forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			924 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			924 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- FunctionComparator.h - Function Comparator -------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the FunctionComparator and GlobalNumberState classes
 | |
| // which are used by the MergeFunctions pass for comparing functions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/FunctionComparator.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "functioncomparator"
 | |
| 
 | |
| int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
 | |
|   if (L < R) return -1;
 | |
|   if (L > R) return 1;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const {
 | |
|   if ((int)L < (int)R) return -1;
 | |
|   if ((int)L > (int)R) return 1;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
 | |
|   if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
 | |
|     return Res;
 | |
|   if (L.ugt(R)) return 1;
 | |
|   if (R.ugt(L)) return -1;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
 | |
|   // Floats are ordered first by semantics (i.e. float, double, half, etc.),
 | |
|   // then by value interpreted as a bitstring (aka APInt).
 | |
|   const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
 | |
|   if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
 | |
|                            APFloat::semanticsPrecision(SR)))
 | |
|     return Res;
 | |
|   if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
 | |
|                            APFloat::semanticsMaxExponent(SR)))
 | |
|     return Res;
 | |
|   if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
 | |
|                            APFloat::semanticsMinExponent(SR)))
 | |
|     return Res;
 | |
|   if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
 | |
|                            APFloat::semanticsSizeInBits(SR)))
 | |
|     return Res;
 | |
|   return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
 | |
| }
 | |
| 
 | |
| int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
 | |
|   // Prevent heavy comparison, compare sizes first.
 | |
|   if (int Res = cmpNumbers(L.size(), R.size()))
 | |
|     return Res;
 | |
| 
 | |
|   // Compare strings lexicographically only when it is necessary: only when
 | |
|   // strings are equal in size.
 | |
|   return L.compare(R);
 | |
| }
 | |
| 
 | |
| int FunctionComparator::cmpAttrs(const AttributeList L,
 | |
|                                  const AttributeList R) const {
 | |
|   if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets()))
 | |
|     return Res;
 | |
| 
 | |
|   for (unsigned i = L.index_begin(), e = L.index_end(); i != e; ++i) {
 | |
|     AttributeSet LAS = L.getAttributes(i);
 | |
|     AttributeSet RAS = R.getAttributes(i);
 | |
|     AttributeSet::iterator LI = LAS.begin(), LE = LAS.end();
 | |
|     AttributeSet::iterator RI = RAS.begin(), RE = RAS.end();
 | |
|     for (; LI != LE && RI != RE; ++LI, ++RI) {
 | |
|       Attribute LA = *LI;
 | |
|       Attribute RA = *RI;
 | |
|       if (LA < RA)
 | |
|         return -1;
 | |
|       if (RA < LA)
 | |
|         return 1;
 | |
|     }
 | |
|     if (LI != LE)
 | |
|       return 1;
 | |
|     if (RI != RE)
 | |
|       return -1;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| int FunctionComparator::cmpRangeMetadata(const MDNode *L,
 | |
|                                          const MDNode *R) const {
 | |
|   if (L == R)
 | |
|     return 0;
 | |
|   if (!L)
 | |
|     return -1;
 | |
|   if (!R)
 | |
|     return 1;
 | |
|   // Range metadata is a sequence of numbers. Make sure they are the same
 | |
|   // sequence.
 | |
|   // TODO: Note that as this is metadata, it is possible to drop and/or merge
 | |
|   // this data when considering functions to merge. Thus this comparison would
 | |
|   // return 0 (i.e. equivalent), but merging would become more complicated
 | |
|   // because the ranges would need to be unioned. It is not likely that
 | |
|   // functions differ ONLY in this metadata if they are actually the same
 | |
|   // function semantically.
 | |
|   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
 | |
|     return Res;
 | |
|   for (size_t I = 0; I < L->getNumOperands(); ++I) {
 | |
|     ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
 | |
|     ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
 | |
|     if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
 | |
|       return Res;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L,
 | |
|                                                 const Instruction *R) const {
 | |
|   ImmutableCallSite LCS(L);
 | |
|   ImmutableCallSite RCS(R);
 | |
| 
 | |
|   assert(LCS && RCS && "Must be calls or invokes!");
 | |
|   assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!");
 | |
| 
 | |
|   if (int Res =
 | |
|           cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
 | |
|     return Res;
 | |
| 
 | |
|   for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) {
 | |
|     auto OBL = LCS.getOperandBundleAt(i);
 | |
|     auto OBR = RCS.getOperandBundleAt(i);
 | |
| 
 | |
|     if (int Res = OBL.getTagName().compare(OBR.getTagName()))
 | |
|       return Res;
 | |
| 
 | |
|     if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
 | |
|       return Res;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// Constants comparison:
 | |
| /// 1. Check whether type of L constant could be losslessly bitcasted to R
 | |
| /// type.
 | |
| /// 2. Compare constant contents.
 | |
| /// For more details see declaration comments.
 | |
| int FunctionComparator::cmpConstants(const Constant *L,
 | |
|                                      const Constant *R) const {
 | |
| 
 | |
|   Type *TyL = L->getType();
 | |
|   Type *TyR = R->getType();
 | |
| 
 | |
|   // Check whether types are bitcastable. This part is just re-factored
 | |
|   // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
 | |
|   // we also pack into result which type is "less" for us.
 | |
|   int TypesRes = cmpTypes(TyL, TyR);
 | |
|   if (TypesRes != 0) {
 | |
|     // Types are different, but check whether we can bitcast them.
 | |
|     if (!TyL->isFirstClassType()) {
 | |
|       if (TyR->isFirstClassType())
 | |
|         return -1;
 | |
|       // Neither TyL nor TyR are values of first class type. Return the result
 | |
|       // of comparing the types
 | |
|       return TypesRes;
 | |
|     }
 | |
|     if (!TyR->isFirstClassType()) {
 | |
|       if (TyL->isFirstClassType())
 | |
|         return 1;
 | |
|       return TypesRes;
 | |
|     }
 | |
| 
 | |
|     // Vector -> Vector conversions are always lossless if the two vector types
 | |
|     // have the same size, otherwise not.
 | |
|     unsigned TyLWidth = 0;
 | |
|     unsigned TyRWidth = 0;
 | |
| 
 | |
|     if (auto *VecTyL = dyn_cast<VectorType>(TyL))
 | |
|       TyLWidth = VecTyL->getBitWidth();
 | |
|     if (auto *VecTyR = dyn_cast<VectorType>(TyR))
 | |
|       TyRWidth = VecTyR->getBitWidth();
 | |
| 
 | |
|     if (TyLWidth != TyRWidth)
 | |
|       return cmpNumbers(TyLWidth, TyRWidth);
 | |
| 
 | |
|     // Zero bit-width means neither TyL nor TyR are vectors.
 | |
|     if (!TyLWidth) {
 | |
|       PointerType *PTyL = dyn_cast<PointerType>(TyL);
 | |
|       PointerType *PTyR = dyn_cast<PointerType>(TyR);
 | |
|       if (PTyL && PTyR) {
 | |
|         unsigned AddrSpaceL = PTyL->getAddressSpace();
 | |
|         unsigned AddrSpaceR = PTyR->getAddressSpace();
 | |
|         if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
 | |
|           return Res;
 | |
|       }
 | |
|       if (PTyL)
 | |
|         return 1;
 | |
|       if (PTyR)
 | |
|         return -1;
 | |
| 
 | |
|       // TyL and TyR aren't vectors, nor pointers. We don't know how to
 | |
|       // bitcast them.
 | |
|       return TypesRes;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // OK, types are bitcastable, now check constant contents.
 | |
| 
 | |
|   if (L->isNullValue() && R->isNullValue())
 | |
|     return TypesRes;
 | |
|   if (L->isNullValue() && !R->isNullValue())
 | |
|     return 1;
 | |
|   if (!L->isNullValue() && R->isNullValue())
 | |
|     return -1;
 | |
| 
 | |
|   auto GlobalValueL = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(L));
 | |
|   auto GlobalValueR = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(R));
 | |
|   if (GlobalValueL && GlobalValueR) {
 | |
|     return cmpGlobalValues(GlobalValueL, GlobalValueR);
 | |
|   }
 | |
| 
 | |
|   if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
 | |
|     return Res;
 | |
| 
 | |
|   if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
 | |
|     const auto *SeqR = cast<ConstantDataSequential>(R);
 | |
|     // This handles ConstantDataArray and ConstantDataVector. Note that we
 | |
|     // compare the two raw data arrays, which might differ depending on the host
 | |
|     // endianness. This isn't a problem though, because the endiness of a module
 | |
|     // will affect the order of the constants, but this order is the same
 | |
|     // for a given input module and host platform.
 | |
|     return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
 | |
|   }
 | |
| 
 | |
|   switch (L->getValueID()) {
 | |
|   case Value::UndefValueVal:
 | |
|   case Value::ConstantTokenNoneVal:
 | |
|     return TypesRes;
 | |
|   case Value::ConstantIntVal: {
 | |
|     const APInt &LInt = cast<ConstantInt>(L)->getValue();
 | |
|     const APInt &RInt = cast<ConstantInt>(R)->getValue();
 | |
|     return cmpAPInts(LInt, RInt);
 | |
|   }
 | |
|   case Value::ConstantFPVal: {
 | |
|     const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
 | |
|     const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
 | |
|     return cmpAPFloats(LAPF, RAPF);
 | |
|   }
 | |
|   case Value::ConstantArrayVal: {
 | |
|     const ConstantArray *LA = cast<ConstantArray>(L);
 | |
|     const ConstantArray *RA = cast<ConstantArray>(R);
 | |
|     uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
 | |
|     uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
 | |
|     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
 | |
|       return Res;
 | |
|     for (uint64_t i = 0; i < NumElementsL; ++i) {
 | |
|       if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
 | |
|                                  cast<Constant>(RA->getOperand(i))))
 | |
|         return Res;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
|   case Value::ConstantStructVal: {
 | |
|     const ConstantStruct *LS = cast<ConstantStruct>(L);
 | |
|     const ConstantStruct *RS = cast<ConstantStruct>(R);
 | |
|     unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
 | |
|     unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
 | |
|     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
 | |
|       return Res;
 | |
|     for (unsigned i = 0; i != NumElementsL; ++i) {
 | |
|       if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
 | |
|                                  cast<Constant>(RS->getOperand(i))))
 | |
|         return Res;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
|   case Value::ConstantVectorVal: {
 | |
|     const ConstantVector *LV = cast<ConstantVector>(L);
 | |
|     const ConstantVector *RV = cast<ConstantVector>(R);
 | |
|     unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
 | |
|     unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
 | |
|     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
 | |
|       return Res;
 | |
|     for (uint64_t i = 0; i < NumElementsL; ++i) {
 | |
|       if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
 | |
|                                  cast<Constant>(RV->getOperand(i))))
 | |
|         return Res;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
|   case Value::ConstantExprVal: {
 | |
|     const ConstantExpr *LE = cast<ConstantExpr>(L);
 | |
|     const ConstantExpr *RE = cast<ConstantExpr>(R);
 | |
|     unsigned NumOperandsL = LE->getNumOperands();
 | |
|     unsigned NumOperandsR = RE->getNumOperands();
 | |
|     if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
 | |
|       return Res;
 | |
|     for (unsigned i = 0; i < NumOperandsL; ++i) {
 | |
|       if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
 | |
|                                  cast<Constant>(RE->getOperand(i))))
 | |
|         return Res;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
|   case Value::BlockAddressVal: {
 | |
|     const BlockAddress *LBA = cast<BlockAddress>(L);
 | |
|     const BlockAddress *RBA = cast<BlockAddress>(R);
 | |
|     if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
 | |
|       return Res;
 | |
|     if (LBA->getFunction() == RBA->getFunction()) {
 | |
|       // They are BBs in the same function. Order by which comes first in the
 | |
|       // BB order of the function. This order is deterministic.
 | |
|       Function* F = LBA->getFunction();
 | |
|       BasicBlock *LBB = LBA->getBasicBlock();
 | |
|       BasicBlock *RBB = RBA->getBasicBlock();
 | |
|       if (LBB == RBB)
 | |
|         return 0;
 | |
|       for(BasicBlock &BB : F->getBasicBlockList()) {
 | |
|         if (&BB == LBB) {
 | |
|           assert(&BB != RBB);
 | |
|           return -1;
 | |
|         }
 | |
|         if (&BB == RBB)
 | |
|           return 1;
 | |
|       }
 | |
|       llvm_unreachable("Basic Block Address does not point to a basic block in "
 | |
|                        "its function.");
 | |
|       return -1;
 | |
|     } else {
 | |
|       // cmpValues said the functions are the same. So because they aren't
 | |
|       // literally the same pointer, they must respectively be the left and
 | |
|       // right functions.
 | |
|       assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
 | |
|       // cmpValues will tell us if these are equivalent BasicBlocks, in the
 | |
|       // context of their respective functions.
 | |
|       return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
 | |
|     }
 | |
|   }
 | |
|   default: // Unknown constant, abort.
 | |
|     DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
 | |
|     llvm_unreachable("Constant ValueID not recognized.");
 | |
|     return -1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const {
 | |
|   uint64_t LNumber = GlobalNumbers->getNumber(L);
 | |
|   uint64_t RNumber = GlobalNumbers->getNumber(R);
 | |
|   return cmpNumbers(LNumber, RNumber);
 | |
| }
 | |
| 
 | |
| /// cmpType - compares two types,
 | |
| /// defines total ordering among the types set.
 | |
| /// See method declaration comments for more details.
 | |
| int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
 | |
|   PointerType *PTyL = dyn_cast<PointerType>(TyL);
 | |
|   PointerType *PTyR = dyn_cast<PointerType>(TyR);
 | |
| 
 | |
|   const DataLayout &DL = FnL->getParent()->getDataLayout();
 | |
|   if (PTyL && PTyL->getAddressSpace() == 0)
 | |
|     TyL = DL.getIntPtrType(TyL);
 | |
|   if (PTyR && PTyR->getAddressSpace() == 0)
 | |
|     TyR = DL.getIntPtrType(TyR);
 | |
| 
 | |
|   if (TyL == TyR)
 | |
|     return 0;
 | |
| 
 | |
|   if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
 | |
|     return Res;
 | |
| 
 | |
|   switch (TyL->getTypeID()) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown type!");
 | |
|     // Fall through in Release mode.
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case Type::IntegerTyID:
 | |
|     return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
 | |
|                       cast<IntegerType>(TyR)->getBitWidth());
 | |
|   // TyL == TyR would have returned true earlier, because types are uniqued.
 | |
|   case Type::VoidTyID:
 | |
|   case Type::FloatTyID:
 | |
|   case Type::DoubleTyID:
 | |
|   case Type::X86_FP80TyID:
 | |
|   case Type::FP128TyID:
 | |
|   case Type::PPC_FP128TyID:
 | |
|   case Type::LabelTyID:
 | |
|   case Type::MetadataTyID:
 | |
|   case Type::TokenTyID:
 | |
|     return 0;
 | |
| 
 | |
|   case Type::PointerTyID: {
 | |
|     assert(PTyL && PTyR && "Both types must be pointers here.");
 | |
|     return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
 | |
|   }
 | |
| 
 | |
|   case Type::StructTyID: {
 | |
|     StructType *STyL = cast<StructType>(TyL);
 | |
|     StructType *STyR = cast<StructType>(TyR);
 | |
|     if (STyL->getNumElements() != STyR->getNumElements())
 | |
|       return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
 | |
| 
 | |
|     if (STyL->isPacked() != STyR->isPacked())
 | |
|       return cmpNumbers(STyL->isPacked(), STyR->isPacked());
 | |
| 
 | |
|     for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
 | |
|       if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
 | |
|         return Res;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   case Type::FunctionTyID: {
 | |
|     FunctionType *FTyL = cast<FunctionType>(TyL);
 | |
|     FunctionType *FTyR = cast<FunctionType>(TyR);
 | |
|     if (FTyL->getNumParams() != FTyR->getNumParams())
 | |
|       return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
 | |
| 
 | |
|     if (FTyL->isVarArg() != FTyR->isVarArg())
 | |
|       return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
 | |
| 
 | |
|     if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
 | |
|       return Res;
 | |
| 
 | |
|     for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
 | |
|       if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
 | |
|         return Res;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   case Type::ArrayTyID:
 | |
|   case Type::VectorTyID: {
 | |
|     auto *STyL = cast<SequentialType>(TyL);
 | |
|     auto *STyR = cast<SequentialType>(TyR);
 | |
|     if (STyL->getNumElements() != STyR->getNumElements())
 | |
|       return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
 | |
|     return cmpTypes(STyL->getElementType(), STyR->getElementType());
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Determine whether the two operations are the same except that pointer-to-A
 | |
| // and pointer-to-B are equivalent. This should be kept in sync with
 | |
| // Instruction::isSameOperationAs.
 | |
| // Read method declaration comments for more details.
 | |
| int FunctionComparator::cmpOperations(const Instruction *L,
 | |
|                                       const Instruction *R,
 | |
|                                       bool &needToCmpOperands) const {
 | |
|   needToCmpOperands = true;
 | |
|   if (int Res = cmpValues(L, R))
 | |
|     return Res;
 | |
| 
 | |
|   // Differences from Instruction::isSameOperationAs:
 | |
|   //  * replace type comparison with calls to cmpTypes.
 | |
|   //  * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top.
 | |
|   //  * because of the above, we don't test for the tail bit on calls later on.
 | |
|   if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
 | |
|     return Res;
 | |
| 
 | |
|   if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) {
 | |
|     needToCmpOperands = false;
 | |
|     const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R);
 | |
|     if (int Res =
 | |
|             cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
 | |
|       return Res;
 | |
|     return cmpGEPs(GEPL, GEPR);
 | |
|   }
 | |
| 
 | |
|   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
 | |
|     return Res;
 | |
| 
 | |
|   if (int Res = cmpTypes(L->getType(), R->getType()))
 | |
|     return Res;
 | |
| 
 | |
|   if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
 | |
|                            R->getRawSubclassOptionalData()))
 | |
|     return Res;
 | |
| 
 | |
|   // We have two instructions of identical opcode and #operands.  Check to see
 | |
|   // if all operands are the same type
 | |
|   for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
 | |
|     if (int Res =
 | |
|             cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
 | |
|       return Res;
 | |
|   }
 | |
| 
 | |
|   // Check special state that is a part of some instructions.
 | |
|   if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
 | |
|     if (int Res = cmpTypes(AI->getAllocatedType(),
 | |
|                            cast<AllocaInst>(R)->getAllocatedType()))
 | |
|       return Res;
 | |
|     return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment());
 | |
|   }
 | |
|   if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
 | |
|     if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
 | |
|       return Res;
 | |
|     if (int Res =
 | |
|             cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
 | |
|       return Res;
 | |
|     if (int Res =
 | |
|             cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
 | |
|       return Res;
 | |
|     if (int Res = cmpNumbers(LI->getSyncScopeID(),
 | |
|                              cast<LoadInst>(R)->getSyncScopeID()))
 | |
|       return Res;
 | |
|     return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range),
 | |
|         cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
 | |
|   }
 | |
|   if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
 | |
|     if (int Res =
 | |
|             cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
 | |
|       return Res;
 | |
|     if (int Res =
 | |
|             cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
 | |
|       return Res;
 | |
|     if (int Res =
 | |
|             cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
 | |
|       return Res;
 | |
|     return cmpNumbers(SI->getSyncScopeID(),
 | |
|                       cast<StoreInst>(R)->getSyncScopeID());
 | |
|   }
 | |
|   if (const CmpInst *CI = dyn_cast<CmpInst>(L))
 | |
|     return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
 | |
|   if (const CallInst *CI = dyn_cast<CallInst>(L)) {
 | |
|     if (int Res = cmpNumbers(CI->getCallingConv(),
 | |
|                              cast<CallInst>(R)->getCallingConv()))
 | |
|       return Res;
 | |
|     if (int Res =
 | |
|             cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes()))
 | |
|       return Res;
 | |
|     if (int Res = cmpOperandBundlesSchema(CI, R))
 | |
|       return Res;
 | |
|     return cmpRangeMetadata(
 | |
|         CI->getMetadata(LLVMContext::MD_range),
 | |
|         cast<CallInst>(R)->getMetadata(LLVMContext::MD_range));
 | |
|   }
 | |
|   if (const InvokeInst *II = dyn_cast<InvokeInst>(L)) {
 | |
|     if (int Res = cmpNumbers(II->getCallingConv(),
 | |
|                              cast<InvokeInst>(R)->getCallingConv()))
 | |
|       return Res;
 | |
|     if (int Res =
 | |
|             cmpAttrs(II->getAttributes(), cast<InvokeInst>(R)->getAttributes()))
 | |
|       return Res;
 | |
|     if (int Res = cmpOperandBundlesSchema(II, R))
 | |
|       return Res;
 | |
|     return cmpRangeMetadata(
 | |
|         II->getMetadata(LLVMContext::MD_range),
 | |
|         cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range));
 | |
|   }
 | |
|   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
 | |
|     ArrayRef<unsigned> LIndices = IVI->getIndices();
 | |
|     ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
 | |
|     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
 | |
|       return Res;
 | |
|     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
 | |
|       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
 | |
|         return Res;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
|   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
 | |
|     ArrayRef<unsigned> LIndices = EVI->getIndices();
 | |
|     ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
 | |
|     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
 | |
|       return Res;
 | |
|     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
 | |
|       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
 | |
|         return Res;
 | |
|     }
 | |
|   }
 | |
|   if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
 | |
|     if (int Res =
 | |
|             cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
 | |
|       return Res;
 | |
|     return cmpNumbers(FI->getSyncScopeID(),
 | |
|                       cast<FenceInst>(R)->getSyncScopeID());
 | |
|   }
 | |
|   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
 | |
|     if (int Res = cmpNumbers(CXI->isVolatile(),
 | |
|                              cast<AtomicCmpXchgInst>(R)->isVolatile()))
 | |
|       return Res;
 | |
|     if (int Res = cmpNumbers(CXI->isWeak(),
 | |
|                              cast<AtomicCmpXchgInst>(R)->isWeak()))
 | |
|       return Res;
 | |
|     if (int Res =
 | |
|             cmpOrderings(CXI->getSuccessOrdering(),
 | |
|                          cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
 | |
|       return Res;
 | |
|     if (int Res =
 | |
|             cmpOrderings(CXI->getFailureOrdering(),
 | |
|                          cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
 | |
|       return Res;
 | |
|     return cmpNumbers(CXI->getSyncScopeID(),
 | |
|                       cast<AtomicCmpXchgInst>(R)->getSyncScopeID());
 | |
|   }
 | |
|   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
 | |
|     if (int Res = cmpNumbers(RMWI->getOperation(),
 | |
|                              cast<AtomicRMWInst>(R)->getOperation()))
 | |
|       return Res;
 | |
|     if (int Res = cmpNumbers(RMWI->isVolatile(),
 | |
|                              cast<AtomicRMWInst>(R)->isVolatile()))
 | |
|       return Res;
 | |
|     if (int Res = cmpOrderings(RMWI->getOrdering(),
 | |
|                              cast<AtomicRMWInst>(R)->getOrdering()))
 | |
|       return Res;
 | |
|     return cmpNumbers(RMWI->getSyncScopeID(),
 | |
|                       cast<AtomicRMWInst>(R)->getSyncScopeID());
 | |
|   }
 | |
|   if (const PHINode *PNL = dyn_cast<PHINode>(L)) {
 | |
|     const PHINode *PNR = cast<PHINode>(R);
 | |
|     // Ensure that in addition to the incoming values being identical
 | |
|     // (checked by the caller of this function), the incoming blocks
 | |
|     // are also identical.
 | |
|     for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) {
 | |
|       if (int Res =
 | |
|               cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i)))
 | |
|         return Res;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Determine whether two GEP operations perform the same underlying arithmetic.
 | |
| // Read method declaration comments for more details.
 | |
| int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
 | |
|                                 const GEPOperator *GEPR) const {
 | |
| 
 | |
|   unsigned int ASL = GEPL->getPointerAddressSpace();
 | |
|   unsigned int ASR = GEPR->getPointerAddressSpace();
 | |
| 
 | |
|   if (int Res = cmpNumbers(ASL, ASR))
 | |
|     return Res;
 | |
| 
 | |
|   // When we have target data, we can reduce the GEP down to the value in bytes
 | |
|   // added to the address.
 | |
|   const DataLayout &DL = FnL->getParent()->getDataLayout();
 | |
|   unsigned BitWidth = DL.getPointerSizeInBits(ASL);
 | |
|   APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
 | |
|   if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
 | |
|       GEPR->accumulateConstantOffset(DL, OffsetR))
 | |
|     return cmpAPInts(OffsetL, OffsetR);
 | |
|   if (int Res = cmpTypes(GEPL->getSourceElementType(),
 | |
|                          GEPR->getSourceElementType()))
 | |
|     return Res;
 | |
| 
 | |
|   if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
 | |
|     return Res;
 | |
| 
 | |
|   for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
 | |
|     if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
 | |
|       return Res;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
 | |
|                                      const InlineAsm *R) const {
 | |
|   // InlineAsm's are uniqued. If they are the same pointer, obviously they are
 | |
|   // the same, otherwise compare the fields.
 | |
|   if (L == R)
 | |
|     return 0;
 | |
|   if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
 | |
|     return Res;
 | |
|   if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
 | |
|     return Res;
 | |
|   if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
 | |
|     return Res;
 | |
|   if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
 | |
|     return Res;
 | |
|   if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
 | |
|     return Res;
 | |
|   if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
 | |
|     return Res;
 | |
|   llvm_unreachable("InlineAsm blocks were not uniqued.");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// Compare two values used by the two functions under pair-wise comparison. If
 | |
| /// this is the first time the values are seen, they're added to the mapping so
 | |
| /// that we will detect mismatches on next use.
 | |
| /// See comments in declaration for more details.
 | |
| int FunctionComparator::cmpValues(const Value *L, const Value *R) const {
 | |
|   // Catch self-reference case.
 | |
|   if (L == FnL) {
 | |
|     if (R == FnR)
 | |
|       return 0;
 | |
|     return -1;
 | |
|   }
 | |
|   if (R == FnR) {
 | |
|     if (L == FnL)
 | |
|       return 0;
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   const Constant *ConstL = dyn_cast<Constant>(L);
 | |
|   const Constant *ConstR = dyn_cast<Constant>(R);
 | |
|   if (ConstL && ConstR) {
 | |
|     if (L == R)
 | |
|       return 0;
 | |
|     return cmpConstants(ConstL, ConstR);
 | |
|   }
 | |
| 
 | |
|   if (ConstL)
 | |
|     return 1;
 | |
|   if (ConstR)
 | |
|     return -1;
 | |
| 
 | |
|   const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
 | |
|   const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
 | |
| 
 | |
|   if (InlineAsmL && InlineAsmR)
 | |
|     return cmpInlineAsm(InlineAsmL, InlineAsmR);
 | |
|   if (InlineAsmL)
 | |
|     return 1;
 | |
|   if (InlineAsmR)
 | |
|     return -1;
 | |
| 
 | |
|   auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
 | |
|        RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
 | |
| 
 | |
|   return cmpNumbers(LeftSN.first->second, RightSN.first->second);
 | |
| }
 | |
| 
 | |
| // Test whether two basic blocks have equivalent behaviour.
 | |
| int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
 | |
|                                        const BasicBlock *BBR) const {
 | |
|   BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
 | |
|   BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
 | |
| 
 | |
|   do {
 | |
|     bool needToCmpOperands = true;
 | |
|     if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands))
 | |
|       return Res;
 | |
|     if (needToCmpOperands) {
 | |
|       assert(InstL->getNumOperands() == InstR->getNumOperands());
 | |
| 
 | |
|       for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
 | |
|         Value *OpL = InstL->getOperand(i);
 | |
|         Value *OpR = InstR->getOperand(i);
 | |
|         if (int Res = cmpValues(OpL, OpR))
 | |
|           return Res;
 | |
|         // cmpValues should ensure this is true.
 | |
|         assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     ++InstL;
 | |
|     ++InstR;
 | |
|   } while (InstL != InstLE && InstR != InstRE);
 | |
| 
 | |
|   if (InstL != InstLE && InstR == InstRE)
 | |
|     return 1;
 | |
|   if (InstL == InstLE && InstR != InstRE)
 | |
|     return -1;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| int FunctionComparator::compareSignature() const {
 | |
|   if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
 | |
|     return Res;
 | |
| 
 | |
|   if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
 | |
|     return Res;
 | |
| 
 | |
|   if (FnL->hasGC()) {
 | |
|     if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
 | |
|       return Res;
 | |
|   }
 | |
| 
 | |
|   if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
 | |
|     return Res;
 | |
| 
 | |
|   if (FnL->hasSection()) {
 | |
|     if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
 | |
|       return Res;
 | |
|   }
 | |
| 
 | |
|   if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
 | |
|     return Res;
 | |
| 
 | |
|   // TODO: if it's internal and only used in direct calls, we could handle this
 | |
|   // case too.
 | |
|   if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
 | |
|     return Res;
 | |
| 
 | |
|   if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
 | |
|     return Res;
 | |
| 
 | |
|   assert(FnL->arg_size() == FnR->arg_size() &&
 | |
|          "Identically typed functions have different numbers of args!");
 | |
| 
 | |
|   // Visit the arguments so that they get enumerated in the order they're
 | |
|   // passed in.
 | |
|   for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
 | |
|        ArgRI = FnR->arg_begin(),
 | |
|        ArgLE = FnL->arg_end();
 | |
|        ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
 | |
|     if (cmpValues(&*ArgLI, &*ArgRI) != 0)
 | |
|       llvm_unreachable("Arguments repeat!");
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Test whether the two functions have equivalent behaviour.
 | |
| int FunctionComparator::compare() {
 | |
|   beginCompare();
 | |
| 
 | |
|   if (int Res = compareSignature())
 | |
|     return Res;
 | |
| 
 | |
|   // We do a CFG-ordered walk since the actual ordering of the blocks in the
 | |
|   // linked list is immaterial. Our walk starts at the entry block for both
 | |
|   // functions, then takes each block from each terminator in order. As an
 | |
|   // artifact, this also means that unreachable blocks are ignored.
 | |
|   SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
 | |
|   SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
 | |
| 
 | |
|   FnLBBs.push_back(&FnL->getEntryBlock());
 | |
|   FnRBBs.push_back(&FnR->getEntryBlock());
 | |
| 
 | |
|   VisitedBBs.insert(FnLBBs[0]);
 | |
|   while (!FnLBBs.empty()) {
 | |
|     const BasicBlock *BBL = FnLBBs.pop_back_val();
 | |
|     const BasicBlock *BBR = FnRBBs.pop_back_val();
 | |
| 
 | |
|     if (int Res = cmpValues(BBL, BBR))
 | |
|       return Res;
 | |
| 
 | |
|     if (int Res = cmpBasicBlocks(BBL, BBR))
 | |
|       return Res;
 | |
| 
 | |
|     const TerminatorInst *TermL = BBL->getTerminator();
 | |
|     const TerminatorInst *TermR = BBR->getTerminator();
 | |
| 
 | |
|     assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
 | |
|     for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
 | |
|       if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
 | |
|         continue;
 | |
| 
 | |
|       FnLBBs.push_back(TermL->getSuccessor(i));
 | |
|       FnRBBs.push_back(TermR->getSuccessor(i));
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Accumulate the hash of a sequence of 64-bit integers. This is similar to a
 | |
| // hash of a sequence of 64bit ints, but the entire input does not need to be
 | |
| // available at once. This interface is necessary for functionHash because it
 | |
| // needs to accumulate the hash as the structure of the function is traversed
 | |
| // without saving these values to an intermediate buffer. This form of hashing
 | |
| // is not often needed, as usually the object to hash is just read from a
 | |
| // buffer.
 | |
| class HashAccumulator64 {
 | |
|   uint64_t Hash;
 | |
| public:
 | |
|   // Initialize to random constant, so the state isn't zero.
 | |
|   HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
 | |
|   void add(uint64_t V) {
 | |
|      Hash = llvm::hashing::detail::hash_16_bytes(Hash, V);
 | |
|   }
 | |
|   // No finishing is required, because the entire hash value is used.
 | |
|   uint64_t getHash() { return Hash; }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| // A function hash is calculated by considering only the number of arguments and
 | |
| // whether a function is varargs, the order of basic blocks (given by the
 | |
| // successors of each basic block in depth first order), and the order of
 | |
| // opcodes of each instruction within each of these basic blocks. This mirrors
 | |
| // the strategy compare() uses to compare functions by walking the BBs in depth
 | |
| // first order and comparing each instruction in sequence. Because this hash
 | |
| // does not look at the operands, it is insensitive to things such as the
 | |
| // target of calls and the constants used in the function, which makes it useful
 | |
| // when possibly merging functions which are the same modulo constants and call
 | |
| // targets.
 | |
| FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) {
 | |
|   HashAccumulator64 H;
 | |
|   H.add(F.isVarArg());
 | |
|   H.add(F.arg_size());
 | |
| 
 | |
|   SmallVector<const BasicBlock *, 8> BBs;
 | |
|   SmallSet<const BasicBlock *, 16> VisitedBBs;
 | |
| 
 | |
|   // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
 | |
|   // accumulating the hash of the function "structure." (BB and opcode sequence)
 | |
|   BBs.push_back(&F.getEntryBlock());
 | |
|   VisitedBBs.insert(BBs[0]);
 | |
|   while (!BBs.empty()) {
 | |
|     const BasicBlock *BB = BBs.pop_back_val();
 | |
|     // This random value acts as a block header, as otherwise the partition of
 | |
|     // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
 | |
|     H.add(45798);
 | |
|     for (auto &Inst : *BB) {
 | |
|       H.add(Inst.getOpcode());
 | |
|     }
 | |
|     const TerminatorInst *Term = BB->getTerminator();
 | |
|     for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
 | |
|       if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
 | |
|         continue;
 | |
|       BBs.push_back(Term->getSuccessor(i));
 | |
|     }
 | |
|   }
 | |
|   return H.getHash();
 | |
| }
 | |
| 
 | |
| 
 |