forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			835 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			835 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- CloneFunction.cpp - Clone a function into another function ---------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the CloneFunctionInto interface, which is used as the
 | |
| // low-level function cloner.  This is used by the CloneFunction and function
 | |
| // inliner to do the dirty work of copying the body of a function around.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DebugInfo.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/ValueMapper.h"
 | |
| #include <map>
 | |
| using namespace llvm;
 | |
| 
 | |
| /// See comments in Cloning.h.
 | |
| BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
 | |
|                                   const Twine &NameSuffix, Function *F,
 | |
|                                   ClonedCodeInfo *CodeInfo,
 | |
|                                   DebugInfoFinder *DIFinder) {
 | |
|   DenseMap<const MDNode *, MDNode *> Cache;
 | |
|   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
 | |
|   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
 | |
| 
 | |
|   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
 | |
|   Module *TheModule = F ? F->getParent() : nullptr;
 | |
| 
 | |
|   // Loop over all instructions, and copy them over.
 | |
|   for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
 | |
|        II != IE; ++II) {
 | |
| 
 | |
|     if (DIFinder && TheModule) {
 | |
|       if (auto *DDI = dyn_cast<DbgDeclareInst>(II))
 | |
|         DIFinder->processDeclare(*TheModule, DDI);
 | |
|       else if (auto *DVI = dyn_cast<DbgValueInst>(II))
 | |
|         DIFinder->processValue(*TheModule, DVI);
 | |
| 
 | |
|       if (auto DbgLoc = II->getDebugLoc())
 | |
|         DIFinder->processLocation(*TheModule, DbgLoc.get());
 | |
|     }
 | |
| 
 | |
|     Instruction *NewInst = II->clone();
 | |
|     if (II->hasName())
 | |
|       NewInst->setName(II->getName()+NameSuffix);
 | |
|     NewBB->getInstList().push_back(NewInst);
 | |
|     VMap[&*II] = NewInst; // Add instruction map to value.
 | |
| 
 | |
|     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
 | |
|     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
 | |
|       if (isa<ConstantInt>(AI->getArraySize()))
 | |
|         hasStaticAllocas = true;
 | |
|       else
 | |
|         hasDynamicAllocas = true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (CodeInfo) {
 | |
|     CodeInfo->ContainsCalls          |= hasCalls;
 | |
|     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
 | |
|     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 
 | |
|                                         BB != &BB->getParent()->getEntryBlock();
 | |
|   }
 | |
|   return NewBB;
 | |
| }
 | |
| 
 | |
| // Clone OldFunc into NewFunc, transforming the old arguments into references to
 | |
| // VMap values.
 | |
| //
 | |
| void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
 | |
|                              ValueToValueMapTy &VMap,
 | |
|                              bool ModuleLevelChanges,
 | |
|                              SmallVectorImpl<ReturnInst*> &Returns,
 | |
|                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
 | |
|                              ValueMapTypeRemapper *TypeMapper,
 | |
|                              ValueMaterializer *Materializer) {
 | |
|   assert(NameSuffix && "NameSuffix cannot be null!");
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   for (const Argument &I : OldFunc->args())
 | |
|     assert(VMap.count(&I) && "No mapping from source argument specified!");
 | |
| #endif
 | |
| 
 | |
|   // Copy all attributes other than those stored in the AttributeList.  We need
 | |
|   // to remap the parameter indices of the AttributeList.
 | |
|   AttributeList NewAttrs = NewFunc->getAttributes();
 | |
|   NewFunc->copyAttributesFrom(OldFunc);
 | |
|   NewFunc->setAttributes(NewAttrs);
 | |
| 
 | |
|   // Fix up the personality function that got copied over.
 | |
|   if (OldFunc->hasPersonalityFn())
 | |
|     NewFunc->setPersonalityFn(
 | |
|         MapValue(OldFunc->getPersonalityFn(), VMap,
 | |
|                  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
 | |
|                  TypeMapper, Materializer));
 | |
| 
 | |
|   SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
 | |
|   AttributeList OldAttrs = OldFunc->getAttributes();
 | |
| 
 | |
|   // Clone any argument attributes that are present in the VMap.
 | |
|   for (const Argument &OldArg : OldFunc->args()) {
 | |
|     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
 | |
|       NewArgAttrs[NewArg->getArgNo()] =
 | |
|           OldAttrs.getParamAttributes(OldArg.getArgNo());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   NewFunc->setAttributes(
 | |
|       AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(),
 | |
|                          OldAttrs.getRetAttributes(), NewArgAttrs));
 | |
| 
 | |
|   bool MustCloneSP =
 | |
|       OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent();
 | |
|   DISubprogram *SP = OldFunc->getSubprogram();
 | |
|   if (SP) {
 | |
|     assert(!MustCloneSP || ModuleLevelChanges);
 | |
|     // Add mappings for some DebugInfo nodes that we don't want duplicated
 | |
|     // even if they're distinct.
 | |
|     auto &MD = VMap.MD();
 | |
|     MD[SP->getUnit()].reset(SP->getUnit());
 | |
|     MD[SP->getType()].reset(SP->getType());
 | |
|     MD[SP->getFile()].reset(SP->getFile());
 | |
|     // If we're not cloning into the same module, no need to clone the
 | |
|     // subprogram
 | |
|     if (!MustCloneSP)
 | |
|       MD[SP].reset(SP);
 | |
|   }
 | |
| 
 | |
|   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
 | |
|   OldFunc->getAllMetadata(MDs);
 | |
|   for (auto MD : MDs) {
 | |
|     NewFunc->addMetadata(
 | |
|         MD.first,
 | |
|         *MapMetadata(MD.second, VMap,
 | |
|                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
 | |
|                      TypeMapper, Materializer));
 | |
|   }
 | |
| 
 | |
|   // When we remap instructions, we want to avoid duplicating inlined
 | |
|   // DISubprograms, so record all subprograms we find as we duplicate
 | |
|   // instructions and then freeze them in the MD map.
 | |
|   // We also record information about dbg.value and dbg.declare to avoid
 | |
|   // duplicating the types.
 | |
|   DebugInfoFinder DIFinder;
 | |
| 
 | |
|   // Loop over all of the basic blocks in the function, cloning them as
 | |
|   // appropriate.  Note that we save BE this way in order to handle cloning of
 | |
|   // recursive functions into themselves.
 | |
|   //
 | |
|   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
 | |
|        BI != BE; ++BI) {
 | |
|     const BasicBlock &BB = *BI;
 | |
| 
 | |
|     // Create a new basic block and copy instructions into it!
 | |
|     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
 | |
|                                       SP ? &DIFinder : nullptr);
 | |
| 
 | |
|     // Add basic block mapping.
 | |
|     VMap[&BB] = CBB;
 | |
| 
 | |
|     // It is only legal to clone a function if a block address within that
 | |
|     // function is never referenced outside of the function.  Given that, we
 | |
|     // want to map block addresses from the old function to block addresses in
 | |
|     // the clone. (This is different from the generic ValueMapper
 | |
|     // implementation, which generates an invalid blockaddress when
 | |
|     // cloning a function.)
 | |
|     if (BB.hasAddressTaken()) {
 | |
|       Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
 | |
|                                               const_cast<BasicBlock*>(&BB));
 | |
|       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
 | |
|     }
 | |
| 
 | |
|     // Note return instructions for the caller.
 | |
|     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
 | |
|       Returns.push_back(RI);
 | |
|   }
 | |
| 
 | |
|   for (DISubprogram *ISP : DIFinder.subprograms()) {
 | |
|     if (ISP != SP) {
 | |
|       VMap.MD()[ISP].reset(ISP);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (auto *Type : DIFinder.types()) {
 | |
|     VMap.MD()[Type].reset(Type);
 | |
|   }
 | |
| 
 | |
|   // Loop over all of the instructions in the function, fixing up operand
 | |
|   // references as we go.  This uses VMap to do all the hard work.
 | |
|   for (Function::iterator BB =
 | |
|            cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
 | |
|                           BE = NewFunc->end();
 | |
|        BB != BE; ++BB)
 | |
|     // Loop over all instructions, fixing each one as we find it...
 | |
|     for (Instruction &II : *BB)
 | |
|       RemapInstruction(&II, VMap,
 | |
|                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
 | |
|                        TypeMapper, Materializer);
 | |
| }
 | |
| 
 | |
| /// Return a copy of the specified function and add it to that function's
 | |
| /// module.  Also, any references specified in the VMap are changed to refer to
 | |
| /// their mapped value instead of the original one.  If any of the arguments to
 | |
| /// the function are in the VMap, the arguments are deleted from the resultant
 | |
| /// function.  The VMap is updated to include mappings from all of the
 | |
| /// instructions and basicblocks in the function from their old to new values.
 | |
| ///
 | |
| Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
 | |
|                               ClonedCodeInfo *CodeInfo) {
 | |
|   std::vector<Type*> ArgTypes;
 | |
| 
 | |
|   // The user might be deleting arguments to the function by specifying them in
 | |
|   // the VMap.  If so, we need to not add the arguments to the arg ty vector
 | |
|   //
 | |
|   for (const Argument &I : F->args())
 | |
|     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
 | |
|       ArgTypes.push_back(I.getType());
 | |
| 
 | |
|   // Create a new function type...
 | |
|   FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
 | |
|                                     ArgTypes, F->getFunctionType()->isVarArg());
 | |
| 
 | |
|   // Create the new function...
 | |
|   Function *NewF =
 | |
|       Function::Create(FTy, F->getLinkage(), F->getName(), F->getParent());
 | |
| 
 | |
|   // Loop over the arguments, copying the names of the mapped arguments over...
 | |
|   Function::arg_iterator DestI = NewF->arg_begin();
 | |
|   for (const Argument & I : F->args())
 | |
|     if (VMap.count(&I) == 0) {     // Is this argument preserved?
 | |
|       DestI->setName(I.getName()); // Copy the name over...
 | |
|       VMap[&I] = &*DestI++;        // Add mapping to VMap
 | |
|     }
 | |
| 
 | |
|   SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
 | |
|   CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "",
 | |
|                     CodeInfo);
 | |
| 
 | |
|   return NewF;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| namespace {
 | |
|   /// This is a private class used to implement CloneAndPruneFunctionInto.
 | |
|   struct PruningFunctionCloner {
 | |
|     Function *NewFunc;
 | |
|     const Function *OldFunc;
 | |
|     ValueToValueMapTy &VMap;
 | |
|     bool ModuleLevelChanges;
 | |
|     const char *NameSuffix;
 | |
|     ClonedCodeInfo *CodeInfo;
 | |
| 
 | |
|   public:
 | |
|     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
 | |
|                           ValueToValueMapTy &valueMap, bool moduleLevelChanges,
 | |
|                           const char *nameSuffix, ClonedCodeInfo *codeInfo)
 | |
|         : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
 | |
|           ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
 | |
|           CodeInfo(codeInfo) {}
 | |
| 
 | |
|     /// The specified block is found to be reachable, clone it and
 | |
|     /// anything that it can reach.
 | |
|     void CloneBlock(const BasicBlock *BB, 
 | |
|                     BasicBlock::const_iterator StartingInst,
 | |
|                     std::vector<const BasicBlock*> &ToClone);
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// The specified block is found to be reachable, clone it and
 | |
| /// anything that it can reach.
 | |
| void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
 | |
|                                        BasicBlock::const_iterator StartingInst,
 | |
|                                        std::vector<const BasicBlock*> &ToClone){
 | |
|   WeakTrackingVH &BBEntry = VMap[BB];
 | |
| 
 | |
|   // Have we already cloned this block?
 | |
|   if (BBEntry) return;
 | |
|   
 | |
|   // Nope, clone it now.
 | |
|   BasicBlock *NewBB;
 | |
|   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
 | |
|   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
 | |
| 
 | |
|   // It is only legal to clone a function if a block address within that
 | |
|   // function is never referenced outside of the function.  Given that, we
 | |
|   // want to map block addresses from the old function to block addresses in
 | |
|   // the clone. (This is different from the generic ValueMapper
 | |
|   // implementation, which generates an invalid blockaddress when
 | |
|   // cloning a function.)
 | |
|   //
 | |
|   // Note that we don't need to fix the mapping for unreachable blocks;
 | |
|   // the default mapping there is safe.
 | |
|   if (BB->hasAddressTaken()) {
 | |
|     Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
 | |
|                                             const_cast<BasicBlock*>(BB));
 | |
|     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
 | |
|   }
 | |
| 
 | |
|   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
 | |
| 
 | |
|   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
 | |
|   // loop doesn't include the terminator.
 | |
|   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
 | |
|        II != IE; ++II) {
 | |
| 
 | |
|     Instruction *NewInst = II->clone();
 | |
| 
 | |
|     // Eagerly remap operands to the newly cloned instruction, except for PHI
 | |
|     // nodes for which we defer processing until we update the CFG.
 | |
|     if (!isa<PHINode>(NewInst)) {
 | |
|       RemapInstruction(NewInst, VMap,
 | |
|                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
 | |
| 
 | |
|       // If we can simplify this instruction to some other value, simply add
 | |
|       // a mapping to that value rather than inserting a new instruction into
 | |
|       // the basic block.
 | |
|       if (Value *V =
 | |
|               SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
 | |
|         // On the off-chance that this simplifies to an instruction in the old
 | |
|         // function, map it back into the new function.
 | |
|         if (NewFunc != OldFunc)
 | |
|           if (Value *MappedV = VMap.lookup(V))
 | |
|             V = MappedV;
 | |
| 
 | |
|         if (!NewInst->mayHaveSideEffects()) {
 | |
|           VMap[&*II] = V;
 | |
|           NewInst->deleteValue();
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (II->hasName())
 | |
|       NewInst->setName(II->getName()+NameSuffix);
 | |
|     VMap[&*II] = NewInst; // Add instruction map to value.
 | |
|     NewBB->getInstList().push_back(NewInst);
 | |
|     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
 | |
| 
 | |
|     if (CodeInfo)
 | |
|       if (auto CS = ImmutableCallSite(&*II))
 | |
|         if (CS.hasOperandBundles())
 | |
|           CodeInfo->OperandBundleCallSites.push_back(NewInst);
 | |
| 
 | |
|     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
 | |
|       if (isa<ConstantInt>(AI->getArraySize()))
 | |
|         hasStaticAllocas = true;
 | |
|       else
 | |
|         hasDynamicAllocas = true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Finally, clone over the terminator.
 | |
|   const TerminatorInst *OldTI = BB->getTerminator();
 | |
|   bool TerminatorDone = false;
 | |
|   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
 | |
|     if (BI->isConditional()) {
 | |
|       // If the condition was a known constant in the callee...
 | |
|       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
 | |
|       // Or is a known constant in the caller...
 | |
|       if (!Cond) {
 | |
|         Value *V = VMap.lookup(BI->getCondition());
 | |
|         Cond = dyn_cast_or_null<ConstantInt>(V);
 | |
|       }
 | |
| 
 | |
|       // Constant fold to uncond branch!
 | |
|       if (Cond) {
 | |
|         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
 | |
|         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
 | |
|         ToClone.push_back(Dest);
 | |
|         TerminatorDone = true;
 | |
|       }
 | |
|     }
 | |
|   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
 | |
|     // If switching on a value known constant in the caller.
 | |
|     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
 | |
|     if (!Cond) { // Or known constant after constant prop in the callee...
 | |
|       Value *V = VMap.lookup(SI->getCondition());
 | |
|       Cond = dyn_cast_or_null<ConstantInt>(V);
 | |
|     }
 | |
|     if (Cond) {     // Constant fold to uncond branch!
 | |
|       SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
 | |
|       BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
 | |
|       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
 | |
|       ToClone.push_back(Dest);
 | |
|       TerminatorDone = true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (!TerminatorDone) {
 | |
|     Instruction *NewInst = OldTI->clone();
 | |
|     if (OldTI->hasName())
 | |
|       NewInst->setName(OldTI->getName()+NameSuffix);
 | |
|     NewBB->getInstList().push_back(NewInst);
 | |
|     VMap[OldTI] = NewInst;             // Add instruction map to value.
 | |
| 
 | |
|     if (CodeInfo)
 | |
|       if (auto CS = ImmutableCallSite(OldTI))
 | |
|         if (CS.hasOperandBundles())
 | |
|           CodeInfo->OperandBundleCallSites.push_back(NewInst);
 | |
| 
 | |
|     // Recursively clone any reachable successor blocks.
 | |
|     const TerminatorInst *TI = BB->getTerminator();
 | |
|     for (const BasicBlock *Succ : TI->successors())
 | |
|       ToClone.push_back(Succ);
 | |
|   }
 | |
|   
 | |
|   if (CodeInfo) {
 | |
|     CodeInfo->ContainsCalls          |= hasCalls;
 | |
|     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
 | |
|     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 
 | |
|       BB != &BB->getParent()->front();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// This works like CloneAndPruneFunctionInto, except that it does not clone the
 | |
| /// entire function. Instead it starts at an instruction provided by the caller
 | |
| /// and copies (and prunes) only the code reachable from that instruction.
 | |
| void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
 | |
|                                      const Instruction *StartingInst,
 | |
|                                      ValueToValueMapTy &VMap,
 | |
|                                      bool ModuleLevelChanges,
 | |
|                                      SmallVectorImpl<ReturnInst *> &Returns,
 | |
|                                      const char *NameSuffix,
 | |
|                                      ClonedCodeInfo *CodeInfo) {
 | |
|   assert(NameSuffix && "NameSuffix cannot be null!");
 | |
| 
 | |
|   ValueMapTypeRemapper *TypeMapper = nullptr;
 | |
|   ValueMaterializer *Materializer = nullptr;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // If the cloning starts at the beginning of the function, verify that
 | |
|   // the function arguments are mapped.
 | |
|   if (!StartingInst)
 | |
|     for (const Argument &II : OldFunc->args())
 | |
|       assert(VMap.count(&II) && "No mapping from source argument specified!");
 | |
| #endif
 | |
| 
 | |
|   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
 | |
|                             NameSuffix, CodeInfo);
 | |
|   const BasicBlock *StartingBB;
 | |
|   if (StartingInst)
 | |
|     StartingBB = StartingInst->getParent();
 | |
|   else {
 | |
|     StartingBB = &OldFunc->getEntryBlock();
 | |
|     StartingInst = &StartingBB->front();
 | |
|   }
 | |
| 
 | |
|   // Clone the entry block, and anything recursively reachable from it.
 | |
|   std::vector<const BasicBlock*> CloneWorklist;
 | |
|   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
 | |
|   while (!CloneWorklist.empty()) {
 | |
|     const BasicBlock *BB = CloneWorklist.back();
 | |
|     CloneWorklist.pop_back();
 | |
|     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
 | |
|   }
 | |
|   
 | |
|   // Loop over all of the basic blocks in the old function.  If the block was
 | |
|   // reachable, we have cloned it and the old block is now in the value map:
 | |
|   // insert it into the new function in the right order.  If not, ignore it.
 | |
|   //
 | |
|   // Defer PHI resolution until rest of function is resolved.
 | |
|   SmallVector<const PHINode*, 16> PHIToResolve;
 | |
|   for (const BasicBlock &BI : *OldFunc) {
 | |
|     Value *V = VMap.lookup(&BI);
 | |
|     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
 | |
|     if (!NewBB) continue;  // Dead block.
 | |
| 
 | |
|     // Add the new block to the new function.
 | |
|     NewFunc->getBasicBlockList().push_back(NewBB);
 | |
| 
 | |
|     // Handle PHI nodes specially, as we have to remove references to dead
 | |
|     // blocks.
 | |
|     for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) {
 | |
|       // PHI nodes may have been remapped to non-PHI nodes by the caller or
 | |
|       // during the cloning process.
 | |
|       if (const PHINode *PN = dyn_cast<PHINode>(I)) {
 | |
|         if (isa<PHINode>(VMap[PN]))
 | |
|           PHIToResolve.push_back(PN);
 | |
|         else
 | |
|           break;
 | |
|       } else {
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Finally, remap the terminator instructions, as those can't be remapped
 | |
|     // until all BBs are mapped.
 | |
|     RemapInstruction(NewBB->getTerminator(), VMap,
 | |
|                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
 | |
|                      TypeMapper, Materializer);
 | |
|   }
 | |
|   
 | |
|   // Defer PHI resolution until rest of function is resolved, PHI resolution
 | |
|   // requires the CFG to be up-to-date.
 | |
|   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
 | |
|     const PHINode *OPN = PHIToResolve[phino];
 | |
|     unsigned NumPreds = OPN->getNumIncomingValues();
 | |
|     const BasicBlock *OldBB = OPN->getParent();
 | |
|     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
 | |
| 
 | |
|     // Map operands for blocks that are live and remove operands for blocks
 | |
|     // that are dead.
 | |
|     for (; phino != PHIToResolve.size() &&
 | |
|          PHIToResolve[phino]->getParent() == OldBB; ++phino) {
 | |
|       OPN = PHIToResolve[phino];
 | |
|       PHINode *PN = cast<PHINode>(VMap[OPN]);
 | |
|       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
 | |
|         Value *V = VMap.lookup(PN->getIncomingBlock(pred));
 | |
|         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
 | |
|           Value *InVal = MapValue(PN->getIncomingValue(pred),
 | |
|                                   VMap, 
 | |
|                         ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
 | |
|           assert(InVal && "Unknown input value?");
 | |
|           PN->setIncomingValue(pred, InVal);
 | |
|           PN->setIncomingBlock(pred, MappedBlock);
 | |
|         } else {
 | |
|           PN->removeIncomingValue(pred, false);
 | |
|           --pred;  // Revisit the next entry.
 | |
|           --e;
 | |
|         }
 | |
|       } 
 | |
|     }
 | |
|     
 | |
|     // The loop above has removed PHI entries for those blocks that are dead
 | |
|     // and has updated others.  However, if a block is live (i.e. copied over)
 | |
|     // but its terminator has been changed to not go to this block, then our
 | |
|     // phi nodes will have invalid entries.  Update the PHI nodes in this
 | |
|     // case.
 | |
|     PHINode *PN = cast<PHINode>(NewBB->begin());
 | |
|     NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
 | |
|     if (NumPreds != PN->getNumIncomingValues()) {
 | |
|       assert(NumPreds < PN->getNumIncomingValues());
 | |
|       // Count how many times each predecessor comes to this block.
 | |
|       std::map<BasicBlock*, unsigned> PredCount;
 | |
|       for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
 | |
|            PI != E; ++PI)
 | |
|         --PredCount[*PI];
 | |
|       
 | |
|       // Figure out how many entries to remove from each PHI.
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         ++PredCount[PN->getIncomingBlock(i)];
 | |
|       
 | |
|       // At this point, the excess predecessor entries are positive in the
 | |
|       // map.  Loop over all of the PHIs and remove excess predecessor
 | |
|       // entries.
 | |
|       BasicBlock::iterator I = NewBB->begin();
 | |
|       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
 | |
|         for (const auto &PCI : PredCount) {
 | |
|           BasicBlock *Pred = PCI.first;
 | |
|           for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
 | |
|             PN->removeIncomingValue(Pred, false);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If the loops above have made these phi nodes have 0 or 1 operand,
 | |
|     // replace them with undef or the input value.  We must do this for
 | |
|     // correctness, because 0-operand phis are not valid.
 | |
|     PN = cast<PHINode>(NewBB->begin());
 | |
|     if (PN->getNumIncomingValues() == 0) {
 | |
|       BasicBlock::iterator I = NewBB->begin();
 | |
|       BasicBlock::const_iterator OldI = OldBB->begin();
 | |
|       while ((PN = dyn_cast<PHINode>(I++))) {
 | |
|         Value *NV = UndefValue::get(PN->getType());
 | |
|         PN->replaceAllUsesWith(NV);
 | |
|         assert(VMap[&*OldI] == PN && "VMap mismatch");
 | |
|         VMap[&*OldI] = NV;
 | |
|         PN->eraseFromParent();
 | |
|         ++OldI;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Make a second pass over the PHINodes now that all of them have been
 | |
|   // remapped into the new function, simplifying the PHINode and performing any
 | |
|   // recursive simplifications exposed. This will transparently update the
 | |
|   // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
 | |
|   // two PHINodes, the iteration over the old PHIs remains valid, and the
 | |
|   // mapping will just map us to the new node (which may not even be a PHI
 | |
|   // node).
 | |
|   const DataLayout &DL = NewFunc->getParent()->getDataLayout();
 | |
|   SmallSetVector<const Value *, 8> Worklist;
 | |
|   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
 | |
|     if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
 | |
|       Worklist.insert(PHIToResolve[Idx]);
 | |
| 
 | |
|   // Note that we must test the size on each iteration, the worklist can grow.
 | |
|   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
 | |
|     const Value *OrigV = Worklist[Idx];
 | |
|     auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
 | |
|     if (!I)
 | |
|       continue;
 | |
| 
 | |
|     // Skip over non-intrinsic callsites, we don't want to remove any nodes from
 | |
|     // the CGSCC.
 | |
|     CallSite CS = CallSite(I);
 | |
|     if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic())
 | |
|       continue;
 | |
| 
 | |
|     // See if this instruction simplifies.
 | |
|     Value *SimpleV = SimplifyInstruction(I, DL);
 | |
|     if (!SimpleV)
 | |
|       continue;
 | |
| 
 | |
|     // Stash away all the uses of the old instruction so we can check them for
 | |
|     // recursive simplifications after a RAUW. This is cheaper than checking all
 | |
|     // uses of To on the recursive step in most cases.
 | |
|     for (const User *U : OrigV->users())
 | |
|       Worklist.insert(cast<Instruction>(U));
 | |
| 
 | |
|     // Replace the instruction with its simplified value.
 | |
|     I->replaceAllUsesWith(SimpleV);
 | |
| 
 | |
|     // If the original instruction had no side effects, remove it.
 | |
|     if (isInstructionTriviallyDead(I))
 | |
|       I->eraseFromParent();
 | |
|     else
 | |
|       VMap[OrigV] = I;
 | |
|   }
 | |
| 
 | |
|   // Now that the inlined function body has been fully constructed, go through
 | |
|   // and zap unconditional fall-through branches. This happens all the time when
 | |
|   // specializing code: code specialization turns conditional branches into
 | |
|   // uncond branches, and this code folds them.
 | |
|   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
 | |
|   Function::iterator I = Begin;
 | |
|   while (I != NewFunc->end()) {
 | |
|     // Check if this block has become dead during inlining or other
 | |
|     // simplifications. Note that the first block will appear dead, as it has
 | |
|     // not yet been wired up properly.
 | |
|     if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
 | |
|                        I->getSinglePredecessor() == &*I)) {
 | |
|       BasicBlock *DeadBB = &*I++;
 | |
|       DeleteDeadBlock(DeadBB);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // We need to simplify conditional branches and switches with a constant
 | |
|     // operand. We try to prune these out when cloning, but if the
 | |
|     // simplification required looking through PHI nodes, those are only
 | |
|     // available after forming the full basic block. That may leave some here,
 | |
|     // and we still want to prune the dead code as early as possible.
 | |
|     ConstantFoldTerminator(&*I);
 | |
| 
 | |
|     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
 | |
|     if (!BI || BI->isConditional()) { ++I; continue; }
 | |
|     
 | |
|     BasicBlock *Dest = BI->getSuccessor(0);
 | |
|     if (!Dest->getSinglePredecessor()) {
 | |
|       ++I; continue;
 | |
|     }
 | |
| 
 | |
|     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
 | |
|     // above should have zapped all of them..
 | |
|     assert(!isa<PHINode>(Dest->begin()));
 | |
| 
 | |
|     // We know all single-entry PHI nodes in the inlined function have been
 | |
|     // removed, so we just need to splice the blocks.
 | |
|     BI->eraseFromParent();
 | |
|     
 | |
|     // Make all PHI nodes that referred to Dest now refer to I as their source.
 | |
|     Dest->replaceAllUsesWith(&*I);
 | |
| 
 | |
|     // Move all the instructions in the succ to the pred.
 | |
|     I->getInstList().splice(I->end(), Dest->getInstList());
 | |
|     
 | |
|     // Remove the dest block.
 | |
|     Dest->eraseFromParent();
 | |
|     
 | |
|     // Do not increment I, iteratively merge all things this block branches to.
 | |
|   }
 | |
| 
 | |
|   // Make a final pass over the basic blocks from the old function to gather
 | |
|   // any return instructions which survived folding. We have to do this here
 | |
|   // because we can iteratively remove and merge returns above.
 | |
|   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
 | |
|                           E = NewFunc->end();
 | |
|        I != E; ++I)
 | |
|     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
 | |
|       Returns.push_back(RI);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// This works exactly like CloneFunctionInto,
 | |
| /// except that it does some simple constant prop and DCE on the fly.  The
 | |
| /// effect of this is to copy significantly less code in cases where (for
 | |
| /// example) a function call with constant arguments is inlined, and those
 | |
| /// constant arguments cause a significant amount of code in the callee to be
 | |
| /// dead.  Since this doesn't produce an exact copy of the input, it can't be
 | |
| /// used for things like CloneFunction or CloneModule.
 | |
| void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
 | |
|                                      ValueToValueMapTy &VMap,
 | |
|                                      bool ModuleLevelChanges,
 | |
|                                      SmallVectorImpl<ReturnInst*> &Returns,
 | |
|                                      const char *NameSuffix, 
 | |
|                                      ClonedCodeInfo *CodeInfo,
 | |
|                                      Instruction *TheCall) {
 | |
|   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
 | |
|                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
 | |
| }
 | |
| 
 | |
| /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap.
 | |
| void llvm::remapInstructionsInBlocks(
 | |
|     const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
 | |
|   // Rewrite the code to refer to itself.
 | |
|   for (auto *BB : Blocks)
 | |
|     for (auto &Inst : *BB)
 | |
|       RemapInstruction(&Inst, VMap,
 | |
|                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
 | |
| }
 | |
| 
 | |
| /// \brief Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
 | |
| /// Blocks.
 | |
| ///
 | |
| /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
 | |
| /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
 | |
| Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
 | |
|                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
 | |
|                                    const Twine &NameSuffix, LoopInfo *LI,
 | |
|                                    DominatorTree *DT,
 | |
|                                    SmallVectorImpl<BasicBlock *> &Blocks) {
 | |
|   assert(OrigLoop->getSubLoops().empty() && 
 | |
|          "Loop to be cloned cannot have inner loop");
 | |
|   Function *F = OrigLoop->getHeader()->getParent();
 | |
|   Loop *ParentLoop = OrigLoop->getParentLoop();
 | |
| 
 | |
|   Loop *NewLoop = new Loop();
 | |
|   if (ParentLoop)
 | |
|     ParentLoop->addChildLoop(NewLoop);
 | |
|   else
 | |
|     LI->addTopLevelLoop(NewLoop);
 | |
| 
 | |
|   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
 | |
|   assert(OrigPH && "No preheader");
 | |
|   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
 | |
|   // To rename the loop PHIs.
 | |
|   VMap[OrigPH] = NewPH;
 | |
|   Blocks.push_back(NewPH);
 | |
| 
 | |
|   // Update LoopInfo.
 | |
|   if (ParentLoop)
 | |
|     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
 | |
| 
 | |
|   // Update DominatorTree.
 | |
|   DT->addNewBlock(NewPH, LoopDomBB);
 | |
| 
 | |
|   for (BasicBlock *BB : OrigLoop->getBlocks()) {
 | |
|     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
 | |
|     VMap[BB] = NewBB;
 | |
| 
 | |
|     // Update LoopInfo.
 | |
|     NewLoop->addBasicBlockToLoop(NewBB, *LI);
 | |
| 
 | |
|     // Add DominatorTree node. After seeing all blocks, update to correct IDom.
 | |
|     DT->addNewBlock(NewBB, NewPH);
 | |
| 
 | |
|     Blocks.push_back(NewBB);
 | |
|   }
 | |
| 
 | |
|   for (BasicBlock *BB : OrigLoop->getBlocks()) {
 | |
|     // Update DominatorTree.
 | |
|     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
 | |
|     DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
 | |
|                                  cast<BasicBlock>(VMap[IDomBB]));
 | |
|   }
 | |
| 
 | |
|   // Move them physically from the end of the block list.
 | |
|   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
 | |
|                                 NewPH);
 | |
|   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
 | |
|                                 NewLoop->getHeader()->getIterator(), F->end());
 | |
| 
 | |
|   return NewLoop;
 | |
| }
 | |
| 
 | |
| /// \brief Duplicate non-Phi instructions from the beginning of block up to
 | |
| /// StopAt instruction into a split block between BB and its predecessor.
 | |
| BasicBlock *
 | |
| llvm::DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB,
 | |
|                                           Instruction *StopAt,
 | |
|                                           ValueToValueMapTy &ValueMapping) {
 | |
|   // We are going to have to map operands from the original BB block to the new
 | |
|   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
 | |
|   // account for entry from PredBB.
 | |
|   BasicBlock::iterator BI = BB->begin();
 | |
|   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
 | |
|     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
 | |
| 
 | |
|   BasicBlock *NewBB = SplitEdge(PredBB, BB);
 | |
|   NewBB->setName(PredBB->getName() + ".split");
 | |
|   Instruction *NewTerm = NewBB->getTerminator();
 | |
| 
 | |
|   // Clone the non-phi instructions of BB into NewBB, keeping track of the
 | |
|   // mapping and using it to remap operands in the cloned instructions.
 | |
|   for (; StopAt != &*BI; ++BI) {
 | |
|     Instruction *New = BI->clone();
 | |
|     New->setName(BI->getName());
 | |
|     New->insertBefore(NewTerm);
 | |
|     ValueMapping[&*BI] = New;
 | |
| 
 | |
|     // Remap operands to patch up intra-block references.
 | |
|     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
 | |
|       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
 | |
|         auto I = ValueMapping.find(Inst);
 | |
|         if (I != ValueMapping.end())
 | |
|           New->setOperand(i, I->second);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   return NewBB;
 | |
| }
 |