shift) == AP1)
 | |
|     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
 | |
| 
 | |
|   // Shifting const2 will never be equal to const1.
 | |
|   // FIXME: This should always be handled by InstSimplify?
 | |
|   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
 | |
|   return replaceInstUsesWith(I, TorF);
 | |
| }
 | |
| 
 | |
| /// The caller has matched a pattern of the form:
 | |
| ///   I = icmp ugt (add (add A, B), CI2), CI1
 | |
| /// If this is of the form:
 | |
| ///   sum = a + b
 | |
| ///   if (sum+128 >u 255)
 | |
| /// Then replace it with llvm.sadd.with.overflow.i8.
 | |
| ///
 | |
| static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
 | |
|                                           ConstantInt *CI2, ConstantInt *CI1,
 | |
|                                           InstCombiner &IC) {
 | |
|   // The transformation we're trying to do here is to transform this into an
 | |
|   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
 | |
|   // with a narrower add, and discard the add-with-constant that is part of the
 | |
|   // range check (if we can't eliminate it, this isn't profitable).
 | |
| 
 | |
|   // In order to eliminate the add-with-constant, the compare can be its only
 | |
|   // use.
 | |
|   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
 | |
|   if (!AddWithCst->hasOneUse())
 | |
|     return nullptr;
 | |
| 
 | |
|   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
 | |
|   if (!CI2->getValue().isPowerOf2())
 | |
|     return nullptr;
 | |
|   unsigned NewWidth = CI2->getValue().countTrailingZeros();
 | |
|   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
 | |
|     return nullptr;
 | |
| 
 | |
|   // The width of the new add formed is 1 more than the bias.
 | |
|   ++NewWidth;
 | |
| 
 | |
|   // Check to see that CI1 is an all-ones value with NewWidth bits.
 | |
|   if (CI1->getBitWidth() == NewWidth ||
 | |
|       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
 | |
|     return nullptr;
 | |
| 
 | |
|   // This is only really a signed overflow check if the inputs have been
 | |
|   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
 | |
|   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
 | |
|   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
 | |
|   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
 | |
|       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
 | |
|     return nullptr;
 | |
| 
 | |
|   // In order to replace the original add with a narrower
 | |
|   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
 | |
|   // and truncates that discard the high bits of the add.  Verify that this is
 | |
|   // the case.
 | |
|   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
 | |
|   for (User *U : OrigAdd->users()) {
 | |
|     if (U == AddWithCst)
 | |
|       continue;
 | |
| 
 | |
|     // Only accept truncates for now.  We would really like a nice recursive
 | |
|     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
 | |
|     // chain to see which bits of a value are actually demanded.  If the
 | |
|     // original add had another add which was then immediately truncated, we
 | |
|     // could still do the transformation.
 | |
|     TruncInst *TI = dyn_cast<TruncInst>(U);
 | |
|     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   // If the pattern matches, truncate the inputs to the narrower type and
 | |
|   // use the sadd_with_overflow intrinsic to efficiently compute both the
 | |
|   // result and the overflow bit.
 | |
|   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
 | |
|   Value *F = Intrinsic::getDeclaration(I.getModule(),
 | |
|                                        Intrinsic::sadd_with_overflow, NewType);
 | |
| 
 | |
|   InstCombiner::BuilderTy &Builder = IC.Builder;
 | |
| 
 | |
|   // Put the new code above the original add, in case there are any uses of the
 | |
|   // add between the add and the compare.
 | |
|   Builder.SetInsertPoint(OrigAdd);
 | |
| 
 | |
|   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
 | |
|   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
 | |
|   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
 | |
|   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
 | |
|   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
 | |
| 
 | |
|   // The inner add was the result of the narrow add, zero extended to the
 | |
|   // wider type.  Replace it with the result computed by the intrinsic.
 | |
|   IC.replaceInstUsesWith(*OrigAdd, ZExt);
 | |
| 
 | |
|   // The original icmp gets replaced with the overflow value.
 | |
|   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
 | |
| }
 | |
| 
 | |
| // Fold icmp Pred X, C.
 | |
| Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
 | |
|   CmpInst::Predicate Pred = Cmp.getPredicate();
 | |
|   Value *X = Cmp.getOperand(0);
 | |
| 
 | |
|   const APInt *C;
 | |
|   if (!match(Cmp.getOperand(1), m_APInt(C)))
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *A = nullptr, *B = nullptr;
 | |
| 
 | |
|   // Match the following pattern, which is a common idiom when writing
 | |
|   // overflow-safe integer arithmetic functions. The source performs an addition
 | |
|   // in wider type and explicitly checks for overflow using comparisons against
 | |
|   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
 | |
|   //
 | |
|   // TODO: This could probably be generalized to handle other overflow-safe
 | |
|   // operations if we worked out the formulas to compute the appropriate magic
 | |
|   // constants.
 | |
|   //
 | |
|   // sum = a + b
 | |
|   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
 | |
|   {
 | |
|     ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
 | |
|     if (Pred == ICmpInst::ICMP_UGT &&
 | |
|         match(X, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
 | |
|       if (Instruction *Res = processUGT_ADDCST_ADD(
 | |
|               Cmp, A, B, CI2, cast<ConstantInt>(Cmp.getOperand(1)), *this))
 | |
|         return Res;
 | |
|   }
 | |
| 
 | |
|   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
 | |
|   if (C->isNullValue() && Pred == ICmpInst::ICMP_SGT) {
 | |
|     SelectPatternResult SPR = matchSelectPattern(X, A, B);
 | |
|     if (SPR.Flavor == SPF_SMIN) {
 | |
|       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
 | |
|         return new ICmpInst(Pred, B, Cmp.getOperand(1));
 | |
|       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
 | |
|         return new ICmpInst(Pred, A, Cmp.getOperand(1));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: Use m_APInt to allow folds for splat constants.
 | |
|   ConstantInt *CI = dyn_cast<ConstantInt>(Cmp.getOperand(1));
 | |
|   if (!CI)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Canonicalize icmp instructions based on dominating conditions.
 | |
|   BasicBlock *Parent = Cmp.getParent();
 | |
|   BasicBlock *Dom = Parent->getSinglePredecessor();
 | |
|   auto *BI = Dom ? dyn_cast<BranchInst>(Dom->getTerminator()) : nullptr;
 | |
|   ICmpInst::Predicate Pred2;
 | |
|   BasicBlock *TrueBB, *FalseBB;
 | |
|   ConstantInt *CI2;
 | |
|   if (BI && match(BI, m_Br(m_ICmp(Pred2, m_Specific(X), m_ConstantInt(CI2)),
 | |
|                            TrueBB, FalseBB)) &&
 | |
|       TrueBB != FalseBB) {
 | |
|     ConstantRange CR =
 | |
|         ConstantRange::makeAllowedICmpRegion(Pred, CI->getValue());
 | |
|     ConstantRange DominatingCR =
 | |
|         (Parent == TrueBB)
 | |
|             ? ConstantRange::makeExactICmpRegion(Pred2, CI2->getValue())
 | |
|             : ConstantRange::makeExactICmpRegion(
 | |
|                   CmpInst::getInversePredicate(Pred2), CI2->getValue());
 | |
|     ConstantRange Intersection = DominatingCR.intersectWith(CR);
 | |
|     ConstantRange Difference = DominatingCR.difference(CR);
 | |
|     if (Intersection.isEmptySet())
 | |
|       return replaceInstUsesWith(Cmp, Builder.getFalse());
 | |
|     if (Difference.isEmptySet())
 | |
|       return replaceInstUsesWith(Cmp, Builder.getTrue());
 | |
| 
 | |
|     // If this is a normal comparison, it demands all bits. If it is a sign
 | |
|     // bit comparison, it only demands the sign bit.
 | |
|     bool UnusedBit;
 | |
|     bool IsSignBit = isSignBitCheck(Pred, CI->getValue(), UnusedBit);
 | |
| 
 | |
|     // Canonicalizing a sign bit comparison that gets used in a branch,
 | |
|     // pessimizes codegen by generating branch on zero instruction instead
 | |
|     // of a test and branch. So we avoid canonicalizing in such situations
 | |
|     // because test and branch instruction has better branch displacement
 | |
|     // than compare and branch instruction.
 | |
|     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
 | |
|       return nullptr;
 | |
| 
 | |
|     if (auto *AI = Intersection.getSingleElement())
 | |
|       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*AI));
 | |
|     if (auto *AD = Difference.getSingleElement())
 | |
|       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*AD));
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Fold icmp (trunc X, Y), C.
 | |
| Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
 | |
|                                                  TruncInst *Trunc,
 | |
|                                                  const APInt *C) {
 | |
|   ICmpInst::Predicate Pred = Cmp.getPredicate();
 | |
|   Value *X = Trunc->getOperand(0);
 | |
|   if (C->isOneValue() && C->getBitWidth() > 1) {
 | |
|     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
 | |
|     Value *V = nullptr;
 | |
|     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
 | |
|       return new ICmpInst(ICmpInst::ICMP_SLT, V,
 | |
|                           ConstantInt::get(V->getType(), 1));
 | |
|   }
 | |
| 
 | |
|   if (Cmp.isEquality() && Trunc->hasOneUse()) {
 | |
|     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
 | |
|     // of the high bits truncated out of x are known.
 | |
|     unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
 | |
|              SrcBits = X->getType()->getScalarSizeInBits();
 | |
|     KnownBits Known = computeKnownBits(X, 0, &Cmp);
 | |
| 
 | |
|     // If all the high bits are known, we can do this xform.
 | |
|     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
 | |
|       // Pull in the high bits from known-ones set.
 | |
|       APInt NewRHS = C->zext(SrcBits);
 | |
|       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
 | |
|       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Fold icmp (xor X, Y), C.
 | |
| Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
 | |
|                                                BinaryOperator *Xor,
 | |
|                                                const APInt *C) {
 | |
|   Value *X = Xor->getOperand(0);
 | |
|   Value *Y = Xor->getOperand(1);
 | |
|   const APInt *XorC;
 | |
|   if (!match(Y, m_APInt(XorC)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
 | |
|   // fold the xor.
 | |
|   ICmpInst::Predicate Pred = Cmp.getPredicate();
 | |
|   if ((Pred == ICmpInst::ICMP_SLT && C->isNullValue()) ||
 | |
|       (Pred == ICmpInst::ICMP_SGT && C->isAllOnesValue())) {
 | |
| 
 | |
|     // If the sign bit of the XorCst is not set, there is no change to
 | |
|     // the operation, just stop using the Xor.
 | |
|     if (!XorC->isNegative()) {
 | |
|       Cmp.setOperand(0, X);
 | |
|       Worklist.Add(Xor);
 | |
|       return &Cmp;
 | |
|     }
 | |
| 
 | |
|     // Was the old condition true if the operand is positive?
 | |
|     bool isTrueIfPositive = Pred == ICmpInst::ICMP_SGT;
 | |
| 
 | |
|     // If so, the new one isn't.
 | |
|     isTrueIfPositive ^= true;
 | |
| 
 | |
|     Constant *CmpConstant = cast<Constant>(Cmp.getOperand(1));
 | |
|     if (isTrueIfPositive)
 | |
|       return new ICmpInst(ICmpInst::ICMP_SGT, X, SubOne(CmpConstant));
 | |
|     else
 | |
|       return new ICmpInst(ICmpInst::ICMP_SLT, X, AddOne(CmpConstant));
 | |
|   }
 | |
| 
 | |
|   if (Xor->hasOneUse()) {
 | |
|     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
 | |
|     if (!Cmp.isEquality() && XorC->isSignMask()) {
 | |
|       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
 | |
|                             : Cmp.getSignedPredicate();
 | |
|       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), *C ^ *XorC));
 | |
|     }
 | |
| 
 | |
|     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
 | |
|     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
 | |
|       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
 | |
|                             : Cmp.getSignedPredicate();
 | |
|       Pred = Cmp.getSwappedPredicate(Pred);
 | |
|       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), *C ^ *XorC));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
 | |
|   //   iff -C is a power of 2
 | |
|   if (Pred == ICmpInst::ICMP_UGT && *XorC == ~(*C) && (*C + 1).isPowerOf2())
 | |
|     return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
 | |
| 
 | |
|   // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
 | |
|   //   iff -C is a power of 2
 | |
|   if (Pred == ICmpInst::ICMP_ULT && *XorC == -(*C) && C->isPowerOf2())
 | |
|     return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Fold icmp (and (sh X, Y), C2), C1.
 | |
| Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
 | |
|                                             const APInt *C1, const APInt *C2) {
 | |
|   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
 | |
|   if (!Shift || !Shift->isShift())
 | |
|     return nullptr;
 | |
| 
 | |
|   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
 | |
|   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
 | |
|   // code produced by the clang front-end, for bitfield access.
 | |
|   // This seemingly simple opportunity to fold away a shift turns out to be
 | |
|   // rather complicated. See PR17827 for details.
 | |
|   unsigned ShiftOpcode = Shift->getOpcode();
 | |
|   bool IsShl = ShiftOpcode == Instruction::Shl;
 | |
|   const APInt *C3;
 | |
|   if (match(Shift->getOperand(1), m_APInt(C3))) {
 | |
|     bool CanFold = false;
 | |
|     if (ShiftOpcode == Instruction::AShr) {
 | |
|       // There may be some constraints that make this possible, but nothing
 | |
|       // simple has been discovered yet.
 | |
|       CanFold = false;
 | |
|     } else if (ShiftOpcode == Instruction::Shl) {
 | |
|       // For a left shift, we can fold if the comparison is not signed. We can
 | |
|       // also fold a signed comparison if the mask value and comparison value
 | |
|       // are not negative. These constraints may not be obvious, but we can
 | |
|       // prove that they are correct using an SMT solver.
 | |
|       if (!Cmp.isSigned() || (!C2->isNegative() && !C1->isNegative()))
 | |
|         CanFold = true;
 | |
|     } else if (ShiftOpcode == Instruction::LShr) {
 | |
|       // For a logical right shift, we can fold if the comparison is not signed.
 | |
|       // We can also fold a signed comparison if the shifted mask value and the
 | |
|       // shifted comparison value are not negative. These constraints may not be
 | |
|       // obvious, but we can prove that they are correct using an SMT solver.
 | |
|       if (!Cmp.isSigned() ||
 | |
|           (!C2->shl(*C3).isNegative() && !C1->shl(*C3).isNegative()))
 | |
|         CanFold = true;
 | |
|     }
 | |
| 
 | |
|     if (CanFold) {
 | |
|       APInt NewCst = IsShl ? C1->lshr(*C3) : C1->shl(*C3);
 | |
|       APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3);
 | |
|       // Check to see if we are shifting out any of the bits being compared.
 | |
|       if (SameAsC1 != *C1) {
 | |
|         // If we shifted bits out, the fold is not going to work out. As a
 | |
|         // special case, check to see if this means that the result is always
 | |
|         // true or false now.
 | |
|         if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
 | |
|           return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
 | |
|         if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
 | |
|           return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
 | |
|       } else {
 | |
|         Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst));
 | |
|         APInt NewAndCst = IsShl ? C2->lshr(*C3) : C2->shl(*C3);
 | |
|         And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst));
 | |
|         And->setOperand(0, Shift->getOperand(0));
 | |
|         Worklist.Add(Shift); // Shift is dead.
 | |
|         return &Cmp;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
 | |
|   // preferable because it allows the C2 << Y expression to be hoisted out of a
 | |
|   // loop if Y is invariant and X is not.
 | |
|   if (Shift->hasOneUse() && C1->isNullValue() && Cmp.isEquality() &&
 | |
|       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
 | |
|     // Compute C2 << Y.
 | |
|     Value *NewShift =
 | |
|         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
 | |
|               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
 | |
| 
 | |
|     // Compute X & (C2 << Y).
 | |
|     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
 | |
|     Cmp.setOperand(0, NewAnd);
 | |
|     return &Cmp;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Fold icmp (and X, C2), C1.
 | |
| Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
 | |
|                                                  BinaryOperator *And,
 | |
|                                                  const APInt *C1) {
 | |
|   const APInt *C2;
 | |
|   if (!match(And->getOperand(1), m_APInt(C2)))
 | |
|     return nullptr;
 | |
| 
 | |
|   if (!And->hasOneUse() || !And->getOperand(0)->hasOneUse())
 | |
|     return nullptr;
 | |
| 
 | |
|   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
 | |
|   // the input width without changing the value produced, eliminate the cast:
 | |
|   //
 | |
|   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
 | |
|   //
 | |
|   // We can do this transformation if the constants do not have their sign bits
 | |
|   // set or if it is an equality comparison. Extending a relational comparison
 | |
|   // when we're checking the sign bit would not work.
 | |
|   Value *W;
 | |
|   if (match(And->getOperand(0), m_Trunc(m_Value(W))) &&
 | |
|       (Cmp.isEquality() || (!C1->isNegative() && !C2->isNegative()))) {
 | |
|     // TODO: Is this a good transform for vectors? Wider types may reduce
 | |
|     // throughput. Should this transform be limited (even for scalars) by using
 | |
|     // shouldChangeType()?
 | |
|     if (!Cmp.getType()->isVectorTy()) {
 | |
|       Type *WideType = W->getType();
 | |
|       unsigned WideScalarBits = WideType->getScalarSizeInBits();
 | |
|       Constant *ZextC1 = ConstantInt::get(WideType, C1->zext(WideScalarBits));
 | |
|       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
 | |
|       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
 | |
|       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, C2))
 | |
|     return I;
 | |
| 
 | |
|   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
 | |
|   // (icmp pred (and A, (or (shl 1, B), 1), 0))
 | |
|   //
 | |
|   // iff pred isn't signed
 | |
|   if (!Cmp.isSigned() && C1->isNullValue() &&
 | |
|       match(And->getOperand(1), m_One())) {
 | |
|     Constant *One = cast<Constant>(And->getOperand(1));
 | |
|     Value *Or = And->getOperand(0);
 | |
|     Value *A, *B, *LShr;
 | |
|     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
 | |
|         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
 | |
|       unsigned UsesRemoved = 0;
 | |
|       if (And->hasOneUse())
 | |
|         ++UsesRemoved;
 | |
|       if (Or->hasOneUse())
 | |
|         ++UsesRemoved;
 | |
|       if (LShr->hasOneUse())
 | |
|         ++UsesRemoved;
 | |
| 
 | |
|       // Compute A & ((1 << B) | 1)
 | |
|       Value *NewOr = nullptr;
 | |
|       if (auto *C = dyn_cast<Constant>(B)) {
 | |
|         if (UsesRemoved >= 1)
 | |
|           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
 | |
|       } else {
 | |
|         if (UsesRemoved >= 3)
 | |
|           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
 | |
|                                                      /*HasNUW=*/true),
 | |
|                                    One, Or->getName());
 | |
|       }
 | |
|       if (NewOr) {
 | |
|         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
 | |
|         Cmp.setOperand(0, NewAnd);
 | |
|         return &Cmp;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (X & C2) > C1 --> (X & C2) != 0, if any bit set in (X & C2) will produce a
 | |
|   // result greater than C1.
 | |
|   unsigned NumTZ = C2->countTrailingZeros();
 | |
|   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && NumTZ < C2->getBitWidth() &&
 | |
|       APInt::getOneBitSet(C2->getBitWidth(), NumTZ).ugt(*C1)) {
 | |
|     Constant *Zero = Constant::getNullValue(And->getType());
 | |
|     return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Fold icmp (and X, Y), C.
 | |
| Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
 | |
|                                                BinaryOperator *And,
 | |
|                                                const APInt *C) {
 | |
|   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
 | |
|     return I;
 | |
| 
 | |
|   // TODO: These all require that Y is constant too, so refactor with the above.
 | |
| 
 | |
|   // Try to optimize things like "A[i] & 42 == 0" to index computations.
 | |
|   Value *X = And->getOperand(0);
 | |
|   Value *Y = And->getOperand(1);
 | |
|   if (auto *LI = dyn_cast<LoadInst>(X))
 | |
|     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
 | |
|       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
 | |
|         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
 | |
|             !LI->isVolatile() && isa<ConstantInt>(Y)) {
 | |
|           ConstantInt *C2 = cast<ConstantInt>(Y);
 | |
|           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
 | |
|             return Res;
 | |
|         }
 | |
| 
 | |
|   if (!Cmp.isEquality())
 | |
|     return nullptr;
 | |
| 
 | |
|   // X & -C == -C -> X >  u ~C
 | |
|   // X & -C != -C -> X <= u ~C
 | |
|   //   iff C is a power of 2
 | |
|   if (Cmp.getOperand(1) == Y && (-(*C)).isPowerOf2()) {
 | |
|     auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
 | |
|                                                           : CmpInst::ICMP_ULE;
 | |
|     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
 | |
|   }
 | |
| 
 | |
|   // (X & C2) == 0 -> (trunc X) >= 0
 | |
|   // (X & C2) != 0 -> (trunc X) <  0
 | |
|   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
 | |
|   const APInt *C2;
 | |
|   if (And->hasOneUse() && C->isNullValue() && match(Y, m_APInt(C2))) {
 | |
|     int32_t ExactLogBase2 = C2->exactLogBase2();
 | |
|     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
 | |
|       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
 | |
|       if (And->getType()->isVectorTy())
 | |
|         NTy = VectorType::get(NTy, And->getType()->getVectorNumElements());
 | |
|       Value *Trunc = Builder.CreateTrunc(X, NTy);
 | |
|       auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
 | |
|                                                             : CmpInst::ICMP_SLT;
 | |
|       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Fold icmp (or X, Y), C.
 | |
| Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
 | |
|                                               const APInt *C) {
 | |
|   ICmpInst::Predicate Pred = Cmp.getPredicate();
 | |
|   if (C->isOneValue()) {
 | |
|     // icmp slt signum(V) 1 --> icmp slt V, 1
 | |
|     Value *V = nullptr;
 | |
|     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
 | |
|       return new ICmpInst(ICmpInst::ICMP_SLT, V,
 | |
|                           ConstantInt::get(V->getType(), 1));
 | |
|   }
 | |
| 
 | |
|   // X | C == C --> X <=u C
 | |
|   // X | C != C --> X  >u C
 | |
|   //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
 | |
|   if (Cmp.isEquality() && Cmp.getOperand(1) == Or->getOperand(1) &&
 | |
|       (*C + 1).isPowerOf2()) {
 | |
|     Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
 | |
|     return new ICmpInst(Pred, Or->getOperand(0), Or->getOperand(1));
 | |
|   }
 | |
| 
 | |
|   if (!Cmp.isEquality() || !C->isNullValue() || !Or->hasOneUse())
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *P, *Q;
 | |
|   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
 | |
|     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
 | |
|     // -> and (icmp eq P, null), (icmp eq Q, null).
 | |
|     Value *CmpP =
 | |
|         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
 | |
|     Value *CmpQ =
 | |
|         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
 | |
|     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
 | |
|     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
 | |
|   }
 | |
| 
 | |
|   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
 | |
|   // a shorter form that has more potential to be folded even further.
 | |
|   Value *X1, *X2, *X3, *X4;
 | |
|   if (match(Or->getOperand(0), m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
 | |
|       match(Or->getOperand(1), m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
 | |
|     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
 | |
|     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
 | |
|     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
 | |
|     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
 | |
|     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
 | |
|     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Fold icmp (mul X, Y), C.
 | |
| Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
 | |
|                                                BinaryOperator *Mul,
 | |
|                                                const APInt *C) {
 | |
|   const APInt *MulC;
 | |
|   if (!match(Mul->getOperand(1), m_APInt(MulC)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // If this is a test of the sign bit and the multiply is sign-preserving with
 | |
|   // a constant operand, use the multiply LHS operand instead.
 | |
|   ICmpInst::Predicate Pred = Cmp.getPredicate();
 | |
|   if (isSignTest(Pred, *C) && Mul->hasNoSignedWrap()) {
 | |
|     if (MulC->isNegative())
 | |
|       Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|     return new ICmpInst(Pred, Mul->getOperand(0),
 | |
|                         Constant::getNullValue(Mul->getType()));
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Fold icmp (shl 1, Y), C.
 | |
| static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
 | |
|                                    const APInt *C) {
 | |
|   Value *Y;
 | |
|   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
 | |
|     return nullptr;
 | |
| 
 | |
|   Type *ShiftType = Shl->getType();
 | |
|   uint32_t TypeBits = C->getBitWidth();
 | |
|   bool CIsPowerOf2 = C->isPowerOf2();
 | |
|   ICmpInst::Predicate Pred = Cmp.getPredicate();
 | |
|   if (Cmp.isUnsigned()) {
 | |
|     // (1 << Y) pred C -> Y pred Log2(C)
 | |
|     if (!CIsPowerOf2) {
 | |
|       // (1 << Y) <  30 -> Y <= 4
 | |
|       // (1 << Y) <= 30 -> Y <= 4
 | |
|       // (1 << Y) >= 30 -> Y >  4
 | |
|       // (1 << Y) >  30 -> Y >  4
 | |
|       if (Pred == ICmpInst::ICMP_ULT)
 | |
|         Pred = ICmpInst::ICMP_ULE;
 | |
|       else if (Pred == ICmpInst::ICMP_UGE)
 | |
|         Pred = ICmpInst::ICMP_UGT;
 | |
|     }
 | |
| 
 | |
|     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
 | |
|     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
 | |
|     unsigned CLog2 = C->logBase2();
 | |
|     if (CLog2 == TypeBits - 1) {
 | |
|       if (Pred == ICmpInst::ICMP_UGE)
 | |
|         Pred = ICmpInst::ICMP_EQ;
 | |
|       else if (Pred == ICmpInst::ICMP_ULT)
 | |
|         Pred = ICmpInst::ICMP_NE;
 | |
|     }
 | |
|     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
 | |
|   } else if (Cmp.isSigned()) {
 | |
|     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
 | |
|     if (C->isAllOnesValue()) {
 | |
|       // (1 << Y) <= -1 -> Y == 31
 | |
|       if (Pred == ICmpInst::ICMP_SLE)
 | |
|         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
 | |
| 
 | |
|       // (1 << Y) >  -1 -> Y != 31
 | |
|       if (Pred == ICmpInst::ICMP_SGT)
 | |
|         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
 | |
|     } else if (!(*C)) {
 | |
|       // (1 << Y) <  0 -> Y == 31
 | |
|       // (1 << Y) <= 0 -> Y == 31
 | |
|       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
 | |
|         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
 | |
| 
 | |
|       // (1 << Y) >= 0 -> Y != 31
 | |
|       // (1 << Y) >  0 -> Y != 31
 | |
|       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
 | |
|         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
 | |
|     }
 | |
|   } else if (Cmp.isEquality() && CIsPowerOf2) {
 | |
|     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C->logBase2()));
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Fold icmp (shl X, Y), C.
 | |
| Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
 | |
|                                                BinaryOperator *Shl,
 | |
|                                                const APInt *C) {
 | |
|   const APInt *ShiftVal;
 | |
|   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
 | |
|     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), *C, *ShiftVal);
 | |
| 
 | |
|   const APInt *ShiftAmt;
 | |
|   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
 | |
|     return foldICmpShlOne(Cmp, Shl, C);
 | |
| 
 | |
|   // Check that the shift amount is in range. If not, don't perform undefined
 | |
|   // shifts. When the shift is visited, it will be simplified.
 | |
|   unsigned TypeBits = C->getBitWidth();
 | |
|   if (ShiftAmt->uge(TypeBits))
 | |
|     return nullptr;
 | |
| 
 | |
|   ICmpInst::Predicate Pred = Cmp.getPredicate();
 | |
|   Value *X = Shl->getOperand(0);
 | |
|   Type *ShType = Shl->getType();
 | |
| 
 | |
|   // NSW guarantees that we are only shifting out sign bits from the high bits,
 | |
|   // so we can ASHR the compare constant without needing a mask and eliminate
 | |
|   // the shift.
 | |
|   if (Shl->hasNoSignedWrap()) {
 | |
|     if (Pred == ICmpInst::ICMP_SGT) {
 | |
|       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
 | |
|       APInt ShiftedC = C->ashr(*ShiftAmt);
 | |
|       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
 | |
|     }
 | |
|     if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) {
 | |
|       // This is the same code as the SGT case, but assert the pre-condition
 | |
|       // that is needed for this to work with equality predicates.
 | |
|       assert(C->ashr(*ShiftAmt).shl(*ShiftAmt) == *C &&
 | |
|              "Compare known true or false was not folded");
 | |
|       APInt ShiftedC = C->ashr(*ShiftAmt);
 | |
|       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
 | |
|     }
 | |
|     if (Pred == ICmpInst::ICMP_SLT) {
 | |
|       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
 | |
|       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
 | |
|       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
 | |
|       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
 | |
|       assert(!C->isMinSignedValue() && "Unexpected icmp slt");
 | |
|       APInt ShiftedC = (*C - 1).ashr(*ShiftAmt) + 1;
 | |
|       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
 | |
|     }
 | |
|     // If this is a signed comparison to 0 and the shift is sign preserving,
 | |
|     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
 | |
|     // do that if we're sure to not continue on in this function.
 | |
|     if (isSignTest(Pred, *C))
 | |
|       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
 | |
|   }
 | |
| 
 | |
|   // NUW guarantees that we are only shifting out zero bits from the high bits,
 | |
|   // so we can LSHR the compare constant without needing a mask and eliminate
 | |
|   // the shift.
 | |
|   if (Shl->hasNoUnsignedWrap()) {
 | |
|     if (Pred == ICmpInst::ICMP_UGT) {
 | |
|       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
 | |
|       APInt ShiftedC = C->lshr(*ShiftAmt);
 | |
|       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
 | |
|     }
 | |
|     if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) {
 | |
|       // This is the same code as the UGT case, but assert the pre-condition
 | |
|       // that is needed for this to work with equality predicates.
 | |
|       assert(C->lshr(*ShiftAmt).shl(*ShiftAmt) == *C &&
 | |
|              "Compare known true or false was not folded");
 | |
|       APInt ShiftedC = C->lshr(*ShiftAmt);
 | |
|       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
 | |
|     }
 | |
|     if (Pred == ICmpInst::ICMP_ULT) {
 | |
|       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
 | |
|       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
 | |
|       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
 | |
|       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
 | |
|       assert(C->ugt(0) && "ult 0 should have been eliminated");
 | |
|       APInt ShiftedC = (*C - 1).lshr(*ShiftAmt) + 1;
 | |
|       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Cmp.isEquality() && Shl->hasOneUse()) {
 | |
|     // Strength-reduce the shift into an 'and'.
 | |
|     Constant *Mask = ConstantInt::get(
 | |
|         ShType,
 | |
|         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
 | |
|     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
 | |
|     Constant *LShrC = ConstantInt::get(ShType, C->lshr(*ShiftAmt));
 | |
|     return new ICmpInst(Pred, And, LShrC);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
 | |
|   bool TrueIfSigned = false;
 | |
|   if (Shl->hasOneUse() && isSignBitCheck(Pred, *C, TrueIfSigned)) {
 | |
|     // (X << 31) <s 0  --> (X & 1) != 0
 | |
|     Constant *Mask = ConstantInt::get(
 | |
|         ShType,
 | |
|         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
 | |
|     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
 | |
|     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
 | |
|                         And, Constant::getNullValue(ShType));
 | |
|   }
 | |
| 
 | |
|   // Transform (icmp pred iM (shl iM %v, N), C)
 | |
|   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
 | |
|   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
 | |
|   // This enables us to get rid of the shift in favor of a trunc that may be
 | |
|   // free on the target. It has the additional benefit of comparing to a
 | |
|   // smaller constant that may be more target-friendly.
 | |
|   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
 | |
|   if (Shl->hasOneUse() && Amt != 0 && C->countTrailingZeros() >= Amt &&
 | |
|       DL.isLegalInteger(TypeBits - Amt)) {
 | |
|     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
 | |
|     if (ShType->isVectorTy())
 | |
|       TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements());
 | |
|     Constant *NewC =
 | |
|         ConstantInt::get(TruncTy, C->ashr(*ShiftAmt).trunc(TypeBits - Amt));
 | |
|     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Fold icmp ({al}shr X, Y), C.
 | |
| Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
 | |
|                                                BinaryOperator *Shr,
 | |
|                                                const APInt *C) {
 | |
|   // An exact shr only shifts out zero bits, so:
 | |
|   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
 | |
|   Value *X = Shr->getOperand(0);
 | |
|   CmpInst::Predicate Pred = Cmp.getPredicate();
 | |
|   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
 | |
|       C->isNullValue())
 | |
|     return new ICmpInst(Pred, X, Cmp.getOperand(1));
 | |
| 
 | |
|   const APInt *ShiftVal;
 | |
|   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
 | |
|     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), *C, *ShiftVal);
 | |
| 
 | |
|   const APInt *ShiftAmt;
 | |
|   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check that the shift amount is in range. If not, don't perform undefined
 | |
|   // shifts. When the shift is visited it will be simplified.
 | |
|   unsigned TypeBits = C->getBitWidth();
 | |
|   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
 | |
|   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
 | |
|     return nullptr;
 | |
| 
 | |
|   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
 | |
|   if (!Cmp.isEquality()) {
 | |
|     // If we have an unsigned comparison and an ashr, we can't simplify this.
 | |
|     // Similarly for signed comparisons with lshr.
 | |
|     if (Cmp.isSigned() != IsAShr)
 | |
|       return nullptr;
 | |
| 
 | |
|     // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
 | |
|     // by a power of 2.  Since we already have logic to simplify these,
 | |
|     // transform to div and then simplify the resultant comparison.
 | |
|     if (IsAShr && (!Shr->isExact() || ShAmtVal == TypeBits - 1))
 | |
|       return nullptr;
 | |
| 
 | |
|     // Revisit the shift (to delete it).
 | |
|     Worklist.Add(Shr);
 | |
| 
 | |
|     Constant *DivCst = ConstantInt::get(
 | |
|         Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
 | |
| 
 | |
|     Value *Tmp = IsAShr ? Builder.CreateSDiv(X, DivCst, "", Shr->isExact())
 | |
|                         : Builder.CreateUDiv(X, DivCst, "", Shr->isExact());
 | |
| 
 | |
|     Cmp.setOperand(0, Tmp);
 | |
| 
 | |
|     // If the builder folded the binop, just return it.
 | |
|     BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
 | |
|     if (!TheDiv)
 | |
|       return &Cmp;
 | |
| 
 | |
|     // Otherwise, fold this div/compare.
 | |
|     assert(TheDiv->getOpcode() == Instruction::SDiv ||
 | |
|            TheDiv->getOpcode() == Instruction::UDiv);
 | |
| 
 | |
|     Instruction *Res = foldICmpDivConstant(Cmp, TheDiv, C);
 | |
|     assert(Res && "This div/cst should have folded!");
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
|   // Handle equality comparisons of shift-by-constant.
 | |
| 
 | |
|   // If the comparison constant changes with the shift, the comparison cannot
 | |
|   // succeed (bits of the comparison constant cannot match the shifted value).
 | |
|   // This should be known by InstSimplify and already be folded to true/false.
 | |
|   assert(((IsAShr && C->shl(ShAmtVal).ashr(ShAmtVal) == *C) ||
 | |
|           (!IsAShr && C->shl(ShAmtVal).lshr(ShAmtVal) == *C)) &&
 | |
|          "Expected icmp+shr simplify did not occur.");
 | |
| 
 | |
|   // Check if the bits shifted out are known to be zero. If so, we can compare
 | |
|   // against the unshifted value:
 | |
|   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
 | |
|   Constant *ShiftedCmpRHS = ConstantInt::get(Shr->getType(), *C << ShAmtVal);
 | |
|   if (Shr->hasOneUse()) {
 | |
|     if (Shr->isExact())
 | |
|       return new ICmpInst(Pred, X, ShiftedCmpRHS);
 | |
| 
 | |
|     // Otherwise strength reduce the shift into an 'and'.
 | |
|     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
 | |
|     Constant *Mask = ConstantInt::get(Shr->getType(), Val);
 | |
|     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
 | |
|     return new ICmpInst(Pred, And, ShiftedCmpRHS);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Fold icmp (udiv X, Y), C.
 | |
| Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
 | |
|                                                 BinaryOperator *UDiv,
 | |
|                                                 const APInt *C) {
 | |
|   const APInt *C2;
 | |
|   if (!match(UDiv->getOperand(0), m_APInt(C2)))
 | |
|     return nullptr;
 | |
| 
 | |
|   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
 | |
| 
 | |
|   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
 | |
|   Value *Y = UDiv->getOperand(1);
 | |
|   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
 | |
|     assert(!C->isMaxValue() &&
 | |
|            "icmp ugt X, UINT_MAX should have been simplified already.");
 | |
|     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
 | |
|                         ConstantInt::get(Y->getType(), C2->udiv(*C + 1)));
 | |
|   }
 | |
| 
 | |
|   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
 | |
|   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
 | |
|     assert(*C != 0 && "icmp ult X, 0 should have been simplified already.");
 | |
|     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
 | |
|                         ConstantInt::get(Y->getType(), C2->udiv(*C)));
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Fold icmp ({su}div X, Y), C.
 | |
| Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
 | |
|                                                BinaryOperator *Div,
 | |
|                                                const APInt *C) {
 | |
|   // Fold: icmp pred ([us]div X, C2), C -> range test
 | |
|   // Fold this div into the comparison, producing a range check.
 | |
|   // Determine, based on the divide type, what the range is being
 | |
|   // checked.  If there is an overflow on the low or high side, remember
 | |
|   // it, otherwise compute the range [low, hi) bounding the new value.
 | |
|   // See: InsertRangeTest above for the kinds of replacements possible.
 | |
|   const APInt *C2;
 | |
|   if (!match(Div->getOperand(1), m_APInt(C2)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // FIXME: If the operand types don't match the type of the divide
 | |
|   // then don't attempt this transform. The code below doesn't have the
 | |
|   // logic to deal with a signed divide and an unsigned compare (and
 | |
|   // vice versa). This is because (x /s C2) <s C  produces different
 | |
|   // results than (x /s C2) <u C or (x /u C2) <s C or even
 | |
|   // (x /u C2) <u C.  Simply casting the operands and result won't
 | |
|   // work. :(  The if statement below tests that condition and bails
 | |
|   // if it finds it.
 | |
|   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
 | |
|   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
 | |
|     return nullptr;
 | |
| 
 | |
|   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
 | |
|   // INT_MIN will also fail if the divisor is 1. Although folds of all these
 | |
|   // division-by-constant cases should be present, we can not assert that they
 | |
|   // have happened before we reach this icmp instruction.
 | |
|   if (C2->isNullValue() || C2->isOneValue() ||
 | |
|       (DivIsSigned && C2->isAllOnesValue()))
 | |
|     return nullptr;
 | |
| 
 | |
|   // TODO: We could do all of the computations below using APInt.
 | |
|   Constant *CmpRHS = cast<Constant>(Cmp.getOperand(1));
 | |
|   Constant *DivRHS = cast<Constant>(Div->getOperand(1));
 | |
| 
 | |
|   // Compute Prod = CmpRHS * DivRHS. We are essentially solving an equation of
 | |
|   // form X / C2 = C. We solve for X by multiplying C2 (DivRHS) and C (CmpRHS).
 | |
|   // By solving for X, we can turn this into a range check instead of computing
 | |
|   // a divide.
 | |
|   Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
 | |
| 
 | |
|   // Determine if the product overflows by seeing if the product is not equal to
 | |
|   // the divide. Make sure we do the same kind of divide as in the LHS
 | |
|   // instruction that we're folding.
 | |
|   bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS)
 | |
|                              : ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
 | |
| 
 | |
|   ICmpInst::Predicate Pred = Cmp.getPredicate();
 | |
| 
 | |
|   // If the division is known to be exact, then there is no remainder from the
 | |
|   // divide, so the covered range size is unit, otherwise it is the divisor.
 | |
|   Constant *RangeSize =
 | |
|       Div->isExact() ? ConstantInt::get(Div->getType(), 1) : DivRHS;
 | |
| 
 | |
|   // Figure out the interval that is being checked.  For example, a comparison
 | |
|   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
 | |
|   // Compute this interval based on the constants involved and the signedness of
 | |
|   // the compare/divide.  This computes a half-open interval, keeping track of
 | |
|   // whether either value in the interval overflows.  After analysis each
 | |
|   // overflow variable is set to 0 if it's corresponding bound variable is valid
 | |
|   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
 | |
|   int LoOverflow = 0, HiOverflow = 0;
 | |
|   Constant *LoBound = nullptr, *HiBound = nullptr;
 | |
| 
 | |
|   if (!DivIsSigned) {  // udiv
 | |
|     // e.g. X/5 op 3  --> [15, 20)
 | |
|     LoBound = Prod;
 | |
|     HiOverflow = LoOverflow = ProdOV;
 | |
|     if (!HiOverflow) {
 | |
|       // If this is not an exact divide, then many values in the range collapse
 | |
|       // to the same result value.
 | |
|       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
 | |
|     }
 | |
|   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
 | |
|     if (C->isNullValue()) {       // (X / pos) op 0
 | |
|       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
 | |
|       LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
 | |
|       HiBound = RangeSize;
 | |
|     } else if (C->isStrictlyPositive()) {   // (X / pos) op pos
 | |
|       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
 | |
|       HiOverflow = LoOverflow = ProdOV;
 | |
|       if (!HiOverflow)
 | |
|         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
 | |
|     } else {                       // (X / pos) op neg
 | |
|       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
 | |
|       HiBound = AddOne(Prod);
 | |
|       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
 | |
|       if (!LoOverflow) {
 | |
|         Constant *DivNeg = ConstantExpr::getNeg(RangeSize);
 | |
|         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
 | |
|       }
 | |
|     }
 | |
|   } else if (C2->isNegative()) { // Divisor is < 0.
 | |
|     if (Div->isExact())
 | |
|       RangeSize = ConstantExpr::getNeg(RangeSize);
 | |
|     if (C->isNullValue()) { // (X / neg) op 0
 | |
|       // e.g. X/-5 op 0  --> [-4, 5)
 | |
|       LoBound = AddOne(RangeSize);
 | |
|       HiBound = ConstantExpr::getNeg(RangeSize);
 | |
|       if (HiBound == DivRHS) {     // -INTMIN = INTMIN
 | |
|         HiOverflow = 1;            // [INTMIN+1, overflow)
 | |
|         HiBound = nullptr;         // e.g. X/INTMIN = 0 --> X > INTMIN
 | |
|       }
 | |
|     } else if (C->isStrictlyPositive()) {   // (X / neg) op pos
 | |
|       // e.g. X/-5 op 3  --> [-19, -14)
 | |
|       HiBound = AddOne(Prod);
 | |
|       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
 | |
|       if (!LoOverflow)
 | |
|         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
 | |
|     } else {                       // (X / neg) op neg
 | |
|       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
 | |
|       LoOverflow = HiOverflow = ProdOV;
 | |
|       if (!HiOverflow)
 | |
|         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
 | |
|     }
 | |
| 
 | |
|     // Dividing by a negative swaps the condition.  LT <-> GT
 | |
|     Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
| 
 | |
|   Value *X = Div->getOperand(0);
 | |
|   switch (Pred) {
 | |
|     default: llvm_unreachable("Unhandled icmp opcode!");
 | |
|     case ICmpInst::ICMP_EQ:
 | |
|       if (LoOverflow && HiOverflow)
 | |
|         return replaceInstUsesWith(Cmp, Builder.getFalse());
 | |
|       if (HiOverflow)
 | |
|         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
 | |
|                             ICmpInst::ICMP_UGE, X, LoBound);
 | |
|       if (LoOverflow)
 | |
|         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
 | |
|                             ICmpInst::ICMP_ULT, X, HiBound);
 | |
|       return replaceInstUsesWith(
 | |
|           Cmp, insertRangeTest(X, LoBound->getUniqueInteger(),
 | |
|                                HiBound->getUniqueInteger(), DivIsSigned, true));
 | |
|     case ICmpInst::ICMP_NE:
 | |
|       if (LoOverflow && HiOverflow)
 | |
|         return replaceInstUsesWith(Cmp, Builder.getTrue());
 | |
|       if (HiOverflow)
 | |
|         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
 | |
|                             ICmpInst::ICMP_ULT, X, LoBound);
 | |
|       if (LoOverflow)
 | |
|         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
 | |
|                             ICmpInst::ICMP_UGE, X, HiBound);
 | |
|       return replaceInstUsesWith(Cmp,
 | |
|                                  insertRangeTest(X, LoBound->getUniqueInteger(),
 | |
|                                                  HiBound->getUniqueInteger(),
 | |
|                                                  DivIsSigned, false));
 | |
|     case ICmpInst::ICMP_ULT:
 | |
|     case ICmpInst::ICMP_SLT:
 | |
|       if (LoOverflow == +1)   // Low bound is greater than input range.
 | |
|         return replaceInstUsesWith(Cmp, Builder.getTrue());
 | |
|       if (LoOverflow == -1)   // Low bound is less than input range.
 | |
|         return replaceInstUsesWith(Cmp, Builder.getFalse());
 | |
|       return new ICmpInst(Pred, X, LoBound);
 | |
|     case ICmpInst::ICMP_UGT:
 | |
|     case ICmpInst::ICMP_SGT:
 | |
|       if (HiOverflow == +1)       // High bound greater than input range.
 | |
|         return replaceInstUsesWith(Cmp, Builder.getFalse());
 | |
|       if (HiOverflow == -1)       // High bound less than input range.
 | |
|         return replaceInstUsesWith(Cmp, Builder.getTrue());
 | |
|       if (Pred == ICmpInst::ICMP_UGT)
 | |
|         return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
 | |
|       return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Fold icmp (sub X, Y), C.
 | |
| Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
 | |
|                                                BinaryOperator *Sub,
 | |
|                                                const APInt *C) {
 | |
|   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
 | |
|   ICmpInst::Predicate Pred = Cmp.getPredicate();
 | |
| 
 | |
|   // The following transforms are only worth it if the only user of the subtract
 | |
|   // is the icmp.
 | |
|   if (!Sub->hasOneUse())
 | |
|     return nullptr;
 | |
| 
 | |
|   if (Sub->hasNoSignedWrap()) {
 | |
|     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
 | |
|     if (Pred == ICmpInst::ICMP_SGT && C->isAllOnesValue())
 | |
|       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
 | |
| 
 | |
|     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
 | |
|     if (Pred == ICmpInst::ICMP_SGT && C->isNullValue())
 | |
|       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
 | |
| 
 | |
|     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
 | |
|     if (Pred == ICmpInst::ICMP_SLT && C->isNullValue())
 | |
|       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
 | |
| 
 | |
|     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
 | |
|     if (Pred == ICmpInst::ICMP_SLT && C->isOneValue())
 | |
|       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
 | |
|   }
 | |
| 
 | |
|   const APInt *C2;
 | |
|   if (!match(X, m_APInt(C2)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // C2 - Y <u C -> (Y | (C - 1)) == C2
 | |
|   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
 | |
|   if (Pred == ICmpInst::ICMP_ULT && C->isPowerOf2() &&
 | |
|       (*C2 & (*C - 1)) == (*C - 1))
 | |
|     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, *C - 1), X);
 | |
| 
 | |
|   // C2 - Y >u C -> (Y | C) != C2
 | |
|   //   iff C2 & C == C and C + 1 is a power of 2
 | |
|   if (Pred == ICmpInst::ICMP_UGT && (*C + 1).isPowerOf2() && (*C2 & *C) == *C)
 | |
|     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, *C), X);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Fold icmp (add X, Y), C.
 | |
| Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
 | |
|                                                BinaryOperator *Add,
 | |
|                                                const APInt *C) {
 | |
|   Value *Y = Add->getOperand(1);
 | |
|   const APInt *C2;
 | |
|   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Fold icmp pred (add X, C2), C.
 | |
|   Value *X = Add->getOperand(0);
 | |
|   Type *Ty = Add->getType();
 | |
|   CmpInst::Predicate Pred = Cmp.getPredicate();
 | |
| 
 | |
|   // If the add does not wrap, we can always adjust the compare by subtracting
 | |
|   // the constants. Equality comparisons are handled elsewhere. SGE/SLE are
 | |
|   // canonicalized to SGT/SLT.
 | |
|   if (Add->hasNoSignedWrap() &&
 | |
|       (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) {
 | |
|     bool Overflow;
 | |
|     APInt NewC = C->ssub_ov(*C2, Overflow);
 | |
|     // If there is overflow, the result must be true or false.
 | |
|     // TODO: Can we assert there is no overflow because InstSimplify always
 | |
|     // handles those cases?
 | |
|     if (!Overflow)
 | |
|       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
 | |
|       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
 | |
|   }
 | |
| 
 | |
|   auto CR = ConstantRange::makeExactICmpRegion(Pred, *C).subtract(*C2);
 | |
|   const APInt &Upper = CR.getUpper();
 | |
|   const APInt &Lower = CR.getLower();
 | |
|   if (Cmp.isSigned()) {
 | |
|     if (Lower.isSignMask())
 | |
|       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
 | |
|     if (Upper.isSignMask())
 | |
|       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
 | |
|   } else {
 | |
|     if (Lower.isMinValue())
 | |
|       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
 | |
|     if (Upper.isMinValue())
 | |
|       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
 | |
|   }
 | |
| 
 | |
|   if (!Add->hasOneUse())
 | |
|     return nullptr;
 | |
| 
 | |
|   // X+C <u C2 -> (X & -C2) == C
 | |
|   //   iff C & (C2-1) == 0
 | |
|   //       C2 is a power of 2
 | |
|   if (Pred == ICmpInst::ICMP_ULT && C->isPowerOf2() && (*C2 & (*C - 1)) == 0)
 | |
|     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -(*C)),
 | |
|                         ConstantExpr::getNeg(cast<Constant>(Y)));
 | |
| 
 | |
|   // X+C >u C2 -> (X & ~C2) != C
 | |
|   //   iff C & C2 == 0
 | |
|   //       C2+1 is a power of 2
 | |
|   if (Pred == ICmpInst::ICMP_UGT && (*C + 1).isPowerOf2() && (*C2 & *C) == 0)
 | |
|     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~(*C)),
 | |
|                         ConstantExpr::getNeg(cast<Constant>(Y)));
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
 | |
|                                            Value *&RHS, ConstantInt *&Less,
 | |
|                                            ConstantInt *&Equal,
 | |
|                                            ConstantInt *&Greater) {
 | |
|   // TODO: Generalize this to work with other comparison idioms or ensure
 | |
|   // they get canonicalized into this form.
 | |
| 
 | |
|   // select i1 (a == b), i32 Equal, i32 (select i1 (a < b), i32 Less, i32
 | |
|   // Greater), where Equal, Less and Greater are placeholders for any three
 | |
|   // constants.
 | |
|   ICmpInst::Predicate PredA, PredB;
 | |
|   if (match(SI->getTrueValue(), m_ConstantInt(Equal)) &&
 | |
|       match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) &&
 | |
|       PredA == ICmpInst::ICMP_EQ &&
 | |
|       match(SI->getFalseValue(),
 | |
|             m_Select(m_ICmp(PredB, m_Specific(LHS), m_Specific(RHS)),
 | |
|                      m_ConstantInt(Less), m_ConstantInt(Greater))) &&
 | |
|       PredB == ICmpInst::ICMP_SLT) {
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp,
 | |
|                                                   SelectInst *Select,
 | |
|                                                   ConstantInt *C) {
 | |
| 
 | |
|   assert(C && "Cmp RHS should be a constant int!");
 | |
|   // If we're testing a constant value against the result of a three way
 | |
|   // comparison, the result can be expressed directly in terms of the
 | |
|   // original values being compared.  Note: We could possibly be more
 | |
|   // aggressive here and remove the hasOneUse test. The original select is
 | |
|   // really likely to simplify or sink when we remove a test of the result.
 | |
|   Value *OrigLHS, *OrigRHS;
 | |
|   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
 | |
|   if (Cmp.hasOneUse() &&
 | |
|       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
 | |
|                               C3GreaterThan)) {
 | |
|     assert(C1LessThan && C2Equal && C3GreaterThan);
 | |
| 
 | |
|     bool TrueWhenLessThan =
 | |
|         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
 | |
|             ->isAllOnesValue();
 | |
|     bool TrueWhenEqual =
 | |
|         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
 | |
|             ->isAllOnesValue();
 | |
|     bool TrueWhenGreaterThan =
 | |
|         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
 | |
|             ->isAllOnesValue();
 | |
| 
 | |
|     // This generates the new instruction that will replace the original Cmp
 | |
|     // Instruction. Instead of enumerating the various combinations when
 | |
|     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
 | |
|     // false, we rely on chaining of ORs and future passes of InstCombine to
 | |
|     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
 | |
| 
 | |
|     // When none of the three constants satisfy the predicate for the RHS (C),
 | |
|     // the entire original Cmp can be simplified to a false.
 | |
|     Value *Cond = Builder.getFalse();
 | |
|     if (TrueWhenLessThan)
 | |
|       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, OrigLHS, OrigRHS));
 | |
|     if (TrueWhenEqual)
 | |
|       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, OrigLHS, OrigRHS));
 | |
|     if (TrueWhenGreaterThan)
 | |
|       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, OrigLHS, OrigRHS));
 | |
| 
 | |
|     return replaceInstUsesWith(Cmp, Cond);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
 | |
| /// where X is some kind of instruction.
 | |
| Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
 | |
|   const APInt *C;
 | |
|   if (!match(Cmp.getOperand(1), m_APInt(C)))
 | |
|     return nullptr;
 | |
| 
 | |
|   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
 | |
|     switch (BO->getOpcode()) {
 | |
|     case Instruction::Xor:
 | |
|       if (Instruction *I = foldICmpXorConstant(Cmp, BO, C))
 | |
|         return I;
 | |
|       break;
 | |
|     case Instruction::And:
 | |
|       if (Instruction *I = foldICmpAndConstant(Cmp, BO, C))
 | |
|         return I;
 | |
|       break;
 | |
|     case Instruction::Or:
 | |
|       if (Instruction *I = foldICmpOrConstant(Cmp, BO, C))
 | |
|         return I;
 | |
|       break;
 | |
|     case Instruction::Mul:
 | |
|       if (Instruction *I = foldICmpMulConstant(Cmp, BO, C))
 | |
|         return I;
 | |
|       break;
 | |
|     case Instruction::Shl:
 | |
|       if (Instruction *I = foldICmpShlConstant(Cmp, BO, C))
 | |
|         return I;
 | |
|       break;
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|       if (Instruction *I = foldICmpShrConstant(Cmp, BO, C))
 | |
|         return I;
 | |
|       break;
 | |
|     case Instruction::UDiv:
 | |
|       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C))
 | |
|         return I;
 | |
|       LLVM_FALLTHROUGH;
 | |
|     case Instruction::SDiv:
 | |
|       if (Instruction *I = foldICmpDivConstant(Cmp, BO, C))
 | |
|         return I;
 | |
|       break;
 | |
|     case Instruction::Sub:
 | |
|       if (Instruction *I = foldICmpSubConstant(Cmp, BO, C))
 | |
|         return I;
 | |
|       break;
 | |
|     case Instruction::Add:
 | |
|       if (Instruction *I = foldICmpAddConstant(Cmp, BO, C))
 | |
|         return I;
 | |
|       break;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|     // TODO: These folds could be refactored to be part of the above calls.
 | |
|     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, C))
 | |
|       return I;
 | |
|   }
 | |
| 
 | |
|   // Match against CmpInst LHS being instructions other than binary operators.
 | |
| 
 | |
|   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
 | |
|     // For now, we only support constant integers while folding the
 | |
|     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
 | |
|     // similar to the cases handled by binary ops above.
 | |
|     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
 | |
|       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
 | |
|         return I;
 | |
|   }
 | |
| 
 | |
|   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
 | |
|     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, C))
 | |
|       return I;
 | |
|   }
 | |
| 
 | |
|   if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, C))
 | |
|     return I;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
 | |
| /// icmp eq/ne BO, C.
 | |
| Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
 | |
|                                                              BinaryOperator *BO,
 | |
|                                                              const APInt *C) {
 | |
|   // TODO: Some of these folds could work with arbitrary constants, but this
 | |
|   // function is limited to scalar and vector splat constants.
 | |
|   if (!Cmp.isEquality())
 | |
|     return nullptr;
 | |
| 
 | |
|   ICmpInst::Predicate Pred = Cmp.getPredicate();
 | |
|   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
 | |
|   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
 | |
|   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
 | |
| 
 | |
|   switch (BO->getOpcode()) {
 | |
|   case Instruction::SRem:
 | |
|     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
 | |
|     if (C->isNullValue() && BO->hasOneUse()) {
 | |
|       const APInt *BOC;
 | |
|       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
 | |
|         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
 | |
|         return new ICmpInst(Pred, NewRem,
 | |
|                             Constant::getNullValue(BO->getType()));
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::Add: {
 | |
|     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
 | |
|     const APInt *BOC;
 | |
|     if (match(BOp1, m_APInt(BOC))) {
 | |
|       if (BO->hasOneUse()) {
 | |
|         Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1));
 | |
|         return new ICmpInst(Pred, BOp0, SubC);
 | |
|       }
 | |
|     } else if (C->isNullValue()) {
 | |
|       // Replace ((add A, B) != 0) with (A != -B) if A or B is
 | |
|       // efficiently invertible, or if the add has just this one use.
 | |
|       if (Value *NegVal = dyn_castNegVal(BOp1))
 | |
|         return new ICmpInst(Pred, BOp0, NegVal);
 | |
|       if (Value *NegVal = dyn_castNegVal(BOp0))
 | |
|         return new ICmpInst(Pred, NegVal, BOp1);
 | |
|       if (BO->hasOneUse()) {
 | |
|         Value *Neg = Builder.CreateNeg(BOp1);
 | |
|         Neg->takeName(BO);
 | |
|         return new ICmpInst(Pred, BOp0, Neg);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Xor:
 | |
|     if (BO->hasOneUse()) {
 | |
|       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
 | |
|         // For the xor case, we can xor two constants together, eliminating
 | |
|         // the explicit xor.
 | |
|         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
 | |
|       } else if (C->isNullValue()) {
 | |
|         // Replace ((xor A, B) != 0) with (A != B)
 | |
|         return new ICmpInst(Pred, BOp0, BOp1);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::Sub:
 | |
|     if (BO->hasOneUse()) {
 | |
|       const APInt *BOC;
 | |
|       if (match(BOp0, m_APInt(BOC))) {
 | |
|         // Replace ((sub BOC, B) != C) with (B != BOC-C).
 | |
|         Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS);
 | |
|         return new ICmpInst(Pred, BOp1, SubC);
 | |
|       } else if (C->isNullValue()) {
 | |
|         // Replace ((sub A, B) != 0) with (A != B).
 | |
|         return new ICmpInst(Pred, BOp0, BOp1);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::Or: {
 | |
|     const APInt *BOC;
 | |
|     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
 | |
|       // Comparing if all bits outside of a constant mask are set?
 | |
|       // Replace (X | C) == -1 with (X & ~C) == ~C.
 | |
|       // This removes the -1 constant.
 | |
|       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
 | |
|       Value *And = Builder.CreateAnd(BOp0, NotBOC);
 | |
|       return new ICmpInst(Pred, And, NotBOC);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::And: {
 | |
|     const APInt *BOC;
 | |
|     if (match(BOp1, m_APInt(BOC))) {
 | |
|       // If we have ((X & C) == C), turn it into ((X & C) != 0).
 | |
|       if (C == BOC && C->isPowerOf2())
 | |
|         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
 | |
|                             BO, Constant::getNullValue(RHS->getType()));
 | |
| 
 | |
|       // Don't perform the following transforms if the AND has multiple uses
 | |
|       if (!BO->hasOneUse())
 | |
|         break;
 | |
| 
 | |
|       // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
 | |
|       if (BOC->isSignMask()) {
 | |
|         Constant *Zero = Constant::getNullValue(BOp0->getType());
 | |
|         auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
 | |
|         return new ICmpInst(NewPred, BOp0, Zero);
 | |
|       }
 | |
| 
 | |
|       // ((X & ~7) == 0) --> X < 8
 | |
|       if (C->isNullValue() && (~(*BOC) + 1).isPowerOf2()) {
 | |
|         Constant *NegBOC = ConstantExpr::getNeg(cast<Constant>(BOp1));
 | |
|         auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
 | |
|         return new ICmpInst(NewPred, BOp0, NegBOC);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Mul:
 | |
|     if (C->isNullValue() && BO->hasNoSignedWrap()) {
 | |
|       const APInt *BOC;
 | |
|       if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) {
 | |
|         // The trivial case (mul X, 0) is handled by InstSimplify.
 | |
|         // General case : (mul X, C) != 0 iff X != 0
 | |
|         //                (mul X, C) == 0 iff X == 0
 | |
|         return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::UDiv:
 | |
|     if (C->isNullValue()) {
 | |
|       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
 | |
|       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
 | |
|       return new ICmpInst(NewPred, BOp1, BOp0);
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
 | |
| Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
 | |
|                                                          const APInt *C) {
 | |
|   IntrinsicInst *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0));
 | |
|   if (!II || !Cmp.isEquality())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Handle icmp {eq|ne} <intrinsic>, Constant.
 | |
|   Type *Ty = II->getType();
 | |
|   switch (II->getIntrinsicID()) {
 | |
|   case Intrinsic::bswap:
 | |
|     Worklist.Add(II);
 | |
|     Cmp.setOperand(0, II->getArgOperand(0));
 | |
|     Cmp.setOperand(1, ConstantInt::get(Ty, C->byteSwap()));
 | |
|     return &Cmp;
 | |
| 
 | |
|   case Intrinsic::ctlz:
 | |
|   case Intrinsic::cttz:
 | |
|     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
 | |
|     if (*C == C->getBitWidth()) {
 | |
|       Worklist.Add(II);
 | |
|       Cmp.setOperand(0, II->getArgOperand(0));
 | |
|       Cmp.setOperand(1, ConstantInt::getNullValue(Ty));
 | |
|       return &Cmp;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::ctpop: {
 | |
|     // popcount(A) == 0  ->  A == 0 and likewise for !=
 | |
|     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
 | |
|     bool IsZero = C->isNullValue();
 | |
|     if (IsZero || *C == C->getBitWidth()) {
 | |
|       Worklist.Add(II);
 | |
|       Cmp.setOperand(0, II->getArgOperand(0));
 | |
|       auto *NewOp =
 | |
|           IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty);
 | |
|       Cmp.setOperand(1, NewOp);
 | |
|       return &Cmp;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Handle icmp with constant (but not simple integer constant) RHS.
 | |
| Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
|   Constant *RHSC = dyn_cast<Constant>(Op1);
 | |
|   Instruction *LHSI = dyn_cast<Instruction>(Op0);
 | |
|   if (!RHSC || !LHSI)
 | |
|     return nullptr;
 | |
| 
 | |
|   switch (LHSI->getOpcode()) {
 | |
|   case Instruction::GetElementPtr:
 | |
|     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
 | |
|     if (RHSC->isNullValue() &&
 | |
|         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
 | |
|       return new ICmpInst(
 | |
|           I.getPredicate(), LHSI->getOperand(0),
 | |
|           Constant::getNullValue(LHSI->getOperand(0)->getType()));
 | |
|     break;
 | |
|   case Instruction::PHI:
 | |
|     // Only fold icmp into the PHI if the phi and icmp are in the same
 | |
|     // block.  If in the same block, we're encouraging jump threading.  If
 | |
|     // not, we are just pessimizing the code by making an i1 phi.
 | |
|     if (LHSI->getParent() == I.getParent())
 | |
|       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
 | |
|         return NV;
 | |
|     break;
 | |
|   case Instruction::Select: {
 | |
|     // If either operand of the select is a constant, we can fold the
 | |
|     // comparison into the select arms, which will cause one to be
 | |
|     // constant folded and the select turned into a bitwise or.
 | |
|     Value *Op1 = nullptr, *Op2 = nullptr;
 | |
|     ConstantInt *CI = nullptr;
 | |
|     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
 | |
|       Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
 | |
|       CI = dyn_cast<ConstantInt>(Op1);
 | |
|     }
 | |
|     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
 | |
|       Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
 | |
|       CI = dyn_cast<ConstantInt>(Op2);
 | |
|     }
 | |
| 
 | |
|     // We only want to perform this transformation if it will not lead to
 | |
|     // additional code. This is true if either both sides of the select
 | |
|     // fold to a constant (in which case the icmp is replaced with a select
 | |
|     // which will usually simplify) or this is the only user of the
 | |
|     // select (in which case we are trading a select+icmp for a simpler
 | |
|     // select+icmp) or all uses of the select can be replaced based on
 | |
|     // dominance information ("Global cases").
 | |
|     bool Transform = false;
 | |
|     if (Op1 && Op2)
 | |
|       Transform = true;
 | |
|     else if (Op1 || Op2) {
 | |
|       // Local case
 | |
|       if (LHSI->hasOneUse())
 | |
|         Transform = true;
 | |
|       // Global cases
 | |
|       else if (CI && !CI->isZero())
 | |
|         // When Op1 is constant try replacing select with second operand.
 | |
|         // Otherwise Op2 is constant and try replacing select with first
 | |
|         // operand.
 | |
|         Transform =
 | |
|             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
 | |
|     }
 | |
|     if (Transform) {
 | |
|       if (!Op1)
 | |
|         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
 | |
|                                  I.getName());
 | |
|       if (!Op2)
 | |
|         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
 | |
|                                  I.getName());
 | |
|       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::IntToPtr:
 | |
|     // icmp pred inttoptr(X), null -> icmp pred X, 0
 | |
|     if (RHSC->isNullValue() &&
 | |
|         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
 | |
|       return new ICmpInst(
 | |
|           I.getPredicate(), LHSI->getOperand(0),
 | |
|           Constant::getNullValue(LHSI->getOperand(0)->getType()));
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Load:
 | |
|     // Try to optimize things like "A[i] > 4" to index computations.
 | |
|     if (GetElementPtrInst *GEP =
 | |
|             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
 | |
|       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
 | |
|         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
 | |
|             !cast<LoadInst>(LHSI)->isVolatile())
 | |
|           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
 | |
|             return Res;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Try to fold icmp (binop), X or icmp X, (binop).
 | |
| /// TODO: A large part of this logic is duplicated in InstSimplify's
 | |
| /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
 | |
| /// duplication.
 | |
| Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   // Special logic for binary operators.
 | |
|   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
 | |
|   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
 | |
|   if (!BO0 && !BO1)
 | |
|     return nullptr;
 | |
| 
 | |
|   const CmpInst::Predicate Pred = I.getPredicate();
 | |
|   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
 | |
|   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
 | |
|     NoOp0WrapProblem =
 | |
|         ICmpInst::isEquality(Pred) ||
 | |
|         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
 | |
|         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
 | |
|   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
 | |
|     NoOp1WrapProblem =
 | |
|         ICmpInst::isEquality(Pred) ||
 | |
|         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
 | |
|         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
 | |
| 
 | |
|   // Analyze the case when either Op0 or Op1 is an add instruction.
 | |
|   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
 | |
|   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
 | |
|   if (BO0 && BO0->getOpcode() == Instruction::Add) {
 | |
|     A = BO0->getOperand(0);
 | |
|     B = BO0->getOperand(1);
 | |
|   }
 | |
|   if (BO1 && BO1->getOpcode() == Instruction::Add) {
 | |
|     C = BO1->getOperand(0);
 | |
|     D = BO1->getOperand(1);
 | |
|   }
 | |
| 
 | |
|   // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
 | |
|   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
 | |
|     return new ICmpInst(Pred, A == Op1 ? B : A,
 | |
|                         Constant::getNullValue(Op1->getType()));
 | |
| 
 | |
|   // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
 | |
|   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
 | |
|     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
 | |
|                         C == Op0 ? D : C);
 | |
| 
 | |
|   // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
 | |
|   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
 | |
|       NoOp1WrapProblem &&
 | |
|       // Try not to increase register pressure.
 | |
|       BO0->hasOneUse() && BO1->hasOneUse()) {
 | |
|     // Determine Y and Z in the form icmp (X+Y), (X+Z).
 | |
|     Value *Y, *Z;
 | |
|     if (A == C) {
 | |
|       // C + B == C + D  ->  B == D
 | |
|       Y = B;
 | |
|       Z = D;
 | |
|     } else if (A == D) {
 | |
|       // D + B == C + D  ->  B == C
 | |
|       Y = B;
 | |
|       Z = C;
 | |
|     } else if (B == C) {
 | |
|       // A + C == C + D  ->  A == D
 | |
|       Y = A;
 | |
|       Z = D;
 | |
|     } else {
 | |
|       assert(B == D);
 | |
|       // A + D == C + D  ->  A == C
 | |
|       Y = A;
 | |
|       Z = C;
 | |
|     }
 | |
|     return new ICmpInst(Pred, Y, Z);
 | |
|   }
 | |
| 
 | |
|   // icmp slt (X + -1), Y -> icmp sle X, Y
 | |
|   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
 | |
|       match(B, m_AllOnes()))
 | |
|     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
 | |
| 
 | |
|   // icmp sge (X + -1), Y -> icmp sgt X, Y
 | |
|   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
 | |
|       match(B, m_AllOnes()))
 | |
|     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
 | |
| 
 | |
|   // icmp sle (X + 1), Y -> icmp slt X, Y
 | |
|   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
 | |
|     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
 | |
| 
 | |
|   // icmp sgt (X + 1), Y -> icmp sge X, Y
 | |
|   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
 | |
|     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
 | |
| 
 | |
|   // icmp sgt X, (Y + -1) -> icmp sge X, Y
 | |
|   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
 | |
|       match(D, m_AllOnes()))
 | |
|     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
 | |
| 
 | |
|   // icmp sle X, (Y + -1) -> icmp slt X, Y
 | |
|   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
 | |
|       match(D, m_AllOnes()))
 | |
|     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
 | |
| 
 | |
|   // icmp sge X, (Y + 1) -> icmp sgt X, Y
 | |
|   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
 | |
|     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
 | |
| 
 | |
|   // icmp slt X, (Y + 1) -> icmp sle X, Y
 | |
|   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
 | |
|     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
 | |
| 
 | |
|   // TODO: The subtraction-related identities shown below also hold, but
 | |
|   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
 | |
|   // wouldn't happen even if they were implemented.
 | |
|   //
 | |
|   // icmp ult (X - 1), Y -> icmp ule X, Y
 | |
|   // icmp uge (X - 1), Y -> icmp ugt X, Y
 | |
|   // icmp ugt X, (Y - 1) -> icmp uge X, Y
 | |
|   // icmp ule X, (Y - 1) -> icmp ult X, Y
 | |
| 
 | |
|   // icmp ule (X + 1), Y -> icmp ult X, Y
 | |
|   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
 | |
|     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
 | |
| 
 | |
|   // icmp ugt (X + 1), Y -> icmp uge X, Y
 | |
|   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
 | |
|     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
 | |
| 
 | |
|   // icmp uge X, (Y + 1) -> icmp ugt X, Y
 | |
|   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
 | |
|     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
 | |
| 
 | |
|   // icmp ult X, (Y + 1) -> icmp ule X, Y
 | |
|   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
 | |
|     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
 | |
| 
 | |
|   // if C1 has greater magnitude than C2:
 | |
|   //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
 | |
|   //  s.t. C3 = C1 - C2
 | |
|   //
 | |
|   // if C2 has greater magnitude than C1:
 | |
|   //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
 | |
|   //  s.t. C3 = C2 - C1
 | |
|   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
 | |
|       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
 | |
|     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
 | |
|       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
 | |
|         const APInt &AP1 = C1->getValue();
 | |
|         const APInt &AP2 = C2->getValue();
 | |
|         if (AP1.isNegative() == AP2.isNegative()) {
 | |
|           APInt AP1Abs = C1->getValue().abs();
 | |
|           APInt AP2Abs = C2->getValue().abs();
 | |
|           if (AP1Abs.uge(AP2Abs)) {
 | |
|             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
 | |
|             Value *NewAdd = Builder.CreateNSWAdd(A, C3);
 | |
|             return new ICmpInst(Pred, NewAdd, C);
 | |
|           } else {
 | |
|             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
 | |
|             Value *NewAdd = Builder.CreateNSWAdd(C, C3);
 | |
|             return new ICmpInst(Pred, A, NewAdd);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|   // Analyze the case when either Op0 or Op1 is a sub instruction.
 | |
|   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
 | |
|   A = nullptr;
 | |
|   B = nullptr;
 | |
|   C = nullptr;
 | |
|   D = nullptr;
 | |
|   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
 | |
|     A = BO0->getOperand(0);
 | |
|     B = BO0->getOperand(1);
 | |
|   }
 | |
|   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
 | |
|     C = BO1->getOperand(0);
 | |
|     D = BO1->getOperand(1);
 | |
|   }
 | |
| 
 | |
|   // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
 | |
|   if (A == Op1 && NoOp0WrapProblem)
 | |
|     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
 | |
| 
 | |
|   // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
 | |
|   if (C == Op0 && NoOp1WrapProblem)
 | |
|     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
 | |
| 
 | |
|   // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
 | |
|   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
 | |
|       // Try not to increase register pressure.
 | |
|       BO0->hasOneUse() && BO1->hasOneUse())
 | |
|     return new ICmpInst(Pred, A, C);
 | |
| 
 | |
|   // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
 | |
|   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
 | |
|       // Try not to increase register pressure.
 | |
|       BO0->hasOneUse() && BO1->hasOneUse())
 | |
|     return new ICmpInst(Pred, D, B);
 | |
| 
 | |
|   // icmp (0-X) < cst --> x > -cst
 | |
|   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
 | |
|     Value *X;
 | |
|     if (match(BO0, m_Neg(m_Value(X))))
 | |
|       if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
 | |
|         if (!RHSC->isMinValue(/*isSigned=*/true))
 | |
|           return new ICmpInst(I.getSwappedPredicate(), X,
 | |
|                               ConstantExpr::getNeg(RHSC));
 | |
|   }
 | |
| 
 | |
|   BinaryOperator *SRem = nullptr;
 | |
|   // icmp (srem X, Y), Y
 | |
|   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
 | |
|     SRem = BO0;
 | |
|   // icmp Y, (srem X, Y)
 | |
|   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
 | |
|            Op0 == BO1->getOperand(1))
 | |
|     SRem = BO1;
 | |
|   if (SRem) {
 | |
|     // We don't check hasOneUse to avoid increasing register pressure because
 | |
|     // the value we use is the same value this instruction was already using.
 | |
|     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
 | |
|     default:
 | |
|       break;
 | |
|     case ICmpInst::ICMP_EQ:
 | |
|       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | |
|     case ICmpInst::ICMP_NE:
 | |
|       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | |
|     case ICmpInst::ICMP_SGT:
 | |
|     case ICmpInst::ICMP_SGE:
 | |
|       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
 | |
|                           Constant::getAllOnesValue(SRem->getType()));
 | |
|     case ICmpInst::ICMP_SLT:
 | |
|     case ICmpInst::ICMP_SLE:
 | |
|       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
 | |
|                           Constant::getNullValue(SRem->getType()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
 | |
|       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
 | |
|     switch (BO0->getOpcode()) {
 | |
|     default:
 | |
|       break;
 | |
|     case Instruction::Add:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::Xor: {
 | |
|       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
 | |
|         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
 | |
| 
 | |
|       const APInt *C;
 | |
|       if (match(BO0->getOperand(1), m_APInt(C))) {
 | |
|         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
 | |
|         if (C->isSignMask()) {
 | |
|           ICmpInst::Predicate NewPred =
 | |
|               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
 | |
|           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
 | |
|         }
 | |
| 
 | |
|         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
 | |
|         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
 | |
|           ICmpInst::Predicate NewPred =
 | |
|               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
 | |
|           NewPred = I.getSwappedPredicate(NewPred);
 | |
|           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::Mul: {
 | |
|       if (!I.isEquality())
 | |
|         break;
 | |
| 
 | |
|       const APInt *C;
 | |
|       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
 | |
|           !C->isOneValue()) {
 | |
|         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
 | |
|         // Mask = -1 >> count-trailing-zeros(C).
 | |
|         if (unsigned TZs = C->countTrailingZeros()) {
 | |
|           Constant *Mask = ConstantInt::get(
 | |
|               BO0->getType(),
 | |
|               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
 | |
|           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
 | |
|           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
 | |
|           return new ICmpInst(Pred, And1, And2);
 | |
|         }
 | |
|         // If there are no trailing zeros in the multiplier, just eliminate
 | |
|         // the multiplies (no masking is needed):
 | |
|         // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y
 | |
|         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::LShr:
 | |
|       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
 | |
|         break;
 | |
|       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
 | |
| 
 | |
|     case Instruction::SDiv:
 | |
|       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
 | |
|         break;
 | |
|       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
 | |
| 
 | |
|     case Instruction::AShr:
 | |
|       if (!BO0->isExact() || !BO1->isExact())
 | |
|         break;
 | |
|       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
 | |
| 
 | |
|     case Instruction::Shl: {
 | |
|       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
 | |
|       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
 | |
|       if (!NUW && !NSW)
 | |
|         break;
 | |
|       if (!NSW && I.isSigned())
 | |
|         break;
 | |
|       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (BO0) {
 | |
|     // Transform  A & (L - 1) `ult` L --> L != 0
 | |
|     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
 | |
|     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
 | |
| 
 | |
|     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
 | |
|       auto *Zero = Constant::getNullValue(BO0->getType());
 | |
|       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Fold icmp Pred min|max(X, Y), X.
 | |
| static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
 | |
|   ICmpInst::Predicate Pred = Cmp.getPredicate();
 | |
|   Value *Op0 = Cmp.getOperand(0);
 | |
|   Value *X = Cmp.getOperand(1);
 | |
| 
 | |
|   // Canonicalize minimum or maximum operand to LHS of the icmp.
 | |
|   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
 | |
|       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
 | |
|       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
 | |
|       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
 | |
|     std::swap(Op0, X);
 | |
|     Pred = Cmp.getSwappedPredicate();
 | |
|   }
 | |
| 
 | |
|   Value *Y;
 | |
|   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
 | |
|     // smin(X, Y)  == X --> X s<= Y
 | |
|     // smin(X, Y) s>= X --> X s<= Y
 | |
|     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
 | |
|       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
 | |
| 
 | |
|     // smin(X, Y) != X --> X s> Y
 | |
|     // smin(X, Y) s< X --> X s> Y
 | |
|     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
 | |
|       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
 | |
| 
 | |
|     // These cases should be handled in InstSimplify:
 | |
|     // smin(X, Y) s<= X --> true
 | |
|     // smin(X, Y) s> X --> false
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
 | |
|     // smax(X, Y)  == X --> X s>= Y
 | |
|     // smax(X, Y) s<= X --> X s>= Y
 | |
|     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
 | |
|       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
 | |
| 
 | |
|     // smax(X, Y) != X --> X s< Y
 | |
|     // smax(X, Y) s> X --> X s< Y
 | |
|     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
 | |
|       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
 | |
| 
 | |
|     // These cases should be handled in InstSimplify:
 | |
|     // smax(X, Y) s>= X --> true
 | |
|     // smax(X, Y) s< X --> false
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
 | |
|     // umin(X, Y)  == X --> X u<= Y
 | |
|     // umin(X, Y) u>= X --> X u<= Y
 | |
|     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
 | |
|       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
 | |
| 
 | |
|     // umin(X, Y) != X --> X u> Y
 | |
|     // umin(X, Y) u< X --> X u> Y
 | |
|     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
 | |
|       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
 | |
| 
 | |
|     // These cases should be handled in InstSimplify:
 | |
|     // umin(X, Y) u<= X --> true
 | |
|     // umin(X, Y) u> X --> false
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
 | |
|     // umax(X, Y)  == X --> X u>= Y
 | |
|     // umax(X, Y) u<= X --> X u>= Y
 | |
|     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
 | |
|       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
 | |
| 
 | |
|     // umax(X, Y) != X --> X u< Y
 | |
|     // umax(X, Y) u> X --> X u< Y
 | |
|     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
 | |
|       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
 | |
| 
 | |
|     // These cases should be handled in InstSimplify:
 | |
|     // umax(X, Y) u>= X --> true
 | |
|     // umax(X, Y) u< X --> false
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
 | |
|   if (!I.isEquality())
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
|   const CmpInst::Predicate Pred = I.getPredicate();
 | |
|   Value *A, *B, *C, *D;
 | |
|   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
 | |
|     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
 | |
|       Value *OtherVal = A == Op1 ? B : A;
 | |
|       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
 | |
|     }
 | |
| 
 | |
|     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
 | |
|       // A^c1 == C^c2 --> A == C^(c1^c2)
 | |
|       ConstantInt *C1, *C2;
 | |
|       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
 | |
|           Op1->hasOneUse()) {
 | |
|         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
 | |
|         Value *Xor = Builder.CreateXor(C, NC);
 | |
|         return new ICmpInst(Pred, A, Xor);
 | |
|       }
 | |
| 
 | |
|       // A^B == A^D -> B == D
 | |
|       if (A == C)
 | |
|         return new ICmpInst(Pred, B, D);
 | |
|       if (A == D)
 | |
|         return new ICmpInst(Pred, B, C);
 | |
|       if (B == C)
 | |
|         return new ICmpInst(Pred, A, D);
 | |
|       if (B == D)
 | |
|         return new ICmpInst(Pred, A, C);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
 | |
|     // A == (A^B)  ->  B == 0
 | |
|     Value *OtherVal = A == Op0 ? B : A;
 | |
|     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
 | |
|   }
 | |
| 
 | |
|   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
 | |
|   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
 | |
|       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
 | |
|     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
 | |
| 
 | |
|     if (A == C) {
 | |
|       X = B;
 | |
|       Y = D;
 | |
|       Z = A;
 | |
|     } else if (A == D) {
 | |
|       X = B;
 | |
|       Y = C;
 | |
|       Z = A;
 | |
|     } else if (B == C) {
 | |
|       X = A;
 | |
|       Y = D;
 | |
|       Z = B;
 | |
|     } else if (B == D) {
 | |
|       X = A;
 | |
|       Y = C;
 | |
|       Z = B;
 | |
|     }
 | |
| 
 | |
|     if (X) { // Build (X^Y) & Z
 | |
|       Op1 = Builder.CreateXor(X, Y);
 | |
|       Op1 = Builder.CreateAnd(Op1, Z);
 | |
|       I.setOperand(0, Op1);
 | |
|       I.setOperand(1, Constant::getNullValue(Op1->getType()));
 | |
|       return &I;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
 | |
|   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
 | |
|   ConstantInt *Cst1;
 | |
|   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
 | |
|        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
 | |
|       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
 | |
|        match(Op1, m_ZExt(m_Value(A))))) {
 | |
|     APInt Pow2 = Cst1->getValue() + 1;
 | |
|     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
 | |
|         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
 | |
|       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
 | |
|   }
 | |
| 
 | |
|   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
 | |
|   // For lshr and ashr pairs.
 | |
|   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
 | |
|        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
 | |
|       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
 | |
|        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
 | |
|     unsigned TypeBits = Cst1->getBitWidth();
 | |
|     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
 | |
|     if (ShAmt < TypeBits && ShAmt != 0) {
 | |
|       ICmpInst::Predicate NewPred =
 | |
|           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
 | |
|       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
 | |
|       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
 | |
|       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
 | |
|   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
 | |
|       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
 | |
|     unsigned TypeBits = Cst1->getBitWidth();
 | |
|     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
 | |
|     if (ShAmt < TypeBits && ShAmt != 0) {
 | |
|       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
 | |
|       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
 | |
|       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
 | |
|                                       I.getName() + ".mask");
 | |
|       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
 | |
|   // "icmp (and X, mask), cst"
 | |
|   uint64_t ShAmt = 0;
 | |
|   if (Op0->hasOneUse() &&
 | |
|       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
 | |
|       match(Op1, m_ConstantInt(Cst1)) &&
 | |
|       // Only do this when A has multiple uses.  This is most important to do
 | |
|       // when it exposes other optimizations.
 | |
|       !A->hasOneUse()) {
 | |
|     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
 | |
| 
 | |
|     if (ShAmt < ASize) {
 | |
|       APInt MaskV =
 | |
|           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
 | |
|       MaskV <<= ShAmt;
 | |
| 
 | |
|       APInt CmpV = Cst1->getValue().zext(ASize);
 | |
|       CmpV <<= ShAmt;
 | |
| 
 | |
|       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
 | |
|       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If both operands are byte-swapped or bit-reversed, just compare the
 | |
|   // original values.
 | |
|   // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
 | |
|   // and handle more intrinsics.
 | |
|   if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
 | |
|       (match(Op0, m_BitReverse(m_Value(A))) &&
 | |
|        match(Op1, m_BitReverse(m_Value(B)))))
 | |
|     return new ICmpInst(Pred, A, B);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so
 | |
| /// far.
 | |
| Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) {
 | |
|   const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0));
 | |
|   Value *LHSCIOp        = LHSCI->getOperand(0);
 | |
|   Type *SrcTy     = LHSCIOp->getType();
 | |
|   Type *DestTy    = LHSCI->getType();
 | |
|   Value *RHSCIOp;
 | |
| 
 | |
|   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
 | |
|   // integer type is the same size as the pointer type.
 | |
|   if (LHSCI->getOpcode() == Instruction::PtrToInt &&
 | |
|       DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
 | |
|     Value *RHSOp = nullptr;
 | |
|     if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
 | |
|       Value *RHSCIOp = RHSC->getOperand(0);
 | |
|       if (RHSCIOp->getType()->getPointerAddressSpace() ==
 | |
|           LHSCIOp->getType()->getPointerAddressSpace()) {
 | |
|         RHSOp = RHSC->getOperand(0);
 | |
|         // If the pointer types don't match, insert a bitcast.
 | |
|         if (LHSCIOp->getType() != RHSOp->getType())
 | |
|           RHSOp = Builder.CreateBitCast(RHSOp, LHSCIOp->getType());
 | |
|       }
 | |
|     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
 | |
|       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
 | |
|     }
 | |
| 
 | |
|     if (RHSOp)
 | |
|       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp);
 | |
|   }
 | |
| 
 | |
|   // The code below only handles extension cast instructions, so far.
 | |
|   // Enforce this.
 | |
|   if (LHSCI->getOpcode() != Instruction::ZExt &&
 | |
|       LHSCI->getOpcode() != Instruction::SExt)
 | |
|     return nullptr;
 | |
| 
 | |
|   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
 | |
|   bool isSignedCmp = ICmp.isSigned();
 | |
| 
 | |
|   if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) {
 | |
|     // Not an extension from the same type?
 | |
|     RHSCIOp = CI->getOperand(0);
 | |
|     if (RHSCIOp->getType() != LHSCIOp->getType())
 | |
|       return nullptr;
 | |
| 
 | |
|     // If the signedness of the two casts doesn't agree (i.e. one is a sext
 | |
|     // and the other is a zext), then we can't handle this.
 | |
|     if (CI->getOpcode() != LHSCI->getOpcode())
 | |
|       return nullptr;
 | |
| 
 | |
|     // Deal with equality cases early.
 | |
|     if (ICmp.isEquality())
 | |
|       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
 | |
| 
 | |
|     // A signed comparison of sign extended values simplifies into a
 | |
|     // signed comparison.
 | |
|     if (isSignedCmp && isSignedExt)
 | |
|       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
 | |
| 
 | |
|     // The other three cases all fold into an unsigned comparison.
 | |
|     return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
 | |
|   }
 | |
| 
 | |
|   // If we aren't dealing with a constant on the RHS, exit early.
 | |
|   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
 | |
|   if (!C)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Compute the constant that would happen if we truncated to SrcTy then
 | |
|   // re-extended to DestTy.
 | |
|   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
 | |
|   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
 | |
| 
 | |
|   // If the re-extended constant didn't change...
 | |
|   if (Res2 == C) {
 | |
|     // Deal with equality cases early.
 | |
|     if (ICmp.isEquality())
 | |
|       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
 | |
| 
 | |
|     // A signed comparison of sign extended values simplifies into a
 | |
|     // signed comparison.
 | |
|     if (isSignedExt && isSignedCmp)
 | |
|       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
 | |
| 
 | |
|     // The other three cases all fold into an unsigned comparison.
 | |
|     return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1);
 | |
|   }
 | |
| 
 | |
|   // The re-extended constant changed, partly changed (in the case of a vector),
 | |
|   // or could not be determined to be equal (in the case of a constant
 | |
|   // expression), so the constant cannot be represented in the shorter type.
 | |
|   // Consequently, we cannot emit a simple comparison.
 | |
|   // All the cases that fold to true or false will have already been handled
 | |
|   // by SimplifyICmpInst, so only deal with the tricky case.
 | |
| 
 | |
|   if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
 | |
|   // should have been folded away previously and not enter in here.
 | |
| 
 | |
|   // We're performing an unsigned comp with a sign extended value.
 | |
|   // This is true if the input is >= 0. [aka >s -1]
 | |
|   Constant *NegOne = Constant::getAllOnesValue(SrcTy);
 | |
|   Value *Result = Builder.CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName());
 | |
| 
 | |
|   // Finally, return the value computed.
 | |
|   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
 | |
|     return replaceInstUsesWith(ICmp, Result);
 | |
| 
 | |
|   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
 | |
|   return BinaryOperator::CreateNot(Result);
 | |
| }
 | |
| 
 | |
| bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
 | |
|                                          Value *RHS, Instruction &OrigI,
 | |
|                                          Value *&Result, Constant *&Overflow) {
 | |
|   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
 | |
|     std::swap(LHS, RHS);
 | |
| 
 | |
|   auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) {
 | |
|     Result = OpResult;
 | |
|     Overflow = OverflowVal;
 | |
|     if (ReuseName)
 | |
|       Result->takeName(&OrigI);
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   // If the overflow check was an add followed by a compare, the insertion point
 | |
|   // may be pointing to the compare.  We want to insert the new instructions
 | |
|   // before the add in case there are uses of the add between the add and the
 | |
|   // compare.
 | |
|   Builder.SetInsertPoint(&OrigI);
 | |
| 
 | |
|   switch (OCF) {
 | |
|   case OCF_INVALID:
 | |
|     llvm_unreachable("bad overflow check kind!");
 | |
| 
 | |
|   case OCF_UNSIGNED_ADD: {
 | |
|     OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI);
 | |
|     if (OR == OverflowResult::NeverOverflows)
 | |
|       return SetResult(Builder.CreateNUWAdd(LHS, RHS), Builder.getFalse(),
 | |
|                        true);
 | |
| 
 | |
|     if (OR == OverflowResult::AlwaysOverflows)
 | |
|       return SetResult(Builder.CreateAdd(LHS, RHS), Builder.getTrue(), true);
 | |
| 
 | |
|     // Fall through uadd into sadd
 | |
|     LLVM_FALLTHROUGH;
 | |
|   }
 | |
|   case OCF_SIGNED_ADD: {
 | |
|     // X + 0 -> {X, false}
 | |
|     if (match(RHS, m_Zero()))
 | |
|       return SetResult(LHS, Builder.getFalse(), false);
 | |
| 
 | |
|     // We can strength reduce this signed add into a regular add if we can prove
 | |
|     // that it will never overflow.
 | |
|     if (OCF == OCF_SIGNED_ADD)
 | |
|       if (willNotOverflowSignedAdd(LHS, RHS, OrigI))
 | |
|         return SetResult(Builder.CreateNSWAdd(LHS, RHS), Builder.getFalse(),
 | |
|                          true);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case OCF_UNSIGNED_SUB:
 | |
|   case OCF_SIGNED_SUB: {
 | |
|     // X - 0 -> {X, false}
 | |
|     if (match(RHS, m_Zero()))
 | |
|       return SetResult(LHS, Builder.getFalse(), false);
 | |
| 
 | |
|     if (OCF == OCF_SIGNED_SUB) {
 | |
|       if (willNotOverflowSignedSub(LHS, RHS, OrigI))
 | |
|         return SetResult(Builder.CreateNSWSub(LHS, RHS), Builder.getFalse(),
 | |
|                          true);
 | |
|     } else {
 | |
|       if (willNotOverflowUnsignedSub(LHS, RHS, OrigI))
 | |
|         return SetResult(Builder.CreateNUWSub(LHS, RHS), Builder.getFalse(),
 | |
|                          true);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case OCF_UNSIGNED_MUL: {
 | |
|     OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI);
 | |
|     if (OR == OverflowResult::NeverOverflows)
 | |
|       return SetResult(Builder.CreateNUWMul(LHS, RHS), Builder.getFalse(),
 | |
|                        true);
 | |
|     if (OR == OverflowResult::AlwaysOverflows)
 | |
|       return SetResult(Builder.CreateMul(LHS, RHS), Builder.getTrue(), true);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   }
 | |
|   case OCF_SIGNED_MUL:
 | |
|     // X * undef -> undef
 | |
|     if (isa<UndefValue>(RHS))
 | |
|       return SetResult(RHS, UndefValue::get(Builder.getInt1Ty()), false);
 | |
| 
 | |
|     // X * 0 -> {0, false}
 | |
|     if (match(RHS, m_Zero()))
 | |
|       return SetResult(RHS, Builder.getFalse(), false);
 | |
| 
 | |
|     // X * 1 -> {X, false}
 | |
|     if (match(RHS, m_One()))
 | |
|       return SetResult(LHS, Builder.getFalse(), false);
 | |
| 
 | |
|     if (OCF == OCF_SIGNED_MUL)
 | |
|       if (willNotOverflowSignedMul(LHS, RHS, OrigI))
 | |
|         return SetResult(Builder.CreateNSWMul(LHS, RHS), Builder.getFalse(),
 | |
|                          true);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Recognize and process idiom involving test for multiplication
 | |
| /// overflow.
 | |
| ///
 | |
| /// The caller has matched a pattern of the form:
 | |
| ///   I = cmp u (mul(zext A, zext B), V
 | |
| /// The function checks if this is a test for overflow and if so replaces
 | |
| /// multiplication with call to 'mul.with.overflow' intrinsic.
 | |
| ///
 | |
| /// \param I Compare instruction.
 | |
| /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
 | |
| ///               the compare instruction.  Must be of integer type.
 | |
| /// \param OtherVal The other argument of compare instruction.
 | |
| /// \returns Instruction which must replace the compare instruction, NULL if no
 | |
| ///          replacement required.
 | |
| static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
 | |
|                                          Value *OtherVal, InstCombiner &IC) {
 | |
|   // Don't bother doing this transformation for pointers, don't do it for
 | |
|   // vectors.
 | |
|   if (!isa<IntegerType>(MulVal->getType()))
 | |
|     return nullptr;
 | |
| 
 | |
|   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
 | |
|   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
 | |
|   auto *MulInstr = dyn_cast<Instruction>(MulVal);
 | |
|   if (!MulInstr)
 | |
|     return nullptr;
 | |
|   assert(MulInstr->getOpcode() == Instruction::Mul);
 | |
| 
 | |
|   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
 | |
|        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
 | |
|   assert(LHS->getOpcode() == Instruction::ZExt);
 | |
|   assert(RHS->getOpcode() == Instruction::ZExt);
 | |
|   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
 | |
| 
 | |
|   // Calculate type and width of the result produced by mul.with.overflow.
 | |
|   Type *TyA = A->getType(), *TyB = B->getType();
 | |
|   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
 | |
|            WidthB = TyB->getPrimitiveSizeInBits();
 | |
|   unsigned MulWidth;
 | |
|   Type *MulType;
 | |
|   if (WidthB > WidthA) {
 | |
|     MulWidth = WidthB;
 | |
|     MulType = TyB;
 | |
|   } else {
 | |
|     MulWidth = WidthA;
 | |
|     MulType = TyA;
 | |
|   }
 | |
| 
 | |
|   // In order to replace the original mul with a narrower mul.with.overflow,
 | |
|   // all uses must ignore upper bits of the product.  The number of used low
 | |
|   // bits must be not greater than the width of mul.with.overflow.
 | |
|   if (MulVal->hasNUsesOrMore(2))
 | |
|     for (User *U : MulVal->users()) {
 | |
|       if (U == &I)
 | |
|         continue;
 | |
|       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
 | |
|         // Check if truncation ignores bits above MulWidth.
 | |
|         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
 | |
|         if (TruncWidth > MulWidth)
 | |
|           return nullptr;
 | |
|       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
 | |
|         // Check if AND ignores bits above MulWidth.
 | |
|         if (BO->getOpcode() != Instruction::And)
 | |
|           return nullptr;
 | |
|         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
 | |
|           const APInt &CVal = CI->getValue();
 | |
|           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
 | |
|             return nullptr;
 | |
|         } else {
 | |
|           // In this case we could have the operand of the binary operation
 | |
|           // being defined in another block, and performing the replacement
 | |
|           // could break the dominance relation.
 | |
|           return nullptr;
 | |
|         }
 | |
|       } else {
 | |
|         // Other uses prohibit this transformation.
 | |
|         return nullptr;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Recognize patterns
 | |
|   switch (I.getPredicate()) {
 | |
|   case ICmpInst::ICMP_EQ:
 | |
|   case ICmpInst::ICMP_NE:
 | |
|     // Recognize pattern:
 | |
|     //   mulval = mul(zext A, zext B)
 | |
|     //   cmp eq/neq mulval, zext trunc mulval
 | |
|     if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
 | |
|       if (Zext->hasOneUse()) {
 | |
|         Value *ZextArg = Zext->getOperand(0);
 | |
|         if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
 | |
|           if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
 | |
|             break; //Recognized
 | |
|       }
 | |
| 
 | |
|     // Recognize pattern:
 | |
|     //   mulval = mul(zext A, zext B)
 | |
|     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
 | |
|     ConstantInt *CI;
 | |
|     Value *ValToMask;
 | |
|     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
 | |
|       if (ValToMask != MulVal)
 | |
|         return nullptr;
 | |
|       const APInt &CVal = CI->getValue() + 1;
 | |
|       if (CVal.isPowerOf2()) {
 | |
|         unsigned MaskWidth = CVal.logBase2();
 | |
|         if (MaskWidth == MulWidth)
 | |
|           break; // Recognized
 | |
|       }
 | |
|     }
 | |
|     return nullptr;
 | |
| 
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|     // Recognize pattern:
 | |
|     //   mulval = mul(zext A, zext B)
 | |
|     //   cmp ugt mulval, max
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
 | |
|       APInt MaxVal = APInt::getMaxValue(MulWidth);
 | |
|       MaxVal = MaxVal.zext(CI->getBitWidth());
 | |
|       if (MaxVal.eq(CI->getValue()))
 | |
|         break; // Recognized
 | |
|     }
 | |
|     return nullptr;
 | |
| 
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|     // Recognize pattern:
 | |
|     //   mulval = mul(zext A, zext B)
 | |
|     //   cmp uge mulval, max+1
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
 | |
|       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
 | |
|       if (MaxVal.eq(CI->getValue()))
 | |
|         break; // Recognized
 | |
|     }
 | |
|     return nullptr;
 | |
| 
 | |
|   case ICmpInst::ICMP_ULE:
 | |
|     // Recognize pattern:
 | |
|     //   mulval = mul(zext A, zext B)
 | |
|     //   cmp ule mulval, max
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
 | |
|       APInt MaxVal = APInt::getMaxValue(MulWidth);
 | |
|       MaxVal = MaxVal.zext(CI->getBitWidth());
 | |
|       if (MaxVal.eq(CI->getValue()))
 | |
|         break; // Recognized
 | |
|     }
 | |
|     return nullptr;
 | |
| 
 | |
|   case ICmpInst::ICMP_ULT:
 | |
|     // Recognize pattern:
 | |
|     //   mulval = mul(zext A, zext B)
 | |
|     //   cmp ule mulval, max + 1
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
 | |
|       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
 | |
|       if (MaxVal.eq(CI->getValue()))
 | |
|         break; // Recognized
 | |
|     }
 | |
|     return nullptr;
 | |
| 
 | |
|   default:
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   InstCombiner::BuilderTy &Builder = IC.Builder;
 | |
|   Builder.SetInsertPoint(MulInstr);
 | |
| 
 | |
|   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
 | |
|   Value *MulA = A, *MulB = B;
 | |
|   if (WidthA < MulWidth)
 | |
|     MulA = Builder.CreateZExt(A, MulType);
 | |
|   if (WidthB < MulWidth)
 | |
|     MulB = Builder.CreateZExt(B, MulType);
 | |
|   Value *F = Intrinsic::getDeclaration(I.getModule(),
 | |
|                                        Intrinsic::umul_with_overflow, MulType);
 | |
|   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
 | |
|   IC.Worklist.Add(MulInstr);
 | |
| 
 | |
|   // If there are uses of mul result other than the comparison, we know that
 | |
|   // they are truncation or binary AND. Change them to use result of
 | |
|   // mul.with.overflow and adjust properly mask/size.
 | |
|   if (MulVal->hasNUsesOrMore(2)) {
 | |
|     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
 | |
|     for (User *U : MulVal->users()) {
 | |
|       if (U == &I || U == OtherVal)
 | |
|         continue;
 | |
|       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
 | |
|         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
 | |
|           IC.replaceInstUsesWith(*TI, Mul);
 | |
|         else
 | |
|           TI->setOperand(0, Mul);
 | |
|       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
 | |
|         assert(BO->getOpcode() == Instruction::And);
 | |
|         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
 | |
|         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
 | |
|         APInt ShortMask = CI->getValue().trunc(MulWidth);
 | |
|         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
 | |
|         Instruction *Zext =
 | |
|             cast<Instruction>(Builder.CreateZExt(ShortAnd, BO->getType()));
 | |
|         IC.Worklist.Add(Zext);
 | |
|         IC.replaceInstUsesWith(*BO, Zext);
 | |
|       } else {
 | |
|         llvm_unreachable("Unexpected Binary operation");
 | |
|       }
 | |
|       IC.Worklist.Add(cast<Instruction>(U));
 | |
|     }
 | |
|   }
 | |
|   if (isa<Instruction>(OtherVal))
 | |
|     IC.Worklist.Add(cast<Instruction>(OtherVal));
 | |
| 
 | |
|   // The original icmp gets replaced with the overflow value, maybe inverted
 | |
|   // depending on predicate.
 | |
|   bool Inverse = false;
 | |
|   switch (I.getPredicate()) {
 | |
|   case ICmpInst::ICMP_NE:
 | |
|     break;
 | |
|   case ICmpInst::ICMP_EQ:
 | |
|     Inverse = true;
 | |
|     break;
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|     if (I.getOperand(0) == MulVal)
 | |
|       break;
 | |
|     Inverse = true;
 | |
|     break;
 | |
|   case ICmpInst::ICMP_ULT:
 | |
|   case ICmpInst::ICMP_ULE:
 | |
|     if (I.getOperand(1) == MulVal)
 | |
|       break;
 | |
|     Inverse = true;
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected predicate");
 | |
|   }
 | |
|   if (Inverse) {
 | |
|     Value *Res = Builder.CreateExtractValue(Call, 1);
 | |
|     return BinaryOperator::CreateNot(Res);
 | |
|   }
 | |
| 
 | |
|   return ExtractValueInst::Create(Call, 1);
 | |
| }
 | |
| 
 | |
| /// When performing a comparison against a constant, it is possible that not all
 | |
| /// the bits in the LHS are demanded. This helper method computes the mask that
 | |
| /// IS demanded.
 | |
| static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth,
 | |
|                                     bool isSignCheck) {
 | |
|   if (isSignCheck)
 | |
|     return APInt::getSignMask(BitWidth);
 | |
| 
 | |
|   ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
 | |
|   if (!CI) return APInt::getAllOnesValue(BitWidth);
 | |
|   const APInt &RHS = CI->getValue();
 | |
| 
 | |
|   switch (I.getPredicate()) {
 | |
|   // For a UGT comparison, we don't care about any bits that
 | |
|   // correspond to the trailing ones of the comparand.  The value of these
 | |
|   // bits doesn't impact the outcome of the comparison, because any value
 | |
|   // greater than the RHS must differ in a bit higher than these due to carry.
 | |
|   case ICmpInst::ICMP_UGT: {
 | |
|     unsigned trailingOnes = RHS.countTrailingOnes();
 | |
|     return APInt::getBitsSetFrom(BitWidth, trailingOnes);
 | |
|   }
 | |
| 
 | |
|   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
 | |
|   // Any value less than the RHS must differ in a higher bit because of carries.
 | |
|   case ICmpInst::ICMP_ULT: {
 | |
|     unsigned trailingZeros = RHS.countTrailingZeros();
 | |
|     return APInt::getBitsSetFrom(BitWidth, trailingZeros);
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     return APInt::getAllOnesValue(BitWidth);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
 | |
| /// should be swapped.
 | |
| /// The decision is based on how many times these two operands are reused
 | |
| /// as subtract operands and their positions in those instructions.
 | |
| /// The rational is that several architectures use the same instruction for
 | |
| /// both subtract and cmp, thus it is better if the order of those operands
 | |
| /// match.
 | |
| /// \return true if Op0 and Op1 should be swapped.
 | |
| static bool swapMayExposeCSEOpportunities(const Value * Op0,
 | |
|                                           const Value * Op1) {
 | |
|   // Filter out pointer value as those cannot appears directly in subtract.
 | |
|   // FIXME: we may want to go through inttoptrs or bitcasts.
 | |
|   if (Op0->getType()->isPointerTy())
 | |
|     return false;
 | |
|   // Count every uses of both Op0 and Op1 in a subtract.
 | |
|   // Each time Op0 is the first operand, count -1: swapping is bad, the
 | |
|   // subtract has already the same layout as the compare.
 | |
|   // Each time Op0 is the second operand, count +1: swapping is good, the
 | |
|   // subtract has a different layout as the compare.
 | |
|   // At the end, if the benefit is greater than 0, Op0 should come second to
 | |
|   // expose more CSE opportunities.
 | |
|   int GlobalSwapBenefits = 0;
 | |
|   for (const User *U : Op0->users()) {
 | |
|     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U);
 | |
|     if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
 | |
|       continue;
 | |
|     // If Op0 is the first argument, this is not beneficial to swap the
 | |
|     // arguments.
 | |
|     int LocalSwapBenefits = -1;
 | |
|     unsigned Op1Idx = 1;
 | |
|     if (BinOp->getOperand(Op1Idx) == Op0) {
 | |
|       Op1Idx = 0;
 | |
|       LocalSwapBenefits = 1;
 | |
|     }
 | |
|     if (BinOp->getOperand(Op1Idx) != Op1)
 | |
|       continue;
 | |
|     GlobalSwapBenefits += LocalSwapBenefits;
 | |
|   }
 | |
|   return GlobalSwapBenefits > 0;
 | |
| }
 | |
| 
 | |
| /// \brief Check that one use is in the same block as the definition and all
 | |
| /// other uses are in blocks dominated by a given block.
 | |
| ///
 | |
| /// \param DI Definition
 | |
| /// \param UI Use
 | |
| /// \param DB Block that must dominate all uses of \p DI outside
 | |
| ///           the parent block
 | |
| /// \return true when \p UI is the only use of \p DI in the parent block
 | |
| /// and all other uses of \p DI are in blocks dominated by \p DB.
 | |
| ///
 | |
| bool InstCombiner::dominatesAllUses(const Instruction *DI,
 | |
|                                     const Instruction *UI,
 | |
|                                     const BasicBlock *DB) const {
 | |
|   assert(DI && UI && "Instruction not defined\n");
 | |
|   // Ignore incomplete definitions.
 | |
|   if (!DI->getParent())
 | |
|     return false;
 | |
|   // DI and UI must be in the same block.
 | |
|   if (DI->getParent() != UI->getParent())
 | |
|     return false;
 | |
|   // Protect from self-referencing blocks.
 | |
|   if (DI->getParent() == DB)
 | |
|     return false;
 | |
|   for (const User *U : DI->users()) {
 | |
|     auto *Usr = cast<Instruction>(U);
 | |
|     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Return true when the instruction sequence within a block is select-cmp-br.
 | |
| static bool isChainSelectCmpBranch(const SelectInst *SI) {
 | |
|   const BasicBlock *BB = SI->getParent();
 | |
|   if (!BB)
 | |
|     return false;
 | |
|   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
 | |
|   if (!BI || BI->getNumSuccessors() != 2)
 | |
|     return false;
 | |
|   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
 | |
|   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief True when a select result is replaced by one of its operands
 | |
| /// in select-icmp sequence. This will eventually result in the elimination
 | |
| /// of the select.
 | |
| ///
 | |
| /// \param SI    Select instruction
 | |
| /// \param Icmp  Compare instruction
 | |
| /// \param SIOpd Operand that replaces the select
 | |
| ///
 | |
| /// Notes:
 | |
| /// - The replacement is global and requires dominator information
 | |
| /// - The caller is responsible for the actual replacement
 | |
| ///
 | |
| /// Example:
 | |
| ///
 | |
| /// entry:
 | |
| ///  %4 = select i1 %3, %C* %0, %C* null
 | |
| ///  %5 = icmp eq %C* %4, null
 | |
| ///  br i1 %5, label %9, label %7
 | |
| ///  ...
 | |
| ///  ; <label>:7                                       ; preds = %entry
 | |
| ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
 | |
| ///  ...
 | |
| ///
 | |
| /// can be transformed to
 | |
| ///
 | |
| ///  %5 = icmp eq %C* %0, null
 | |
| ///  %6 = select i1 %3, i1 %5, i1 true
 | |
| ///  br i1 %6, label %9, label %7
 | |
| ///  ...
 | |
| ///  ; <label>:7                                       ; preds = %entry
 | |
| ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
 | |
| ///
 | |
| /// Similar when the first operand of the select is a constant or/and
 | |
| /// the compare is for not equal rather than equal.
 | |
| ///
 | |
| /// NOTE: The function is only called when the select and compare constants
 | |
| /// are equal, the optimization can work only for EQ predicates. This is not a
 | |
| /// major restriction since a NE compare should be 'normalized' to an equal
 | |
| /// compare, which usually happens in the combiner and test case
 | |
| /// select-cmp-br.ll checks for it.
 | |
| bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
 | |
|                                              const ICmpInst *Icmp,
 | |
|                                              const unsigned SIOpd) {
 | |
|   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
 | |
|   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
 | |
|     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
 | |
|     // The check for the single predecessor is not the best that can be
 | |
|     // done. But it protects efficiently against cases like when SI's
 | |
|     // home block has two successors, Succ and Succ1, and Succ1 predecessor
 | |
|     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
 | |
|     // replaced can be reached on either path. So the uniqueness check
 | |
|     // guarantees that the path all uses of SI (outside SI's parent) are on
 | |
|     // is disjoint from all other paths out of SI. But that information
 | |
|     // is more expensive to compute, and the trade-off here is in favor
 | |
|     // of compile-time. It should also be noticed that we check for a single
 | |
|     // predecessor and not only uniqueness. This to handle the situation when
 | |
|     // Succ and Succ1 points to the same basic block.
 | |
|     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
 | |
|       NumSel++;
 | |
|       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Try to fold the comparison based on range information we can get by checking
 | |
| /// whether bits are known to be zero or one in the inputs.
 | |
| Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
|   Type *Ty = Op0->getType();
 | |
|   ICmpInst::Predicate Pred = I.getPredicate();
 | |
| 
 | |
|   // Get scalar or pointer size.
 | |
|   unsigned BitWidth = Ty->isIntOrIntVectorTy()
 | |
|                           ? Ty->getScalarSizeInBits()
 | |
|                           : DL.getTypeSizeInBits(Ty->getScalarType());
 | |
| 
 | |
|   if (!BitWidth)
 | |
|     return nullptr;
 | |
| 
 | |
|   // If this is a normal comparison, it demands all bits. If it is a sign bit
 | |
|   // comparison, it only demands the sign bit.
 | |
|   bool IsSignBit = false;
 | |
|   const APInt *CmpC;
 | |
|   if (match(Op1, m_APInt(CmpC))) {
 | |
|     bool UnusedBit;
 | |
|     IsSignBit = isSignBitCheck(Pred, *CmpC, UnusedBit);
 | |
|   }
 | |
| 
 | |
|   KnownBits Op0Known(BitWidth);
 | |
|   KnownBits Op1Known(BitWidth);
 | |
| 
 | |
|   if (SimplifyDemandedBits(&I, 0,
 | |
|                            getDemandedBitsLHSMask(I, BitWidth, IsSignBit),
 | |
|                            Op0Known, 0))
 | |
|     return &I;
 | |
| 
 | |
|   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
 | |
|                            Op1Known, 0))
 | |
|     return &I;
 | |
| 
 | |
|   // Given the known and unknown bits, compute a range that the LHS could be
 | |
|   // in.  Compute the Min, Max and RHS values based on the known bits. For the
 | |
|   // EQ and NE we use unsigned values.
 | |
|   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
 | |
|   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
 | |
|   if (I.isSigned()) {
 | |
|     computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
 | |
|     computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
 | |
|   } else {
 | |
|     computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
 | |
|     computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
 | |
|   }
 | |
| 
 | |
|   // If Min and Max are known to be the same, then SimplifyDemandedBits
 | |
|   // figured out that the LHS is a constant. Constant fold this now, so that
 | |
|   // code below can assume that Min != Max.
 | |
|   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
 | |
|     return new ICmpInst(Pred, ConstantInt::get(Op0->getType(), Op0Min), Op1);
 | |
|   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
 | |
|     return new ICmpInst(Pred, Op0, ConstantInt::get(Op1->getType(), Op1Min));
 | |
| 
 | |
|   // Based on the range information we know about the LHS, see if we can
 | |
|   // simplify this comparison.  For example, (x&4) < 8 is always true.
 | |
|   switch (Pred) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown icmp opcode!");
 | |
|   case ICmpInst::ICMP_EQ:
 | |
|   case ICmpInst::ICMP_NE: {
 | |
|     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
 | |
|       return Pred == CmpInst::ICMP_EQ
 | |
|                  ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
 | |
|                  : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | |
|     }
 | |
| 
 | |
|     // If all bits are known zero except for one, then we know at most one bit
 | |
|     // is set. If the comparison is against zero, then this is a check to see if
 | |
|     // *that* bit is set.
 | |
|     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
 | |
|     if (Op1Known.isZero()) {
 | |
|       // If the LHS is an AND with the same constant, look through it.
 | |
|       Value *LHS = nullptr;
 | |
|       const APInt *LHSC;
 | |
|       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
 | |
|           *LHSC != Op0KnownZeroInverted)
 | |
|         LHS = Op0;
 | |
| 
 | |
|       Value *X;
 | |
|       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
 | |
|         APInt ValToCheck = Op0KnownZeroInverted;
 | |
|         Type *XTy = X->getType();
 | |
|         if (ValToCheck.isPowerOf2()) {
 | |
|           // ((1 << X) & 8) == 0 -> X != 3
 | |
|           // ((1 << X) & 8) != 0 -> X == 3
 | |
|           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
 | |
|           auto NewPred = ICmpInst::getInversePredicate(Pred);
 | |
|           return new ICmpInst(NewPred, X, CmpC);
 | |
|         } else if ((++ValToCheck).isPowerOf2()) {
 | |
|           // ((1 << X) & 7) == 0 -> X >= 3
 | |
|           // ((1 << X) & 7) != 0 -> X  < 3
 | |
|           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
 | |
|           auto NewPred =
 | |
|               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
 | |
|           return new ICmpInst(NewPred, X, CmpC);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
 | |
|       const APInt *CI;
 | |
|       if (Op0KnownZeroInverted.isOneValue() &&
 | |
|           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
 | |
|         // ((8 >>u X) & 1) == 0 -> X != 3
 | |
|         // ((8 >>u X) & 1) != 0 -> X == 3
 | |
|         unsigned CmpVal = CI->countTrailingZeros();
 | |
|         auto NewPred = ICmpInst::getInversePredicate(Pred);
 | |
|         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_ULT: {
 | |
|     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
 | |
|       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | |
|     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
 | |
|       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | |
|     if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
 | |
|       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
 | |
| 
 | |
|     const APInt *CmpC;
 | |
|     if (match(Op1, m_APInt(CmpC))) {
 | |
|       // A <u C -> A == C-1 if min(A)+1 == C
 | |
|       if (Op1Max == Op0Min + 1) {
 | |
|         Constant *CMinus1 = ConstantInt::get(Op0->getType(), *CmpC - 1);
 | |
|         return new ICmpInst(ICmpInst::ICMP_EQ, Op0, CMinus1);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_UGT: {
 | |
|     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
 | |
|       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | |
| 
 | |
|     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
 | |
|       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | |
| 
 | |
|     if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
 | |
|       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
 | |
| 
 | |
|     const APInt *CmpC;
 | |
|     if (match(Op1, m_APInt(CmpC))) {
 | |
|       // A >u C -> A == C+1 if max(a)-1 == C
 | |
|       if (*CmpC == Op0Max - 1)
 | |
|         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
 | |
|                             ConstantInt::get(Op1->getType(), *CmpC + 1));
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_SLT:
 | |
|     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
 | |
|       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | |
|     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
 | |
|       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | |
|     if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
 | |
|       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|       if (Op1Max == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
 | |
|         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
 | |
|                             Builder.getInt(CI->getValue() - 1));
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
 | |
|       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | |
|     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
 | |
|       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | |
| 
 | |
|     if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
 | |
|       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|       if (Op1Min == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
 | |
|         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
 | |
|                             Builder.getInt(CI->getValue() + 1));
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SGE:
 | |
|     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
 | |
|     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
 | |
|       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | |
|     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
 | |
|       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SLE:
 | |
|     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
 | |
|     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
 | |
|       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | |
|     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
 | |
|       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | |
|     break;
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
 | |
|     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
 | |
|       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | |
|     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
 | |
|       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | |
|     break;
 | |
|   case ICmpInst::ICMP_ULE:
 | |
|     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
 | |
|     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
 | |
|       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | |
|     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
 | |
|       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Turn a signed comparison into an unsigned one if both operands are known to
 | |
|   // have the same sign.
 | |
|   if (I.isSigned() &&
 | |
|       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
 | |
|        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
 | |
|     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// If we have an icmp le or icmp ge instruction with a constant operand, turn
 | |
| /// it into the appropriate icmp lt or icmp gt instruction. This transform
 | |
| /// allows them to be folded in visitICmpInst.
 | |
| static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
 | |
|   ICmpInst::Predicate Pred = I.getPredicate();
 | |
|   if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE &&
 | |
|       Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE)
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *Op0 = I.getOperand(0);
 | |
|   Value *Op1 = I.getOperand(1);
 | |
|   auto *Op1C = dyn_cast<Constant>(Op1);
 | |
|   if (!Op1C)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check if the constant operand can be safely incremented/decremented without
 | |
|   // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled
 | |
|   // the edge cases for us, so we just assert on them. For vectors, we must
 | |
|   // handle the edge cases.
 | |
|   Type *Op1Type = Op1->getType();
 | |
|   bool IsSigned = I.isSigned();
 | |
|   bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE);
 | |
|   auto *CI = dyn_cast<ConstantInt>(Op1C);
 | |
|   if (CI) {
 | |
|     // A <= MAX -> TRUE ; A >= MIN -> TRUE
 | |
|     assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned));
 | |
|   } else if (Op1Type->isVectorTy()) {
 | |
|     // TODO? If the edge cases for vectors were guaranteed to be handled as they
 | |
|     // are for scalar, we could remove the min/max checks. However, to do that,
 | |
|     // we would have to use insertelement/shufflevector to replace edge values.
 | |
|     unsigned NumElts = Op1Type->getVectorNumElements();
 | |
|     for (unsigned i = 0; i != NumElts; ++i) {
 | |
|       Constant *Elt = Op1C->getAggregateElement(i);
 | |
|       if (!Elt)
 | |
|         return nullptr;
 | |
| 
 | |
|       if (isa<UndefValue>(Elt))
 | |
|         continue;
 | |
| 
 | |
|       // Bail out if we can't determine if this constant is min/max or if we
 | |
|       // know that this constant is min/max.
 | |
|       auto *CI = dyn_cast<ConstantInt>(Elt);
 | |
|       if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned)))
 | |
|         return nullptr;
 | |
|     }
 | |
|   } else {
 | |
|     // ConstantExpr?
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Increment or decrement the constant and set the new comparison predicate:
 | |
|   // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT
 | |
|   Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true);
 | |
|   CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT;
 | |
|   NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred;
 | |
|   return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne));
 | |
| }
 | |
| 
 | |
| /// Integer compare with boolean values can always be turned into bitwise ops.
 | |
| static Instruction *canonicalizeICmpBool(ICmpInst &I,
 | |
|                                          InstCombiner::BuilderTy &Builder) {
 | |
|   Value *A = I.getOperand(0), *B = I.getOperand(1);
 | |
|   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
 | |
| 
 | |
|   // A boolean compared to true/false can be simplified to Op0/true/false in
 | |
|   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
 | |
|   // Cases not handled by InstSimplify are always 'not' of Op0.
 | |
|   if (match(B, m_Zero())) {
 | |
|     switch (I.getPredicate()) {
 | |
|       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
 | |
|       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
 | |
|       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
 | |
|         return BinaryOperator::CreateNot(A);
 | |
|       default:
 | |
|         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
 | |
|     }
 | |
|   } else if (match(B, m_One())) {
 | |
|     switch (I.getPredicate()) {
 | |
|       case CmpInst::ICMP_NE:  // A !=  1 -> !A
 | |
|       case CmpInst::ICMP_ULT: // A <u  1 -> !A
 | |
|       case CmpInst::ICMP_SGT: // A >s -1 -> !A
 | |
|         return BinaryOperator::CreateNot(A);
 | |
|       default:
 | |
|         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   switch (I.getPredicate()) {
 | |
|   default:
 | |
|     llvm_unreachable("Invalid icmp instruction!");
 | |
|   case ICmpInst::ICMP_EQ:
 | |
|     // icmp eq i1 A, B -> ~(A ^ B)
 | |
|     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
 | |
| 
 | |
|   case ICmpInst::ICMP_NE:
 | |
|     // icmp ne i1 A, B -> A ^ B
 | |
|     return BinaryOperator::CreateXor(A, B);
 | |
| 
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|     // icmp ugt -> icmp ult
 | |
|     std::swap(A, B);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case ICmpInst::ICMP_ULT:
 | |
|     // icmp ult i1 A, B -> ~A & B
 | |
|     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
 | |
| 
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|     // icmp sgt -> icmp slt
 | |
|     std::swap(A, B);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case ICmpInst::ICMP_SLT:
 | |
|     // icmp slt i1 A, B -> A & ~B
 | |
|     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
 | |
| 
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|     // icmp uge -> icmp ule
 | |
|     std::swap(A, B);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case ICmpInst::ICMP_ULE:
 | |
|     // icmp ule i1 A, B -> ~A | B
 | |
|     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
 | |
| 
 | |
|   case ICmpInst::ICMP_SGE:
 | |
|     // icmp sge -> icmp sle
 | |
|     std::swap(A, B);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case ICmpInst::ICMP_SLE:
 | |
|     // icmp sle i1 A, B -> A | ~B
 | |
|     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
 | |
|   bool Changed = false;
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
|   unsigned Op0Cplxity = getComplexity(Op0);
 | |
|   unsigned Op1Cplxity = getComplexity(Op1);
 | |
| 
 | |
|   /// Orders the operands of the compare so that they are listed from most
 | |
|   /// complex to least complex.  This puts constants before unary operators,
 | |
|   /// before binary operators.
 | |
|   if (Op0Cplxity < Op1Cplxity ||
 | |
|       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
 | |
|     I.swapOperands();
 | |
|     std::swap(Op0, Op1);
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1,
 | |
|                                   SQ.getWithInstruction(&I)))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   // Comparing -val or val with non-zero is the same as just comparing val
 | |
|   // ie, abs(val) != 0 -> val != 0
 | |
|   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
 | |
|     Value *Cond, *SelectTrue, *SelectFalse;
 | |
|     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
 | |
|                             m_Value(SelectFalse)))) {
 | |
|       if (Value *V = dyn_castNegVal(SelectTrue)) {
 | |
|         if (V == SelectFalse)
 | |
|           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
 | |
|       }
 | |
|       else if (Value *V = dyn_castNegVal(SelectFalse)) {
 | |
|         if (V == SelectTrue)
 | |
|           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Op0->getType()->isIntOrIntVectorTy(1))
 | |
|     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
 | |
|       return Res;
 | |
| 
 | |
|   if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
 | |
|     return NewICmp;
 | |
| 
 | |
|   if (Instruction *Res = foldICmpWithConstant(I))
 | |
|     return Res;
 | |
| 
 | |
|   if (Instruction *Res = foldICmpUsingKnownBits(I))
 | |
|     return Res;
 | |
| 
 | |
|   // Test if the ICmpInst instruction is used exclusively by a select as
 | |
|   // part of a minimum or maximum operation. If so, refrain from doing
 | |
|   // any other folding. This helps out other analyses which understand
 | |
|   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
 | |
|   // and CodeGen. And in this case, at least one of the comparison
 | |
|   // operands has at least one user besides the compare (the select),
 | |
|   // which would often largely negate the benefit of folding anyway.
 | |
|   if (I.hasOneUse())
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
 | |
|       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
 | |
|           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
 | |
|         return nullptr;
 | |
| 
 | |
|   // FIXME: We only do this after checking for min/max to prevent infinite
 | |
|   // looping caused by a reverse canonicalization of these patterns for min/max.
 | |
|   // FIXME: The organization of folds is a mess. These would naturally go into
 | |
|   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
 | |
|   // down here after the min/max restriction.
 | |
|   ICmpInst::Predicate Pred = I.getPredicate();
 | |
|   const APInt *C;
 | |
|   if (match(Op1, m_APInt(C))) {
 | |
|     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
 | |
|     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
 | |
|       Constant *Zero = Constant::getNullValue(Op0->getType());
 | |
|       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
 | |
|     }
 | |
| 
 | |
|     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
 | |
|     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
 | |
|       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
 | |
|       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Instruction *Res = foldICmpInstWithConstant(I))
 | |
|     return Res;
 | |
| 
 | |
|   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
 | |
|     return Res;
 | |
| 
 | |
|   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
 | |
|   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
 | |
|     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
 | |
|       return NI;
 | |
|   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
 | |
|     if (Instruction *NI = foldGEPICmp(GEP, Op0,
 | |
|                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
 | |
|       return NI;
 | |
| 
 | |
|   // Try to optimize equality comparisons against alloca-based pointers.
 | |
|   if (Op0->getType()->isPointerTy() && I.isEquality()) {
 | |
|     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
 | |
|     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
 | |
|       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
 | |
|         return New;
 | |
|     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
 | |
|       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
 | |
|         return New;
 | |
|   }
 | |
| 
 | |
|   // Test to see if the operands of the icmp are casted versions of other
 | |
|   // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
 | |
|   // now.
 | |
|   if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
 | |
|     if (Op0->getType()->isPointerTy() &&
 | |
|         (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
 | |
|       // We keep moving the cast from the left operand over to the right
 | |
|       // operand, where it can often be eliminated completely.
 | |
|       Op0 = CI->getOperand(0);
 | |
| 
 | |
|       // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
 | |
|       // so eliminate it as well.
 | |
|       if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
 | |
|         Op1 = CI2->getOperand(0);
 | |
| 
 | |
|       // If Op1 is a constant, we can fold the cast into the constant.
 | |
|       if (Op0->getType() != Op1->getType()) {
 | |
|         if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
 | |
|           Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
 | |
|         } else {
 | |
|           // Otherwise, cast the RHS right before the icmp
 | |
|           Op1 = Builder.CreateBitCast(Op1, Op0->getType());
 | |
|         }
 | |
|       }
 | |
|       return new ICmpInst(I.getPredicate(), Op0, Op1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isa<CastInst>(Op0)) {
 | |
|     // Handle the special case of: icmp (cast bool to X), <cst>
 | |
|     // This comes up when you have code like
 | |
|     //   int X = A < B;
 | |
|     //   if (X) ...
 | |
|     // For generality, we handle any zero-extension of any operand comparison
 | |
|     // with a constant or another cast from the same type.
 | |
|     if (isa<Constant>(Op1) || isa<CastInst>(Op1))
 | |
|       if (Instruction *R = foldICmpWithCastAndCast(I))
 | |
|         return R;
 | |
|   }
 | |
| 
 | |
|   if (Instruction *Res = foldICmpBinOp(I))
 | |
|     return Res;
 | |
| 
 | |
|   if (Instruction *Res = foldICmpWithMinMax(I))
 | |
|     return Res;
 | |
| 
 | |
|   {
 | |
|     Value *A, *B;
 | |
|     // Transform (A & ~B) == 0 --> (A & B) != 0
 | |
|     // and       (A & ~B) != 0 --> (A & B) == 0
 | |
|     // if A is a power of 2.
 | |
|     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
 | |
|         match(Op1, m_Zero()) &&
 | |
|         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
 | |
|       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
 | |
|                           Op1);
 | |
| 
 | |
|     // ~X < ~Y --> Y < X
 | |
|     // ~X < C -->  X > ~C
 | |
|     if (match(Op0, m_Not(m_Value(A)))) {
 | |
|       if (match(Op1, m_Not(m_Value(B))))
 | |
|         return new ICmpInst(I.getPredicate(), B, A);
 | |
| 
 | |
|       const APInt *C;
 | |
|       if (match(Op1, m_APInt(C)))
 | |
|         return new ICmpInst(I.getSwappedPredicate(), A,
 | |
|                             ConstantInt::get(Op1->getType(), ~(*C)));
 | |
|     }
 | |
| 
 | |
|     Instruction *AddI = nullptr;
 | |
|     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
 | |
|                                      m_Instruction(AddI))) &&
 | |
|         isa<IntegerType>(A->getType())) {
 | |
|       Value *Result;
 | |
|       Constant *Overflow;
 | |
|       if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result,
 | |
|                                 Overflow)) {
 | |
|         replaceInstUsesWith(*AddI, Result);
 | |
|         return replaceInstUsesWith(I, Overflow);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
 | |
|     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
 | |
|       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
 | |
|         return R;
 | |
|     }
 | |
|     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
 | |
|       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
 | |
|         return R;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Instruction *Res = foldICmpEquality(I))
 | |
|     return Res;
 | |
| 
 | |
|   // The 'cmpxchg' instruction returns an aggregate containing the old value and
 | |
|   // an i1 which indicates whether or not we successfully did the swap.
 | |
|   //
 | |
|   // Replace comparisons between the old value and the expected value with the
 | |
|   // indicator that 'cmpxchg' returns.
 | |
|   //
 | |
|   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
 | |
|   // spuriously fail.  In those cases, the old value may equal the expected
 | |
|   // value but it is possible for the swap to not occur.
 | |
|   if (I.getPredicate() == ICmpInst::ICMP_EQ)
 | |
|     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
 | |
|       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
 | |
|         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
 | |
|             !ACXI->isWeak())
 | |
|           return ExtractValueInst::Create(ACXI, 1);
 | |
| 
 | |
|   {
 | |
|     Value *X; ConstantInt *Cst;
 | |
|     // icmp X+Cst, X
 | |
|     if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
 | |
|       return foldICmpAddOpConst(X, Cst, I.getPredicate());
 | |
| 
 | |
|     // icmp X, X+Cst
 | |
|     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
 | |
|       return foldICmpAddOpConst(X, Cst, I.getSwappedPredicate());
 | |
|   }
 | |
|   return Changed ? &I : nullptr;
 | |
| }
 | |
| 
 | |
| /// Fold fcmp ([us]itofp x, cst) if possible.
 | |
| Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
 | |
|                                                 Constant *RHSC) {
 | |
|   if (!isa<ConstantFP>(RHSC)) return nullptr;
 | |
|   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
 | |
| 
 | |
|   // Get the width of the mantissa.  We don't want to hack on conversions that
 | |
|   // might lose information from the integer, e.g. "i64 -> float"
 | |
|   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
 | |
|   if (MantissaWidth == -1) return nullptr;  // Unknown.
 | |
| 
 | |
|   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
 | |
| 
 | |
|   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
 | |
| 
 | |
|   if (I.isEquality()) {
 | |
|     FCmpInst::Predicate P = I.getPredicate();
 | |
|     bool IsExact = false;
 | |
|     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
 | |
|     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
 | |
| 
 | |
|     // If the floating point constant isn't an integer value, we know if we will
 | |
|     // ever compare equal / not equal to it.
 | |
|     if (!IsExact) {
 | |
|       // TODO: Can never be -0.0 and other non-representable values
 | |
|       APFloat RHSRoundInt(RHS);
 | |
|       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
 | |
|       if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
 | |
|         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
 | |
|           return replaceInstUsesWith(I, Builder.getFalse());
 | |
| 
 | |
|         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
 | |
|         return replaceInstUsesWith(I, Builder.getTrue());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // TODO: If the constant is exactly representable, is it always OK to do
 | |
|     // equality compares as integer?
 | |
|   }
 | |
| 
 | |
|   // Check to see that the input is converted from an integer type that is small
 | |
|   // enough that preserves all bits.  TODO: check here for "known" sign bits.
 | |
|   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
 | |
|   unsigned InputSize = IntTy->getScalarSizeInBits();
 | |
| 
 | |
|   // Following test does NOT adjust InputSize downwards for signed inputs,
 | |
|   // because the most negative value still requires all the mantissa bits
 | |
|   // to distinguish it from one less than that value.
 | |
|   if ((int)InputSize > MantissaWidth) {
 | |
|     // Conversion would lose accuracy. Check if loss can impact comparison.
 | |
|     int Exp = ilogb(RHS);
 | |
|     if (Exp == APFloat::IEK_Inf) {
 | |
|       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
 | |
|       if (MaxExponent < (int)InputSize - !LHSUnsigned)
 | |
|         // Conversion could create infinity.
 | |
|         return nullptr;
 | |
|     } else {
 | |
|       // Note that if RHS is zero or NaN, then Exp is negative
 | |
|       // and first condition is trivially false.
 | |
|       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
 | |
|         // Conversion could affect comparison.
 | |
|         return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we can potentially simplify the comparison.  We know that it
 | |
|   // will always come through as an integer value and we know the constant is
 | |
|   // not a NAN (it would have been previously simplified).
 | |
|   assert(!RHS.isNaN() && "NaN comparison not already folded!");
 | |
| 
 | |
|   ICmpInst::Predicate Pred;
 | |
|   switch (I.getPredicate()) {
 | |
|   default: llvm_unreachable("Unexpected predicate!");
 | |
|   case FCmpInst::FCMP_UEQ:
 | |
|   case FCmpInst::FCMP_OEQ:
 | |
|     Pred = ICmpInst::ICMP_EQ;
 | |
|     break;
 | |
|   case FCmpInst::FCMP_UGT:
 | |
|   case FCmpInst::FCMP_OGT:
 | |
|     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
 | |
|     break;
 | |
|   case FCmpInst::FCMP_UGE:
 | |
|   case FCmpInst::FCMP_OGE:
 | |
|     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
 | |
|     break;
 | |
|   case FCmpInst::FCMP_ULT:
 | |
|   case FCmpInst::FCMP_OLT:
 | |
|     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
 | |
|     break;
 | |
|   case FCmpInst::FCMP_ULE:
 | |
|   case FCmpInst::FCMP_OLE:
 | |
|     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
 | |
|     break;
 | |
|   case FCmpInst::FCMP_UNE:
 | |
|   case FCmpInst::FCMP_ONE:
 | |
|     Pred = ICmpInst::ICMP_NE;
 | |
|     break;
 | |
|   case FCmpInst::FCMP_ORD:
 | |
|     return replaceInstUsesWith(I, Builder.getTrue());
 | |
|   case FCmpInst::FCMP_UNO:
 | |
|     return replaceInstUsesWith(I, Builder.getFalse());
 | |
|   }
 | |
| 
 | |
|   // Now we know that the APFloat is a normal number, zero or inf.
 | |
| 
 | |
|   // See if the FP constant is too large for the integer.  For example,
 | |
|   // comparing an i8 to 300.0.
 | |
|   unsigned IntWidth = IntTy->getScalarSizeInBits();
 | |
| 
 | |
|   if (!LHSUnsigned) {
 | |
|     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
 | |
|     // and large values.
 | |
|     APFloat SMax(RHS.getSemantics());
 | |
|     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
 | |
|                           APFloat::rmNearestTiesToEven);
 | |
|     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
 | |
|       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
 | |
|           Pred == ICmpInst::ICMP_SLE)
 | |
|         return replaceInstUsesWith(I, Builder.getTrue());
 | |
|       return replaceInstUsesWith(I, Builder.getFalse());
 | |
|     }
 | |
|   } else {
 | |
|     // If the RHS value is > UnsignedMax, fold the comparison. This handles
 | |
|     // +INF and large values.
 | |
|     APFloat UMax(RHS.getSemantics());
 | |
|     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
 | |
|                           APFloat::rmNearestTiesToEven);
 | |
|     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
 | |
|       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
 | |
|           Pred == ICmpInst::ICMP_ULE)
 | |
|         return replaceInstUsesWith(I, Builder.getTrue());
 | |
|       return replaceInstUsesWith(I, Builder.getFalse());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!LHSUnsigned) {
 | |
|     // See if the RHS value is < SignedMin.
 | |
|     APFloat SMin(RHS.getSemantics());
 | |
|     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
 | |
|                           APFloat::rmNearestTiesToEven);
 | |
|     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
 | |
|       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
 | |
|           Pred == ICmpInst::ICMP_SGE)
 | |
|         return replaceInstUsesWith(I, Builder.getTrue());
 | |
|       return replaceInstUsesWith(I, Builder.getFalse());
 | |
|     }
 | |
|   } else {
 | |
|     // See if the RHS value is < UnsignedMin.
 | |
|     APFloat SMin(RHS.getSemantics());
 | |
|     SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
 | |
|                           APFloat::rmNearestTiesToEven);
 | |
|     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
 | |
|       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
 | |
|           Pred == ICmpInst::ICMP_UGE)
 | |
|         return replaceInstUsesWith(I, Builder.getTrue());
 | |
|       return replaceInstUsesWith(I, Builder.getFalse());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
 | |
|   // [0, UMAX], but it may still be fractional.  See if it is fractional by
 | |
|   // casting the FP value to the integer value and back, checking for equality.
 | |
|   // Don't do this for zero, because -0.0 is not fractional.
 | |
|   Constant *RHSInt = LHSUnsigned
 | |
|     ? ConstantExpr::getFPToUI(RHSC, IntTy)
 | |
|     : ConstantExpr::getFPToSI(RHSC, IntTy);
 | |
|   if (!RHS.isZero()) {
 | |
|     bool Equal = LHSUnsigned
 | |
|       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
 | |
|       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
 | |
|     if (!Equal) {
 | |
|       // If we had a comparison against a fractional value, we have to adjust
 | |
|       // the compare predicate and sometimes the value.  RHSC is rounded towards
 | |
|       // zero at this point.
 | |
|       switch (Pred) {
 | |
|       default: llvm_unreachable("Unexpected integer comparison!");
 | |
|       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
 | |
|         return replaceInstUsesWith(I, Builder.getTrue());
 | |
|       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
 | |
|         return replaceInstUsesWith(I, Builder.getFalse());
 | |
|       case ICmpInst::ICMP_ULE:
 | |
|         // (float)int <= 4.4   --> int <= 4
 | |
|         // (float)int <= -4.4  --> false
 | |
|         if (RHS.isNegative())
 | |
|           return replaceInstUsesWith(I, Builder.getFalse());
 | |
|         break;
 | |
|       case ICmpInst::ICMP_SLE:
 | |
|         // (float)int <= 4.4   --> int <= 4
 | |
|         // (float)int <= -4.4  --> int < -4
 | |
|         if (RHS.isNegative())
 | |
|           Pred = ICmpInst::ICMP_SLT;
 | |
|         break;
 | |
|       case ICmpInst::ICMP_ULT:
 | |
|         // (float)int < -4.4   --> false
 | |
|         // (float)int < 4.4    --> int <= 4
 | |
|         if (RHS.isNegative())
 | |
|           return replaceInstUsesWith(I, Builder.getFalse());
 | |
|         Pred = ICmpInst::ICMP_ULE;
 | |
|         break;
 | |
|       case ICmpInst::ICMP_SLT:
 | |
|         // (float)int < -4.4   --> int < -4
 | |
|         // (float)int < 4.4    --> int <= 4
 | |
|         if (!RHS.isNegative())
 | |
|           Pred = ICmpInst::ICMP_SLE;
 | |
|         break;
 | |
|       case ICmpInst::ICMP_UGT:
 | |
|         // (float)int > 4.4    --> int > 4
 | |
|         // (float)int > -4.4   --> true
 | |
|         if (RHS.isNegative())
 | |
|           return replaceInstUsesWith(I, Builder.getTrue());
 | |
|         break;
 | |
|       case ICmpInst::ICMP_SGT:
 | |
|         // (float)int > 4.4    --> int > 4
 | |
|         // (float)int > -4.4   --> int >= -4
 | |
|         if (RHS.isNegative())
 | |
|           Pred = ICmpInst::ICMP_SGE;
 | |
|         break;
 | |
|       case ICmpInst::ICMP_UGE:
 | |
|         // (float)int >= -4.4   --> true
 | |
|         // (float)int >= 4.4    --> int > 4
 | |
|         if (RHS.isNegative())
 | |
|           return replaceInstUsesWith(I, Builder.getTrue());
 | |
|         Pred = ICmpInst::ICMP_UGT;
 | |
|         break;
 | |
|       case ICmpInst::ICMP_SGE:
 | |
|         // (float)int >= -4.4   --> int >= -4
 | |
|         // (float)int >= 4.4    --> int > 4
 | |
|         if (!RHS.isNegative())
 | |
|           Pred = ICmpInst::ICMP_SGT;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Lower this FP comparison into an appropriate integer version of the
 | |
|   // comparison.
 | |
|   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   /// Orders the operands of the compare so that they are listed from most
 | |
|   /// complex to least complex.  This puts constants before unary operators,
 | |
|   /// before binary operators.
 | |
|   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
 | |
|     I.swapOperands();
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   const CmpInst::Predicate Pred = I.getPredicate();
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
|   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
 | |
|                                   SQ.getWithInstruction(&I)))
 | |
|     return replaceInstUsesWith(I, V);
 | |
| 
 | |
|   // Simplify 'fcmp pred X, X'
 | |
|   if (Op0 == Op1) {
 | |
|     switch (Pred) {
 | |
|       default: break;
 | |
|     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
 | |
|     case FCmpInst::FCMP_ULT:    // True if unordered or less than
 | |
|     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
 | |
|     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
 | |
|       // Canonicalize these to be 'fcmp uno %X, 0.0'.
 | |
|       I.setPredicate(FCmpInst::FCMP_UNO);
 | |
|       I.setOperand(1, Constant::getNullValue(Op0->getType()));
 | |
|       return &I;
 | |
| 
 | |
|     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
 | |
|     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
 | |
|     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
 | |
|     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
 | |
|       // Canonicalize these to be 'fcmp ord %X, 0.0'.
 | |
|       I.setPredicate(FCmpInst::FCMP_ORD);
 | |
|       I.setOperand(1, Constant::getNullValue(Op0->getType()));
 | |
|       return &I;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
 | |
|   // then canonicalize the operand to 0.0.
 | |
|   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
 | |
|     if (!match(Op0, m_Zero()) && isKnownNeverNaN(Op0)) {
 | |
|       I.setOperand(0, ConstantFP::getNullValue(Op0->getType()));
 | |
|       return &I;
 | |
|     }
 | |
|     if (!match(Op1, m_Zero()) && isKnownNeverNaN(Op1)) {
 | |
|       I.setOperand(1, ConstantFP::getNullValue(Op0->getType()));
 | |
|       return &I;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Test if the FCmpInst instruction is used exclusively by a select as
 | |
|   // part of a minimum or maximum operation. If so, refrain from doing
 | |
|   // any other folding. This helps out other analyses which understand
 | |
|   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
 | |
|   // and CodeGen. And in this case, at least one of the comparison
 | |
|   // operands has at least one user besides the compare (the select),
 | |
|   // which would often largely negate the benefit of folding anyway.
 | |
|   if (I.hasOneUse())
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
 | |
|       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
 | |
|           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
 | |
|         return nullptr;
 | |
| 
 | |
|   // Handle fcmp with constant RHS
 | |
|   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
 | |
|     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
 | |
|       switch (LHSI->getOpcode()) {
 | |
|       case Instruction::FPExt: {
 | |
|         // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
 | |
|         FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
 | |
|         ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
 | |
|         if (!RHSF)
 | |
|           break;
 | |
| 
 | |
|         const fltSemantics *Sem;
 | |
|         // FIXME: This shouldn't be here.
 | |
|         if (LHSExt->getSrcTy()->isHalfTy())
 | |
|           Sem = &APFloat::IEEEhalf();
 | |
|         else if (LHSExt->getSrcTy()->isFloatTy())
 | |
|           Sem = &APFloat::IEEEsingle();
 | |
|         else if (LHSExt->getSrcTy()->isDoubleTy())
 | |
|           Sem = &APFloat::IEEEdouble();
 | |
|         else if (LHSExt->getSrcTy()->isFP128Ty())
 | |
|           Sem = &APFloat::IEEEquad();
 | |
|         else if (LHSExt->getSrcTy()->isX86_FP80Ty())
 | |
|           Sem = &APFloat::x87DoubleExtended();
 | |
|         else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
 | |
|           Sem = &APFloat::PPCDoubleDouble();
 | |
|         else
 | |
|           break;
 | |
| 
 | |
|         bool Lossy;
 | |
|         APFloat F = RHSF->getValueAPF();
 | |
|         F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
 | |
| 
 | |
|         // Avoid lossy conversions and denormals. Zero is a special case
 | |
|         // that's OK to convert.
 | |
|         APFloat Fabs = F;
 | |
|         Fabs.clearSign();
 | |
|         if (!Lossy &&
 | |
|             ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
 | |
|                  APFloat::cmpLessThan) || Fabs.isZero()))
 | |
| 
 | |
|           return new FCmpInst(Pred, LHSExt->getOperand(0),
 | |
|                               ConstantFP::get(RHSC->getContext(), F));
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::PHI:
 | |
|         // Only fold fcmp into the PHI if the phi and fcmp are in the same
 | |
|         // block.  If in the same block, we're encouraging jump threading.  If
 | |
|         // not, we are just pessimizing the code by making an i1 phi.
 | |
|         if (LHSI->getParent() == I.getParent())
 | |
|           if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
 | |
|             return NV;
 | |
|         break;
 | |
|       case Instruction::SIToFP:
 | |
|       case Instruction::UIToFP:
 | |
|         if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
 | |
|           return NV;
 | |
|         break;
 | |
|       case Instruction::FSub: {
 | |
|         // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
 | |
|         Value *Op;
 | |
|         if (match(LHSI, m_FNeg(m_Value(Op))))
 | |
|           return new FCmpInst(I.getSwappedPredicate(), Op,
 | |
|                               ConstantExpr::getFNeg(RHSC));
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::Load:
 | |
|         if (GetElementPtrInst *GEP =
 | |
|             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
 | |
|           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
 | |
|             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
 | |
|                 !cast<LoadInst>(LHSI)->isVolatile())
 | |
|               if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
 | |
|                 return Res;
 | |
|         }
 | |
|         break;
 | |
|       case Instruction::Call: {
 | |
|         if (!RHSC->isNullValue())
 | |
|           break;
 | |
| 
 | |
|         CallInst *CI = cast<CallInst>(LHSI);
 | |
|         Intrinsic::ID IID = getIntrinsicForCallSite(CI, &TLI);
 | |
|         if (IID != Intrinsic::fabs)
 | |
|           break;
 | |
| 
 | |
|         // Various optimization for fabs compared with zero.
 | |
|         switch (Pred) {
 | |
|         default:
 | |
|           break;
 | |
|         // fabs(x) < 0 --> false
 | |
|         case FCmpInst::FCMP_OLT:
 | |
|           llvm_unreachable("handled by SimplifyFCmpInst");
 | |
|         // fabs(x) > 0 --> x != 0
 | |
|         case FCmpInst::FCMP_OGT:
 | |
|           return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC);
 | |
|         // fabs(x) <= 0 --> x == 0
 | |
|         case FCmpInst::FCMP_OLE:
 | |
|           return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC);
 | |
|         // fabs(x) >= 0 --> !isnan(x)
 | |
|         case FCmpInst::FCMP_OGE:
 | |
|           return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC);
 | |
|         // fabs(x) == 0 --> x == 0
 | |
|         // fabs(x) != 0 --> x != 0
 | |
|         case FCmpInst::FCMP_OEQ:
 | |
|         case FCmpInst::FCMP_UEQ:
 | |
|         case FCmpInst::FCMP_ONE:
 | |
|         case FCmpInst::FCMP_UNE:
 | |
|           return new FCmpInst(Pred, CI->getArgOperand(0), RHSC);
 | |
|         }
 | |
|       }
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
 | |
|   Value *X, *Y;
 | |
|   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
 | |
|     return new FCmpInst(I.getSwappedPredicate(), X, Y);
 | |
| 
 | |
|   // fcmp (fpext x), (fpext y) -> fcmp x, y
 | |
|   if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
 | |
|     if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
 | |
|       if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
 | |
|         return new FCmpInst(Pred, LHSExt->getOperand(0), RHSExt->getOperand(0));
 | |
| 
 | |
|   return Changed ? &I : nullptr;
 | |
| }
 |