forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1683 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1683 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains logic for simplifying instructions based on information
 | |
| // about how they are used.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombineInternal.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "instcombine"
 | |
| 
 | |
| /// Check to see if the specified operand of the specified instruction is a
 | |
| /// constant integer. If so, check to see if there are any bits set in the
 | |
| /// constant that are not demanded. If so, shrink the constant and return true.
 | |
| static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
 | |
|                                    const APInt &Demanded) {
 | |
|   assert(I && "No instruction?");
 | |
|   assert(OpNo < I->getNumOperands() && "Operand index too large");
 | |
| 
 | |
|   // The operand must be a constant integer or splat integer.
 | |
|   Value *Op = I->getOperand(OpNo);
 | |
|   const APInt *C;
 | |
|   if (!match(Op, m_APInt(C)))
 | |
|     return false;
 | |
| 
 | |
|   // If there are no bits set that aren't demanded, nothing to do.
 | |
|   if (C->isSubsetOf(Demanded))
 | |
|     return false;
 | |
| 
 | |
|   // This instruction is producing bits that are not demanded. Shrink the RHS.
 | |
|   I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
 | |
| /// the instruction has any properties that allow us to simplify its operands.
 | |
| bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
 | |
|   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
 | |
|   KnownBits Known(BitWidth);
 | |
|   APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
 | |
| 
 | |
|   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
 | |
|                                      0, &Inst);
 | |
|   if (!V) return false;
 | |
|   if (V == &Inst) return true;
 | |
|   replaceInstUsesWith(Inst, V);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// This form of SimplifyDemandedBits simplifies the specified instruction
 | |
| /// operand if possible, updating it in place. It returns true if it made any
 | |
| /// change and false otherwise.
 | |
| bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
 | |
|                                         const APInt &DemandedMask,
 | |
|                                         KnownBits &Known,
 | |
|                                         unsigned Depth) {
 | |
|   Use &U = I->getOperandUse(OpNo);
 | |
|   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
 | |
|                                           Depth, I);
 | |
|   if (!NewVal) return false;
 | |
|   U = NewVal;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// This function attempts to replace V with a simpler value based on the
 | |
| /// demanded bits. When this function is called, it is known that only the bits
 | |
| /// set in DemandedMask of the result of V are ever used downstream.
 | |
| /// Consequently, depending on the mask and V, it may be possible to replace V
 | |
| /// with a constant or one of its operands. In such cases, this function does
 | |
| /// the replacement and returns true. In all other cases, it returns false after
 | |
| /// analyzing the expression and setting KnownOne and known to be one in the
 | |
| /// expression. Known.Zero contains all the bits that are known to be zero in
 | |
| /// the expression. These are provided to potentially allow the caller (which
 | |
| /// might recursively be SimplifyDemandedBits itself) to simplify the
 | |
| /// expression.
 | |
| /// Known.One and Known.Zero always follow the invariant that:
 | |
| ///   Known.One & Known.Zero == 0.
 | |
| /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
 | |
| /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
 | |
| /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
 | |
| /// be the same.
 | |
| ///
 | |
| /// This returns null if it did not change anything and it permits no
 | |
| /// simplification.  This returns V itself if it did some simplification of V's
 | |
| /// operands based on the information about what bits are demanded. This returns
 | |
| /// some other non-null value if it found out that V is equal to another value
 | |
| /// in the context where the specified bits are demanded, but not for all users.
 | |
| Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
 | |
|                                              KnownBits &Known, unsigned Depth,
 | |
|                                              Instruction *CxtI) {
 | |
|   assert(V != nullptr && "Null pointer of Value???");
 | |
|   assert(Depth <= 6 && "Limit Search Depth");
 | |
|   uint32_t BitWidth = DemandedMask.getBitWidth();
 | |
|   Type *VTy = V->getType();
 | |
|   assert(
 | |
|       (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
 | |
|       Known.getBitWidth() == BitWidth &&
 | |
|       "Value *V, DemandedMask and Known must have same BitWidth");
 | |
| 
 | |
|   if (isa<Constant>(V)) {
 | |
|     computeKnownBits(V, Known, Depth, CxtI);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   Known.resetAll();
 | |
|   if (DemandedMask.isNullValue())     // Not demanding any bits from V.
 | |
|     return UndefValue::get(VTy);
 | |
| 
 | |
|   if (Depth == 6)        // Limit search depth.
 | |
|     return nullptr;
 | |
| 
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) {
 | |
|     computeKnownBits(V, Known, Depth, CxtI);
 | |
|     return nullptr;        // Only analyze instructions.
 | |
|   }
 | |
| 
 | |
|   // If there are multiple uses of this value and we aren't at the root, then
 | |
|   // we can't do any simplifications of the operands, because DemandedMask
 | |
|   // only reflects the bits demanded by *one* of the users.
 | |
|   if (Depth != 0 && !I->hasOneUse())
 | |
|     return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
 | |
| 
 | |
|   KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
 | |
| 
 | |
|   // If this is the root being simplified, allow it to have multiple uses,
 | |
|   // just set the DemandedMask to all bits so that we can try to simplify the
 | |
|   // operands.  This allows visitTruncInst (for example) to simplify the
 | |
|   // operand of a trunc without duplicating all the logic below.
 | |
|   if (Depth == 0 && !V->hasOneUse())
 | |
|     DemandedMask.setAllBits();
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|   default:
 | |
|     computeKnownBits(I, Known, Depth, CxtI);
 | |
|     break;
 | |
|   case Instruction::And: {
 | |
|     // If either the LHS or the RHS are Zero, the result is zero.
 | |
|     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
 | |
|         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
 | |
|                              Depth + 1))
 | |
|       return I;
 | |
|     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
 | |
|     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // Output known-0 are known to be clear if zero in either the LHS | RHS.
 | |
|     APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
 | |
|     // Output known-1 bits are only known if set in both the LHS & RHS.
 | |
|     APInt IKnownOne = RHSKnown.One & LHSKnown.One;
 | |
| 
 | |
|     // If the client is only demanding bits that we know, return the known
 | |
|     // constant.
 | |
|     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
 | |
|       return Constant::getIntegerValue(VTy, IKnownOne);
 | |
| 
 | |
|     // If all of the demanded bits are known 1 on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'and'.
 | |
|     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
 | |
|       return I->getOperand(0);
 | |
|     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
 | |
|       return I->getOperand(1);
 | |
| 
 | |
|     // If the RHS is a constant, see if we can simplify it.
 | |
|     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
 | |
|       return I;
 | |
| 
 | |
|     Known.Zero = std::move(IKnownZero);
 | |
|     Known.One  = std::move(IKnownOne);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Or: {
 | |
|     // If either the LHS or the RHS are One, the result is One.
 | |
|     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
 | |
|         SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
 | |
|                              Depth + 1))
 | |
|       return I;
 | |
|     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
 | |
|     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // Output known-0 bits are only known if clear in both the LHS & RHS.
 | |
|     APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
 | |
|     // Output known-1 are known. to be set if s.et in either the LHS | RHS.
 | |
|     APInt IKnownOne = RHSKnown.One | LHSKnown.One;
 | |
| 
 | |
|     // If the client is only demanding bits that we know, return the known
 | |
|     // constant.
 | |
|     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
 | |
|       return Constant::getIntegerValue(VTy, IKnownOne);
 | |
| 
 | |
|     // If all of the demanded bits are known zero on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'or'.
 | |
|     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
 | |
|       return I->getOperand(0);
 | |
|     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
 | |
|       return I->getOperand(1);
 | |
| 
 | |
|     // If the RHS is a constant, see if we can simplify it.
 | |
|     if (ShrinkDemandedConstant(I, 1, DemandedMask))
 | |
|       return I;
 | |
| 
 | |
|     Known.Zero = std::move(IKnownZero);
 | |
|     Known.One  = std::move(IKnownOne);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Xor: {
 | |
|     if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
 | |
|         SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
 | |
|       return I;
 | |
|     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
 | |
|     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | |
|     APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
 | |
|                        (RHSKnown.One & LHSKnown.One);
 | |
|     // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | |
|     APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
 | |
|                        (RHSKnown.One & LHSKnown.Zero);
 | |
| 
 | |
|     // If the client is only demanding bits that we know, return the known
 | |
|     // constant.
 | |
|     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
 | |
|       return Constant::getIntegerValue(VTy, IKnownOne);
 | |
| 
 | |
|     // If all of the demanded bits are known zero on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'xor'.
 | |
|     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
 | |
|       return I->getOperand(0);
 | |
|     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
 | |
|       return I->getOperand(1);
 | |
| 
 | |
|     // If all of the demanded bits are known to be zero on one side or the
 | |
|     // other, turn this into an *inclusive* or.
 | |
|     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
 | |
|     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
 | |
|       Instruction *Or =
 | |
|         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
 | |
|                                  I->getName());
 | |
|       return InsertNewInstWith(Or, *I);
 | |
|     }
 | |
| 
 | |
|     // If all of the demanded bits on one side are known, and all of the set
 | |
|     // bits on that side are also known to be set on the other side, turn this
 | |
|     // into an AND, as we know the bits will be cleared.
 | |
|     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
 | |
|     if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
 | |
|         RHSKnown.One.isSubsetOf(LHSKnown.One)) {
 | |
|       Constant *AndC = Constant::getIntegerValue(VTy,
 | |
|                                                  ~RHSKnown.One & DemandedMask);
 | |
|       Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
 | |
|       return InsertNewInstWith(And, *I);
 | |
|     }
 | |
| 
 | |
|     // If the RHS is a constant, see if we can simplify it.
 | |
|     // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
 | |
|     if (ShrinkDemandedConstant(I, 1, DemandedMask))
 | |
|       return I;
 | |
| 
 | |
|     // If our LHS is an 'and' and if it has one use, and if any of the bits we
 | |
|     // are flipping are known to be set, then the xor is just resetting those
 | |
|     // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
 | |
|     // simplifying both of them.
 | |
|     if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
 | |
|       if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
 | |
|           isa<ConstantInt>(I->getOperand(1)) &&
 | |
|           isa<ConstantInt>(LHSInst->getOperand(1)) &&
 | |
|           (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
 | |
|         ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
 | |
|         ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
 | |
|         APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
 | |
| 
 | |
|         Constant *AndC =
 | |
|           ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
 | |
|         Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
 | |
|         InsertNewInstWith(NewAnd, *I);
 | |
| 
 | |
|         Constant *XorC =
 | |
|           ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
 | |
|         Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
 | |
|         return InsertNewInstWith(NewXor, *I);
 | |
|       }
 | |
| 
 | |
|     // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | |
|     Known.Zero = std::move(IKnownZero);
 | |
|     // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | |
|     Known.One  = std::move(IKnownOne);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Select:
 | |
|     // If this is a select as part of a min/max pattern, don't simplify any
 | |
|     // further in case we break the structure.
 | |
|     Value *LHS, *RHS;
 | |
|     if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN)
 | |
|       return nullptr;
 | |
| 
 | |
|     if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
 | |
|         SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
 | |
|       return I;
 | |
|     assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
 | |
|     assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // If the operands are constants, see if we can simplify them.
 | |
|     if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
 | |
|         ShrinkDemandedConstant(I, 2, DemandedMask))
 | |
|       return I;
 | |
| 
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     Known.One = RHSKnown.One & LHSKnown.One;
 | |
|     Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
 | |
|     break;
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::Trunc: {
 | |
|     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
 | |
| 
 | |
|     APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
 | |
|     KnownBits InputKnown(SrcBitWidth);
 | |
|     if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
 | |
|       return I;
 | |
|     Known = Known.zextOrTrunc(BitWidth);
 | |
|     // Any top bits are known to be zero.
 | |
|     if (BitWidth > SrcBitWidth)
 | |
|       Known.Zero.setBitsFrom(SrcBitWidth);
 | |
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::BitCast:
 | |
|     if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
 | |
|       return nullptr;  // vector->int or fp->int?
 | |
| 
 | |
|     if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
 | |
|       if (VectorType *SrcVTy =
 | |
|             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
 | |
|         if (DstVTy->getNumElements() != SrcVTy->getNumElements())
 | |
|           // Don't touch a bitcast between vectors of different element counts.
 | |
|           return nullptr;
 | |
|       } else
 | |
|         // Don't touch a scalar-to-vector bitcast.
 | |
|         return nullptr;
 | |
|     } else if (I->getOperand(0)->getType()->isVectorTy())
 | |
|       // Don't touch a vector-to-scalar bitcast.
 | |
|       return nullptr;
 | |
| 
 | |
|     if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
 | |
|       return I;
 | |
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | |
|     break;
 | |
|   case Instruction::SExt: {
 | |
|     // Compute the bits in the result that are not present in the input.
 | |
|     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
 | |
| 
 | |
|     APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
 | |
| 
 | |
|     // If any of the sign extended bits are demanded, we know that the sign
 | |
|     // bit is demanded.
 | |
|     if (DemandedMask.getActiveBits() > SrcBitWidth)
 | |
|       InputDemandedBits.setBit(SrcBitWidth-1);
 | |
| 
 | |
|     KnownBits InputKnown(SrcBitWidth);
 | |
|     if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
 | |
|       return I;
 | |
| 
 | |
|     // If the input sign bit is known zero, or if the NewBits are not demanded
 | |
|     // convert this into a zero extension.
 | |
|     if (InputKnown.isNonNegative() ||
 | |
|         DemandedMask.getActiveBits() <= SrcBitWidth) {
 | |
|       // Convert to ZExt cast.
 | |
|       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
 | |
|       return InsertNewInstWith(NewCast, *I);
 | |
|      }
 | |
| 
 | |
|     // If the sign bit of the input is known set or clear, then we know the
 | |
|     // top bits of the result.
 | |
|     Known = InputKnown.sext(BitWidth);
 | |
|     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub: {
 | |
|     /// If the high-bits of an ADD/SUB are not demanded, then we do not care
 | |
|     /// about the high bits of the operands.
 | |
|     unsigned NLZ = DemandedMask.countLeadingZeros();
 | |
|     // Right fill the mask of bits for this ADD/SUB to demand the most
 | |
|     // significant bit and all those below it.
 | |
|     APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
 | |
|     if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
 | |
|         SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
 | |
|         ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
 | |
|         SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
 | |
|       if (NLZ > 0) {
 | |
|         // Disable the nsw and nuw flags here: We can no longer guarantee that
 | |
|         // we won't wrap after simplification. Removing the nsw/nuw flags is
 | |
|         // legal here because the top bit is not demanded.
 | |
|         BinaryOperator &BinOP = *cast<BinaryOperator>(I);
 | |
|         BinOP.setHasNoSignedWrap(false);
 | |
|         BinOP.setHasNoUnsignedWrap(false);
 | |
|       }
 | |
|       return I;
 | |
|     }
 | |
| 
 | |
|     // If we are known to be adding/subtracting zeros to every bit below
 | |
|     // the highest demanded bit, we just return the other side.
 | |
|     if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
 | |
|       return I->getOperand(0);
 | |
|     // We can't do this with the LHS for subtraction, unless we are only
 | |
|     // demanding the LSB.
 | |
|     if ((I->getOpcode() == Instruction::Add ||
 | |
|          DemandedFromOps.isOneValue()) &&
 | |
|         DemandedFromOps.isSubsetOf(LHSKnown.Zero))
 | |
|       return I->getOperand(1);
 | |
| 
 | |
|     // Otherwise just compute the known bits of the result.
 | |
|     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
 | |
|     Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
 | |
|                                         NSW, LHSKnown, RHSKnown);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Shl: {
 | |
|     const APInt *SA;
 | |
|     if (match(I->getOperand(1), m_APInt(SA))) {
 | |
|       const APInt *ShrAmt;
 | |
|       if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) {
 | |
|         Instruction *Shr = cast<Instruction>(I->getOperand(0));
 | |
|         if (Value *R = simplifyShrShlDemandedBits(
 | |
|                 Shr, *ShrAmt, I, *SA, DemandedMask, Known))
 | |
|           return R;
 | |
|       }
 | |
| 
 | |
|       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
 | |
|       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
 | |
| 
 | |
|       // If the shift is NUW/NSW, then it does demand the high bits.
 | |
|       ShlOperator *IOp = cast<ShlOperator>(I);
 | |
|       if (IOp->hasNoSignedWrap())
 | |
|         DemandedMaskIn.setHighBits(ShiftAmt+1);
 | |
|       else if (IOp->hasNoUnsignedWrap())
 | |
|         DemandedMaskIn.setHighBits(ShiftAmt);
 | |
| 
 | |
|       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
 | |
|         return I;
 | |
|       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | |
|       Known.Zero <<= ShiftAmt;
 | |
|       Known.One  <<= ShiftAmt;
 | |
|       // low bits known zero.
 | |
|       if (ShiftAmt)
 | |
|         Known.Zero.setLowBits(ShiftAmt);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::LShr: {
 | |
|     const APInt *SA;
 | |
|     if (match(I->getOperand(1), m_APInt(SA))) {
 | |
|       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
 | |
| 
 | |
|       // Unsigned shift right.
 | |
|       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
 | |
| 
 | |
|       // If the shift is exact, then it does demand the low bits (and knows that
 | |
|       // they are zero).
 | |
|       if (cast<LShrOperator>(I)->isExact())
 | |
|         DemandedMaskIn.setLowBits(ShiftAmt);
 | |
| 
 | |
|       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
 | |
|         return I;
 | |
|       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | |
|       Known.Zero.lshrInPlace(ShiftAmt);
 | |
|       Known.One.lshrInPlace(ShiftAmt);
 | |
|       if (ShiftAmt)
 | |
|         Known.Zero.setHighBits(ShiftAmt);  // high bits known zero.
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::AShr: {
 | |
|     // If this is an arithmetic shift right and only the low-bit is set, we can
 | |
|     // always convert this into a logical shr, even if the shift amount is
 | |
|     // variable.  The low bit of the shift cannot be an input sign bit unless
 | |
|     // the shift amount is >= the size of the datatype, which is undefined.
 | |
|     if (DemandedMask.isOneValue()) {
 | |
|       // Perform the logical shift right.
 | |
|       Instruction *NewVal = BinaryOperator::CreateLShr(
 | |
|                         I->getOperand(0), I->getOperand(1), I->getName());
 | |
|       return InsertNewInstWith(NewVal, *I);
 | |
|     }
 | |
| 
 | |
|     // If the sign bit is the only bit demanded by this ashr, then there is no
 | |
|     // need to do it, the shift doesn't change the high bit.
 | |
|     if (DemandedMask.isSignMask())
 | |
|       return I->getOperand(0);
 | |
| 
 | |
|     const APInt *SA;
 | |
|     if (match(I->getOperand(1), m_APInt(SA))) {
 | |
|       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
 | |
| 
 | |
|       // Signed shift right.
 | |
|       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
 | |
|       // If any of the high bits are demanded, we should set the sign bit as
 | |
|       // demanded.
 | |
|       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
 | |
|         DemandedMaskIn.setSignBit();
 | |
| 
 | |
|       // If the shift is exact, then it does demand the low bits (and knows that
 | |
|       // they are zero).
 | |
|       if (cast<AShrOperator>(I)->isExact())
 | |
|         DemandedMaskIn.setLowBits(ShiftAmt);
 | |
| 
 | |
|       if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
 | |
|         return I;
 | |
| 
 | |
|       unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
 | |
| 
 | |
|       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | |
|       // Compute the new bits that are at the top now plus sign bits.
 | |
|       APInt HighBits(APInt::getHighBitsSet(
 | |
|           BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
 | |
|       Known.Zero.lshrInPlace(ShiftAmt);
 | |
|       Known.One.lshrInPlace(ShiftAmt);
 | |
| 
 | |
|       // If the input sign bit is known to be zero, or if none of the top bits
 | |
|       // are demanded, turn this into an unsigned shift right.
 | |
|       assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
 | |
|       if (Known.Zero[BitWidth-ShiftAmt-1] ||
 | |
|           !DemandedMask.intersects(HighBits)) {
 | |
|         BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
 | |
|                                                           I->getOperand(1));
 | |
|         LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
 | |
|         return InsertNewInstWith(LShr, *I);
 | |
|       } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
 | |
|         Known.One |= HighBits;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::SRem:
 | |
|     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|       // X % -1 demands all the bits because we don't want to introduce
 | |
|       // INT_MIN % -1 (== undef) by accident.
 | |
|       if (Rem->isMinusOne())
 | |
|         break;
 | |
|       APInt RA = Rem->getValue().abs();
 | |
|       if (RA.isPowerOf2()) {
 | |
|         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
 | |
|           return I->getOperand(0);
 | |
| 
 | |
|         APInt LowBits = RA - 1;
 | |
|         APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
 | |
|         if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
 | |
|           return I;
 | |
| 
 | |
|         // The low bits of LHS are unchanged by the srem.
 | |
|         Known.Zero = LHSKnown.Zero & LowBits;
 | |
|         Known.One = LHSKnown.One & LowBits;
 | |
| 
 | |
|         // If LHS is non-negative or has all low bits zero, then the upper bits
 | |
|         // are all zero.
 | |
|         if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
 | |
|           Known.Zero |= ~LowBits;
 | |
| 
 | |
|         // If LHS is negative and not all low bits are zero, then the upper bits
 | |
|         // are all one.
 | |
|         if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
 | |
|           Known.One |= ~LowBits;
 | |
| 
 | |
|         assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // The sign bit is the LHS's sign bit, except when the result of the
 | |
|     // remainder is zero.
 | |
|     if (DemandedMask.isSignBitSet()) {
 | |
|       computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
 | |
|       // If it's known zero, our sign bit is also zero.
 | |
|       if (LHSKnown.isNonNegative())
 | |
|         Known.makeNonNegative();
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::URem: {
 | |
|     KnownBits Known2(BitWidth);
 | |
|     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
 | |
|     if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
 | |
|         SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
 | |
|       return I;
 | |
| 
 | |
|     unsigned Leaders = Known2.countMinLeadingZeros();
 | |
|     Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Call:
 | |
|     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | |
|       switch (II->getIntrinsicID()) {
 | |
|       default: break;
 | |
|       case Intrinsic::bswap: {
 | |
|         // If the only bits demanded come from one byte of the bswap result,
 | |
|         // just shift the input byte into position to eliminate the bswap.
 | |
|         unsigned NLZ = DemandedMask.countLeadingZeros();
 | |
|         unsigned NTZ = DemandedMask.countTrailingZeros();
 | |
| 
 | |
|         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
 | |
|         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
 | |
|         // have 14 leading zeros, round to 8.
 | |
|         NLZ &= ~7;
 | |
|         NTZ &= ~7;
 | |
|         // If we need exactly one byte, we can do this transformation.
 | |
|         if (BitWidth-NLZ-NTZ == 8) {
 | |
|           unsigned ResultBit = NTZ;
 | |
|           unsigned InputBit = BitWidth-NTZ-8;
 | |
| 
 | |
|           // Replace this with either a left or right shift to get the byte into
 | |
|           // the right place.
 | |
|           Instruction *NewVal;
 | |
|           if (InputBit > ResultBit)
 | |
|             NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
 | |
|                     ConstantInt::get(I->getType(), InputBit-ResultBit));
 | |
|           else
 | |
|             NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
 | |
|                     ConstantInt::get(I->getType(), ResultBit-InputBit));
 | |
|           NewVal->takeName(I);
 | |
|           return InsertNewInstWith(NewVal, *I);
 | |
|         }
 | |
| 
 | |
|         // TODO: Could compute known zero/one bits based on the input.
 | |
|         break;
 | |
|       }
 | |
|       case Intrinsic::x86_mmx_pmovmskb:
 | |
|       case Intrinsic::x86_sse_movmsk_ps:
 | |
|       case Intrinsic::x86_sse2_movmsk_pd:
 | |
|       case Intrinsic::x86_sse2_pmovmskb_128:
 | |
|       case Intrinsic::x86_avx_movmsk_ps_256:
 | |
|       case Intrinsic::x86_avx_movmsk_pd_256:
 | |
|       case Intrinsic::x86_avx2_pmovmskb: {
 | |
|         // MOVMSK copies the vector elements' sign bits to the low bits
 | |
|         // and zeros the high bits.
 | |
|         unsigned ArgWidth;
 | |
|         if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
 | |
|           ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
 | |
|         } else {
 | |
|           auto Arg = II->getArgOperand(0);
 | |
|           auto ArgType = cast<VectorType>(Arg->getType());
 | |
|           ArgWidth = ArgType->getNumElements();
 | |
|         }
 | |
| 
 | |
|         // If we don't need any of low bits then return zero,
 | |
|         // we know that DemandedMask is non-zero already.
 | |
|         APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
 | |
|         if (DemandedElts.isNullValue())
 | |
|           return ConstantInt::getNullValue(VTy);
 | |
| 
 | |
|         // We know that the upper bits are set to zero.
 | |
|         Known.Zero.setBitsFrom(ArgWidth);
 | |
|         return nullptr;
 | |
|       }
 | |
|       case Intrinsic::x86_sse42_crc32_64_64:
 | |
|         Known.Zero.setBitsFrom(32);
 | |
|         return nullptr;
 | |
|       }
 | |
|     }
 | |
|     computeKnownBits(V, Known, Depth, CxtI);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // If the client is only demanding bits that we know, return the known
 | |
|   // constant.
 | |
|   if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
 | |
|     return Constant::getIntegerValue(VTy, Known.One);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Helper routine of SimplifyDemandedUseBits. It computes Known
 | |
| /// bits. It also tries to handle simplifications that can be done based on
 | |
| /// DemandedMask, but without modifying the Instruction.
 | |
| Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
 | |
|                                                      const APInt &DemandedMask,
 | |
|                                                      KnownBits &Known,
 | |
|                                                      unsigned Depth,
 | |
|                                                      Instruction *CxtI) {
 | |
|   unsigned BitWidth = DemandedMask.getBitWidth();
 | |
|   Type *ITy = I->getType();
 | |
| 
 | |
|   KnownBits LHSKnown(BitWidth);
 | |
|   KnownBits RHSKnown(BitWidth);
 | |
| 
 | |
|   // Despite the fact that we can't simplify this instruction in all User's
 | |
|   // context, we can at least compute the known bits, and we can
 | |
|   // do simplifications that apply to *just* the one user if we know that
 | |
|   // this instruction has a simpler value in that context.
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::And: {
 | |
|     // If either the LHS or the RHS are Zero, the result is zero.
 | |
|     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
 | |
|     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
 | |
|                      CxtI);
 | |
| 
 | |
|     // Output known-0 are known to be clear if zero in either the LHS | RHS.
 | |
|     APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
 | |
|     // Output known-1 bits are only known if set in both the LHS & RHS.
 | |
|     APInt IKnownOne = RHSKnown.One & LHSKnown.One;
 | |
| 
 | |
|     // If the client is only demanding bits that we know, return the known
 | |
|     // constant.
 | |
|     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
 | |
|       return Constant::getIntegerValue(ITy, IKnownOne);
 | |
| 
 | |
|     // If all of the demanded bits are known 1 on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'and' in this
 | |
|     // context.
 | |
|     if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
 | |
|       return I->getOperand(0);
 | |
|     if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
 | |
|       return I->getOperand(1);
 | |
| 
 | |
|     Known.Zero = std::move(IKnownZero);
 | |
|     Known.One  = std::move(IKnownOne);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Or: {
 | |
|     // We can simplify (X|Y) -> X or Y in the user's context if we know that
 | |
|     // only bits from X or Y are demanded.
 | |
| 
 | |
|     // If either the LHS or the RHS are One, the result is One.
 | |
|     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
 | |
|     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
 | |
|                      CxtI);
 | |
| 
 | |
|     // Output known-0 bits are only known if clear in both the LHS & RHS.
 | |
|     APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
 | |
|     // Output known-1 are known to be set if set in either the LHS | RHS.
 | |
|     APInt IKnownOne = RHSKnown.One | LHSKnown.One;
 | |
| 
 | |
|     // If the client is only demanding bits that we know, return the known
 | |
|     // constant.
 | |
|     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
 | |
|       return Constant::getIntegerValue(ITy, IKnownOne);
 | |
| 
 | |
|     // If all of the demanded bits are known zero on one side, return the
 | |
|     // other.  These bits cannot contribute to the result of the 'or' in this
 | |
|     // context.
 | |
|     if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
 | |
|       return I->getOperand(0);
 | |
|     if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
 | |
|       return I->getOperand(1);
 | |
| 
 | |
|     Known.Zero = std::move(IKnownZero);
 | |
|     Known.One  = std::move(IKnownOne);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Xor: {
 | |
|     // We can simplify (X^Y) -> X or Y in the user's context if we know that
 | |
|     // only bits from X or Y are demanded.
 | |
| 
 | |
|     computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
 | |
|     computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
 | |
|                      CxtI);
 | |
| 
 | |
|     // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | |
|     APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
 | |
|                        (RHSKnown.One & LHSKnown.One);
 | |
|     // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | |
|     APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
 | |
|                        (RHSKnown.One & LHSKnown.Zero);
 | |
| 
 | |
|     // If the client is only demanding bits that we know, return the known
 | |
|     // constant.
 | |
|     if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
 | |
|       return Constant::getIntegerValue(ITy, IKnownOne);
 | |
| 
 | |
|     // If all of the demanded bits are known zero on one side, return the
 | |
|     // other.
 | |
|     if (DemandedMask.isSubsetOf(RHSKnown.Zero))
 | |
|       return I->getOperand(0);
 | |
|     if (DemandedMask.isSubsetOf(LHSKnown.Zero))
 | |
|       return I->getOperand(1);
 | |
| 
 | |
|     // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | |
|     Known.Zero = std::move(IKnownZero);
 | |
|     // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | |
|     Known.One  = std::move(IKnownOne);
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     // Compute the Known bits to simplify things downstream.
 | |
|     computeKnownBits(I, Known, Depth, CxtI);
 | |
| 
 | |
|     // If this user is only demanding bits that we know, return the known
 | |
|     // constant.
 | |
|     if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
 | |
|       return Constant::getIntegerValue(ITy, Known.One);
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
 | |
| /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
 | |
| /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
 | |
| /// of "C2-C1".
 | |
| ///
 | |
| /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
 | |
| /// ..., bn}, without considering the specific value X is holding.
 | |
| /// This transformation is legal iff one of following conditions is hold:
 | |
| ///  1) All the bit in S are 0, in this case E1 == E2.
 | |
| ///  2) We don't care those bits in S, per the input DemandedMask.
 | |
| ///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
 | |
| ///     rest bits.
 | |
| ///
 | |
| /// Currently we only test condition 2).
 | |
| ///
 | |
| /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
 | |
| /// not successful.
 | |
| Value *
 | |
| InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1,
 | |
|                                          Instruction *Shl, const APInt &ShlOp1,
 | |
|                                          const APInt &DemandedMask,
 | |
|                                          KnownBits &Known) {
 | |
|   if (!ShlOp1 || !ShrOp1)
 | |
|     return nullptr; // No-op.
 | |
| 
 | |
|   Value *VarX = Shr->getOperand(0);
 | |
|   Type *Ty = VarX->getType();
 | |
|   unsigned BitWidth = Ty->getScalarSizeInBits();
 | |
|   if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
 | |
|     return nullptr; // Undef.
 | |
| 
 | |
|   unsigned ShlAmt = ShlOp1.getZExtValue();
 | |
|   unsigned ShrAmt = ShrOp1.getZExtValue();
 | |
| 
 | |
|   Known.One.clearAllBits();
 | |
|   Known.Zero.setLowBits(ShlAmt - 1);
 | |
|   Known.Zero &= DemandedMask;
 | |
| 
 | |
|   APInt BitMask1(APInt::getAllOnesValue(BitWidth));
 | |
|   APInt BitMask2(APInt::getAllOnesValue(BitWidth));
 | |
| 
 | |
|   bool isLshr = (Shr->getOpcode() == Instruction::LShr);
 | |
|   BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
 | |
|                       (BitMask1.ashr(ShrAmt) << ShlAmt);
 | |
| 
 | |
|   if (ShrAmt <= ShlAmt) {
 | |
|     BitMask2 <<= (ShlAmt - ShrAmt);
 | |
|   } else {
 | |
|     BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
 | |
|                         BitMask2.ashr(ShrAmt - ShlAmt);
 | |
|   }
 | |
| 
 | |
|   // Check if condition-2 (see the comment to this function) is satified.
 | |
|   if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
 | |
|     if (ShrAmt == ShlAmt)
 | |
|       return VarX;
 | |
| 
 | |
|     if (!Shr->hasOneUse())
 | |
|       return nullptr;
 | |
| 
 | |
|     BinaryOperator *New;
 | |
|     if (ShrAmt < ShlAmt) {
 | |
|       Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
 | |
|       New = BinaryOperator::CreateShl(VarX, Amt);
 | |
|       BinaryOperator *Orig = cast<BinaryOperator>(Shl);
 | |
|       New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
 | |
|       New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
 | |
|     } else {
 | |
|       Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
 | |
|       New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
 | |
|                      BinaryOperator::CreateAShr(VarX, Amt);
 | |
|       if (cast<BinaryOperator>(Shr)->isExact())
 | |
|         New->setIsExact(true);
 | |
|     }
 | |
| 
 | |
|     return InsertNewInstWith(New, *Shl);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// The specified value produces a vector with any number of elements.
 | |
| /// DemandedElts contains the set of elements that are actually used by the
 | |
| /// caller. This method analyzes which elements of the operand are undef and
 | |
| /// returns that information in UndefElts.
 | |
| ///
 | |
| /// If the information about demanded elements can be used to simplify the
 | |
| /// operation, the operation is simplified, then the resultant value is
 | |
| /// returned.  This returns null if no change was made.
 | |
| Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
 | |
|                                                 APInt &UndefElts,
 | |
|                                                 unsigned Depth) {
 | |
|   unsigned VWidth = V->getType()->getVectorNumElements();
 | |
|   APInt EltMask(APInt::getAllOnesValue(VWidth));
 | |
|   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
 | |
| 
 | |
|   if (isa<UndefValue>(V)) {
 | |
|     // If the entire vector is undefined, just return this info.
 | |
|     UndefElts = EltMask;
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
 | |
|     UndefElts = EltMask;
 | |
|     return UndefValue::get(V->getType());
 | |
|   }
 | |
| 
 | |
|   UndefElts = 0;
 | |
| 
 | |
|   // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
 | |
|   if (Constant *C = dyn_cast<Constant>(V)) {
 | |
|     // Check if this is identity. If so, return 0 since we are not simplifying
 | |
|     // anything.
 | |
|     if (DemandedElts.isAllOnesValue())
 | |
|       return nullptr;
 | |
| 
 | |
|     Type *EltTy = cast<VectorType>(V->getType())->getElementType();
 | |
|     Constant *Undef = UndefValue::get(EltTy);
 | |
| 
 | |
|     SmallVector<Constant*, 16> Elts;
 | |
|     for (unsigned i = 0; i != VWidth; ++i) {
 | |
|       if (!DemandedElts[i]) {   // If not demanded, set to undef.
 | |
|         Elts.push_back(Undef);
 | |
|         UndefElts.setBit(i);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       Constant *Elt = C->getAggregateElement(i);
 | |
|       if (!Elt) return nullptr;
 | |
| 
 | |
|       if (isa<UndefValue>(Elt)) {   // Already undef.
 | |
|         Elts.push_back(Undef);
 | |
|         UndefElts.setBit(i);
 | |
|       } else {                               // Otherwise, defined.
 | |
|         Elts.push_back(Elt);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we changed the constant, return it.
 | |
|     Constant *NewCV = ConstantVector::get(Elts);
 | |
|     return NewCV != C ? NewCV : nullptr;
 | |
|   }
 | |
| 
 | |
|   // Limit search depth.
 | |
|   if (Depth == 10)
 | |
|     return nullptr;
 | |
| 
 | |
|   // If multiple users are using the root value, proceed with
 | |
|   // simplification conservatively assuming that all elements
 | |
|   // are needed.
 | |
|   if (!V->hasOneUse()) {
 | |
|     // Quit if we find multiple users of a non-root value though.
 | |
|     // They'll be handled when it's their turn to be visited by
 | |
|     // the main instcombine process.
 | |
|     if (Depth != 0)
 | |
|       // TODO: Just compute the UndefElts information recursively.
 | |
|       return nullptr;
 | |
| 
 | |
|     // Conservatively assume that all elements are needed.
 | |
|     DemandedElts = EltMask;
 | |
|   }
 | |
| 
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return nullptr;        // Only analyze instructions.
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   APInt UndefElts2(VWidth, 0);
 | |
|   APInt UndefElts3(VWidth, 0);
 | |
|   Value *TmpV;
 | |
|   switch (I->getOpcode()) {
 | |
|   default: break;
 | |
| 
 | |
|   case Instruction::InsertElement: {
 | |
|     // If this is a variable index, we don't know which element it overwrites.
 | |
|     // demand exactly the same input as we produce.
 | |
|     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
 | |
|     if (!Idx) {
 | |
|       // Note that we can't propagate undef elt info, because we don't know
 | |
|       // which elt is getting updated.
 | |
|       TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
 | |
|                                         UndefElts2, Depth + 1);
 | |
|       if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // The element inserted overwrites whatever was there, so the input demanded
 | |
|     // set is simpler than the output set.
 | |
|     unsigned IdxNo = Idx->getZExtValue();
 | |
|     APInt PreInsertDemandedElts = DemandedElts;
 | |
|     if (IdxNo < VWidth)
 | |
|       PreInsertDemandedElts.clearBit(IdxNo);
 | |
|     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), PreInsertDemandedElts,
 | |
|                                       UndefElts, Depth + 1);
 | |
|     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
 | |
| 
 | |
|     // If this is inserting an element that isn't demanded, remove this
 | |
|     // insertelement.
 | |
|     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
 | |
|       Worklist.Add(I);
 | |
|       return I->getOperand(0);
 | |
|     }
 | |
| 
 | |
|     // The inserted element is defined.
 | |
|     UndefElts.clearBit(IdxNo);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::ShuffleVector: {
 | |
|     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
 | |
|     unsigned LHSVWidth =
 | |
|       Shuffle->getOperand(0)->getType()->getVectorNumElements();
 | |
|     APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
 | |
|     for (unsigned i = 0; i < VWidth; i++) {
 | |
|       if (DemandedElts[i]) {
 | |
|         unsigned MaskVal = Shuffle->getMaskValue(i);
 | |
|         if (MaskVal != -1u) {
 | |
|           assert(MaskVal < LHSVWidth * 2 &&
 | |
|                  "shufflevector mask index out of range!");
 | |
|           if (MaskVal < LHSVWidth)
 | |
|             LeftDemanded.setBit(MaskVal);
 | |
|           else
 | |
|             RightDemanded.setBit(MaskVal - LHSVWidth);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     APInt LHSUndefElts(LHSVWidth, 0);
 | |
|     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
 | |
|                                       LHSUndefElts, Depth + 1);
 | |
|     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
 | |
| 
 | |
|     APInt RHSUndefElts(LHSVWidth, 0);
 | |
|     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
 | |
|                                       RHSUndefElts, Depth + 1);
 | |
|     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
 | |
| 
 | |
|     bool NewUndefElts = false;
 | |
|     unsigned LHSIdx = -1u, LHSValIdx = -1u;
 | |
|     unsigned RHSIdx = -1u, RHSValIdx = -1u;
 | |
|     bool LHSUniform = true;
 | |
|     bool RHSUniform = true;
 | |
|     for (unsigned i = 0; i < VWidth; i++) {
 | |
|       unsigned MaskVal = Shuffle->getMaskValue(i);
 | |
|       if (MaskVal == -1u) {
 | |
|         UndefElts.setBit(i);
 | |
|       } else if (!DemandedElts[i]) {
 | |
|         NewUndefElts = true;
 | |
|         UndefElts.setBit(i);
 | |
|       } else if (MaskVal < LHSVWidth) {
 | |
|         if (LHSUndefElts[MaskVal]) {
 | |
|           NewUndefElts = true;
 | |
|           UndefElts.setBit(i);
 | |
|         } else {
 | |
|           LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
 | |
|           LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
 | |
|           LHSUniform = LHSUniform && (MaskVal == i);
 | |
|         }
 | |
|       } else {
 | |
|         if (RHSUndefElts[MaskVal - LHSVWidth]) {
 | |
|           NewUndefElts = true;
 | |
|           UndefElts.setBit(i);
 | |
|         } else {
 | |
|           RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
 | |
|           RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
 | |
|           RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Try to transform shuffle with constant vector and single element from
 | |
|     // this constant vector to single insertelement instruction.
 | |
|     // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
 | |
|     // insertelement V, C[ci], ci-n
 | |
|     if (LHSVWidth == Shuffle->getType()->getNumElements()) {
 | |
|       Value *Op = nullptr;
 | |
|       Constant *Value = nullptr;
 | |
|       unsigned Idx = -1u;
 | |
| 
 | |
|       // Find constant vector with the single element in shuffle (LHS or RHS).
 | |
|       if (LHSIdx < LHSVWidth && RHSUniform) {
 | |
|         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
 | |
|           Op = Shuffle->getOperand(1);
 | |
|           Value = CV->getOperand(LHSValIdx);
 | |
|           Idx = LHSIdx;
 | |
|         }
 | |
|       }
 | |
|       if (RHSIdx < LHSVWidth && LHSUniform) {
 | |
|         if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
 | |
|           Op = Shuffle->getOperand(0);
 | |
|           Value = CV->getOperand(RHSValIdx);
 | |
|           Idx = RHSIdx;
 | |
|         }
 | |
|       }
 | |
|       // Found constant vector with single element - convert to insertelement.
 | |
|       if (Op && Value) {
 | |
|         Instruction *New = InsertElementInst::Create(
 | |
|             Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
 | |
|             Shuffle->getName());
 | |
|         InsertNewInstWith(New, *Shuffle);
 | |
|         return New;
 | |
|       }
 | |
|     }
 | |
|     if (NewUndefElts) {
 | |
|       // Add additional discovered undefs.
 | |
|       SmallVector<Constant*, 16> Elts;
 | |
|       for (unsigned i = 0; i < VWidth; ++i) {
 | |
|         if (UndefElts[i])
 | |
|           Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
 | |
|         else
 | |
|           Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
 | |
|                                           Shuffle->getMaskValue(i)));
 | |
|       }
 | |
|       I->setOperand(2, ConstantVector::get(Elts));
 | |
|       MadeChange = true;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Select: {
 | |
|     APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
 | |
|     if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
 | |
|       for (unsigned i = 0; i < VWidth; i++) {
 | |
|         Constant *CElt = CV->getAggregateElement(i);
 | |
|         // Method isNullValue always returns false when called on a
 | |
|         // ConstantExpr. If CElt is a ConstantExpr then skip it in order to
 | |
|         // to avoid propagating incorrect information.
 | |
|         if (isa<ConstantExpr>(CElt))
 | |
|           continue;
 | |
|         if (CElt->isNullValue())
 | |
|           LeftDemanded.clearBit(i);
 | |
|         else
 | |
|           RightDemanded.clearBit(i);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts,
 | |
|                                       Depth + 1);
 | |
|     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
 | |
| 
 | |
|     TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
 | |
|                                       UndefElts2, Depth + 1);
 | |
|     if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
 | |
| 
 | |
|     // Output elements are undefined if both are undefined.
 | |
|     UndefElts &= UndefElts2;
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::BitCast: {
 | |
|     // Vector->vector casts only.
 | |
|     VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
 | |
|     if (!VTy) break;
 | |
|     unsigned InVWidth = VTy->getNumElements();
 | |
|     APInt InputDemandedElts(InVWidth, 0);
 | |
|     UndefElts2 = APInt(InVWidth, 0);
 | |
|     unsigned Ratio;
 | |
| 
 | |
|     if (VWidth == InVWidth) {
 | |
|       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
 | |
|       // elements as are demanded of us.
 | |
|       Ratio = 1;
 | |
|       InputDemandedElts = DemandedElts;
 | |
|     } else if ((VWidth % InVWidth) == 0) {
 | |
|       // If the number of elements in the output is a multiple of the number of
 | |
|       // elements in the input then an input element is live if any of the
 | |
|       // corresponding output elements are live.
 | |
|       Ratio = VWidth / InVWidth;
 | |
|       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
 | |
|         if (DemandedElts[OutIdx])
 | |
|           InputDemandedElts.setBit(OutIdx / Ratio);
 | |
|     } else if ((InVWidth % VWidth) == 0) {
 | |
|       // If the number of elements in the input is a multiple of the number of
 | |
|       // elements in the output then an input element is live if the
 | |
|       // corresponding output element is live.
 | |
|       Ratio = InVWidth / VWidth;
 | |
|       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
 | |
|         if (DemandedElts[InIdx / Ratio])
 | |
|           InputDemandedElts.setBit(InIdx);
 | |
|     } else {
 | |
|       // Unsupported so far.
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // div/rem demand all inputs, because they don't want divide by zero.
 | |
|     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
 | |
|                                       UndefElts2, Depth + 1);
 | |
|     if (TmpV) {
 | |
|       I->setOperand(0, TmpV);
 | |
|       MadeChange = true;
 | |
|     }
 | |
| 
 | |
|     if (VWidth == InVWidth) {
 | |
|       UndefElts = UndefElts2;
 | |
|     } else if ((VWidth % InVWidth) == 0) {
 | |
|       // If the number of elements in the output is a multiple of the number of
 | |
|       // elements in the input then an output element is undef if the
 | |
|       // corresponding input element is undef.
 | |
|       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
 | |
|         if (UndefElts2[OutIdx / Ratio])
 | |
|           UndefElts.setBit(OutIdx);
 | |
|     } else if ((InVWidth % VWidth) == 0) {
 | |
|       // If the number of elements in the input is a multiple of the number of
 | |
|       // elements in the output then an output element is undef if all of the
 | |
|       // corresponding input elements are undef.
 | |
|       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
 | |
|         APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
 | |
|         if (SubUndef.countPopulation() == Ratio)
 | |
|           UndefElts.setBit(OutIdx);
 | |
|       }
 | |
|     } else {
 | |
|       llvm_unreachable("Unimp");
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|     // div/rem demand all inputs, because they don't want divide by zero.
 | |
|     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
 | |
|                                       Depth + 1);
 | |
|     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
 | |
|     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
 | |
|                                       UndefElts2, Depth + 1);
 | |
|     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
 | |
| 
 | |
|     // Output elements are undefined if both are undefined.  Consider things
 | |
|     // like undef&0.  The result is known zero, not undef.
 | |
|     UndefElts &= UndefElts2;
 | |
|     break;
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::FPExt:
 | |
|     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
 | |
|                                       Depth + 1);
 | |
|     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Call: {
 | |
|     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
 | |
|     if (!II) break;
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     default: break;
 | |
| 
 | |
|     case Intrinsic::x86_xop_vfrcz_ss:
 | |
|     case Intrinsic::x86_xop_vfrcz_sd:
 | |
|       // The instructions for these intrinsics are speced to zero upper bits not
 | |
|       // pass them through like other scalar intrinsics. So we shouldn't just
 | |
|       // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
 | |
|       // Instead we should return a zero vector.
 | |
|       if (!DemandedElts[0]) {
 | |
|         Worklist.Add(II);
 | |
|         return ConstantAggregateZero::get(II->getType());
 | |
|       }
 | |
| 
 | |
|       // Only the lower element is used.
 | |
|       DemandedElts = 1;
 | |
|       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
 | |
|                                         UndefElts, Depth + 1);
 | |
|       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
 | |
| 
 | |
|       // Only the lower element is undefined. The high elements are zero.
 | |
|       UndefElts = UndefElts[0];
 | |
|       break;
 | |
| 
 | |
|     // Unary scalar-as-vector operations that work column-wise.
 | |
|     case Intrinsic::x86_sse_rcp_ss:
 | |
|     case Intrinsic::x86_sse_rsqrt_ss:
 | |
|     case Intrinsic::x86_sse_sqrt_ss:
 | |
|     case Intrinsic::x86_sse2_sqrt_sd:
 | |
|       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
 | |
|                                         UndefElts, Depth + 1);
 | |
|       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
 | |
| 
 | |
|       // If lowest element of a scalar op isn't used then use Arg0.
 | |
|       if (!DemandedElts[0]) {
 | |
|         Worklist.Add(II);
 | |
|         return II->getArgOperand(0);
 | |
|       }
 | |
|       // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
 | |
|       // checks).
 | |
|       break;
 | |
| 
 | |
|     // Binary scalar-as-vector operations that work column-wise. The high
 | |
|     // elements come from operand 0. The low element is a function of both
 | |
|     // operands.
 | |
|     case Intrinsic::x86_sse_min_ss:
 | |
|     case Intrinsic::x86_sse_max_ss:
 | |
|     case Intrinsic::x86_sse_cmp_ss:
 | |
|     case Intrinsic::x86_sse2_min_sd:
 | |
|     case Intrinsic::x86_sse2_max_sd:
 | |
|     case Intrinsic::x86_sse2_cmp_sd: {
 | |
|       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
 | |
|                                         UndefElts, Depth + 1);
 | |
|       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
 | |
| 
 | |
|       // If lowest element of a scalar op isn't used then use Arg0.
 | |
|       if (!DemandedElts[0]) {
 | |
|         Worklist.Add(II);
 | |
|         return II->getArgOperand(0);
 | |
|       }
 | |
| 
 | |
|       // Only lower element is used for operand 1.
 | |
|       DemandedElts = 1;
 | |
|       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
 | |
|                                         UndefElts2, Depth + 1);
 | |
|       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
 | |
| 
 | |
|       // Lower element is undefined if both lower elements are undefined.
 | |
|       // Consider things like undef&0.  The result is known zero, not undef.
 | |
|       if (!UndefElts2[0])
 | |
|         UndefElts.clearBit(0);
 | |
| 
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Binary scalar-as-vector operations that work column-wise. The high
 | |
|     // elements come from operand 0 and the low element comes from operand 1.
 | |
|     case Intrinsic::x86_sse41_round_ss:
 | |
|     case Intrinsic::x86_sse41_round_sd: {
 | |
|       // Don't use the low element of operand 0.
 | |
|       APInt DemandedElts2 = DemandedElts;
 | |
|       DemandedElts2.clearBit(0);
 | |
|       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts2,
 | |
|                                         UndefElts, Depth + 1);
 | |
|       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
 | |
| 
 | |
|       // If lowest element of a scalar op isn't used then use Arg0.
 | |
|       if (!DemandedElts[0]) {
 | |
|         Worklist.Add(II);
 | |
|         return II->getArgOperand(0);
 | |
|       }
 | |
| 
 | |
|       // Only lower element is used for operand 1.
 | |
|       DemandedElts = 1;
 | |
|       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
 | |
|                                         UndefElts2, Depth + 1);
 | |
|       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
 | |
| 
 | |
|       // Take the high undef elements from operand 0 and take the lower element
 | |
|       // from operand 1.
 | |
|       UndefElts.clearBit(0);
 | |
|       UndefElts |= UndefElts2[0];
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Three input scalar-as-vector operations that work column-wise. The high
 | |
|     // elements come from operand 0 and the low element is a function of all
 | |
|     // three inputs.
 | |
|     case Intrinsic::x86_avx512_mask_add_ss_round:
 | |
|     case Intrinsic::x86_avx512_mask_div_ss_round:
 | |
|     case Intrinsic::x86_avx512_mask_mul_ss_round:
 | |
|     case Intrinsic::x86_avx512_mask_sub_ss_round:
 | |
|     case Intrinsic::x86_avx512_mask_max_ss_round:
 | |
|     case Intrinsic::x86_avx512_mask_min_ss_round:
 | |
|     case Intrinsic::x86_avx512_mask_add_sd_round:
 | |
|     case Intrinsic::x86_avx512_mask_div_sd_round:
 | |
|     case Intrinsic::x86_avx512_mask_mul_sd_round:
 | |
|     case Intrinsic::x86_avx512_mask_sub_sd_round:
 | |
|     case Intrinsic::x86_avx512_mask_max_sd_round:
 | |
|     case Intrinsic::x86_avx512_mask_min_sd_round:
 | |
|     case Intrinsic::x86_fma_vfmadd_ss:
 | |
|     case Intrinsic::x86_fma_vfmsub_ss:
 | |
|     case Intrinsic::x86_fma_vfnmadd_ss:
 | |
|     case Intrinsic::x86_fma_vfnmsub_ss:
 | |
|     case Intrinsic::x86_fma_vfmadd_sd:
 | |
|     case Intrinsic::x86_fma_vfmsub_sd:
 | |
|     case Intrinsic::x86_fma_vfnmadd_sd:
 | |
|     case Intrinsic::x86_fma_vfnmsub_sd:
 | |
|     case Intrinsic::x86_avx512_mask_vfmadd_ss:
 | |
|     case Intrinsic::x86_avx512_mask_vfmadd_sd:
 | |
|     case Intrinsic::x86_avx512_maskz_vfmadd_ss:
 | |
|     case Intrinsic::x86_avx512_maskz_vfmadd_sd:
 | |
|       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
 | |
|                                         UndefElts, Depth + 1);
 | |
|       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
 | |
| 
 | |
|       // If lowest element of a scalar op isn't used then use Arg0.
 | |
|       if (!DemandedElts[0]) {
 | |
|         Worklist.Add(II);
 | |
|         return II->getArgOperand(0);
 | |
|       }
 | |
| 
 | |
|       // Only lower element is used for operand 1 and 2.
 | |
|       DemandedElts = 1;
 | |
|       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
 | |
|                                         UndefElts2, Depth + 1);
 | |
|       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
 | |
|       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
 | |
|                                         UndefElts3, Depth + 1);
 | |
|       if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
 | |
| 
 | |
|       // Lower element is undefined if all three lower elements are undefined.
 | |
|       // Consider things like undef&0.  The result is known zero, not undef.
 | |
|       if (!UndefElts2[0] || !UndefElts3[0])
 | |
|         UndefElts.clearBit(0);
 | |
| 
 | |
|       break;
 | |
| 
 | |
|     case Intrinsic::x86_avx512_mask3_vfmadd_ss:
 | |
|     case Intrinsic::x86_avx512_mask3_vfmadd_sd:
 | |
|     case Intrinsic::x86_avx512_mask3_vfmsub_ss:
 | |
|     case Intrinsic::x86_avx512_mask3_vfmsub_sd:
 | |
|     case Intrinsic::x86_avx512_mask3_vfnmsub_ss:
 | |
|     case Intrinsic::x86_avx512_mask3_vfnmsub_sd:
 | |
|       // These intrinsics get the passthru bits from operand 2.
 | |
|       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
 | |
|                                         UndefElts, Depth + 1);
 | |
|       if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
 | |
| 
 | |
|       // If lowest element of a scalar op isn't used then use Arg2.
 | |
|       if (!DemandedElts[0]) {
 | |
|         Worklist.Add(II);
 | |
|         return II->getArgOperand(2);
 | |
|       }
 | |
| 
 | |
|       // Only lower element is used for operand 0 and 1.
 | |
|       DemandedElts = 1;
 | |
|       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
 | |
|                                         UndefElts2, Depth + 1);
 | |
|       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
 | |
|       TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
 | |
|                                         UndefElts3, Depth + 1);
 | |
|       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
 | |
| 
 | |
|       // Lower element is undefined if all three lower elements are undefined.
 | |
|       // Consider things like undef&0.  The result is known zero, not undef.
 | |
|       if (!UndefElts2[0] || !UndefElts3[0])
 | |
|         UndefElts.clearBit(0);
 | |
| 
 | |
|       break;
 | |
| 
 | |
|     case Intrinsic::x86_sse2_pmulu_dq:
 | |
|     case Intrinsic::x86_sse41_pmuldq:
 | |
|     case Intrinsic::x86_avx2_pmul_dq:
 | |
|     case Intrinsic::x86_avx2_pmulu_dq:
 | |
|     case Intrinsic::x86_avx512_pmul_dq_512:
 | |
|     case Intrinsic::x86_avx512_pmulu_dq_512: {
 | |
|       Value *Op0 = II->getArgOperand(0);
 | |
|       Value *Op1 = II->getArgOperand(1);
 | |
|       unsigned InnerVWidth = Op0->getType()->getVectorNumElements();
 | |
|       assert((VWidth * 2) == InnerVWidth && "Unexpected input size");
 | |
| 
 | |
|       APInt InnerDemandedElts(InnerVWidth, 0);
 | |
|       for (unsigned i = 0; i != VWidth; ++i)
 | |
|         if (DemandedElts[i])
 | |
|           InnerDemandedElts.setBit(i * 2);
 | |
| 
 | |
|       UndefElts2 = APInt(InnerVWidth, 0);
 | |
|       TmpV = SimplifyDemandedVectorElts(Op0, InnerDemandedElts, UndefElts2,
 | |
|                                         Depth + 1);
 | |
|       if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
 | |
| 
 | |
|       UndefElts3 = APInt(InnerVWidth, 0);
 | |
|       TmpV = SimplifyDemandedVectorElts(Op1, InnerDemandedElts, UndefElts3,
 | |
|                                         Depth + 1);
 | |
|       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
 | |
| 
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case Intrinsic::x86_sse2_packssdw_128:
 | |
|     case Intrinsic::x86_sse2_packsswb_128:
 | |
|     case Intrinsic::x86_sse2_packuswb_128:
 | |
|     case Intrinsic::x86_sse41_packusdw:
 | |
|     case Intrinsic::x86_avx2_packssdw:
 | |
|     case Intrinsic::x86_avx2_packsswb:
 | |
|     case Intrinsic::x86_avx2_packusdw:
 | |
|     case Intrinsic::x86_avx2_packuswb:
 | |
|     case Intrinsic::x86_avx512_packssdw_512:
 | |
|     case Intrinsic::x86_avx512_packsswb_512:
 | |
|     case Intrinsic::x86_avx512_packusdw_512:
 | |
|     case Intrinsic::x86_avx512_packuswb_512: {
 | |
|       auto *Ty0 = II->getArgOperand(0)->getType();
 | |
|       unsigned InnerVWidth = Ty0->getVectorNumElements();
 | |
|       assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
 | |
| 
 | |
|       unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
 | |
|       unsigned VWidthPerLane = VWidth / NumLanes;
 | |
|       unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
 | |
| 
 | |
|       // Per lane, pack the elements of the first input and then the second.
 | |
|       // e.g.
 | |
|       // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
 | |
|       // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
 | |
|       for (int OpNum = 0; OpNum != 2; ++OpNum) {
 | |
|         APInt OpDemandedElts(InnerVWidth, 0);
 | |
|         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
 | |
|           unsigned LaneIdx = Lane * VWidthPerLane;
 | |
|           for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
 | |
|             unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
 | |
|             if (DemandedElts[Idx])
 | |
|               OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Demand elements from the operand.
 | |
|         auto *Op = II->getArgOperand(OpNum);
 | |
|         APInt OpUndefElts(InnerVWidth, 0);
 | |
|         TmpV = SimplifyDemandedVectorElts(Op, OpDemandedElts, OpUndefElts,
 | |
|                                           Depth + 1);
 | |
|         if (TmpV) {
 | |
|           II->setArgOperand(OpNum, TmpV);
 | |
|           MadeChange = true;
 | |
|         }
 | |
| 
 | |
|         // Pack the operand's UNDEF elements, one lane at a time.
 | |
|         OpUndefElts = OpUndefElts.zext(VWidth);
 | |
|         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
 | |
|           APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
 | |
|           LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
 | |
|           LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
 | |
|           UndefElts |= LaneElts;
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // PSHUFB
 | |
|     case Intrinsic::x86_ssse3_pshuf_b_128:
 | |
|     case Intrinsic::x86_avx2_pshuf_b:
 | |
|     case Intrinsic::x86_avx512_pshuf_b_512:
 | |
|     // PERMILVAR
 | |
|     case Intrinsic::x86_avx_vpermilvar_ps:
 | |
|     case Intrinsic::x86_avx_vpermilvar_ps_256:
 | |
|     case Intrinsic::x86_avx512_vpermilvar_ps_512:
 | |
|     case Intrinsic::x86_avx_vpermilvar_pd:
 | |
|     case Intrinsic::x86_avx_vpermilvar_pd_256:
 | |
|     case Intrinsic::x86_avx512_vpermilvar_pd_512:
 | |
|     // PERMV
 | |
|     case Intrinsic::x86_avx2_permd:
 | |
|     case Intrinsic::x86_avx2_permps: {
 | |
|       Value *Op1 = II->getArgOperand(1);
 | |
|       TmpV = SimplifyDemandedVectorElts(Op1, DemandedElts, UndefElts,
 | |
|                                         Depth + 1);
 | |
|       if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // SSE4A instructions leave the upper 64-bits of the 128-bit result
 | |
|     // in an undefined state.
 | |
|     case Intrinsic::x86_sse4a_extrq:
 | |
|     case Intrinsic::x86_sse4a_extrqi:
 | |
|     case Intrinsic::x86_sse4a_insertq:
 | |
|     case Intrinsic::x86_sse4a_insertqi:
 | |
|       UndefElts.setHighBits(VWidth / 2);
 | |
|       break;
 | |
|     case Intrinsic::amdgcn_buffer_load:
 | |
|     case Intrinsic::amdgcn_buffer_load_format:
 | |
|     case Intrinsic::amdgcn_image_sample:
 | |
|     case Intrinsic::amdgcn_image_sample_cl:
 | |
|     case Intrinsic::amdgcn_image_sample_d:
 | |
|     case Intrinsic::amdgcn_image_sample_d_cl:
 | |
|     case Intrinsic::amdgcn_image_sample_l:
 | |
|     case Intrinsic::amdgcn_image_sample_b:
 | |
|     case Intrinsic::amdgcn_image_sample_b_cl:
 | |
|     case Intrinsic::amdgcn_image_sample_lz:
 | |
|     case Intrinsic::amdgcn_image_sample_cd:
 | |
|     case Intrinsic::amdgcn_image_sample_cd_cl:
 | |
| 
 | |
|     case Intrinsic::amdgcn_image_sample_c:
 | |
|     case Intrinsic::amdgcn_image_sample_c_cl:
 | |
|     case Intrinsic::amdgcn_image_sample_c_d:
 | |
|     case Intrinsic::amdgcn_image_sample_c_d_cl:
 | |
|     case Intrinsic::amdgcn_image_sample_c_l:
 | |
|     case Intrinsic::amdgcn_image_sample_c_b:
 | |
|     case Intrinsic::amdgcn_image_sample_c_b_cl:
 | |
|     case Intrinsic::amdgcn_image_sample_c_lz:
 | |
|     case Intrinsic::amdgcn_image_sample_c_cd:
 | |
|     case Intrinsic::amdgcn_image_sample_c_cd_cl:
 | |
| 
 | |
|     case Intrinsic::amdgcn_image_sample_o:
 | |
|     case Intrinsic::amdgcn_image_sample_cl_o:
 | |
|     case Intrinsic::amdgcn_image_sample_d_o:
 | |
|     case Intrinsic::amdgcn_image_sample_d_cl_o:
 | |
|     case Intrinsic::amdgcn_image_sample_l_o:
 | |
|     case Intrinsic::amdgcn_image_sample_b_o:
 | |
|     case Intrinsic::amdgcn_image_sample_b_cl_o:
 | |
|     case Intrinsic::amdgcn_image_sample_lz_o:
 | |
|     case Intrinsic::amdgcn_image_sample_cd_o:
 | |
|     case Intrinsic::amdgcn_image_sample_cd_cl_o:
 | |
| 
 | |
|     case Intrinsic::amdgcn_image_sample_c_o:
 | |
|     case Intrinsic::amdgcn_image_sample_c_cl_o:
 | |
|     case Intrinsic::amdgcn_image_sample_c_d_o:
 | |
|     case Intrinsic::amdgcn_image_sample_c_d_cl_o:
 | |
|     case Intrinsic::amdgcn_image_sample_c_l_o:
 | |
|     case Intrinsic::amdgcn_image_sample_c_b_o:
 | |
|     case Intrinsic::amdgcn_image_sample_c_b_cl_o:
 | |
|     case Intrinsic::amdgcn_image_sample_c_lz_o:
 | |
|     case Intrinsic::amdgcn_image_sample_c_cd_o:
 | |
|     case Intrinsic::amdgcn_image_sample_c_cd_cl_o:
 | |
| 
 | |
|     case Intrinsic::amdgcn_image_getlod: {
 | |
|       if (VWidth == 1 || !DemandedElts.isMask())
 | |
|         return nullptr;
 | |
| 
 | |
|       // TODO: Handle 3 vectors when supported in code gen.
 | |
|       unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countTrailingOnes());
 | |
|       if (NewNumElts == VWidth)
 | |
|         return nullptr;
 | |
| 
 | |
|       Module *M = II->getParent()->getParent()->getParent();
 | |
|       Type *EltTy = V->getType()->getVectorElementType();
 | |
| 
 | |
|       Type *NewTy = (NewNumElts == 1) ? EltTy :
 | |
|         VectorType::get(EltTy, NewNumElts);
 | |
| 
 | |
|       auto IID = II->getIntrinsicID();
 | |
| 
 | |
|       bool IsBuffer = IID == Intrinsic::amdgcn_buffer_load ||
 | |
|                       IID == Intrinsic::amdgcn_buffer_load_format;
 | |
| 
 | |
|       Function *NewIntrin = IsBuffer ?
 | |
|         Intrinsic::getDeclaration(M, IID, NewTy) :
 | |
|         // Samplers have 3 mangled types.
 | |
|         Intrinsic::getDeclaration(M, IID,
 | |
|                                   { NewTy, II->getArgOperand(0)->getType(),
 | |
|                                       II->getArgOperand(1)->getType()});
 | |
| 
 | |
|       SmallVector<Value *, 5> Args;
 | |
|       for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
 | |
|         Args.push_back(II->getArgOperand(I));
 | |
| 
 | |
|       IRBuilderBase::InsertPointGuard Guard(Builder);
 | |
|       Builder.SetInsertPoint(II);
 | |
| 
 | |
|       CallInst *NewCall = Builder.CreateCall(NewIntrin, Args);
 | |
|       NewCall->takeName(II);
 | |
|       NewCall->copyMetadata(*II);
 | |
| 
 | |
|       if (!IsBuffer) {
 | |
|         ConstantInt *DMask = dyn_cast<ConstantInt>(NewCall->getArgOperand(3));
 | |
|         if (DMask) {
 | |
|           unsigned DMaskVal = DMask->getZExtValue() & 0xf;
 | |
| 
 | |
|           unsigned PopCnt = 0;
 | |
|           unsigned NewDMask = 0;
 | |
|           for (unsigned I = 0; I < 4; ++I) {
 | |
|             const unsigned Bit = 1 << I;
 | |
|             if (!!(DMaskVal & Bit)) {
 | |
|               if (++PopCnt > NewNumElts)
 | |
|                 break;
 | |
| 
 | |
|               NewDMask |= Bit;
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           NewCall->setArgOperand(3, ConstantInt::get(DMask->getType(), NewDMask));
 | |
|         }
 | |
|       }
 | |
| 
 | |
| 
 | |
|       if (NewNumElts == 1) {
 | |
|         return Builder.CreateInsertElement(UndefValue::get(V->getType()),
 | |
|                                            NewCall, static_cast<uint64_t>(0));
 | |
|       }
 | |
| 
 | |
|       SmallVector<uint32_t, 8> EltMask;
 | |
|       for (unsigned I = 0; I < VWidth; ++I)
 | |
|         EltMask.push_back(I);
 | |
| 
 | |
|       Value *Shuffle = Builder.CreateShuffleVector(
 | |
|         NewCall, UndefValue::get(NewTy), EltMask);
 | |
| 
 | |
|       MadeChange = true;
 | |
|       return Shuffle;
 | |
|     }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
|   return MadeChange ? I : nullptr;
 | |
| }
 |