forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3022 lines
		
	
	
		
			123 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3022 lines
		
	
	
		
			123 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file is a part of AddressSanitizer, an address sanity checker.
 | |
| // Details of the algorithm:
 | |
| //  http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/Argument.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/DIBuilder.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/InstVisitor.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/MDBuilder.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/MC/MCSectionMachO.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/DataTypes.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/Endian.h"
 | |
| #include "llvm/Support/ScopedPrinter.h"
 | |
| #include "llvm/Support/SwapByteOrder.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Instrumentation.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/ModuleUtils.h"
 | |
| #include "llvm/Transforms/Utils/PromoteMemToReg.h"
 | |
| #include <algorithm>
 | |
| #include <iomanip>
 | |
| #include <limits>
 | |
| #include <sstream>
 | |
| #include <string>
 | |
| #include <system_error>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "asan"
 | |
| 
 | |
| static const uint64_t kDefaultShadowScale = 3;
 | |
| static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
 | |
| static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
 | |
| static const uint64_t kDynamicShadowSentinel = ~(uint64_t)0;
 | |
| static const uint64_t kIOSShadowOffset32 = 1ULL << 30;
 | |
| static const uint64_t kIOSSimShadowOffset32 = 1ULL << 30;
 | |
| static const uint64_t kIOSSimShadowOffset64 = kDefaultShadowOffset64;
 | |
| static const uint64_t kSmallX86_64ShadowOffset = 0x7FFF8000;  // < 2G.
 | |
| static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
 | |
| static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41;
 | |
| static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
 | |
| static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
 | |
| static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
 | |
| static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
 | |
| static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
 | |
| static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
 | |
| static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
 | |
| static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40;
 | |
| static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
 | |
| // The shadow memory space is dynamically allocated.
 | |
| static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
 | |
| 
 | |
| static const size_t kMinStackMallocSize = 1 << 6;   // 64B
 | |
| static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
 | |
| static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
 | |
| static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
 | |
| 
 | |
| static const char *const kAsanModuleCtorName = "asan.module_ctor";
 | |
| static const char *const kAsanModuleDtorName = "asan.module_dtor";
 | |
| static const uint64_t kAsanCtorAndDtorPriority = 1;
 | |
| static const char *const kAsanReportErrorTemplate = "__asan_report_";
 | |
| static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
 | |
| static const char *const kAsanUnregisterGlobalsName =
 | |
|     "__asan_unregister_globals";
 | |
| static const char *const kAsanRegisterImageGlobalsName =
 | |
|   "__asan_register_image_globals";
 | |
| static const char *const kAsanUnregisterImageGlobalsName =
 | |
|   "__asan_unregister_image_globals";
 | |
| static const char *const kAsanRegisterElfGlobalsName =
 | |
|   "__asan_register_elf_globals";
 | |
| static const char *const kAsanUnregisterElfGlobalsName =
 | |
|   "__asan_unregister_elf_globals";
 | |
| static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
 | |
| static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
 | |
| static const char *const kAsanInitName = "__asan_init";
 | |
| static const char *const kAsanVersionCheckName =
 | |
|     "__asan_version_mismatch_check_v8";
 | |
| static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
 | |
| static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
 | |
| static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
 | |
| static const int kMaxAsanStackMallocSizeClass = 10;
 | |
| static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
 | |
| static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
 | |
| static const char *const kAsanGenPrefix = "__asan_gen_";
 | |
| static const char *const kODRGenPrefix = "__odr_asan_gen_";
 | |
| static const char *const kSanCovGenPrefix = "__sancov_gen_";
 | |
| static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_";
 | |
| static const char *const kAsanPoisonStackMemoryName =
 | |
|     "__asan_poison_stack_memory";
 | |
| static const char *const kAsanUnpoisonStackMemoryName =
 | |
|     "__asan_unpoison_stack_memory";
 | |
| 
 | |
| // ASan version script has __asan_* wildcard. Triple underscore prevents a
 | |
| // linker (gold) warning about attempting to export a local symbol.
 | |
| static const char *const kAsanGlobalsRegisteredFlagName =
 | |
|     "___asan_globals_registered";
 | |
| 
 | |
| static const char *const kAsanOptionDetectUseAfterReturn =
 | |
|     "__asan_option_detect_stack_use_after_return";
 | |
| 
 | |
| static const char *const kAsanShadowMemoryDynamicAddress =
 | |
|     "__asan_shadow_memory_dynamic_address";
 | |
| 
 | |
| static const char *const kAsanAllocaPoison = "__asan_alloca_poison";
 | |
| static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison";
 | |
| 
 | |
| // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
 | |
| static const size_t kNumberOfAccessSizes = 5;
 | |
| 
 | |
| static const unsigned kAllocaRzSize = 32;
 | |
| 
 | |
| // Command-line flags.
 | |
| static cl::opt<bool> ClEnableKasan(
 | |
|     "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
 | |
|     cl::Hidden, cl::init(false));
 | |
| static cl::opt<bool> ClRecover(
 | |
|     "asan-recover",
 | |
|     cl::desc("Enable recovery mode (continue-after-error)."),
 | |
|     cl::Hidden, cl::init(false));
 | |
| 
 | |
| // This flag may need to be replaced with -f[no-]asan-reads.
 | |
| static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
 | |
|                                        cl::desc("instrument read instructions"),
 | |
|                                        cl::Hidden, cl::init(true));
 | |
| static cl::opt<bool> ClInstrumentWrites(
 | |
|     "asan-instrument-writes", cl::desc("instrument write instructions"),
 | |
|     cl::Hidden, cl::init(true));
 | |
| static cl::opt<bool> ClInstrumentAtomics(
 | |
|     "asan-instrument-atomics",
 | |
|     cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
 | |
|     cl::init(true));
 | |
| static cl::opt<bool> ClAlwaysSlowPath(
 | |
|     "asan-always-slow-path",
 | |
|     cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
 | |
|     cl::init(false));
 | |
| static cl::opt<bool> ClForceDynamicShadow(
 | |
|     "asan-force-dynamic-shadow",
 | |
|     cl::desc("Load shadow address into a local variable for each function"),
 | |
|     cl::Hidden, cl::init(false));
 | |
| 
 | |
| // This flag limits the number of instructions to be instrumented
 | |
| // in any given BB. Normally, this should be set to unlimited (INT_MAX),
 | |
| // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
 | |
| // set it to 10000.
 | |
| static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
 | |
|     "asan-max-ins-per-bb", cl::init(10000),
 | |
|     cl::desc("maximal number of instructions to instrument in any given BB"),
 | |
|     cl::Hidden);
 | |
| // This flag may need to be replaced with -f[no]asan-stack.
 | |
| static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
 | |
|                              cl::Hidden, cl::init(true));
 | |
| static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
 | |
|     "asan-max-inline-poisoning-size",
 | |
|     cl::desc(
 | |
|         "Inline shadow poisoning for blocks up to the given size in bytes."),
 | |
|     cl::Hidden, cl::init(64));
 | |
| static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
 | |
|                                       cl::desc("Check stack-use-after-return"),
 | |
|                                       cl::Hidden, cl::init(true));
 | |
| static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
 | |
|                                         cl::desc("Create redzones for byval "
 | |
|                                                  "arguments (extra copy "
 | |
|                                                  "required)"), cl::Hidden,
 | |
|                                         cl::init(true));
 | |
| static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
 | |
|                                      cl::desc("Check stack-use-after-scope"),
 | |
|                                      cl::Hidden, cl::init(false));
 | |
| // This flag may need to be replaced with -f[no]asan-globals.
 | |
| static cl::opt<bool> ClGlobals("asan-globals",
 | |
|                                cl::desc("Handle global objects"), cl::Hidden,
 | |
|                                cl::init(true));
 | |
| static cl::opt<bool> ClInitializers("asan-initialization-order",
 | |
|                                     cl::desc("Handle C++ initializer order"),
 | |
|                                     cl::Hidden, cl::init(true));
 | |
| static cl::opt<bool> ClInvalidPointerPairs(
 | |
|     "asan-detect-invalid-pointer-pair",
 | |
|     cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
 | |
|     cl::init(false));
 | |
| static cl::opt<unsigned> ClRealignStack(
 | |
|     "asan-realign-stack",
 | |
|     cl::desc("Realign stack to the value of this flag (power of two)"),
 | |
|     cl::Hidden, cl::init(32));
 | |
| static cl::opt<int> ClInstrumentationWithCallsThreshold(
 | |
|     "asan-instrumentation-with-call-threshold",
 | |
|     cl::desc(
 | |
|         "If the function being instrumented contains more than "
 | |
|         "this number of memory accesses, use callbacks instead of "
 | |
|         "inline checks (-1 means never use callbacks)."),
 | |
|     cl::Hidden, cl::init(7000));
 | |
| static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
 | |
|     "asan-memory-access-callback-prefix",
 | |
|     cl::desc("Prefix for memory access callbacks"), cl::Hidden,
 | |
|     cl::init("__asan_"));
 | |
| static cl::opt<bool>
 | |
|     ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
 | |
|                                cl::desc("instrument dynamic allocas"),
 | |
|                                cl::Hidden, cl::init(true));
 | |
| static cl::opt<bool> ClSkipPromotableAllocas(
 | |
|     "asan-skip-promotable-allocas",
 | |
|     cl::desc("Do not instrument promotable allocas"), cl::Hidden,
 | |
|     cl::init(true));
 | |
| 
 | |
| // These flags allow to change the shadow mapping.
 | |
| // The shadow mapping looks like
 | |
| //    Shadow = (Mem >> scale) + offset
 | |
| static cl::opt<int> ClMappingScale("asan-mapping-scale",
 | |
|                                    cl::desc("scale of asan shadow mapping"),
 | |
|                                    cl::Hidden, cl::init(0));
 | |
| static cl::opt<unsigned long long> ClMappingOffset(
 | |
|     "asan-mapping-offset",
 | |
|     cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), cl::Hidden,
 | |
|     cl::init(0));
 | |
| 
 | |
| // Optimization flags. Not user visible, used mostly for testing
 | |
| // and benchmarking the tool.
 | |
| static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
 | |
|                            cl::Hidden, cl::init(true));
 | |
| static cl::opt<bool> ClOptSameTemp(
 | |
|     "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
 | |
|     cl::Hidden, cl::init(true));
 | |
| static cl::opt<bool> ClOptGlobals("asan-opt-globals",
 | |
|                                   cl::desc("Don't instrument scalar globals"),
 | |
|                                   cl::Hidden, cl::init(true));
 | |
| static cl::opt<bool> ClOptStack(
 | |
|     "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
 | |
|     cl::Hidden, cl::init(false));
 | |
| 
 | |
| static cl::opt<bool> ClDynamicAllocaStack(
 | |
|     "asan-stack-dynamic-alloca",
 | |
|     cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
 | |
|     cl::init(true));
 | |
| 
 | |
| static cl::opt<uint32_t> ClForceExperiment(
 | |
|     "asan-force-experiment",
 | |
|     cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
 | |
|     cl::init(0));
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     ClUsePrivateAliasForGlobals("asan-use-private-alias",
 | |
|                                 cl::desc("Use private aliases for global"
 | |
|                                          " variables"),
 | |
|                                 cl::Hidden, cl::init(false));
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     ClUseGlobalsGC("asan-globals-live-support",
 | |
|                    cl::desc("Use linker features to support dead "
 | |
|                             "code stripping of globals"),
 | |
|                    cl::Hidden, cl::init(true));
 | |
| 
 | |
| // This is on by default even though there is a bug in gold:
 | |
| // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
 | |
| static cl::opt<bool>
 | |
|     ClWithComdat("asan-with-comdat",
 | |
|                  cl::desc("Place ASan constructors in comdat sections"),
 | |
|                  cl::Hidden, cl::init(true));
 | |
| 
 | |
| // Debug flags.
 | |
| static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
 | |
|                             cl::init(0));
 | |
| static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
 | |
|                                  cl::Hidden, cl::init(0));
 | |
| static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
 | |
|                                         cl::desc("Debug func"));
 | |
| static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
 | |
|                                cl::Hidden, cl::init(-1));
 | |
| static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
 | |
|                                cl::Hidden, cl::init(-1));
 | |
| 
 | |
| STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
 | |
| STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
 | |
| STATISTIC(NumOptimizedAccessesToGlobalVar,
 | |
|           "Number of optimized accesses to global vars");
 | |
| STATISTIC(NumOptimizedAccessesToStackVar,
 | |
|           "Number of optimized accesses to stack vars");
 | |
| 
 | |
| namespace {
 | |
| /// Frontend-provided metadata for source location.
 | |
| struct LocationMetadata {
 | |
|   StringRef Filename;
 | |
|   int LineNo;
 | |
|   int ColumnNo;
 | |
| 
 | |
|   LocationMetadata() : Filename(), LineNo(0), ColumnNo(0) {}
 | |
| 
 | |
|   bool empty() const { return Filename.empty(); }
 | |
| 
 | |
|   void parse(MDNode *MDN) {
 | |
|     assert(MDN->getNumOperands() == 3);
 | |
|     MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
 | |
|     Filename = DIFilename->getString();
 | |
|     LineNo =
 | |
|         mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
 | |
|     ColumnNo =
 | |
|         mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Frontend-provided metadata for global variables.
 | |
| class GlobalsMetadata {
 | |
|  public:
 | |
|   struct Entry {
 | |
|     Entry() : SourceLoc(), Name(), IsDynInit(false), IsBlacklisted(false) {}
 | |
|     LocationMetadata SourceLoc;
 | |
|     StringRef Name;
 | |
|     bool IsDynInit;
 | |
|     bool IsBlacklisted;
 | |
|   };
 | |
| 
 | |
|   GlobalsMetadata() : inited_(false) {}
 | |
| 
 | |
|   void reset() {
 | |
|     inited_ = false;
 | |
|     Entries.clear();
 | |
|   }
 | |
| 
 | |
|   void init(Module &M) {
 | |
|     assert(!inited_);
 | |
|     inited_ = true;
 | |
|     NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
 | |
|     if (!Globals) return;
 | |
|     for (auto MDN : Globals->operands()) {
 | |
|       // Metadata node contains the global and the fields of "Entry".
 | |
|       assert(MDN->getNumOperands() == 5);
 | |
|       auto *GV = mdconst::extract_or_null<GlobalVariable>(MDN->getOperand(0));
 | |
|       // The optimizer may optimize away a global entirely.
 | |
|       if (!GV) continue;
 | |
|       // We can already have an entry for GV if it was merged with another
 | |
|       // global.
 | |
|       Entry &E = Entries[GV];
 | |
|       if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
 | |
|         E.SourceLoc.parse(Loc);
 | |
|       if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
 | |
|         E.Name = Name->getString();
 | |
|       ConstantInt *IsDynInit =
 | |
|           mdconst::extract<ConstantInt>(MDN->getOperand(3));
 | |
|       E.IsDynInit |= IsDynInit->isOne();
 | |
|       ConstantInt *IsBlacklisted =
 | |
|           mdconst::extract<ConstantInt>(MDN->getOperand(4));
 | |
|       E.IsBlacklisted |= IsBlacklisted->isOne();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Returns metadata entry for a given global.
 | |
|   Entry get(GlobalVariable *G) const {
 | |
|     auto Pos = Entries.find(G);
 | |
|     return (Pos != Entries.end()) ? Pos->second : Entry();
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   bool inited_;
 | |
|   DenseMap<GlobalVariable *, Entry> Entries;
 | |
| };
 | |
| 
 | |
| /// This struct defines the shadow mapping using the rule:
 | |
| ///   shadow = (mem >> Scale) ADD-or-OR Offset.
 | |
| struct ShadowMapping {
 | |
|   int Scale;
 | |
|   uint64_t Offset;
 | |
|   bool OrShadowOffset;
 | |
| };
 | |
| 
 | |
| static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
 | |
|                                       bool IsKasan) {
 | |
|   bool IsAndroid = TargetTriple.isAndroid();
 | |
|   bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
 | |
|   bool IsFreeBSD = TargetTriple.isOSFreeBSD();
 | |
|   bool IsNetBSD = TargetTriple.isOSNetBSD();
 | |
|   bool IsPS4CPU = TargetTriple.isPS4CPU();
 | |
|   bool IsLinux = TargetTriple.isOSLinux();
 | |
|   bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 ||
 | |
|                  TargetTriple.getArch() == llvm::Triple::ppc64le;
 | |
|   bool IsSystemZ = TargetTriple.getArch() == llvm::Triple::systemz;
 | |
|   bool IsX86 = TargetTriple.getArch() == llvm::Triple::x86;
 | |
|   bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
 | |
|   bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips ||
 | |
|                   TargetTriple.getArch() == llvm::Triple::mipsel;
 | |
|   bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 ||
 | |
|                   TargetTriple.getArch() == llvm::Triple::mips64el;
 | |
|   bool IsAArch64 = TargetTriple.getArch() == llvm::Triple::aarch64;
 | |
|   bool IsWindows = TargetTriple.isOSWindows();
 | |
|   bool IsFuchsia = TargetTriple.isOSFuchsia();
 | |
| 
 | |
|   ShadowMapping Mapping;
 | |
| 
 | |
|   if (LongSize == 32) {
 | |
|     // Android is always PIE, which means that the beginning of the address
 | |
|     // space is always available.
 | |
|     if (IsAndroid)
 | |
|       Mapping.Offset = 0;
 | |
|     else if (IsMIPS32)
 | |
|       Mapping.Offset = kMIPS32_ShadowOffset32;
 | |
|     else if (IsFreeBSD)
 | |
|       Mapping.Offset = kFreeBSD_ShadowOffset32;
 | |
|     else if (IsIOS)
 | |
|       // If we're targeting iOS and x86, the binary is built for iOS simulator.
 | |
|       Mapping.Offset = IsX86 ? kIOSSimShadowOffset32 : kIOSShadowOffset32;
 | |
|     else if (IsWindows)
 | |
|       Mapping.Offset = kWindowsShadowOffset32;
 | |
|     else
 | |
|       Mapping.Offset = kDefaultShadowOffset32;
 | |
|   } else {  // LongSize == 64
 | |
|     // Fuchsia is always PIE, which means that the beginning of the address
 | |
|     // space is always available.
 | |
|     if (IsFuchsia)
 | |
|       Mapping.Offset = 0;
 | |
|     else if (IsPPC64)
 | |
|       Mapping.Offset = kPPC64_ShadowOffset64;
 | |
|     else if (IsSystemZ)
 | |
|       Mapping.Offset = kSystemZ_ShadowOffset64;
 | |
|     else if (IsFreeBSD)
 | |
|       Mapping.Offset = kFreeBSD_ShadowOffset64;
 | |
|     else if (IsNetBSD)
 | |
|       Mapping.Offset = kNetBSD_ShadowOffset64;
 | |
|     else if (IsPS4CPU)
 | |
|       Mapping.Offset = kPS4CPU_ShadowOffset64;
 | |
|     else if (IsLinux && IsX86_64) {
 | |
|       if (IsKasan)
 | |
|         Mapping.Offset = kLinuxKasan_ShadowOffset64;
 | |
|       else
 | |
|         Mapping.Offset = kSmallX86_64ShadowOffset;
 | |
|     } else if (IsWindows && IsX86_64) {
 | |
|       Mapping.Offset = kWindowsShadowOffset64;
 | |
|     } else if (IsMIPS64)
 | |
|       Mapping.Offset = kMIPS64_ShadowOffset64;
 | |
|     else if (IsIOS)
 | |
|       // If we're targeting iOS and x86, the binary is built for iOS simulator.
 | |
|       // We are using dynamic shadow offset on the 64-bit devices.
 | |
|       Mapping.Offset =
 | |
|         IsX86_64 ? kIOSSimShadowOffset64 : kDynamicShadowSentinel;
 | |
|     else if (IsAArch64)
 | |
|       Mapping.Offset = kAArch64_ShadowOffset64;
 | |
|     else
 | |
|       Mapping.Offset = kDefaultShadowOffset64;
 | |
|   }
 | |
| 
 | |
|   if (ClForceDynamicShadow) {
 | |
|     Mapping.Offset = kDynamicShadowSentinel;
 | |
|   }
 | |
| 
 | |
|   Mapping.Scale = kDefaultShadowScale;
 | |
|   if (ClMappingScale.getNumOccurrences() > 0) {
 | |
|     Mapping.Scale = ClMappingScale;
 | |
|   }
 | |
| 
 | |
|   if (ClMappingOffset.getNumOccurrences() > 0) {
 | |
|     Mapping.Offset = ClMappingOffset;
 | |
|   }
 | |
| 
 | |
|   // OR-ing shadow offset if more efficient (at least on x86) if the offset
 | |
|   // is a power of two, but on ppc64 we have to use add since the shadow
 | |
|   // offset is not necessary 1/8-th of the address space.  On SystemZ,
 | |
|   // we could OR the constant in a single instruction, but it's more
 | |
|   // efficient to load it once and use indexed addressing.
 | |
|   Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU &&
 | |
|                            !(Mapping.Offset & (Mapping.Offset - 1)) &&
 | |
|                            Mapping.Offset != kDynamicShadowSentinel;
 | |
| 
 | |
|   return Mapping;
 | |
| }
 | |
| 
 | |
| static size_t RedzoneSizeForScale(int MappingScale) {
 | |
|   // Redzone used for stack and globals is at least 32 bytes.
 | |
|   // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
 | |
|   return std::max(32U, 1U << MappingScale);
 | |
| }
 | |
| 
 | |
| /// AddressSanitizer: instrument the code in module to find memory bugs.
 | |
| struct AddressSanitizer : public FunctionPass {
 | |
|   explicit AddressSanitizer(bool CompileKernel = false, bool Recover = false,
 | |
|                             bool UseAfterScope = false)
 | |
|       : FunctionPass(ID), CompileKernel(CompileKernel || ClEnableKasan),
 | |
|         Recover(Recover || ClRecover),
 | |
|         UseAfterScope(UseAfterScope || ClUseAfterScope),
 | |
|         LocalDynamicShadow(nullptr) {
 | |
|     initializeAddressSanitizerPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
|   StringRef getPassName() const override {
 | |
|     return "AddressSanitizerFunctionPass";
 | |
|   }
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
|   }
 | |
|   uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
 | |
|     uint64_t ArraySize = 1;
 | |
|     if (AI.isArrayAllocation()) {
 | |
|       const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
 | |
|       assert(CI && "non-constant array size");
 | |
|       ArraySize = CI->getZExtValue();
 | |
|     }
 | |
|     Type *Ty = AI.getAllocatedType();
 | |
|     uint64_t SizeInBytes =
 | |
|         AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
 | |
|     return SizeInBytes * ArraySize;
 | |
|   }
 | |
|   /// Check if we want (and can) handle this alloca.
 | |
|   bool isInterestingAlloca(const AllocaInst &AI);
 | |
| 
 | |
|   /// If it is an interesting memory access, return the PointerOperand
 | |
|   /// and set IsWrite/Alignment. Otherwise return nullptr.
 | |
|   /// MaybeMask is an output parameter for the mask Value, if we're looking at a
 | |
|   /// masked load/store.
 | |
|   Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
 | |
|                                    uint64_t *TypeSize, unsigned *Alignment,
 | |
|                                    Value **MaybeMask = nullptr);
 | |
|   void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I,
 | |
|                      bool UseCalls, const DataLayout &DL);
 | |
|   void instrumentPointerComparisonOrSubtraction(Instruction *I);
 | |
|   void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
 | |
|                          Value *Addr, uint32_t TypeSize, bool IsWrite,
 | |
|                          Value *SizeArgument, bool UseCalls, uint32_t Exp);
 | |
|   void instrumentUnusualSizeOrAlignment(Instruction *I,
 | |
|                                         Instruction *InsertBefore, Value *Addr,
 | |
|                                         uint32_t TypeSize, bool IsWrite,
 | |
|                                         Value *SizeArgument, bool UseCalls,
 | |
|                                         uint32_t Exp);
 | |
|   Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
 | |
|                            Value *ShadowValue, uint32_t TypeSize);
 | |
|   Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
 | |
|                                  bool IsWrite, size_t AccessSizeIndex,
 | |
|                                  Value *SizeArgument, uint32_t Exp);
 | |
|   void instrumentMemIntrinsic(MemIntrinsic *MI);
 | |
|   Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
 | |
|   bool runOnFunction(Function &F) override;
 | |
|   bool maybeInsertAsanInitAtFunctionEntry(Function &F);
 | |
|   void maybeInsertDynamicShadowAtFunctionEntry(Function &F);
 | |
|   void markEscapedLocalAllocas(Function &F);
 | |
|   bool doInitialization(Module &M) override;
 | |
|   bool doFinalization(Module &M) override;
 | |
|   static char ID;  // Pass identification, replacement for typeid
 | |
| 
 | |
|   DominatorTree &getDominatorTree() const { return *DT; }
 | |
| 
 | |
|  private:
 | |
|   void initializeCallbacks(Module &M);
 | |
| 
 | |
|   bool LooksLikeCodeInBug11395(Instruction *I);
 | |
|   bool GlobalIsLinkerInitialized(GlobalVariable *G);
 | |
|   bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
 | |
|                     uint64_t TypeSize) const;
 | |
| 
 | |
|   /// Helper to cleanup per-function state.
 | |
|   struct FunctionStateRAII {
 | |
|     AddressSanitizer *Pass;
 | |
|     FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
 | |
|       assert(Pass->ProcessedAllocas.empty() &&
 | |
|              "last pass forgot to clear cache");
 | |
|       assert(!Pass->LocalDynamicShadow);
 | |
|     }
 | |
|     ~FunctionStateRAII() {
 | |
|       Pass->LocalDynamicShadow = nullptr;
 | |
|       Pass->ProcessedAllocas.clear();
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   LLVMContext *C;
 | |
|   Triple TargetTriple;
 | |
|   int LongSize;
 | |
|   bool CompileKernel;
 | |
|   bool Recover;
 | |
|   bool UseAfterScope;
 | |
|   Type *IntptrTy;
 | |
|   ShadowMapping Mapping;
 | |
|   DominatorTree *DT;
 | |
|   Function *AsanHandleNoReturnFunc;
 | |
|   Function *AsanPtrCmpFunction, *AsanPtrSubFunction;
 | |
|   // This array is indexed by AccessIsWrite, Experiment and log2(AccessSize).
 | |
|   Function *AsanErrorCallback[2][2][kNumberOfAccessSizes];
 | |
|   Function *AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
 | |
|   // This array is indexed by AccessIsWrite and Experiment.
 | |
|   Function *AsanErrorCallbackSized[2][2];
 | |
|   Function *AsanMemoryAccessCallbackSized[2][2];
 | |
|   Function *AsanMemmove, *AsanMemcpy, *AsanMemset;
 | |
|   InlineAsm *EmptyAsm;
 | |
|   Value *LocalDynamicShadow;
 | |
|   GlobalsMetadata GlobalsMD;
 | |
|   DenseMap<const AllocaInst *, bool> ProcessedAllocas;
 | |
| 
 | |
|   friend struct FunctionStackPoisoner;
 | |
| };
 | |
| 
 | |
| class AddressSanitizerModule : public ModulePass {
 | |
| public:
 | |
|   explicit AddressSanitizerModule(bool CompileKernel = false,
 | |
|                                   bool Recover = false,
 | |
|                                   bool UseGlobalsGC = true)
 | |
|       : ModulePass(ID), CompileKernel(CompileKernel || ClEnableKasan),
 | |
|         Recover(Recover || ClRecover),
 | |
|         UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC),
 | |
|         // Not a typo: ClWithComdat is almost completely pointless without
 | |
|         // ClUseGlobalsGC (because then it only works on modules without
 | |
|         // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
 | |
|         // and both suffer from gold PR19002 for which UseGlobalsGC constructor
 | |
|         // argument is designed as workaround. Therefore, disable both
 | |
|         // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
 | |
|         // do globals-gc.
 | |
|         UseCtorComdat(UseGlobalsGC && ClWithComdat) {}
 | |
|   bool runOnModule(Module &M) override;
 | |
|   static char ID; // Pass identification, replacement for typeid
 | |
|   StringRef getPassName() const override { return "AddressSanitizerModule"; }
 | |
| 
 | |
| private:
 | |
|   void initializeCallbacks(Module &M);
 | |
| 
 | |
|   bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
 | |
|   void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
 | |
|                              ArrayRef<GlobalVariable *> ExtendedGlobals,
 | |
|                              ArrayRef<Constant *> MetadataInitializers);
 | |
|   void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
 | |
|                             ArrayRef<GlobalVariable *> ExtendedGlobals,
 | |
|                             ArrayRef<Constant *> MetadataInitializers,
 | |
|                             const std::string &UniqueModuleId);
 | |
|   void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
 | |
|                               ArrayRef<GlobalVariable *> ExtendedGlobals,
 | |
|                               ArrayRef<Constant *> MetadataInitializers);
 | |
|   void
 | |
|   InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
 | |
|                                      ArrayRef<GlobalVariable *> ExtendedGlobals,
 | |
|                                      ArrayRef<Constant *> MetadataInitializers);
 | |
| 
 | |
|   GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
 | |
|                                        StringRef OriginalName);
 | |
|   void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
 | |
|                                   StringRef InternalSuffix);
 | |
|   IRBuilder<> CreateAsanModuleDtor(Module &M);
 | |
| 
 | |
|   bool ShouldInstrumentGlobal(GlobalVariable *G);
 | |
|   bool ShouldUseMachOGlobalsSection() const;
 | |
|   StringRef getGlobalMetadataSection() const;
 | |
|   void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
 | |
|   void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
 | |
|   size_t MinRedzoneSizeForGlobal() const {
 | |
|     return RedzoneSizeForScale(Mapping.Scale);
 | |
|   }
 | |
| 
 | |
|   GlobalsMetadata GlobalsMD;
 | |
|   bool CompileKernel;
 | |
|   bool Recover;
 | |
|   bool UseGlobalsGC;
 | |
|   bool UseCtorComdat;
 | |
|   Type *IntptrTy;
 | |
|   LLVMContext *C;
 | |
|   Triple TargetTriple;
 | |
|   ShadowMapping Mapping;
 | |
|   Function *AsanPoisonGlobals;
 | |
|   Function *AsanUnpoisonGlobals;
 | |
|   Function *AsanRegisterGlobals;
 | |
|   Function *AsanUnregisterGlobals;
 | |
|   Function *AsanRegisterImageGlobals;
 | |
|   Function *AsanUnregisterImageGlobals;
 | |
|   Function *AsanRegisterElfGlobals;
 | |
|   Function *AsanUnregisterElfGlobals;
 | |
| 
 | |
|   Function *AsanCtorFunction = nullptr;
 | |
|   Function *AsanDtorFunction = nullptr;
 | |
| };
 | |
| 
 | |
| // Stack poisoning does not play well with exception handling.
 | |
| // When an exception is thrown, we essentially bypass the code
 | |
| // that unpoisones the stack. This is why the run-time library has
 | |
| // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
 | |
| // stack in the interceptor. This however does not work inside the
 | |
| // actual function which catches the exception. Most likely because the
 | |
| // compiler hoists the load of the shadow value somewhere too high.
 | |
| // This causes asan to report a non-existing bug on 453.povray.
 | |
| // It sounds like an LLVM bug.
 | |
| struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
 | |
|   Function &F;
 | |
|   AddressSanitizer &ASan;
 | |
|   DIBuilder DIB;
 | |
|   LLVMContext *C;
 | |
|   Type *IntptrTy;
 | |
|   Type *IntptrPtrTy;
 | |
|   ShadowMapping Mapping;
 | |
| 
 | |
|   SmallVector<AllocaInst *, 16> AllocaVec;
 | |
|   SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
 | |
|   SmallVector<Instruction *, 8> RetVec;
 | |
|   unsigned StackAlignment;
 | |
| 
 | |
|   Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
 | |
|       *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
 | |
|   Function *AsanSetShadowFunc[0x100] = {};
 | |
|   Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
 | |
|   Function *AsanAllocaPoisonFunc, *AsanAllocasUnpoisonFunc;
 | |
| 
 | |
|   // Stores a place and arguments of poisoning/unpoisoning call for alloca.
 | |
|   struct AllocaPoisonCall {
 | |
|     IntrinsicInst *InsBefore;
 | |
|     AllocaInst *AI;
 | |
|     uint64_t Size;
 | |
|     bool DoPoison;
 | |
|   };
 | |
|   SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
 | |
|   SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
 | |
| 
 | |
|   SmallVector<AllocaInst *, 1> DynamicAllocaVec;
 | |
|   SmallVector<IntrinsicInst *, 1> StackRestoreVec;
 | |
|   AllocaInst *DynamicAllocaLayout = nullptr;
 | |
|   IntrinsicInst *LocalEscapeCall = nullptr;
 | |
| 
 | |
|   // Maps Value to an AllocaInst from which the Value is originated.
 | |
|   typedef DenseMap<Value *, AllocaInst *> AllocaForValueMapTy;
 | |
|   AllocaForValueMapTy AllocaForValue;
 | |
| 
 | |
|   bool HasNonEmptyInlineAsm = false;
 | |
|   bool HasReturnsTwiceCall = false;
 | |
|   std::unique_ptr<CallInst> EmptyInlineAsm;
 | |
| 
 | |
|   FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
 | |
|       : F(F),
 | |
|         ASan(ASan),
 | |
|         DIB(*F.getParent(), /*AllowUnresolved*/ false),
 | |
|         C(ASan.C),
 | |
|         IntptrTy(ASan.IntptrTy),
 | |
|         IntptrPtrTy(PointerType::get(IntptrTy, 0)),
 | |
|         Mapping(ASan.Mapping),
 | |
|         StackAlignment(1 << Mapping.Scale),
 | |
|         EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {}
 | |
| 
 | |
|   bool runOnFunction() {
 | |
|     if (!ClStack) return false;
 | |
| 
 | |
|     if (ClRedzoneByvalArgs)
 | |
|       copyArgsPassedByValToAllocas();
 | |
| 
 | |
|     // Collect alloca, ret, lifetime instructions etc.
 | |
|     for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
 | |
| 
 | |
|     if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
 | |
| 
 | |
|     initializeCallbacks(*F.getParent());
 | |
| 
 | |
|     processDynamicAllocas();
 | |
|     processStaticAllocas();
 | |
| 
 | |
|     if (ClDebugStack) {
 | |
|       DEBUG(dbgs() << F);
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Arguments marked with the "byval" attribute are implicitly copied without
 | |
|   // using an alloca instruction.  To produce redzones for those arguments, we
 | |
|   // copy them a second time into memory allocated with an alloca instruction.
 | |
|   void copyArgsPassedByValToAllocas();
 | |
| 
 | |
|   // Finds all Alloca instructions and puts
 | |
|   // poisoned red zones around all of them.
 | |
|   // Then unpoison everything back before the function returns.
 | |
|   void processStaticAllocas();
 | |
|   void processDynamicAllocas();
 | |
| 
 | |
|   void createDynamicAllocasInitStorage();
 | |
| 
 | |
|   // ----------------------- Visitors.
 | |
|   /// \brief Collect all Ret instructions.
 | |
|   void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); }
 | |
| 
 | |
|   /// \brief Collect all Resume instructions.
 | |
|   void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
 | |
| 
 | |
|   /// \brief Collect all CatchReturnInst instructions.
 | |
|   void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
 | |
| 
 | |
|   void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
 | |
|                                         Value *SavedStack) {
 | |
|     IRBuilder<> IRB(InstBefore);
 | |
|     Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
 | |
|     // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
 | |
|     // need to adjust extracted SP to compute the address of the most recent
 | |
|     // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
 | |
|     // this purpose.
 | |
|     if (!isa<ReturnInst>(InstBefore)) {
 | |
|       Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
 | |
|           InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
 | |
|           {IntptrTy});
 | |
| 
 | |
|       Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
 | |
| 
 | |
|       DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
 | |
|                                      DynamicAreaOffset);
 | |
|     }
 | |
| 
 | |
|     IRB.CreateCall(AsanAllocasUnpoisonFunc,
 | |
|                    {IRB.CreateLoad(DynamicAllocaLayout), DynamicAreaPtr});
 | |
|   }
 | |
| 
 | |
|   // Unpoison dynamic allocas redzones.
 | |
|   void unpoisonDynamicAllocas() {
 | |
|     for (auto &Ret : RetVec)
 | |
|       unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
 | |
| 
 | |
|     for (auto &StackRestoreInst : StackRestoreVec)
 | |
|       unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
 | |
|                                        StackRestoreInst->getOperand(0));
 | |
|   }
 | |
| 
 | |
|   // Deploy and poison redzones around dynamic alloca call. To do this, we
 | |
|   // should replace this call with another one with changed parameters and
 | |
|   // replace all its uses with new address, so
 | |
|   //   addr = alloca type, old_size, align
 | |
|   // is replaced by
 | |
|   //   new_size = (old_size + additional_size) * sizeof(type)
 | |
|   //   tmp = alloca i8, new_size, max(align, 32)
 | |
|   //   addr = tmp + 32 (first 32 bytes are for the left redzone).
 | |
|   // Additional_size is added to make new memory allocation contain not only
 | |
|   // requested memory, but also left, partial and right redzones.
 | |
|   void handleDynamicAllocaCall(AllocaInst *AI);
 | |
| 
 | |
|   /// \brief Collect Alloca instructions we want (and can) handle.
 | |
|   void visitAllocaInst(AllocaInst &AI) {
 | |
|     if (!ASan.isInterestingAlloca(AI)) {
 | |
|       if (AI.isStaticAlloca()) {
 | |
|         // Skip over allocas that are present *before* the first instrumented
 | |
|         // alloca, we don't want to move those around.
 | |
|         if (AllocaVec.empty())
 | |
|           return;
 | |
| 
 | |
|         StaticAllocasToMoveUp.push_back(&AI);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     StackAlignment = std::max(StackAlignment, AI.getAlignment());
 | |
|     if (!AI.isStaticAlloca())
 | |
|       DynamicAllocaVec.push_back(&AI);
 | |
|     else
 | |
|       AllocaVec.push_back(&AI);
 | |
|   }
 | |
| 
 | |
|   /// \brief Collect lifetime intrinsic calls to check for use-after-scope
 | |
|   /// errors.
 | |
|   void visitIntrinsicInst(IntrinsicInst &II) {
 | |
|     Intrinsic::ID ID = II.getIntrinsicID();
 | |
|     if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
 | |
|     if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
 | |
|     if (!ASan.UseAfterScope)
 | |
|       return;
 | |
|     if (ID != Intrinsic::lifetime_start && ID != Intrinsic::lifetime_end)
 | |
|       return;
 | |
|     // Found lifetime intrinsic, add ASan instrumentation if necessary.
 | |
|     ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
 | |
|     // If size argument is undefined, don't do anything.
 | |
|     if (Size->isMinusOne()) return;
 | |
|     // Check that size doesn't saturate uint64_t and can
 | |
|     // be stored in IntptrTy.
 | |
|     const uint64_t SizeValue = Size->getValue().getLimitedValue();
 | |
|     if (SizeValue == ~0ULL ||
 | |
|         !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
 | |
|       return;
 | |
|     // Find alloca instruction that corresponds to llvm.lifetime argument.
 | |
|     AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
 | |
|     if (!AI || !ASan.isInterestingAlloca(*AI))
 | |
|       return;
 | |
|     bool DoPoison = (ID == Intrinsic::lifetime_end);
 | |
|     AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
 | |
|     if (AI->isStaticAlloca())
 | |
|       StaticAllocaPoisonCallVec.push_back(APC);
 | |
|     else if (ClInstrumentDynamicAllocas)
 | |
|       DynamicAllocaPoisonCallVec.push_back(APC);
 | |
|   }
 | |
| 
 | |
|   void visitCallSite(CallSite CS) {
 | |
|     Instruction *I = CS.getInstruction();
 | |
|     if (CallInst *CI = dyn_cast<CallInst>(I)) {
 | |
|       HasNonEmptyInlineAsm |=
 | |
|           CI->isInlineAsm() && !CI->isIdenticalTo(EmptyInlineAsm.get());
 | |
|       HasReturnsTwiceCall |= CI->canReturnTwice();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // ---------------------- Helpers.
 | |
|   void initializeCallbacks(Module &M);
 | |
| 
 | |
|   bool doesDominateAllExits(const Instruction *I) const {
 | |
|     for (auto Ret : RetVec) {
 | |
|       if (!ASan.getDominatorTree().dominates(I, Ret)) return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// Finds alloca where the value comes from.
 | |
|   AllocaInst *findAllocaForValue(Value *V);
 | |
| 
 | |
|   // Copies bytes from ShadowBytes into shadow memory for indexes where
 | |
|   // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
 | |
|   // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
 | |
|   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
 | |
|                     IRBuilder<> &IRB, Value *ShadowBase);
 | |
|   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
 | |
|                     size_t Begin, size_t End, IRBuilder<> &IRB,
 | |
|                     Value *ShadowBase);
 | |
|   void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
 | |
|                           ArrayRef<uint8_t> ShadowBytes, size_t Begin,
 | |
|                           size_t End, IRBuilder<> &IRB, Value *ShadowBase);
 | |
| 
 | |
|   void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
 | |
| 
 | |
|   Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
 | |
|                                bool Dynamic);
 | |
|   PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
 | |
|                      Instruction *ThenTerm, Value *ValueIfFalse);
 | |
| };
 | |
| 
 | |
| } // anonymous namespace
 | |
| 
 | |
| char AddressSanitizer::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(
 | |
|     AddressSanitizer, "asan",
 | |
|     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
 | |
|     false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(
 | |
|     AddressSanitizer, "asan",
 | |
|     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
 | |
|     false)
 | |
| FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel,
 | |
|                                                        bool Recover,
 | |
|                                                        bool UseAfterScope) {
 | |
|   assert(!CompileKernel || Recover);
 | |
|   return new AddressSanitizer(CompileKernel, Recover, UseAfterScope);
 | |
| }
 | |
| 
 | |
| char AddressSanitizerModule::ID = 0;
 | |
| INITIALIZE_PASS(
 | |
|     AddressSanitizerModule, "asan-module",
 | |
|     "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
 | |
|     "ModulePass",
 | |
|     false, false)
 | |
| ModulePass *llvm::createAddressSanitizerModulePass(bool CompileKernel,
 | |
|                                                    bool Recover,
 | |
|                                                    bool UseGlobalsGC) {
 | |
|   assert(!CompileKernel || Recover);
 | |
|   return new AddressSanitizerModule(CompileKernel, Recover, UseGlobalsGC);
 | |
| }
 | |
| 
 | |
| static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
 | |
|   size_t Res = countTrailingZeros(TypeSize / 8);
 | |
|   assert(Res < kNumberOfAccessSizes);
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| // \brief Create a constant for Str so that we can pass it to the run-time lib.
 | |
| static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str,
 | |
|                                                     bool AllowMerging) {
 | |
|   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
 | |
|   // We use private linkage for module-local strings. If they can be merged
 | |
|   // with another one, we set the unnamed_addr attribute.
 | |
|   GlobalVariable *GV =
 | |
|       new GlobalVariable(M, StrConst->getType(), true,
 | |
|                          GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix);
 | |
|   if (AllowMerging) GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
 | |
|   GV->setAlignment(1);  // Strings may not be merged w/o setting align 1.
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| /// \brief Create a global describing a source location.
 | |
| static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
 | |
|                                                        LocationMetadata MD) {
 | |
|   Constant *LocData[] = {
 | |
|       createPrivateGlobalForString(M, MD.Filename, true),
 | |
|       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
 | |
|       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
 | |
|   };
 | |
|   auto LocStruct = ConstantStruct::getAnon(LocData);
 | |
|   auto GV = new GlobalVariable(M, LocStruct->getType(), true,
 | |
|                                GlobalValue::PrivateLinkage, LocStruct,
 | |
|                                kAsanGenPrefix);
 | |
|   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| /// \brief Check if \p G has been created by a trusted compiler pass.
 | |
| static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
 | |
|   // Do not instrument asan globals.
 | |
|   if (G->getName().startswith(kAsanGenPrefix) ||
 | |
|       G->getName().startswith(kSanCovGenPrefix) ||
 | |
|       G->getName().startswith(kODRGenPrefix))
 | |
|     return true;
 | |
| 
 | |
|   // Do not instrument gcov counter arrays.
 | |
|   if (G->getName() == "__llvm_gcov_ctr")
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
 | |
|   // Shadow >> scale
 | |
|   Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
 | |
|   if (Mapping.Offset == 0) return Shadow;
 | |
|   // (Shadow >> scale) | offset
 | |
|   Value *ShadowBase;
 | |
|   if (LocalDynamicShadow)
 | |
|     ShadowBase = LocalDynamicShadow;
 | |
|   else
 | |
|     ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
 | |
|   if (Mapping.OrShadowOffset)
 | |
|     return IRB.CreateOr(Shadow, ShadowBase);
 | |
|   else
 | |
|     return IRB.CreateAdd(Shadow, ShadowBase);
 | |
| }
 | |
| 
 | |
| // Instrument memset/memmove/memcpy
 | |
| void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
 | |
|   IRBuilder<> IRB(MI);
 | |
|   if (isa<MemTransferInst>(MI)) {
 | |
|     IRB.CreateCall(
 | |
|         isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
 | |
|         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
 | |
|          IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
 | |
|          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
 | |
|   } else if (isa<MemSetInst>(MI)) {
 | |
|     IRB.CreateCall(
 | |
|         AsanMemset,
 | |
|         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
 | |
|          IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
 | |
|          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
 | |
|   }
 | |
|   MI->eraseFromParent();
 | |
| }
 | |
| 
 | |
| /// Check if we want (and can) handle this alloca.
 | |
| bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
 | |
|   auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
 | |
| 
 | |
|   if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
 | |
|     return PreviouslySeenAllocaInfo->getSecond();
 | |
| 
 | |
|   bool IsInteresting =
 | |
|       (AI.getAllocatedType()->isSized() &&
 | |
|        // alloca() may be called with 0 size, ignore it.
 | |
|        ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
 | |
|        // We are only interested in allocas not promotable to registers.
 | |
|        // Promotable allocas are common under -O0.
 | |
|        (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
 | |
|        // inalloca allocas are not treated as static, and we don't want
 | |
|        // dynamic alloca instrumentation for them as well.
 | |
|        !AI.isUsedWithInAlloca() &&
 | |
|        // swifterror allocas are register promoted by ISel
 | |
|        !AI.isSwiftError());
 | |
| 
 | |
|   ProcessedAllocas[&AI] = IsInteresting;
 | |
|   return IsInteresting;
 | |
| }
 | |
| 
 | |
| Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I,
 | |
|                                                    bool *IsWrite,
 | |
|                                                    uint64_t *TypeSize,
 | |
|                                                    unsigned *Alignment,
 | |
|                                                    Value **MaybeMask) {
 | |
|   // Skip memory accesses inserted by another instrumentation.
 | |
|   if (I->getMetadata("nosanitize")) return nullptr;
 | |
| 
 | |
|   // Do not instrument the load fetching the dynamic shadow address.
 | |
|   if (LocalDynamicShadow == I)
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *PtrOperand = nullptr;
 | |
|   const DataLayout &DL = I->getModule()->getDataLayout();
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|     if (!ClInstrumentReads) return nullptr;
 | |
|     *IsWrite = false;
 | |
|     *TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
 | |
|     *Alignment = LI->getAlignment();
 | |
|     PtrOperand = LI->getPointerOperand();
 | |
|   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | |
|     if (!ClInstrumentWrites) return nullptr;
 | |
|     *IsWrite = true;
 | |
|     *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
 | |
|     *Alignment = SI->getAlignment();
 | |
|     PtrOperand = SI->getPointerOperand();
 | |
|   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
 | |
|     if (!ClInstrumentAtomics) return nullptr;
 | |
|     *IsWrite = true;
 | |
|     *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
 | |
|     *Alignment = 0;
 | |
|     PtrOperand = RMW->getPointerOperand();
 | |
|   } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
 | |
|     if (!ClInstrumentAtomics) return nullptr;
 | |
|     *IsWrite = true;
 | |
|     *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
 | |
|     *Alignment = 0;
 | |
|     PtrOperand = XCHG->getPointerOperand();
 | |
|   } else if (auto CI = dyn_cast<CallInst>(I)) {
 | |
|     auto *F = dyn_cast<Function>(CI->getCalledValue());
 | |
|     if (F && (F->getName().startswith("llvm.masked.load.") ||
 | |
|               F->getName().startswith("llvm.masked.store."))) {
 | |
|       unsigned OpOffset = 0;
 | |
|       if (F->getName().startswith("llvm.masked.store.")) {
 | |
|         if (!ClInstrumentWrites)
 | |
|           return nullptr;
 | |
|         // Masked store has an initial operand for the value.
 | |
|         OpOffset = 1;
 | |
|         *IsWrite = true;
 | |
|       } else {
 | |
|         if (!ClInstrumentReads)
 | |
|           return nullptr;
 | |
|         *IsWrite = false;
 | |
|       }
 | |
| 
 | |
|       auto BasePtr = CI->getOperand(0 + OpOffset);
 | |
|       auto Ty = cast<PointerType>(BasePtr->getType())->getElementType();
 | |
|       *TypeSize = DL.getTypeStoreSizeInBits(Ty);
 | |
|       if (auto AlignmentConstant =
 | |
|               dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
 | |
|         *Alignment = (unsigned)AlignmentConstant->getZExtValue();
 | |
|       else
 | |
|         *Alignment = 1; // No alignment guarantees. We probably got Undef
 | |
|       if (MaybeMask)
 | |
|         *MaybeMask = CI->getOperand(2 + OpOffset);
 | |
|       PtrOperand = BasePtr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (PtrOperand) {
 | |
|     // Do not instrument acesses from different address spaces; we cannot deal
 | |
|     // with them.
 | |
|     Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType());
 | |
|     if (PtrTy->getPointerAddressSpace() != 0)
 | |
|       return nullptr;
 | |
| 
 | |
|     // Ignore swifterror addresses.
 | |
|     // swifterror memory addresses are mem2reg promoted by instruction
 | |
|     // selection. As such they cannot have regular uses like an instrumentation
 | |
|     // function and it makes no sense to track them as memory.
 | |
|     if (PtrOperand->isSwiftError())
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Treat memory accesses to promotable allocas as non-interesting since they
 | |
|   // will not cause memory violations. This greatly speeds up the instrumented
 | |
|   // executable at -O0.
 | |
|   if (ClSkipPromotableAllocas)
 | |
|     if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand))
 | |
|       return isInterestingAlloca(*AI) ? AI : nullptr;
 | |
| 
 | |
|   return PtrOperand;
 | |
| }
 | |
| 
 | |
| static bool isPointerOperand(Value *V) {
 | |
|   return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
 | |
| }
 | |
| 
 | |
| // This is a rough heuristic; it may cause both false positives and
 | |
| // false negatives. The proper implementation requires cooperation with
 | |
| // the frontend.
 | |
| static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) {
 | |
|   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
 | |
|     if (!Cmp->isRelational()) return false;
 | |
|   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
 | |
|     if (BO->getOpcode() != Instruction::Sub) return false;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
|   return isPointerOperand(I->getOperand(0)) &&
 | |
|          isPointerOperand(I->getOperand(1));
 | |
| }
 | |
| 
 | |
| bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
 | |
|   // If a global variable does not have dynamic initialization we don't
 | |
|   // have to instrument it.  However, if a global does not have initializer
 | |
|   // at all, we assume it has dynamic initializer (in other TU).
 | |
|   return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
 | |
| }
 | |
| 
 | |
| void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
 | |
|     Instruction *I) {
 | |
|   IRBuilder<> IRB(I);
 | |
|   Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
 | |
|   Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
 | |
|   for (Value *&i : Param) {
 | |
|     if (i->getType()->isPointerTy())
 | |
|       i = IRB.CreatePointerCast(i, IntptrTy);
 | |
|   }
 | |
|   IRB.CreateCall(F, Param);
 | |
| }
 | |
| 
 | |
| static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
 | |
|                                 Instruction *InsertBefore, Value *Addr,
 | |
|                                 unsigned Alignment, unsigned Granularity,
 | |
|                                 uint32_t TypeSize, bool IsWrite,
 | |
|                                 Value *SizeArgument, bool UseCalls,
 | |
|                                 uint32_t Exp) {
 | |
|   // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
 | |
|   // if the data is properly aligned.
 | |
|   if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
 | |
|        TypeSize == 128) &&
 | |
|       (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
 | |
|     return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
 | |
|                                    nullptr, UseCalls, Exp);
 | |
|   Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
 | |
|                                          IsWrite, nullptr, UseCalls, Exp);
 | |
| }
 | |
| 
 | |
| static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
 | |
|                                         const DataLayout &DL, Type *IntptrTy,
 | |
|                                         Value *Mask, Instruction *I,
 | |
|                                         Value *Addr, unsigned Alignment,
 | |
|                                         unsigned Granularity, uint32_t TypeSize,
 | |
|                                         bool IsWrite, Value *SizeArgument,
 | |
|                                         bool UseCalls, uint32_t Exp) {
 | |
|   auto *VTy = cast<PointerType>(Addr->getType())->getElementType();
 | |
|   uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
 | |
|   unsigned Num = VTy->getVectorNumElements();
 | |
|   auto Zero = ConstantInt::get(IntptrTy, 0);
 | |
|   for (unsigned Idx = 0; Idx < Num; ++Idx) {
 | |
|     Value *InstrumentedAddress = nullptr;
 | |
|     Instruction *InsertBefore = I;
 | |
|     if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
 | |
|       // dyn_cast as we might get UndefValue
 | |
|       if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
 | |
|         if (Masked->isZero())
 | |
|           // Mask is constant false, so no instrumentation needed.
 | |
|           continue;
 | |
|         // If we have a true or undef value, fall through to doInstrumentAddress
 | |
|         // with InsertBefore == I
 | |
|       }
 | |
|     } else {
 | |
|       IRBuilder<> IRB(I);
 | |
|       Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
 | |
|       TerminatorInst *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
 | |
|       InsertBefore = ThenTerm;
 | |
|     }
 | |
| 
 | |
|     IRBuilder<> IRB(InsertBefore);
 | |
|     InstrumentedAddress =
 | |
|         IRB.CreateGEP(Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
 | |
|     doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
 | |
|                         Granularity, ElemTypeSize, IsWrite, SizeArgument,
 | |
|                         UseCalls, Exp);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
 | |
|                                      Instruction *I, bool UseCalls,
 | |
|                                      const DataLayout &DL) {
 | |
|   bool IsWrite = false;
 | |
|   unsigned Alignment = 0;
 | |
|   uint64_t TypeSize = 0;
 | |
|   Value *MaybeMask = nullptr;
 | |
|   Value *Addr =
 | |
|       isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask);
 | |
|   assert(Addr);
 | |
| 
 | |
|   // Optimization experiments.
 | |
|   // The experiments can be used to evaluate potential optimizations that remove
 | |
|   // instrumentation (assess false negatives). Instead of completely removing
 | |
|   // some instrumentation, you set Exp to a non-zero value (mask of optimization
 | |
|   // experiments that want to remove instrumentation of this instruction).
 | |
|   // If Exp is non-zero, this pass will emit special calls into runtime
 | |
|   // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
 | |
|   // make runtime terminate the program in a special way (with a different
 | |
|   // exit status). Then you run the new compiler on a buggy corpus, collect
 | |
|   // the special terminations (ideally, you don't see them at all -- no false
 | |
|   // negatives) and make the decision on the optimization.
 | |
|   uint32_t Exp = ClForceExperiment;
 | |
| 
 | |
|   if (ClOpt && ClOptGlobals) {
 | |
|     // If initialization order checking is disabled, a simple access to a
 | |
|     // dynamically initialized global is always valid.
 | |
|     GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL));
 | |
|     if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
 | |
|         isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
 | |
|       NumOptimizedAccessesToGlobalVar++;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ClOpt && ClOptStack) {
 | |
|     // A direct inbounds access to a stack variable is always valid.
 | |
|     if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
 | |
|         isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
 | |
|       NumOptimizedAccessesToStackVar++;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (IsWrite)
 | |
|     NumInstrumentedWrites++;
 | |
|   else
 | |
|     NumInstrumentedReads++;
 | |
| 
 | |
|   unsigned Granularity = 1 << Mapping.Scale;
 | |
|   if (MaybeMask) {
 | |
|     instrumentMaskedLoadOrStore(this, DL, IntptrTy, MaybeMask, I, Addr,
 | |
|                                 Alignment, Granularity, TypeSize, IsWrite,
 | |
|                                 nullptr, UseCalls, Exp);
 | |
|   } else {
 | |
|     doInstrumentAddress(this, I, I, Addr, Alignment, Granularity, TypeSize,
 | |
|                         IsWrite, nullptr, UseCalls, Exp);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
 | |
|                                                  Value *Addr, bool IsWrite,
 | |
|                                                  size_t AccessSizeIndex,
 | |
|                                                  Value *SizeArgument,
 | |
|                                                  uint32_t Exp) {
 | |
|   IRBuilder<> IRB(InsertBefore);
 | |
|   Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
 | |
|   CallInst *Call = nullptr;
 | |
|   if (SizeArgument) {
 | |
|     if (Exp == 0)
 | |
|       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
 | |
|                             {Addr, SizeArgument});
 | |
|     else
 | |
|       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
 | |
|                             {Addr, SizeArgument, ExpVal});
 | |
|   } else {
 | |
|     if (Exp == 0)
 | |
|       Call =
 | |
|           IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
 | |
|     else
 | |
|       Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
 | |
|                             {Addr, ExpVal});
 | |
|   }
 | |
| 
 | |
|   // We don't do Call->setDoesNotReturn() because the BB already has
 | |
|   // UnreachableInst at the end.
 | |
|   // This EmptyAsm is required to avoid callback merge.
 | |
|   IRB.CreateCall(EmptyAsm, {});
 | |
|   return Call;
 | |
| }
 | |
| 
 | |
| Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
 | |
|                                            Value *ShadowValue,
 | |
|                                            uint32_t TypeSize) {
 | |
|   size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
 | |
|   // Addr & (Granularity - 1)
 | |
|   Value *LastAccessedByte =
 | |
|       IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
 | |
|   // (Addr & (Granularity - 1)) + size - 1
 | |
|   if (TypeSize / 8 > 1)
 | |
|     LastAccessedByte = IRB.CreateAdd(
 | |
|         LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
 | |
|   // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
 | |
|   LastAccessedByte =
 | |
|       IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
 | |
|   // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
 | |
|   return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
 | |
| }
 | |
| 
 | |
| void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
 | |
|                                          Instruction *InsertBefore, Value *Addr,
 | |
|                                          uint32_t TypeSize, bool IsWrite,
 | |
|                                          Value *SizeArgument, bool UseCalls,
 | |
|                                          uint32_t Exp) {
 | |
|   IRBuilder<> IRB(InsertBefore);
 | |
|   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
 | |
|   size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
 | |
| 
 | |
|   if (UseCalls) {
 | |
|     if (Exp == 0)
 | |
|       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
 | |
|                      AddrLong);
 | |
|     else
 | |
|       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
 | |
|                      {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Type *ShadowTy =
 | |
|       IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
 | |
|   Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
 | |
|   Value *ShadowPtr = memToShadow(AddrLong, IRB);
 | |
|   Value *CmpVal = Constant::getNullValue(ShadowTy);
 | |
|   Value *ShadowValue =
 | |
|       IRB.CreateLoad(IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
 | |
| 
 | |
|   Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
 | |
|   size_t Granularity = 1ULL << Mapping.Scale;
 | |
|   TerminatorInst *CrashTerm = nullptr;
 | |
| 
 | |
|   if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
 | |
|     // We use branch weights for the slow path check, to indicate that the slow
 | |
|     // path is rarely taken. This seems to be the case for SPEC benchmarks.
 | |
|     TerminatorInst *CheckTerm = SplitBlockAndInsertIfThen(
 | |
|         Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
 | |
|     assert(cast<BranchInst>(CheckTerm)->isUnconditional());
 | |
|     BasicBlock *NextBB = CheckTerm->getSuccessor(0);
 | |
|     IRB.SetInsertPoint(CheckTerm);
 | |
|     Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
 | |
|     if (Recover) {
 | |
|       CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
 | |
|     } else {
 | |
|       BasicBlock *CrashBlock =
 | |
|         BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
 | |
|       CrashTerm = new UnreachableInst(*C, CrashBlock);
 | |
|       BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
 | |
|       ReplaceInstWithInst(CheckTerm, NewTerm);
 | |
|     }
 | |
|   } else {
 | |
|     CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
 | |
|   }
 | |
| 
 | |
|   Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
 | |
|                                          AccessSizeIndex, SizeArgument, Exp);
 | |
|   Crash->setDebugLoc(OrigIns->getDebugLoc());
 | |
| }
 | |
| 
 | |
| // Instrument unusual size or unusual alignment.
 | |
| // We can not do it with a single check, so we do 1-byte check for the first
 | |
| // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
 | |
| // to report the actual access size.
 | |
| void AddressSanitizer::instrumentUnusualSizeOrAlignment(
 | |
|     Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
 | |
|     bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
 | |
|   IRBuilder<> IRB(InsertBefore);
 | |
|   Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
 | |
|   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
 | |
|   if (UseCalls) {
 | |
|     if (Exp == 0)
 | |
|       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
 | |
|                      {AddrLong, Size});
 | |
|     else
 | |
|       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
 | |
|                      {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
 | |
|   } else {
 | |
|     Value *LastByte = IRB.CreateIntToPtr(
 | |
|         IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
 | |
|         Addr->getType());
 | |
|     instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
 | |
|     instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit,
 | |
|                                                   GlobalValue *ModuleName) {
 | |
|   // Set up the arguments to our poison/unpoison functions.
 | |
|   IRBuilder<> IRB(&GlobalInit.front(),
 | |
|                   GlobalInit.front().getFirstInsertionPt());
 | |
| 
 | |
|   // Add a call to poison all external globals before the given function starts.
 | |
|   Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
 | |
|   IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
 | |
| 
 | |
|   // Add calls to unpoison all globals before each return instruction.
 | |
|   for (auto &BB : GlobalInit.getBasicBlockList())
 | |
|     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
 | |
|       CallInst::Create(AsanUnpoisonGlobals, "", RI);
 | |
| }
 | |
| 
 | |
| void AddressSanitizerModule::createInitializerPoisonCalls(
 | |
|     Module &M, GlobalValue *ModuleName) {
 | |
|   GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
 | |
|   if (!GV)
 | |
|     return;
 | |
| 
 | |
|   ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
 | |
|   if (!CA)
 | |
|     return;
 | |
| 
 | |
|   for (Use &OP : CA->operands()) {
 | |
|     if (isa<ConstantAggregateZero>(OP)) continue;
 | |
|     ConstantStruct *CS = cast<ConstantStruct>(OP);
 | |
| 
 | |
|     // Must have a function or null ptr.
 | |
|     if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
 | |
|       if (F->getName() == kAsanModuleCtorName) continue;
 | |
|       ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
 | |
|       // Don't instrument CTORs that will run before asan.module_ctor.
 | |
|       if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue;
 | |
|       poisonOneInitializer(*F, ModuleName);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
 | |
|   Type *Ty = G->getValueType();
 | |
|   DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
 | |
| 
 | |
|   if (GlobalsMD.get(G).IsBlacklisted) return false;
 | |
|   if (!Ty->isSized()) return false;
 | |
|   if (!G->hasInitializer()) return false;
 | |
|   if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
 | |
|   // Touch only those globals that will not be defined in other modules.
 | |
|   // Don't handle ODR linkage types and COMDATs since other modules may be built
 | |
|   // without ASan.
 | |
|   if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
 | |
|       G->getLinkage() != GlobalVariable::PrivateLinkage &&
 | |
|       G->getLinkage() != GlobalVariable::InternalLinkage)
 | |
|     return false;
 | |
|   if (G->hasComdat()) return false;
 | |
|   // Two problems with thread-locals:
 | |
|   //   - The address of the main thread's copy can't be computed at link-time.
 | |
|   //   - Need to poison all copies, not just the main thread's one.
 | |
|   if (G->isThreadLocal()) return false;
 | |
|   // For now, just ignore this Global if the alignment is large.
 | |
|   if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;
 | |
| 
 | |
|   if (G->hasSection()) {
 | |
|     StringRef Section = G->getSection();
 | |
| 
 | |
|     // Globals from llvm.metadata aren't emitted, do not instrument them.
 | |
|     if (Section == "llvm.metadata") return false;
 | |
|     // Do not instrument globals from special LLVM sections.
 | |
|     if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;
 | |
| 
 | |
|     // Do not instrument function pointers to initialization and termination
 | |
|     // routines: dynamic linker will not properly handle redzones.
 | |
|     if (Section.startswith(".preinit_array") ||
 | |
|         Section.startswith(".init_array") ||
 | |
|         Section.startswith(".fini_array")) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Callbacks put into the CRT initializer/terminator sections
 | |
|     // should not be instrumented.
 | |
|     // See https://code.google.com/p/address-sanitizer/issues/detail?id=305
 | |
|     // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
 | |
|     if (Section.startswith(".CRT")) {
 | |
|       DEBUG(dbgs() << "Ignoring a global initializer callback: " << *G << "\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (TargetTriple.isOSBinFormatMachO()) {
 | |
|       StringRef ParsedSegment, ParsedSection;
 | |
|       unsigned TAA = 0, StubSize = 0;
 | |
|       bool TAAParsed;
 | |
|       std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(
 | |
|           Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize);
 | |
|       assert(ErrorCode.empty() && "Invalid section specifier.");
 | |
| 
 | |
|       // Ignore the globals from the __OBJC section. The ObjC runtime assumes
 | |
|       // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
 | |
|       // them.
 | |
|       if (ParsedSegment == "__OBJC" ||
 | |
|           (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
 | |
|         DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
 | |
|         return false;
 | |
|       }
 | |
|       // See http://code.google.com/p/address-sanitizer/issues/detail?id=32
 | |
|       // Constant CFString instances are compiled in the following way:
 | |
|       //  -- the string buffer is emitted into
 | |
|       //     __TEXT,__cstring,cstring_literals
 | |
|       //  -- the constant NSConstantString structure referencing that buffer
 | |
|       //     is placed into __DATA,__cfstring
 | |
|       // Therefore there's no point in placing redzones into __DATA,__cfstring.
 | |
|       // Moreover, it causes the linker to crash on OS X 10.7
 | |
|       if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
 | |
|         DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
 | |
|         return false;
 | |
|       }
 | |
|       // The linker merges the contents of cstring_literals and removes the
 | |
|       // trailing zeroes.
 | |
|       if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
 | |
|         DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // On Mach-O platforms, we emit global metadata in a separate section of the
 | |
| // binary in order to allow the linker to properly dead strip. This is only
 | |
| // supported on recent versions of ld64.
 | |
| bool AddressSanitizerModule::ShouldUseMachOGlobalsSection() const {
 | |
|   if (!TargetTriple.isOSBinFormatMachO())
 | |
|     return false;
 | |
| 
 | |
|   if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
 | |
|     return true;
 | |
|   if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
 | |
|     return true;
 | |
|   if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| StringRef AddressSanitizerModule::getGlobalMetadataSection() const {
 | |
|   switch (TargetTriple.getObjectFormat()) {
 | |
|   case Triple::COFF:  return ".ASAN$GL";
 | |
|   case Triple::ELF:   return "asan_globals";
 | |
|   case Triple::MachO: return "__DATA,__asan_globals,regular";
 | |
|   default: break;
 | |
|   }
 | |
|   llvm_unreachable("unsupported object format");
 | |
| }
 | |
| 
 | |
| void AddressSanitizerModule::initializeCallbacks(Module &M) {
 | |
|   IRBuilder<> IRB(*C);
 | |
| 
 | |
|   // Declare our poisoning and unpoisoning functions.
 | |
|   AsanPoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | |
|       kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy));
 | |
|   AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
 | |
|   AsanUnpoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | |
|       kAsanUnpoisonGlobalsName, IRB.getVoidTy()));
 | |
|   AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
 | |
| 
 | |
|   // Declare functions that register/unregister globals.
 | |
|   AsanRegisterGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | |
|       kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy));
 | |
|   AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
 | |
|   AsanUnregisterGlobals = checkSanitizerInterfaceFunction(
 | |
|       M.getOrInsertFunction(kAsanUnregisterGlobalsName, IRB.getVoidTy(),
 | |
|                             IntptrTy, IntptrTy));
 | |
|   AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
 | |
| 
 | |
|   // Declare the functions that find globals in a shared object and then invoke
 | |
|   // the (un)register function on them.
 | |
|   AsanRegisterImageGlobals =
 | |
|       checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | |
|           kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy));
 | |
|   AsanRegisterImageGlobals->setLinkage(Function::ExternalLinkage);
 | |
| 
 | |
|   AsanUnregisterImageGlobals =
 | |
|       checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | |
|           kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy));
 | |
|   AsanUnregisterImageGlobals->setLinkage(Function::ExternalLinkage);
 | |
| 
 | |
|   AsanRegisterElfGlobals = checkSanitizerInterfaceFunction(
 | |
|       M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
 | |
|                             IntptrTy, IntptrTy, IntptrTy));
 | |
|   AsanRegisterElfGlobals->setLinkage(Function::ExternalLinkage);
 | |
| 
 | |
|   AsanUnregisterElfGlobals = checkSanitizerInterfaceFunction(
 | |
|       M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
 | |
|                             IntptrTy, IntptrTy, IntptrTy));
 | |
|   AsanUnregisterElfGlobals->setLinkage(Function::ExternalLinkage);
 | |
| }
 | |
| 
 | |
| // Put the metadata and the instrumented global in the same group. This ensures
 | |
| // that the metadata is discarded if the instrumented global is discarded.
 | |
| void AddressSanitizerModule::SetComdatForGlobalMetadata(
 | |
|     GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
 | |
|   Module &M = *G->getParent();
 | |
|   Comdat *C = G->getComdat();
 | |
|   if (!C) {
 | |
|     if (!G->hasName()) {
 | |
|       // If G is unnamed, it must be internal. Give it an artificial name
 | |
|       // so we can put it in a comdat.
 | |
|       assert(G->hasLocalLinkage());
 | |
|       G->setName(Twine(kAsanGenPrefix) + "_anon_global");
 | |
|     }
 | |
| 
 | |
|     if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
 | |
|       std::string Name = G->getName();
 | |
|       Name += InternalSuffix;
 | |
|       C = M.getOrInsertComdat(Name);
 | |
|     } else {
 | |
|       C = M.getOrInsertComdat(G->getName());
 | |
|     }
 | |
| 
 | |
|     // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF.
 | |
|     if (TargetTriple.isOSBinFormatCOFF())
 | |
|       C->setSelectionKind(Comdat::NoDuplicates);
 | |
|     G->setComdat(C);
 | |
|   }
 | |
| 
 | |
|   assert(G->hasComdat());
 | |
|   Metadata->setComdat(G->getComdat());
 | |
| }
 | |
| 
 | |
| // Create a separate metadata global and put it in the appropriate ASan
 | |
| // global registration section.
 | |
| GlobalVariable *
 | |
| AddressSanitizerModule::CreateMetadataGlobal(Module &M, Constant *Initializer,
 | |
|                                              StringRef OriginalName) {
 | |
|   auto Linkage = TargetTriple.isOSBinFormatMachO()
 | |
|                      ? GlobalVariable::InternalLinkage
 | |
|                      : GlobalVariable::PrivateLinkage;
 | |
|   GlobalVariable *Metadata = new GlobalVariable(
 | |
|       M, Initializer->getType(), false, Linkage, Initializer,
 | |
|       Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
 | |
|   Metadata->setSection(getGlobalMetadataSection());
 | |
|   return Metadata;
 | |
| }
 | |
| 
 | |
| IRBuilder<> AddressSanitizerModule::CreateAsanModuleDtor(Module &M) {
 | |
|   AsanDtorFunction =
 | |
|       Function::Create(FunctionType::get(Type::getVoidTy(*C), false),
 | |
|                        GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
 | |
|   BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
 | |
| 
 | |
|   return IRBuilder<>(ReturnInst::Create(*C, AsanDtorBB));
 | |
| }
 | |
| 
 | |
| void AddressSanitizerModule::InstrumentGlobalsCOFF(
 | |
|     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
 | |
|     ArrayRef<Constant *> MetadataInitializers) {
 | |
|   assert(ExtendedGlobals.size() == MetadataInitializers.size());
 | |
|   auto &DL = M.getDataLayout();
 | |
| 
 | |
|   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
 | |
|     Constant *Initializer = MetadataInitializers[i];
 | |
|     GlobalVariable *G = ExtendedGlobals[i];
 | |
|     GlobalVariable *Metadata =
 | |
|         CreateMetadataGlobal(M, Initializer, G->getName());
 | |
| 
 | |
|     // The MSVC linker always inserts padding when linking incrementally. We
 | |
|     // cope with that by aligning each struct to its size, which must be a power
 | |
|     // of two.
 | |
|     unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
 | |
|     assert(isPowerOf2_32(SizeOfGlobalStruct) &&
 | |
|            "global metadata will not be padded appropriately");
 | |
|     Metadata->setAlignment(SizeOfGlobalStruct);
 | |
| 
 | |
|     SetComdatForGlobalMetadata(G, Metadata, "");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AddressSanitizerModule::InstrumentGlobalsELF(
 | |
|     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
 | |
|     ArrayRef<Constant *> MetadataInitializers,
 | |
|     const std::string &UniqueModuleId) {
 | |
|   assert(ExtendedGlobals.size() == MetadataInitializers.size());
 | |
| 
 | |
|   SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
 | |
|   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
 | |
|     GlobalVariable *G = ExtendedGlobals[i];
 | |
|     GlobalVariable *Metadata =
 | |
|         CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
 | |
|     MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
 | |
|     Metadata->setMetadata(LLVMContext::MD_associated, MD);
 | |
|     MetadataGlobals[i] = Metadata;
 | |
| 
 | |
|     SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
 | |
|   }
 | |
| 
 | |
|   // Update llvm.compiler.used, adding the new metadata globals. This is
 | |
|   // needed so that during LTO these variables stay alive.
 | |
|   if (!MetadataGlobals.empty())
 | |
|     appendToCompilerUsed(M, MetadataGlobals);
 | |
| 
 | |
|   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
 | |
|   // to look up the loaded image that contains it. Second, we can store in it
 | |
|   // whether registration has already occurred, to prevent duplicate
 | |
|   // registration.
 | |
|   //
 | |
|   // Common linkage ensures that there is only one global per shared library.
 | |
|   GlobalVariable *RegisteredFlag = new GlobalVariable(
 | |
|       M, IntptrTy, false, GlobalVariable::CommonLinkage,
 | |
|       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
 | |
|   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
 | |
| 
 | |
|   // Create start and stop symbols.
 | |
|   GlobalVariable *StartELFMetadata = new GlobalVariable(
 | |
|       M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
 | |
|       "__start_" + getGlobalMetadataSection());
 | |
|   StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
 | |
|   GlobalVariable *StopELFMetadata = new GlobalVariable(
 | |
|       M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
 | |
|       "__stop_" + getGlobalMetadataSection());
 | |
|   StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
 | |
| 
 | |
|   // Create a call to register the globals with the runtime.
 | |
|   IRB.CreateCall(AsanRegisterElfGlobals,
 | |
|                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
 | |
|                   IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
 | |
|                   IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
 | |
| 
 | |
|   // We also need to unregister globals at the end, e.g., when a shared library
 | |
|   // gets closed.
 | |
|   IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
 | |
|   IRB_Dtor.CreateCall(AsanUnregisterElfGlobals,
 | |
|                       {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
 | |
|                        IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
 | |
|                        IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
 | |
| }
 | |
| 
 | |
| void AddressSanitizerModule::InstrumentGlobalsMachO(
 | |
|     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
 | |
|     ArrayRef<Constant *> MetadataInitializers) {
 | |
|   assert(ExtendedGlobals.size() == MetadataInitializers.size());
 | |
| 
 | |
|   // On recent Mach-O platforms, use a structure which binds the liveness of
 | |
|   // the global variable to the metadata struct. Keep the list of "Liveness" GV
 | |
|   // created to be added to llvm.compiler.used
 | |
|   StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
 | |
|   SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
 | |
| 
 | |
|   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
 | |
|     Constant *Initializer = MetadataInitializers[i];
 | |
|     GlobalVariable *G = ExtendedGlobals[i];
 | |
|     GlobalVariable *Metadata =
 | |
|         CreateMetadataGlobal(M, Initializer, G->getName());
 | |
| 
 | |
|     // On recent Mach-O platforms, we emit the global metadata in a way that
 | |
|     // allows the linker to properly strip dead globals.
 | |
|     auto LivenessBinder =
 | |
|         ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
 | |
|                             ConstantExpr::getPointerCast(Metadata, IntptrTy));
 | |
|     GlobalVariable *Liveness = new GlobalVariable(
 | |
|         M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
 | |
|         Twine("__asan_binder_") + G->getName());
 | |
|     Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
 | |
|     LivenessGlobals[i] = Liveness;
 | |
|   }
 | |
| 
 | |
|   // Update llvm.compiler.used, adding the new liveness globals. This is
 | |
|   // needed so that during LTO these variables stay alive. The alternative
 | |
|   // would be to have the linker handling the LTO symbols, but libLTO
 | |
|   // current API does not expose access to the section for each symbol.
 | |
|   if (!LivenessGlobals.empty())
 | |
|     appendToCompilerUsed(M, LivenessGlobals);
 | |
| 
 | |
|   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
 | |
|   // to look up the loaded image that contains it. Second, we can store in it
 | |
|   // whether registration has already occurred, to prevent duplicate
 | |
|   // registration.
 | |
|   //
 | |
|   // common linkage ensures that there is only one global per shared library.
 | |
|   GlobalVariable *RegisteredFlag = new GlobalVariable(
 | |
|       M, IntptrTy, false, GlobalVariable::CommonLinkage,
 | |
|       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
 | |
|   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
 | |
| 
 | |
|   IRB.CreateCall(AsanRegisterImageGlobals,
 | |
|                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
 | |
| 
 | |
|   // We also need to unregister globals at the end, e.g., when a shared library
 | |
|   // gets closed.
 | |
|   IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
 | |
|   IRB_Dtor.CreateCall(AsanUnregisterImageGlobals,
 | |
|                       {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
 | |
| }
 | |
| 
 | |
| void AddressSanitizerModule::InstrumentGlobalsWithMetadataArray(
 | |
|     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
 | |
|     ArrayRef<Constant *> MetadataInitializers) {
 | |
|   assert(ExtendedGlobals.size() == MetadataInitializers.size());
 | |
|   unsigned N = ExtendedGlobals.size();
 | |
|   assert(N > 0);
 | |
| 
 | |
|   // On platforms that don't have a custom metadata section, we emit an array
 | |
|   // of global metadata structures.
 | |
|   ArrayType *ArrayOfGlobalStructTy =
 | |
|       ArrayType::get(MetadataInitializers[0]->getType(), N);
 | |
|   auto AllGlobals = new GlobalVariable(
 | |
|       M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
 | |
|       ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
 | |
| 
 | |
|   IRB.CreateCall(AsanRegisterGlobals,
 | |
|                  {IRB.CreatePointerCast(AllGlobals, IntptrTy),
 | |
|                   ConstantInt::get(IntptrTy, N)});
 | |
| 
 | |
|   // We also need to unregister globals at the end, e.g., when a shared library
 | |
|   // gets closed.
 | |
|   IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
 | |
|   IRB_Dtor.CreateCall(AsanUnregisterGlobals,
 | |
|                       {IRB.CreatePointerCast(AllGlobals, IntptrTy),
 | |
|                        ConstantInt::get(IntptrTy, N)});
 | |
| }
 | |
| 
 | |
| // This function replaces all global variables with new variables that have
 | |
| // trailing redzones. It also creates a function that poisons
 | |
| // redzones and inserts this function into llvm.global_ctors.
 | |
| // Sets *CtorComdat to true if the global registration code emitted into the
 | |
| // asan constructor is comdat-compatible.
 | |
| bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat) {
 | |
|   *CtorComdat = false;
 | |
|   GlobalsMD.init(M);
 | |
| 
 | |
|   SmallVector<GlobalVariable *, 16> GlobalsToChange;
 | |
| 
 | |
|   for (auto &G : M.globals()) {
 | |
|     if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G);
 | |
|   }
 | |
| 
 | |
|   size_t n = GlobalsToChange.size();
 | |
|   if (n == 0) {
 | |
|     *CtorComdat = true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   auto &DL = M.getDataLayout();
 | |
| 
 | |
|   // A global is described by a structure
 | |
|   //   size_t beg;
 | |
|   //   size_t size;
 | |
|   //   size_t size_with_redzone;
 | |
|   //   const char *name;
 | |
|   //   const char *module_name;
 | |
|   //   size_t has_dynamic_init;
 | |
|   //   void *source_location;
 | |
|   //   size_t odr_indicator;
 | |
|   // We initialize an array of such structures and pass it to a run-time call.
 | |
|   StructType *GlobalStructTy =
 | |
|       StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
 | |
|                       IntptrTy, IntptrTy, IntptrTy);
 | |
|   SmallVector<GlobalVariable *, 16> NewGlobals(n);
 | |
|   SmallVector<Constant *, 16> Initializers(n);
 | |
| 
 | |
|   bool HasDynamicallyInitializedGlobals = false;
 | |
| 
 | |
|   // We shouldn't merge same module names, as this string serves as unique
 | |
|   // module ID in runtime.
 | |
|   GlobalVariable *ModuleName = createPrivateGlobalForString(
 | |
|       M, M.getModuleIdentifier(), /*AllowMerging*/ false);
 | |
| 
 | |
|   for (size_t i = 0; i < n; i++) {
 | |
|     static const uint64_t kMaxGlobalRedzone = 1 << 18;
 | |
|     GlobalVariable *G = GlobalsToChange[i];
 | |
| 
 | |
|     auto MD = GlobalsMD.get(G);
 | |
|     StringRef NameForGlobal = G->getName();
 | |
|     // Create string holding the global name (use global name from metadata
 | |
|     // if it's available, otherwise just write the name of global variable).
 | |
|     GlobalVariable *Name = createPrivateGlobalForString(
 | |
|         M, MD.Name.empty() ? NameForGlobal : MD.Name,
 | |
|         /*AllowMerging*/ true);
 | |
| 
 | |
|     Type *Ty = G->getValueType();
 | |
|     uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
 | |
|     uint64_t MinRZ = MinRedzoneSizeForGlobal();
 | |
|     // MinRZ <= RZ <= kMaxGlobalRedzone
 | |
|     // and trying to make RZ to be ~ 1/4 of SizeInBytes.
 | |
|     uint64_t RZ = std::max(
 | |
|         MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ));
 | |
|     uint64_t RightRedzoneSize = RZ;
 | |
|     // Round up to MinRZ
 | |
|     if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
 | |
|     assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
 | |
|     Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
 | |
| 
 | |
|     StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
 | |
|     Constant *NewInitializer = ConstantStruct::get(
 | |
|         NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
 | |
| 
 | |
|     // Create a new global variable with enough space for a redzone.
 | |
|     GlobalValue::LinkageTypes Linkage = G->getLinkage();
 | |
|     if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
 | |
|       Linkage = GlobalValue::InternalLinkage;
 | |
|     GlobalVariable *NewGlobal =
 | |
|         new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer,
 | |
|                            "", G, G->getThreadLocalMode());
 | |
|     NewGlobal->copyAttributesFrom(G);
 | |
|     NewGlobal->setAlignment(MinRZ);
 | |
| 
 | |
|     // Move null-terminated C strings to "__asan_cstring" section on Darwin.
 | |
|     if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
 | |
|         G->isConstant()) {
 | |
|       auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
 | |
|       if (Seq && Seq->isCString())
 | |
|         NewGlobal->setSection("__TEXT,__asan_cstring,regular");
 | |
|     }
 | |
| 
 | |
|     // Transfer the debug info.  The payload starts at offset zero so we can
 | |
|     // copy the debug info over as is.
 | |
|     SmallVector<DIGlobalVariableExpression *, 1> GVs;
 | |
|     G->getDebugInfo(GVs);
 | |
|     for (auto *GV : GVs)
 | |
|       NewGlobal->addDebugInfo(GV);
 | |
| 
 | |
|     Value *Indices2[2];
 | |
|     Indices2[0] = IRB.getInt32(0);
 | |
|     Indices2[1] = IRB.getInt32(0);
 | |
| 
 | |
|     G->replaceAllUsesWith(
 | |
|         ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
 | |
|     NewGlobal->takeName(G);
 | |
|     G->eraseFromParent();
 | |
|     NewGlobals[i] = NewGlobal;
 | |
| 
 | |
|     Constant *SourceLoc;
 | |
|     if (!MD.SourceLoc.empty()) {
 | |
|       auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
 | |
|       SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
 | |
|     } else {
 | |
|       SourceLoc = ConstantInt::get(IntptrTy, 0);
 | |
|     }
 | |
| 
 | |
|     Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
 | |
|     GlobalValue *InstrumentedGlobal = NewGlobal;
 | |
| 
 | |
|     bool CanUsePrivateAliases =
 | |
|         TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
 | |
|         TargetTriple.isOSBinFormatWasm();
 | |
|     if (CanUsePrivateAliases && ClUsePrivateAliasForGlobals) {
 | |
|       // Create local alias for NewGlobal to avoid crash on ODR between
 | |
|       // instrumented and non-instrumented libraries.
 | |
|       auto *GA = GlobalAlias::create(GlobalValue::InternalLinkage,
 | |
|                                      NameForGlobal + M.getName(), NewGlobal);
 | |
| 
 | |
|       // With local aliases, we need to provide another externally visible
 | |
|       // symbol __odr_asan_XXX to detect ODR violation.
 | |
|       auto *ODRIndicatorSym =
 | |
|           new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
 | |
|                              Constant::getNullValue(IRB.getInt8Ty()),
 | |
|                              kODRGenPrefix + NameForGlobal, nullptr,
 | |
|                              NewGlobal->getThreadLocalMode());
 | |
| 
 | |
|       // Set meaningful attributes for indicator symbol.
 | |
|       ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
 | |
|       ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
 | |
|       ODRIndicatorSym->setAlignment(1);
 | |
|       ODRIndicator = ODRIndicatorSym;
 | |
|       InstrumentedGlobal = GA;
 | |
|     }
 | |
| 
 | |
|     Constant *Initializer = ConstantStruct::get(
 | |
|         GlobalStructTy,
 | |
|         ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
 | |
|         ConstantInt::get(IntptrTy, SizeInBytes),
 | |
|         ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
 | |
|         ConstantExpr::getPointerCast(Name, IntptrTy),
 | |
|         ConstantExpr::getPointerCast(ModuleName, IntptrTy),
 | |
|         ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
 | |
|         ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
 | |
| 
 | |
|     if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
 | |
| 
 | |
|     DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
 | |
| 
 | |
|     Initializers[i] = Initializer;
 | |
|   }
 | |
| 
 | |
|   std::string ELFUniqueModuleId =
 | |
|       (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M)
 | |
|                                                         : "";
 | |
| 
 | |
|   if (!ELFUniqueModuleId.empty()) {
 | |
|     InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId);
 | |
|     *CtorComdat = true;
 | |
|   } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
 | |
|     InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
 | |
|   } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
 | |
|     InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
 | |
|   } else {
 | |
|     InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
 | |
|   }
 | |
| 
 | |
|   // Create calls for poisoning before initializers run and unpoisoning after.
 | |
|   if (HasDynamicallyInitializedGlobals)
 | |
|     createInitializerPoisonCalls(M, ModuleName);
 | |
| 
 | |
|   DEBUG(dbgs() << M);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AddressSanitizerModule::runOnModule(Module &M) {
 | |
|   C = &(M.getContext());
 | |
|   int LongSize = M.getDataLayout().getPointerSizeInBits();
 | |
|   IntptrTy = Type::getIntNTy(*C, LongSize);
 | |
|   TargetTriple = Triple(M.getTargetTriple());
 | |
|   Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel);
 | |
|   initializeCallbacks(M);
 | |
| 
 | |
|   if (CompileKernel)
 | |
|     return false;
 | |
| 
 | |
|   // Create a module constructor. A destructor is created lazily because not all
 | |
|   // platforms, and not all modules need it.
 | |
|   std::tie(AsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions(
 | |
|       M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{},
 | |
|       /*InitArgs=*/{}, kAsanVersionCheckName);
 | |
| 
 | |
|   bool CtorComdat = true;
 | |
|   bool Changed = false;
 | |
|   // TODO(glider): temporarily disabled globals instrumentation for KASan.
 | |
|   if (ClGlobals) {
 | |
|     IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
 | |
|     Changed |= InstrumentGlobals(IRB, M, &CtorComdat);
 | |
|   }
 | |
| 
 | |
|   // Put the constructor and destructor in comdat if both
 | |
|   // (1) global instrumentation is not TU-specific
 | |
|   // (2) target is ELF.
 | |
|   if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
 | |
|     AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
 | |
|     appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority,
 | |
|                         AsanCtorFunction);
 | |
|     if (AsanDtorFunction) {
 | |
|       AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
 | |
|       appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority,
 | |
|                           AsanDtorFunction);
 | |
|     }
 | |
|   } else {
 | |
|     appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority);
 | |
|     if (AsanDtorFunction)
 | |
|       appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority);
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| void AddressSanitizer::initializeCallbacks(Module &M) {
 | |
|   IRBuilder<> IRB(*C);
 | |
|   // Create __asan_report* callbacks.
 | |
|   // IsWrite, TypeSize and Exp are encoded in the function name.
 | |
|   for (int Exp = 0; Exp < 2; Exp++) {
 | |
|     for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
 | |
|       const std::string TypeStr = AccessIsWrite ? "store" : "load";
 | |
|       const std::string ExpStr = Exp ? "exp_" : "";
 | |
|       const std::string SuffixStr = CompileKernel ? "N" : "_n";
 | |
|       const std::string EndingStr = Recover ? "_noabort" : "";
 | |
| 
 | |
|       SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
 | |
|       SmallVector<Type *, 2> Args1{1, IntptrTy};
 | |
|       if (Exp) {
 | |
|         Type *ExpType = Type::getInt32Ty(*C);
 | |
|         Args2.push_back(ExpType);
 | |
|         Args1.push_back(ExpType);
 | |
|       }
 | |
|       AsanErrorCallbackSized[AccessIsWrite][Exp] =
 | |
|           checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | |
|               kAsanReportErrorTemplate + ExpStr + TypeStr + SuffixStr +
 | |
|                   EndingStr,
 | |
|               FunctionType::get(IRB.getVoidTy(), Args2, false)));
 | |
| 
 | |
|       AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] =
 | |
|           checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | |
|               ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
 | |
|               FunctionType::get(IRB.getVoidTy(), Args2, false)));
 | |
| 
 | |
|       for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
 | |
|            AccessSizeIndex++) {
 | |
|         const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
 | |
|         AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
 | |
|             checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | |
|                 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
 | |
|                 FunctionType::get(IRB.getVoidTy(), Args1, false)));
 | |
| 
 | |
|         AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
 | |
|             checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | |
|                 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
 | |
|                 FunctionType::get(IRB.getVoidTy(), Args1, false)));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const std::string MemIntrinCallbackPrefix =
 | |
|       CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
 | |
|   AsanMemmove = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | |
|       MemIntrinCallbackPrefix + "memmove", IRB.getInt8PtrTy(),
 | |
|       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy));
 | |
|   AsanMemcpy = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | |
|       MemIntrinCallbackPrefix + "memcpy", IRB.getInt8PtrTy(),
 | |
|       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy));
 | |
|   AsanMemset = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | |
|       MemIntrinCallbackPrefix + "memset", IRB.getInt8PtrTy(),
 | |
|       IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy));
 | |
| 
 | |
|   AsanHandleNoReturnFunc = checkSanitizerInterfaceFunction(
 | |
|       M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()));
 | |
| 
 | |
|   AsanPtrCmpFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | |
|       kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy));
 | |
|   AsanPtrSubFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | |
|       kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy));
 | |
|   // We insert an empty inline asm after __asan_report* to avoid callback merge.
 | |
|   EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
 | |
|                             StringRef(""), StringRef(""),
 | |
|                             /*hasSideEffects=*/true);
 | |
| }
 | |
| 
 | |
| // virtual
 | |
| bool AddressSanitizer::doInitialization(Module &M) {
 | |
|   // Initialize the private fields. No one has accessed them before.
 | |
|   GlobalsMD.init(M);
 | |
| 
 | |
|   C = &(M.getContext());
 | |
|   LongSize = M.getDataLayout().getPointerSizeInBits();
 | |
|   IntptrTy = Type::getIntNTy(*C, LongSize);
 | |
|   TargetTriple = Triple(M.getTargetTriple());
 | |
| 
 | |
|   Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AddressSanitizer::doFinalization(Module &M) {
 | |
|   GlobalsMD.reset();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
 | |
|   // For each NSObject descendant having a +load method, this method is invoked
 | |
|   // by the ObjC runtime before any of the static constructors is called.
 | |
|   // Therefore we need to instrument such methods with a call to __asan_init
 | |
|   // at the beginning in order to initialize our runtime before any access to
 | |
|   // the shadow memory.
 | |
|   // We cannot just ignore these methods, because they may call other
 | |
|   // instrumented functions.
 | |
|   if (F.getName().find(" load]") != std::string::npos) {
 | |
|     Function *AsanInitFunction =
 | |
|         declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
 | |
|     IRBuilder<> IRB(&F.front(), F.front().begin());
 | |
|     IRB.CreateCall(AsanInitFunction, {});
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
 | |
|   // Generate code only when dynamic addressing is needed.
 | |
|   if (Mapping.Offset != kDynamicShadowSentinel)
 | |
|     return;
 | |
| 
 | |
|   IRBuilder<> IRB(&F.front().front());
 | |
|   Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
 | |
|       kAsanShadowMemoryDynamicAddress, IntptrTy);
 | |
|   LocalDynamicShadow = IRB.CreateLoad(GlobalDynamicAddress);
 | |
| }
 | |
| 
 | |
| void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
 | |
|   // Find the one possible call to llvm.localescape and pre-mark allocas passed
 | |
|   // to it as uninteresting. This assumes we haven't started processing allocas
 | |
|   // yet. This check is done up front because iterating the use list in
 | |
|   // isInterestingAlloca would be algorithmically slower.
 | |
|   assert(ProcessedAllocas.empty() && "must process localescape before allocas");
 | |
| 
 | |
|   // Try to get the declaration of llvm.localescape. If it's not in the module,
 | |
|   // we can exit early.
 | |
|   if (!F.getParent()->getFunction("llvm.localescape")) return;
 | |
| 
 | |
|   // Look for a call to llvm.localescape call in the entry block. It can't be in
 | |
|   // any other block.
 | |
|   for (Instruction &I : F.getEntryBlock()) {
 | |
|     IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
 | |
|     if (II && II->getIntrinsicID() == Intrinsic::localescape) {
 | |
|       // We found a call. Mark all the allocas passed in as uninteresting.
 | |
|       for (Value *Arg : II->arg_operands()) {
 | |
|         AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
 | |
|         assert(AI && AI->isStaticAlloca() &&
 | |
|                "non-static alloca arg to localescape");
 | |
|         ProcessedAllocas[AI] = false;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool AddressSanitizer::runOnFunction(Function &F) {
 | |
|   if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
 | |
|   if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
 | |
|   if (F.getName().startswith("__asan_")) return false;
 | |
| 
 | |
|   bool FunctionModified = false;
 | |
| 
 | |
|   // If needed, insert __asan_init before checking for SanitizeAddress attr.
 | |
|   // This function needs to be called even if the function body is not
 | |
|   // instrumented.  
 | |
|   if (maybeInsertAsanInitAtFunctionEntry(F))
 | |
|     FunctionModified = true;
 | |
|   
 | |
|   // Leave if the function doesn't need instrumentation.
 | |
|   if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
 | |
| 
 | |
|   DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
 | |
| 
 | |
|   initializeCallbacks(*F.getParent());
 | |
|   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
| 
 | |
|   FunctionStateRAII CleanupObj(this);
 | |
| 
 | |
|   maybeInsertDynamicShadowAtFunctionEntry(F);
 | |
| 
 | |
|   // We can't instrument allocas used with llvm.localescape. Only static allocas
 | |
|   // can be passed to that intrinsic.
 | |
|   markEscapedLocalAllocas(F);
 | |
| 
 | |
|   // We want to instrument every address only once per basic block (unless there
 | |
|   // are calls between uses).
 | |
|   SmallSet<Value *, 16> TempsToInstrument;
 | |
|   SmallVector<Instruction *, 16> ToInstrument;
 | |
|   SmallVector<Instruction *, 8> NoReturnCalls;
 | |
|   SmallVector<BasicBlock *, 16> AllBlocks;
 | |
|   SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
 | |
|   int NumAllocas = 0;
 | |
|   bool IsWrite;
 | |
|   unsigned Alignment;
 | |
|   uint64_t TypeSize;
 | |
|   const TargetLibraryInfo *TLI =
 | |
|       &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | |
| 
 | |
|   // Fill the set of memory operations to instrument.
 | |
|   for (auto &BB : F) {
 | |
|     AllBlocks.push_back(&BB);
 | |
|     TempsToInstrument.clear();
 | |
|     int NumInsnsPerBB = 0;
 | |
|     for (auto &Inst : BB) {
 | |
|       if (LooksLikeCodeInBug11395(&Inst)) return false;
 | |
|       Value *MaybeMask = nullptr;
 | |
|       if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize,
 | |
|                                                   &Alignment, &MaybeMask)) {
 | |
|         if (ClOpt && ClOptSameTemp) {
 | |
|           // If we have a mask, skip instrumentation if we've already
 | |
|           // instrumented the full object. But don't add to TempsToInstrument
 | |
|           // because we might get another load/store with a different mask.
 | |
|           if (MaybeMask) {
 | |
|             if (TempsToInstrument.count(Addr))
 | |
|               continue; // We've seen this (whole) temp in the current BB.
 | |
|           } else {
 | |
|             if (!TempsToInstrument.insert(Addr).second)
 | |
|               continue; // We've seen this temp in the current BB.
 | |
|           }
 | |
|         }
 | |
|       } else if (ClInvalidPointerPairs &&
 | |
|                  isInterestingPointerComparisonOrSubtraction(&Inst)) {
 | |
|         PointerComparisonsOrSubtracts.push_back(&Inst);
 | |
|         continue;
 | |
|       } else if (isa<MemIntrinsic>(Inst)) {
 | |
|         // ok, take it.
 | |
|       } else {
 | |
|         if (isa<AllocaInst>(Inst)) NumAllocas++;
 | |
|         CallSite CS(&Inst);
 | |
|         if (CS) {
 | |
|           // A call inside BB.
 | |
|           TempsToInstrument.clear();
 | |
|           if (CS.doesNotReturn()) NoReturnCalls.push_back(CS.getInstruction());
 | |
|         }
 | |
|         if (CallInst *CI = dyn_cast<CallInst>(&Inst))
 | |
|           maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
 | |
|         continue;
 | |
|       }
 | |
|       ToInstrument.push_back(&Inst);
 | |
|       NumInsnsPerBB++;
 | |
|       if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool UseCalls =
 | |
|       CompileKernel ||
 | |
|       (ClInstrumentationWithCallsThreshold >= 0 &&
 | |
|        ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold);
 | |
|   const DataLayout &DL = F.getParent()->getDataLayout();
 | |
|   ObjectSizeOpts ObjSizeOpts;
 | |
|   ObjSizeOpts.RoundToAlign = true;
 | |
|   ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
 | |
| 
 | |
|   // Instrument.
 | |
|   int NumInstrumented = 0;
 | |
|   for (auto Inst : ToInstrument) {
 | |
|     if (ClDebugMin < 0 || ClDebugMax < 0 ||
 | |
|         (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
 | |
|       if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment))
 | |
|         instrumentMop(ObjSizeVis, Inst, UseCalls,
 | |
|                       F.getParent()->getDataLayout());
 | |
|       else
 | |
|         instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
 | |
|     }
 | |
|     NumInstrumented++;
 | |
|   }
 | |
| 
 | |
|   FunctionStackPoisoner FSP(F, *this);
 | |
|   bool ChangedStack = FSP.runOnFunction();
 | |
| 
 | |
|   // We must unpoison the stack before every NoReturn call (throw, _exit, etc).
 | |
|   // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
 | |
|   for (auto CI : NoReturnCalls) {
 | |
|     IRBuilder<> IRB(CI);
 | |
|     IRB.CreateCall(AsanHandleNoReturnFunc, {});
 | |
|   }
 | |
| 
 | |
|   for (auto Inst : PointerComparisonsOrSubtracts) {
 | |
|     instrumentPointerComparisonOrSubtraction(Inst);
 | |
|     NumInstrumented++;
 | |
|   }
 | |
| 
 | |
|   if (NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty())
 | |
|     FunctionModified = true;
 | |
| 
 | |
|   DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
 | |
|                << F << "\n");
 | |
| 
 | |
|   return FunctionModified;
 | |
| }
 | |
| 
 | |
| // Workaround for bug 11395: we don't want to instrument stack in functions
 | |
| // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
 | |
| // FIXME: remove once the bug 11395 is fixed.
 | |
| bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
 | |
|   if (LongSize != 32) return false;
 | |
|   CallInst *CI = dyn_cast<CallInst>(I);
 | |
|   if (!CI || !CI->isInlineAsm()) return false;
 | |
|   if (CI->getNumArgOperands() <= 5) return false;
 | |
|   // We have inline assembly with quite a few arguments.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void FunctionStackPoisoner::initializeCallbacks(Module &M) {
 | |
|   IRBuilder<> IRB(*C);
 | |
|   for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
 | |
|     std::string Suffix = itostr(i);
 | |
|     AsanStackMallocFunc[i] = checkSanitizerInterfaceFunction(
 | |
|         M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy,
 | |
|                               IntptrTy));
 | |
|     AsanStackFreeFunc[i] = checkSanitizerInterfaceFunction(
 | |
|         M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
 | |
|                               IRB.getVoidTy(), IntptrTy, IntptrTy));
 | |
|   }
 | |
|   if (ASan.UseAfterScope) {
 | |
|     AsanPoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
 | |
|         M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(),
 | |
|                               IntptrTy, IntptrTy));
 | |
|     AsanUnpoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
 | |
|         M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(),
 | |
|                               IntptrTy, IntptrTy));
 | |
|   }
 | |
| 
 | |
|   for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
 | |
|     std::ostringstream Name;
 | |
|     Name << kAsanSetShadowPrefix;
 | |
|     Name << std::setw(2) << std::setfill('0') << std::hex << Val;
 | |
|     AsanSetShadowFunc[Val] =
 | |
|         checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | |
|             Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy));
 | |
|   }
 | |
| 
 | |
|   AsanAllocaPoisonFunc = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | |
|       kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy));
 | |
|   AsanAllocasUnpoisonFunc =
 | |
|       checkSanitizerInterfaceFunction(M.getOrInsertFunction(
 | |
|           kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy));
 | |
| }
 | |
| 
 | |
| void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
 | |
|                                                ArrayRef<uint8_t> ShadowBytes,
 | |
|                                                size_t Begin, size_t End,
 | |
|                                                IRBuilder<> &IRB,
 | |
|                                                Value *ShadowBase) {
 | |
|   if (Begin >= End)
 | |
|     return;
 | |
| 
 | |
|   const size_t LargestStoreSizeInBytes =
 | |
|       std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
 | |
| 
 | |
|   const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
 | |
| 
 | |
|   // Poison given range in shadow using larges store size with out leading and
 | |
|   // trailing zeros in ShadowMask. Zeros never change, so they need neither
 | |
|   // poisoning nor up-poisoning. Still we don't mind if some of them get into a
 | |
|   // middle of a store.
 | |
|   for (size_t i = Begin; i < End;) {
 | |
|     if (!ShadowMask[i]) {
 | |
|       assert(!ShadowBytes[i]);
 | |
|       ++i;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     size_t StoreSizeInBytes = LargestStoreSizeInBytes;
 | |
|     // Fit store size into the range.
 | |
|     while (StoreSizeInBytes > End - i)
 | |
|       StoreSizeInBytes /= 2;
 | |
| 
 | |
|     // Minimize store size by trimming trailing zeros.
 | |
|     for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
 | |
|       while (j <= StoreSizeInBytes / 2)
 | |
|         StoreSizeInBytes /= 2;
 | |
|     }
 | |
| 
 | |
|     uint64_t Val = 0;
 | |
|     for (size_t j = 0; j < StoreSizeInBytes; j++) {
 | |
|       if (IsLittleEndian)
 | |
|         Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
 | |
|       else
 | |
|         Val = (Val << 8) | ShadowBytes[i + j];
 | |
|     }
 | |
| 
 | |
|     Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
 | |
|     Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
 | |
|     IRB.CreateAlignedStore(
 | |
|         Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 1);
 | |
| 
 | |
|     i += StoreSizeInBytes;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
 | |
|                                          ArrayRef<uint8_t> ShadowBytes,
 | |
|                                          IRBuilder<> &IRB, Value *ShadowBase) {
 | |
|   copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
 | |
| }
 | |
| 
 | |
| void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
 | |
|                                          ArrayRef<uint8_t> ShadowBytes,
 | |
|                                          size_t Begin, size_t End,
 | |
|                                          IRBuilder<> &IRB, Value *ShadowBase) {
 | |
|   assert(ShadowMask.size() == ShadowBytes.size());
 | |
|   size_t Done = Begin;
 | |
|   for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
 | |
|     if (!ShadowMask[i]) {
 | |
|       assert(!ShadowBytes[i]);
 | |
|       continue;
 | |
|     }
 | |
|     uint8_t Val = ShadowBytes[i];
 | |
|     if (!AsanSetShadowFunc[Val])
 | |
|       continue;
 | |
| 
 | |
|     // Skip same values.
 | |
|     for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
 | |
|     }
 | |
| 
 | |
|     if (j - i >= ClMaxInlinePoisoningSize) {
 | |
|       copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
 | |
|       IRB.CreateCall(AsanSetShadowFunc[Val],
 | |
|                      {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
 | |
|                       ConstantInt::get(IntptrTy, j - i)});
 | |
|       Done = j;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
 | |
| }
 | |
| 
 | |
| // Fake stack allocator (asan_fake_stack.h) has 11 size classes
 | |
| // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
 | |
| static int StackMallocSizeClass(uint64_t LocalStackSize) {
 | |
|   assert(LocalStackSize <= kMaxStackMallocSize);
 | |
|   uint64_t MaxSize = kMinStackMallocSize;
 | |
|   for (int i = 0;; i++, MaxSize *= 2)
 | |
|     if (LocalStackSize <= MaxSize) return i;
 | |
|   llvm_unreachable("impossible LocalStackSize");
 | |
| }
 | |
| 
 | |
| void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
 | |
|   Instruction *CopyInsertPoint = &F.front().front();
 | |
|   if (CopyInsertPoint == ASan.LocalDynamicShadow) {
 | |
|     // Insert after the dynamic shadow location is determined
 | |
|     CopyInsertPoint = CopyInsertPoint->getNextNode();
 | |
|     assert(CopyInsertPoint);
 | |
|   }
 | |
|   IRBuilder<> IRB(CopyInsertPoint);
 | |
|   const DataLayout &DL = F.getParent()->getDataLayout();
 | |
|   for (Argument &Arg : F.args()) {
 | |
|     if (Arg.hasByValAttr()) {
 | |
|       Type *Ty = Arg.getType()->getPointerElementType();
 | |
|       unsigned Align = Arg.getParamAlignment();
 | |
|       if (Align == 0) Align = DL.getABITypeAlignment(Ty);
 | |
| 
 | |
|       const std::string &Name = Arg.hasName() ? Arg.getName().str() :
 | |
|           "Arg" + llvm::to_string(Arg.getArgNo());
 | |
|       AllocaInst *AI = IRB.CreateAlloca(Ty, nullptr, Twine(Name) + ".byval");
 | |
|       AI->setAlignment(Align);
 | |
|       Arg.replaceAllUsesWith(AI);
 | |
| 
 | |
|       uint64_t AllocSize = DL.getTypeAllocSize(Ty);
 | |
|       IRB.CreateMemCpy(AI, &Arg, AllocSize, Align);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
 | |
|                                           Value *ValueIfTrue,
 | |
|                                           Instruction *ThenTerm,
 | |
|                                           Value *ValueIfFalse) {
 | |
|   PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
 | |
|   BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
 | |
|   PHI->addIncoming(ValueIfFalse, CondBlock);
 | |
|   BasicBlock *ThenBlock = ThenTerm->getParent();
 | |
|   PHI->addIncoming(ValueIfTrue, ThenBlock);
 | |
|   return PHI;
 | |
| }
 | |
| 
 | |
| Value *FunctionStackPoisoner::createAllocaForLayout(
 | |
|     IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
 | |
|   AllocaInst *Alloca;
 | |
|   if (Dynamic) {
 | |
|     Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
 | |
|                               ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
 | |
|                               "MyAlloca");
 | |
|   } else {
 | |
|     Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
 | |
|                               nullptr, "MyAlloca");
 | |
|     assert(Alloca->isStaticAlloca());
 | |
|   }
 | |
|   assert((ClRealignStack & (ClRealignStack - 1)) == 0);
 | |
|   size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
 | |
|   Alloca->setAlignment(FrameAlignment);
 | |
|   return IRB.CreatePointerCast(Alloca, IntptrTy);
 | |
| }
 | |
| 
 | |
| void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
 | |
|   BasicBlock &FirstBB = *F.begin();
 | |
|   IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
 | |
|   DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
 | |
|   IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
 | |
|   DynamicAllocaLayout->setAlignment(32);
 | |
| }
 | |
| 
 | |
| void FunctionStackPoisoner::processDynamicAllocas() {
 | |
|   if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
 | |
|     assert(DynamicAllocaPoisonCallVec.empty());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Insert poison calls for lifetime intrinsics for dynamic allocas.
 | |
|   for (const auto &APC : DynamicAllocaPoisonCallVec) {
 | |
|     assert(APC.InsBefore);
 | |
|     assert(APC.AI);
 | |
|     assert(ASan.isInterestingAlloca(*APC.AI));
 | |
|     assert(!APC.AI->isStaticAlloca());
 | |
| 
 | |
|     IRBuilder<> IRB(APC.InsBefore);
 | |
|     poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
 | |
|     // Dynamic allocas will be unpoisoned unconditionally below in
 | |
|     // unpoisonDynamicAllocas.
 | |
|     // Flag that we need unpoison static allocas.
 | |
|   }
 | |
| 
 | |
|   // Handle dynamic allocas.
 | |
|   createDynamicAllocasInitStorage();
 | |
|   for (auto &AI : DynamicAllocaVec)
 | |
|     handleDynamicAllocaCall(AI);
 | |
|   unpoisonDynamicAllocas();
 | |
| }
 | |
| 
 | |
| void FunctionStackPoisoner::processStaticAllocas() {
 | |
|   if (AllocaVec.empty()) {
 | |
|     assert(StaticAllocaPoisonCallVec.empty());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   int StackMallocIdx = -1;
 | |
|   DebugLoc EntryDebugLocation;
 | |
|   if (auto SP = F.getSubprogram())
 | |
|     EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP);
 | |
| 
 | |
|   Instruction *InsBefore = AllocaVec[0];
 | |
|   IRBuilder<> IRB(InsBefore);
 | |
|   IRB.SetCurrentDebugLocation(EntryDebugLocation);
 | |
| 
 | |
|   // Make sure non-instrumented allocas stay in the entry block. Otherwise,
 | |
|   // debug info is broken, because only entry-block allocas are treated as
 | |
|   // regular stack slots.
 | |
|   auto InsBeforeB = InsBefore->getParent();
 | |
|   assert(InsBeforeB == &F.getEntryBlock());
 | |
|   for (auto *AI : StaticAllocasToMoveUp)
 | |
|     if (AI->getParent() == InsBeforeB)
 | |
|       AI->moveBefore(InsBefore);
 | |
| 
 | |
|   // If we have a call to llvm.localescape, keep it in the entry block.
 | |
|   if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
 | |
| 
 | |
|   SmallVector<ASanStackVariableDescription, 16> SVD;
 | |
|   SVD.reserve(AllocaVec.size());
 | |
|   for (AllocaInst *AI : AllocaVec) {
 | |
|     ASanStackVariableDescription D = {AI->getName().data(),
 | |
|                                       ASan.getAllocaSizeInBytes(*AI),
 | |
|                                       0,
 | |
|                                       AI->getAlignment(),
 | |
|                                       AI,
 | |
|                                       0,
 | |
|                                       0};
 | |
|     SVD.push_back(D);
 | |
|   }
 | |
| 
 | |
|   // Minimal header size (left redzone) is 4 pointers,
 | |
|   // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
 | |
|   size_t MinHeaderSize = ASan.LongSize / 2;
 | |
|   const ASanStackFrameLayout &L =
 | |
|       ComputeASanStackFrameLayout(SVD, 1ULL << Mapping.Scale, MinHeaderSize);
 | |
| 
 | |
|   // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
 | |
|   DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
 | |
|   for (auto &Desc : SVD)
 | |
|     AllocaToSVDMap[Desc.AI] = &Desc;
 | |
| 
 | |
|   // Update SVD with information from lifetime intrinsics.
 | |
|   for (const auto &APC : StaticAllocaPoisonCallVec) {
 | |
|     assert(APC.InsBefore);
 | |
|     assert(APC.AI);
 | |
|     assert(ASan.isInterestingAlloca(*APC.AI));
 | |
|     assert(APC.AI->isStaticAlloca());
 | |
| 
 | |
|     ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
 | |
|     Desc.LifetimeSize = Desc.Size;
 | |
|     if (const DILocation *FnLoc = EntryDebugLocation.get()) {
 | |
|       if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
 | |
|         if (LifetimeLoc->getFile() == FnLoc->getFile())
 | |
|           if (unsigned Line = LifetimeLoc->getLine())
 | |
|             Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   auto DescriptionString = ComputeASanStackFrameDescription(SVD);
 | |
|   DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
 | |
|   uint64_t LocalStackSize = L.FrameSize;
 | |
|   bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel &&
 | |
|                        LocalStackSize <= kMaxStackMallocSize;
 | |
|   bool DoDynamicAlloca = ClDynamicAllocaStack;
 | |
|   // Don't do dynamic alloca or stack malloc if:
 | |
|   // 1) There is inline asm: too often it makes assumptions on which registers
 | |
|   //    are available.
 | |
|   // 2) There is a returns_twice call (typically setjmp), which is
 | |
|   //    optimization-hostile, and doesn't play well with introduced indirect
 | |
|   //    register-relative calculation of local variable addresses.
 | |
|   DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
 | |
|   DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
 | |
| 
 | |
|   Value *StaticAlloca =
 | |
|       DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
 | |
| 
 | |
|   Value *FakeStack;
 | |
|   Value *LocalStackBase;
 | |
| 
 | |
|   if (DoStackMalloc) {
 | |
|     // void *FakeStack = __asan_option_detect_stack_use_after_return
 | |
|     //     ? __asan_stack_malloc_N(LocalStackSize)
 | |
|     //     : nullptr;
 | |
|     // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
 | |
|     Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
 | |
|         kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
 | |
|     Value *UseAfterReturnIsEnabled =
 | |
|         IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUseAfterReturn),
 | |
|                          Constant::getNullValue(IRB.getInt32Ty()));
 | |
|     Instruction *Term =
 | |
|         SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
 | |
|     IRBuilder<> IRBIf(Term);
 | |
|     IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
 | |
|     StackMallocIdx = StackMallocSizeClass(LocalStackSize);
 | |
|     assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
 | |
|     Value *FakeStackValue =
 | |
|         IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
 | |
|                          ConstantInt::get(IntptrTy, LocalStackSize));
 | |
|     IRB.SetInsertPoint(InsBefore);
 | |
|     IRB.SetCurrentDebugLocation(EntryDebugLocation);
 | |
|     FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
 | |
|                           ConstantInt::get(IntptrTy, 0));
 | |
| 
 | |
|     Value *NoFakeStack =
 | |
|         IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
 | |
|     Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
 | |
|     IRBIf.SetInsertPoint(Term);
 | |
|     IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
 | |
|     Value *AllocaValue =
 | |
|         DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
 | |
|     IRB.SetInsertPoint(InsBefore);
 | |
|     IRB.SetCurrentDebugLocation(EntryDebugLocation);
 | |
|     LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
 | |
|   } else {
 | |
|     // void *FakeStack = nullptr;
 | |
|     // void *LocalStackBase = alloca(LocalStackSize);
 | |
|     FakeStack = ConstantInt::get(IntptrTy, 0);
 | |
|     LocalStackBase =
 | |
|         DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
 | |
|   }
 | |
| 
 | |
|   // Replace Alloca instructions with base+offset.
 | |
|   for (const auto &Desc : SVD) {
 | |
|     AllocaInst *AI = Desc.AI;
 | |
|     Value *NewAllocaPtr = IRB.CreateIntToPtr(
 | |
|         IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
 | |
|         AI->getType());
 | |
|     replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB, DIExpression::NoDeref);
 | |
|     AI->replaceAllUsesWith(NewAllocaPtr);
 | |
|   }
 | |
| 
 | |
|   // The left-most redzone has enough space for at least 4 pointers.
 | |
|   // Write the Magic value to redzone[0].
 | |
|   Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
 | |
|   IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
 | |
|                   BasePlus0);
 | |
|   // Write the frame description constant to redzone[1].
 | |
|   Value *BasePlus1 = IRB.CreateIntToPtr(
 | |
|       IRB.CreateAdd(LocalStackBase,
 | |
|                     ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
 | |
|       IntptrPtrTy);
 | |
|   GlobalVariable *StackDescriptionGlobal =
 | |
|       createPrivateGlobalForString(*F.getParent(), DescriptionString,
 | |
|                                    /*AllowMerging*/ true);
 | |
|   Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
 | |
|   IRB.CreateStore(Description, BasePlus1);
 | |
|   // Write the PC to redzone[2].
 | |
|   Value *BasePlus2 = IRB.CreateIntToPtr(
 | |
|       IRB.CreateAdd(LocalStackBase,
 | |
|                     ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
 | |
|       IntptrPtrTy);
 | |
|   IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
 | |
| 
 | |
|   const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
 | |
| 
 | |
|   // Poison the stack red zones at the entry.
 | |
|   Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
 | |
|   // As mask we must use most poisoned case: red zones and after scope.
 | |
|   // As bytes we can use either the same or just red zones only.
 | |
|   copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
 | |
| 
 | |
|   if (!StaticAllocaPoisonCallVec.empty()) {
 | |
|     const auto &ShadowInScope = GetShadowBytes(SVD, L);
 | |
| 
 | |
|     // Poison static allocas near lifetime intrinsics.
 | |
|     for (const auto &APC : StaticAllocaPoisonCallVec) {
 | |
|       const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
 | |
|       assert(Desc.Offset % L.Granularity == 0);
 | |
|       size_t Begin = Desc.Offset / L.Granularity;
 | |
|       size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
 | |
| 
 | |
|       IRBuilder<> IRB(APC.InsBefore);
 | |
|       copyToShadow(ShadowAfterScope,
 | |
|                    APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
 | |
|                    IRB, ShadowBase);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
 | |
|   SmallVector<uint8_t, 64> ShadowAfterReturn;
 | |
| 
 | |
|   // (Un)poison the stack before all ret instructions.
 | |
|   for (auto Ret : RetVec) {
 | |
|     IRBuilder<> IRBRet(Ret);
 | |
|     // Mark the current frame as retired.
 | |
|     IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
 | |
|                        BasePlus0);
 | |
|     if (DoStackMalloc) {
 | |
|       assert(StackMallocIdx >= 0);
 | |
|       // if FakeStack != 0  // LocalStackBase == FakeStack
 | |
|       //     // In use-after-return mode, poison the whole stack frame.
 | |
|       //     if StackMallocIdx <= 4
 | |
|       //         // For small sizes inline the whole thing:
 | |
|       //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
 | |
|       //         **SavedFlagPtr(FakeStack) = 0
 | |
|       //     else
 | |
|       //         __asan_stack_free_N(FakeStack, LocalStackSize)
 | |
|       // else
 | |
|       //     <This is not a fake stack; unpoison the redzones>
 | |
|       Value *Cmp =
 | |
|           IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
 | |
|       TerminatorInst *ThenTerm, *ElseTerm;
 | |
|       SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
 | |
| 
 | |
|       IRBuilder<> IRBPoison(ThenTerm);
 | |
|       if (StackMallocIdx <= 4) {
 | |
|         int ClassSize = kMinStackMallocSize << StackMallocIdx;
 | |
|         ShadowAfterReturn.resize(ClassSize / L.Granularity,
 | |
|                                  kAsanStackUseAfterReturnMagic);
 | |
|         copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
 | |
|                      ShadowBase);
 | |
|         Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
 | |
|             FakeStack,
 | |
|             ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
 | |
|         Value *SavedFlagPtr = IRBPoison.CreateLoad(
 | |
|             IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
 | |
|         IRBPoison.CreateStore(
 | |
|             Constant::getNullValue(IRBPoison.getInt8Ty()),
 | |
|             IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
 | |
|       } else {
 | |
|         // For larger frames call __asan_stack_free_*.
 | |
|         IRBPoison.CreateCall(
 | |
|             AsanStackFreeFunc[StackMallocIdx],
 | |
|             {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
 | |
|       }
 | |
| 
 | |
|       IRBuilder<> IRBElse(ElseTerm);
 | |
|       copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
 | |
|     } else {
 | |
|       copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We are done. Remove the old unused alloca instructions.
 | |
|   for (auto AI : AllocaVec) AI->eraseFromParent();
 | |
| }
 | |
| 
 | |
| void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
 | |
|                                          IRBuilder<> &IRB, bool DoPoison) {
 | |
|   // For now just insert the call to ASan runtime.
 | |
|   Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
 | |
|   Value *SizeArg = ConstantInt::get(IntptrTy, Size);
 | |
|   IRB.CreateCall(
 | |
|       DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
 | |
|       {AddrArg, SizeArg});
 | |
| }
 | |
| 
 | |
| // Handling llvm.lifetime intrinsics for a given %alloca:
 | |
| // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
 | |
| // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
 | |
| //     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
 | |
| //     could be poisoned by previous llvm.lifetime.end instruction, as the
 | |
| //     variable may go in and out of scope several times, e.g. in loops).
 | |
| // (3) if we poisoned at least one %alloca in a function,
 | |
| //     unpoison the whole stack frame at function exit.
 | |
| 
 | |
| AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
 | |
|   if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
 | |
|     // We're interested only in allocas we can handle.
 | |
|     return ASan.isInterestingAlloca(*AI) ? AI : nullptr;
 | |
|   // See if we've already calculated (or started to calculate) alloca for a
 | |
|   // given value.
 | |
|   AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
 | |
|   if (I != AllocaForValue.end()) return I->second;
 | |
|   // Store 0 while we're calculating alloca for value V to avoid
 | |
|   // infinite recursion if the value references itself.
 | |
|   AllocaForValue[V] = nullptr;
 | |
|   AllocaInst *Res = nullptr;
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(V))
 | |
|     Res = findAllocaForValue(CI->getOperand(0));
 | |
|   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
 | |
|     for (Value *IncValue : PN->incoming_values()) {
 | |
|       // Allow self-referencing phi-nodes.
 | |
|       if (IncValue == PN) continue;
 | |
|       AllocaInst *IncValueAI = findAllocaForValue(IncValue);
 | |
|       // AI for incoming values should exist and should all be equal.
 | |
|       if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
 | |
|         return nullptr;
 | |
|       Res = IncValueAI;
 | |
|     }
 | |
|   } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) {
 | |
|     Res = findAllocaForValue(EP->getPointerOperand());
 | |
|   } else {
 | |
|     DEBUG(dbgs() << "Alloca search canceled on unknown instruction: " << *V << "\n");
 | |
|   }
 | |
|   if (Res) AllocaForValue[V] = Res;
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
 | |
|   IRBuilder<> IRB(AI);
 | |
| 
 | |
|   const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment());
 | |
|   const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
 | |
| 
 | |
|   Value *Zero = Constant::getNullValue(IntptrTy);
 | |
|   Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
 | |
|   Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
 | |
| 
 | |
|   // Since we need to extend alloca with additional memory to locate
 | |
|   // redzones, and OldSize is number of allocated blocks with
 | |
|   // ElementSize size, get allocated memory size in bytes by
 | |
|   // OldSize * ElementSize.
 | |
|   const unsigned ElementSize =
 | |
|       F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
 | |
|   Value *OldSize =
 | |
|       IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
 | |
|                     ConstantInt::get(IntptrTy, ElementSize));
 | |
| 
 | |
|   // PartialSize = OldSize % 32
 | |
|   Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
 | |
| 
 | |
|   // Misalign = kAllocaRzSize - PartialSize;
 | |
|   Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
 | |
| 
 | |
|   // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
 | |
|   Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
 | |
|   Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
 | |
| 
 | |
|   // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
 | |
|   // Align is added to locate left redzone, PartialPadding for possible
 | |
|   // partial redzone and kAllocaRzSize for right redzone respectively.
 | |
|   Value *AdditionalChunkSize = IRB.CreateAdd(
 | |
|       ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding);
 | |
| 
 | |
|   Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
 | |
| 
 | |
|   // Insert new alloca with new NewSize and Align params.
 | |
|   AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
 | |
|   NewAlloca->setAlignment(Align);
 | |
| 
 | |
|   // NewAddress = Address + Align
 | |
|   Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
 | |
|                                     ConstantInt::get(IntptrTy, Align));
 | |
| 
 | |
|   // Insert __asan_alloca_poison call for new created alloca.
 | |
|   IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
 | |
| 
 | |
|   // Store the last alloca's address to DynamicAllocaLayout. We'll need this
 | |
|   // for unpoisoning stuff.
 | |
|   IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
 | |
| 
 | |
|   Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
 | |
| 
 | |
|   // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
 | |
|   AI->replaceAllUsesWith(NewAddressPtr);
 | |
| 
 | |
|   // We are done. Erase old alloca from parent.
 | |
|   AI->eraseFromParent();
 | |
| }
 | |
| 
 | |
| // isSafeAccess returns true if Addr is always inbounds with respect to its
 | |
| // base object. For example, it is a field access or an array access with
 | |
| // constant inbounds index.
 | |
| bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
 | |
|                                     Value *Addr, uint64_t TypeSize) const {
 | |
|   SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
 | |
|   if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
 | |
|   uint64_t Size = SizeOffset.first.getZExtValue();
 | |
|   int64_t Offset = SizeOffset.second.getSExtValue();
 | |
|   // Three checks are required to ensure safety:
 | |
|   // . Offset >= 0  (since the offset is given from the base ptr)
 | |
|   // . Size >= Offset  (unsigned)
 | |
|   // . Size - Offset >= NeededSize  (unsigned)
 | |
|   return Offset >= 0 && Size >= uint64_t(Offset) &&
 | |
|          Size - uint64_t(Offset) >= TypeSize / 8;
 | |
| }
 |