forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2217 lines
		
	
	
		
			83 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2217 lines
		
	
	
		
			83 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- Local.cpp - Functions to perform local transformations ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This family of functions perform various local transformations to the
 | |
| // program.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/Hashing.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/EHPersonalities.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LazyValueInfo.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/ConstantRange.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DIBuilder.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DebugInfo.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/MDBuilder.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "local"
 | |
| 
 | |
| STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Local constant propagation.
 | |
| //
 | |
| 
 | |
| /// ConstantFoldTerminator - If a terminator instruction is predicated on a
 | |
| /// constant value, convert it into an unconditional branch to the constant
 | |
| /// destination.  This is a nontrivial operation because the successors of this
 | |
| /// basic block must have their PHI nodes updated.
 | |
| /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
 | |
| /// conditions and indirectbr addresses this might make dead if
 | |
| /// DeleteDeadConditions is true.
 | |
| bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
 | |
|                                   const TargetLibraryInfo *TLI) {
 | |
|   TerminatorInst *T = BB->getTerminator();
 | |
|   IRBuilder<> Builder(T);
 | |
| 
 | |
|   // Branch - See if we are conditional jumping on constant
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
 | |
|     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
 | |
|     BasicBlock *Dest1 = BI->getSuccessor(0);
 | |
|     BasicBlock *Dest2 = BI->getSuccessor(1);
 | |
| 
 | |
|     if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
 | |
|       // Are we branching on constant?
 | |
|       // YES.  Change to unconditional branch...
 | |
|       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
 | |
|       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
 | |
| 
 | |
|       //cerr << "Function: " << T->getParent()->getParent()
 | |
|       //     << "\nRemoving branch from " << T->getParent()
 | |
|       //     << "\n\nTo: " << OldDest << endl;
 | |
| 
 | |
|       // Let the basic block know that we are letting go of it.  Based on this,
 | |
|       // it will adjust it's PHI nodes.
 | |
|       OldDest->removePredecessor(BB);
 | |
| 
 | |
|       // Replace the conditional branch with an unconditional one.
 | |
|       Builder.CreateBr(Destination);
 | |
|       BI->eraseFromParent();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (Dest2 == Dest1) {       // Conditional branch to same location?
 | |
|       // This branch matches something like this:
 | |
|       //     br bool %cond, label %Dest, label %Dest
 | |
|       // and changes it into:  br label %Dest
 | |
| 
 | |
|       // Let the basic block know that we are letting go of one copy of it.
 | |
|       assert(BI->getParent() && "Terminator not inserted in block!");
 | |
|       Dest1->removePredecessor(BI->getParent());
 | |
| 
 | |
|       // Replace the conditional branch with an unconditional one.
 | |
|       Builder.CreateBr(Dest1);
 | |
|       Value *Cond = BI->getCondition();
 | |
|       BI->eraseFromParent();
 | |
|       if (DeleteDeadConditions)
 | |
|         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
 | |
|     // If we are switching on a constant, we can convert the switch to an
 | |
|     // unconditional branch.
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
 | |
|     BasicBlock *DefaultDest = SI->getDefaultDest();
 | |
|     BasicBlock *TheOnlyDest = DefaultDest;
 | |
| 
 | |
|     // If the default is unreachable, ignore it when searching for TheOnlyDest.
 | |
|     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
 | |
|         SI->getNumCases() > 0) {
 | |
|       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
 | |
|     }
 | |
| 
 | |
|     // Figure out which case it goes to.
 | |
|     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
 | |
|       // Found case matching a constant operand?
 | |
|       if (i->getCaseValue() == CI) {
 | |
|         TheOnlyDest = i->getCaseSuccessor();
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Check to see if this branch is going to the same place as the default
 | |
|       // dest.  If so, eliminate it as an explicit compare.
 | |
|       if (i->getCaseSuccessor() == DefaultDest) {
 | |
|         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
 | |
|         unsigned NCases = SI->getNumCases();
 | |
|         // Fold the case metadata into the default if there will be any branches
 | |
|         // left, unless the metadata doesn't match the switch.
 | |
|         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
 | |
|           // Collect branch weights into a vector.
 | |
|           SmallVector<uint32_t, 8> Weights;
 | |
|           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
 | |
|                ++MD_i) {
 | |
|             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
 | |
|             Weights.push_back(CI->getValue().getZExtValue());
 | |
|           }
 | |
|           // Merge weight of this case to the default weight.
 | |
|           unsigned idx = i->getCaseIndex();
 | |
|           Weights[0] += Weights[idx+1];
 | |
|           // Remove weight for this case.
 | |
|           std::swap(Weights[idx+1], Weights.back());
 | |
|           Weights.pop_back();
 | |
|           SI->setMetadata(LLVMContext::MD_prof,
 | |
|                           MDBuilder(BB->getContext()).
 | |
|                           createBranchWeights(Weights));
 | |
|         }
 | |
|         // Remove this entry.
 | |
|         DefaultDest->removePredecessor(SI->getParent());
 | |
|         i = SI->removeCase(i);
 | |
|         e = SI->case_end();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, check to see if the switch only branches to one destination.
 | |
|       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
 | |
|       // destinations.
 | |
|       if (i->getCaseSuccessor() != TheOnlyDest)
 | |
|         TheOnlyDest = nullptr;
 | |
| 
 | |
|       // Increment this iterator as we haven't removed the case.
 | |
|       ++i;
 | |
|     }
 | |
| 
 | |
|     if (CI && !TheOnlyDest) {
 | |
|       // Branching on a constant, but not any of the cases, go to the default
 | |
|       // successor.
 | |
|       TheOnlyDest = SI->getDefaultDest();
 | |
|     }
 | |
| 
 | |
|     // If we found a single destination that we can fold the switch into, do so
 | |
|     // now.
 | |
|     if (TheOnlyDest) {
 | |
|       // Insert the new branch.
 | |
|       Builder.CreateBr(TheOnlyDest);
 | |
|       BasicBlock *BB = SI->getParent();
 | |
| 
 | |
|       // Remove entries from PHI nodes which we no longer branch to...
 | |
|       for (BasicBlock *Succ : SI->successors()) {
 | |
|         // Found case matching a constant operand?
 | |
|         if (Succ == TheOnlyDest)
 | |
|           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
 | |
|         else
 | |
|           Succ->removePredecessor(BB);
 | |
|       }
 | |
| 
 | |
|       // Delete the old switch.
 | |
|       Value *Cond = SI->getCondition();
 | |
|       SI->eraseFromParent();
 | |
|       if (DeleteDeadConditions)
 | |
|         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (SI->getNumCases() == 1) {
 | |
|       // Otherwise, we can fold this switch into a conditional branch
 | |
|       // instruction if it has only one non-default destination.
 | |
|       auto FirstCase = *SI->case_begin();
 | |
|       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
 | |
|           FirstCase.getCaseValue(), "cond");
 | |
| 
 | |
|       // Insert the new branch.
 | |
|       BranchInst *NewBr = Builder.CreateCondBr(Cond,
 | |
|                                                FirstCase.getCaseSuccessor(),
 | |
|                                                SI->getDefaultDest());
 | |
|       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
 | |
|       if (MD && MD->getNumOperands() == 3) {
 | |
|         ConstantInt *SICase =
 | |
|             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
 | |
|         ConstantInt *SIDef =
 | |
|             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
 | |
|         assert(SICase && SIDef);
 | |
|         // The TrueWeight should be the weight for the single case of SI.
 | |
|         NewBr->setMetadata(LLVMContext::MD_prof,
 | |
|                         MDBuilder(BB->getContext()).
 | |
|                         createBranchWeights(SICase->getValue().getZExtValue(),
 | |
|                                             SIDef->getValue().getZExtValue()));
 | |
|       }
 | |
| 
 | |
|       // Update make.implicit metadata to the newly-created conditional branch.
 | |
|       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
 | |
|       if (MakeImplicitMD)
 | |
|         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
 | |
| 
 | |
|       // Delete the old switch.
 | |
|       SI->eraseFromParent();
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
 | |
|     // indirectbr blockaddress(@F, @BB) -> br label @BB
 | |
|     if (BlockAddress *BA =
 | |
|           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
 | |
|       BasicBlock *TheOnlyDest = BA->getBasicBlock();
 | |
|       // Insert the new branch.
 | |
|       Builder.CreateBr(TheOnlyDest);
 | |
| 
 | |
|       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
 | |
|         if (IBI->getDestination(i) == TheOnlyDest)
 | |
|           TheOnlyDest = nullptr;
 | |
|         else
 | |
|           IBI->getDestination(i)->removePredecessor(IBI->getParent());
 | |
|       }
 | |
|       Value *Address = IBI->getAddress();
 | |
|       IBI->eraseFromParent();
 | |
|       if (DeleteDeadConditions)
 | |
|         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
 | |
| 
 | |
|       // If we didn't find our destination in the IBI successor list, then we
 | |
|       // have undefined behavior.  Replace the unconditional branch with an
 | |
|       // 'unreachable' instruction.
 | |
|       if (TheOnlyDest) {
 | |
|         BB->getTerminator()->eraseFromParent();
 | |
|         new UnreachableInst(BB->getContext(), BB);
 | |
|       }
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Local dead code elimination.
 | |
| //
 | |
| 
 | |
| /// isInstructionTriviallyDead - Return true if the result produced by the
 | |
| /// instruction is not used, and the instruction has no side effects.
 | |
| ///
 | |
| bool llvm::isInstructionTriviallyDead(Instruction *I,
 | |
|                                       const TargetLibraryInfo *TLI) {
 | |
|   if (!I->use_empty())
 | |
|     return false;
 | |
|   return wouldInstructionBeTriviallyDead(I, TLI);
 | |
| }
 | |
| 
 | |
| bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
 | |
|                                            const TargetLibraryInfo *TLI) {
 | |
|   if (isa<TerminatorInst>(I))
 | |
|     return false;
 | |
| 
 | |
|   // We don't want the landingpad-like instructions removed by anything this
 | |
|   // general.
 | |
|   if (I->isEHPad())
 | |
|     return false;
 | |
| 
 | |
|   // We don't want debug info removed by anything this general, unless
 | |
|   // debug info is empty.
 | |
|   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
 | |
|     if (DDI->getAddress())
 | |
|       return false;
 | |
|     return true;
 | |
|   }
 | |
|   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
 | |
|     if (DVI->getValue())
 | |
|       return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!I->mayHaveSideEffects())
 | |
|     return true;
 | |
| 
 | |
|   // Special case intrinsics that "may have side effects" but can be deleted
 | |
|   // when dead.
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | |
|     // Safe to delete llvm.stacksave if dead.
 | |
|     if (II->getIntrinsicID() == Intrinsic::stacksave)
 | |
|       return true;
 | |
| 
 | |
|     // Lifetime intrinsics are dead when their right-hand is undef.
 | |
|     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
 | |
|         II->getIntrinsicID() == Intrinsic::lifetime_end)
 | |
|       return isa<UndefValue>(II->getArgOperand(1));
 | |
| 
 | |
|     // Assumptions are dead if their condition is trivially true.  Guards on
 | |
|     // true are operationally no-ops.  In the future we can consider more
 | |
|     // sophisticated tradeoffs for guards considering potential for check
 | |
|     // widening, but for now we keep things simple.
 | |
|     if (II->getIntrinsicID() == Intrinsic::assume ||
 | |
|         II->getIntrinsicID() == Intrinsic::experimental_guard) {
 | |
|       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
 | |
|         return !Cond->isZero();
 | |
| 
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isAllocLikeFn(I, TLI))
 | |
|     return true;
 | |
| 
 | |
|   if (CallInst *CI = isFreeCall(I, TLI))
 | |
|     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
 | |
|       return C->isNullValue() || isa<UndefValue>(C);
 | |
| 
 | |
|   if (CallSite CS = CallSite(I))
 | |
|     if (isMathLibCallNoop(CS, TLI))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
 | |
| /// trivially dead instruction, delete it.  If that makes any of its operands
 | |
| /// trivially dead, delete them too, recursively.  Return true if any
 | |
| /// instructions were deleted.
 | |
| bool
 | |
| llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
 | |
|                                                  const TargetLibraryInfo *TLI) {
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
 | |
|     return false;
 | |
| 
 | |
|   SmallVector<Instruction*, 16> DeadInsts;
 | |
|   DeadInsts.push_back(I);
 | |
| 
 | |
|   do {
 | |
|     I = DeadInsts.pop_back_val();
 | |
| 
 | |
|     // Null out all of the instruction's operands to see if any operand becomes
 | |
|     // dead as we go.
 | |
|     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|       Value *OpV = I->getOperand(i);
 | |
|       I->setOperand(i, nullptr);
 | |
| 
 | |
|       if (!OpV->use_empty()) continue;
 | |
| 
 | |
|       // If the operand is an instruction that became dead as we nulled out the
 | |
|       // operand, and if it is 'trivially' dead, delete it in a future loop
 | |
|       // iteration.
 | |
|       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
 | |
|         if (isInstructionTriviallyDead(OpI, TLI))
 | |
|           DeadInsts.push_back(OpI);
 | |
|     }
 | |
| 
 | |
|     I->eraseFromParent();
 | |
|   } while (!DeadInsts.empty());
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// areAllUsesEqual - Check whether the uses of a value are all the same.
 | |
| /// This is similar to Instruction::hasOneUse() except this will also return
 | |
| /// true when there are no uses or multiple uses that all refer to the same
 | |
| /// value.
 | |
| static bool areAllUsesEqual(Instruction *I) {
 | |
|   Value::user_iterator UI = I->user_begin();
 | |
|   Value::user_iterator UE = I->user_end();
 | |
|   if (UI == UE)
 | |
|     return true;
 | |
| 
 | |
|   User *TheUse = *UI;
 | |
|   for (++UI; UI != UE; ++UI) {
 | |
|     if (*UI != TheUse)
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
 | |
| /// dead PHI node, due to being a def-use chain of single-use nodes that
 | |
| /// either forms a cycle or is terminated by a trivially dead instruction,
 | |
| /// delete it.  If that makes any of its operands trivially dead, delete them
 | |
| /// too, recursively.  Return true if a change was made.
 | |
| bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
 | |
|                                         const TargetLibraryInfo *TLI) {
 | |
|   SmallPtrSet<Instruction*, 4> Visited;
 | |
|   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
 | |
|        I = cast<Instruction>(*I->user_begin())) {
 | |
|     if (I->use_empty())
 | |
|       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
 | |
| 
 | |
|     // If we find an instruction more than once, we're on a cycle that
 | |
|     // won't prove fruitful.
 | |
|     if (!Visited.insert(I).second) {
 | |
|       // Break the cycle and delete the instruction and its operands.
 | |
|       I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | |
|       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| simplifyAndDCEInstruction(Instruction *I,
 | |
|                           SmallSetVector<Instruction *, 16> &WorkList,
 | |
|                           const DataLayout &DL,
 | |
|                           const TargetLibraryInfo *TLI) {
 | |
|   if (isInstructionTriviallyDead(I, TLI)) {
 | |
|     // Null out all of the instruction's operands to see if any operand becomes
 | |
|     // dead as we go.
 | |
|     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|       Value *OpV = I->getOperand(i);
 | |
|       I->setOperand(i, nullptr);
 | |
| 
 | |
|       if (!OpV->use_empty() || I == OpV)
 | |
|         continue;
 | |
| 
 | |
|       // If the operand is an instruction that became dead as we nulled out the
 | |
|       // operand, and if it is 'trivially' dead, delete it in a future loop
 | |
|       // iteration.
 | |
|       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
 | |
|         if (isInstructionTriviallyDead(OpI, TLI))
 | |
|           WorkList.insert(OpI);
 | |
|     }
 | |
| 
 | |
|     I->eraseFromParent();
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
 | |
|     // Add the users to the worklist. CAREFUL: an instruction can use itself,
 | |
|     // in the case of a phi node.
 | |
|     for (User *U : I->users()) {
 | |
|       if (U != I) {
 | |
|         WorkList.insert(cast<Instruction>(U));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Replace the instruction with its simplified value.
 | |
|     bool Changed = false;
 | |
|     if (!I->use_empty()) {
 | |
|       I->replaceAllUsesWith(SimpleV);
 | |
|       Changed = true;
 | |
|     }
 | |
|     if (isInstructionTriviallyDead(I, TLI)) {
 | |
|       I->eraseFromParent();
 | |
|       Changed = true;
 | |
|     }
 | |
|     return Changed;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
 | |
| /// simplify any instructions in it and recursively delete dead instructions.
 | |
| ///
 | |
| /// This returns true if it changed the code, note that it can delete
 | |
| /// instructions in other blocks as well in this block.
 | |
| bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
 | |
|                                        const TargetLibraryInfo *TLI) {
 | |
|   bool MadeChange = false;
 | |
|   const DataLayout &DL = BB->getModule()->getDataLayout();
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // In debug builds, ensure that the terminator of the block is never replaced
 | |
|   // or deleted by these simplifications. The idea of simplification is that it
 | |
|   // cannot introduce new instructions, and there is no way to replace the
 | |
|   // terminator of a block without introducing a new instruction.
 | |
|   AssertingVH<Instruction> TerminatorVH(&BB->back());
 | |
| #endif
 | |
| 
 | |
|   SmallSetVector<Instruction *, 16> WorkList;
 | |
|   // Iterate over the original function, only adding insts to the worklist
 | |
|   // if they actually need to be revisited. This avoids having to pre-init
 | |
|   // the worklist with the entire function's worth of instructions.
 | |
|   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
 | |
|        BI != E;) {
 | |
|     assert(!BI->isTerminator());
 | |
|     Instruction *I = &*BI;
 | |
|     ++BI;
 | |
| 
 | |
|     // We're visiting this instruction now, so make sure it's not in the
 | |
|     // worklist from an earlier visit.
 | |
|     if (!WorkList.count(I))
 | |
|       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
 | |
|   }
 | |
| 
 | |
|   while (!WorkList.empty()) {
 | |
|     Instruction *I = WorkList.pop_back_val();
 | |
|     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Control Flow Graph Restructuring.
 | |
| //
 | |
| 
 | |
| 
 | |
| /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
 | |
| /// method is called when we're about to delete Pred as a predecessor of BB.  If
 | |
| /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
 | |
| ///
 | |
| /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
 | |
| /// nodes that collapse into identity values.  For example, if we have:
 | |
| ///   x = phi(1, 0, 0, 0)
 | |
| ///   y = and x, z
 | |
| ///
 | |
| /// .. and delete the predecessor corresponding to the '1', this will attempt to
 | |
| /// recursively fold the and to 0.
 | |
| void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) {
 | |
|   // This only adjusts blocks with PHI nodes.
 | |
|   if (!isa<PHINode>(BB->begin()))
 | |
|     return;
 | |
| 
 | |
|   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
 | |
|   // them down.  This will leave us with single entry phi nodes and other phis
 | |
|   // that can be removed.
 | |
|   BB->removePredecessor(Pred, true);
 | |
| 
 | |
|   WeakTrackingVH PhiIt = &BB->front();
 | |
|   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
 | |
|     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
 | |
|     Value *OldPhiIt = PhiIt;
 | |
| 
 | |
|     if (!recursivelySimplifyInstruction(PN))
 | |
|       continue;
 | |
| 
 | |
|     // If recursive simplification ended up deleting the next PHI node we would
 | |
|     // iterate to, then our iterator is invalid, restart scanning from the top
 | |
|     // of the block.
 | |
|     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
 | |
| /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
 | |
| /// between them, moving the instructions in the predecessor into DestBB and
 | |
| /// deleting the predecessor block.
 | |
| ///
 | |
| void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
 | |
|   // If BB has single-entry PHI nodes, fold them.
 | |
|   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
 | |
|     Value *NewVal = PN->getIncomingValue(0);
 | |
|     // Replace self referencing PHI with undef, it must be dead.
 | |
|     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
 | |
|     PN->replaceAllUsesWith(NewVal);
 | |
|     PN->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   BasicBlock *PredBB = DestBB->getSinglePredecessor();
 | |
|   assert(PredBB && "Block doesn't have a single predecessor!");
 | |
| 
 | |
|   // Zap anything that took the address of DestBB.  Not doing this will give the
 | |
|   // address an invalid value.
 | |
|   if (DestBB->hasAddressTaken()) {
 | |
|     BlockAddress *BA = BlockAddress::get(DestBB);
 | |
|     Constant *Replacement =
 | |
|       ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
 | |
|     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
 | |
|                                                      BA->getType()));
 | |
|     BA->destroyConstant();
 | |
|   }
 | |
| 
 | |
|   // Anything that branched to PredBB now branches to DestBB.
 | |
|   PredBB->replaceAllUsesWith(DestBB);
 | |
| 
 | |
|   // Splice all the instructions from PredBB to DestBB.
 | |
|   PredBB->getTerminator()->eraseFromParent();
 | |
|   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
 | |
| 
 | |
|   // If the PredBB is the entry block of the function, move DestBB up to
 | |
|   // become the entry block after we erase PredBB.
 | |
|   if (PredBB == &DestBB->getParent()->getEntryBlock())
 | |
|     DestBB->moveAfter(PredBB);
 | |
| 
 | |
|   if (DT) {
 | |
|     BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
 | |
|     DT->changeImmediateDominator(DestBB, PredBBIDom);
 | |
|     DT->eraseNode(PredBB);
 | |
|   }
 | |
|   // Nuke BB.
 | |
|   PredBB->eraseFromParent();
 | |
| }
 | |
| 
 | |
| /// CanMergeValues - Return true if we can choose one of these values to use
 | |
| /// in place of the other. Note that we will always choose the non-undef
 | |
| /// value to keep.
 | |
| static bool CanMergeValues(Value *First, Value *Second) {
 | |
|   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
 | |
| }
 | |
| 
 | |
| /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
 | |
| /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
 | |
| ///
 | |
| /// Assumption: Succ is the single successor for BB.
 | |
| ///
 | |
| static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
 | |
|   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
 | |
| 
 | |
|   DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
 | |
|         << Succ->getName() << "\n");
 | |
|   // Shortcut, if there is only a single predecessor it must be BB and merging
 | |
|   // is always safe
 | |
|   if (Succ->getSinglePredecessor()) return true;
 | |
| 
 | |
|   // Make a list of the predecessors of BB
 | |
|   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
 | |
| 
 | |
|   // Look at all the phi nodes in Succ, to see if they present a conflict when
 | |
|   // merging these blocks
 | |
|   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
| 
 | |
|     // If the incoming value from BB is again a PHINode in
 | |
|     // BB which has the same incoming value for *PI as PN does, we can
 | |
|     // merge the phi nodes and then the blocks can still be merged
 | |
|     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
 | |
|     if (BBPN && BBPN->getParent() == BB) {
 | |
|       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
 | |
|         BasicBlock *IBB = PN->getIncomingBlock(PI);
 | |
|         if (BBPreds.count(IBB) &&
 | |
|             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
 | |
|                             PN->getIncomingValue(PI))) {
 | |
|           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
 | |
|                 << Succ->getName() << " is conflicting with "
 | |
|                 << BBPN->getName() << " with regard to common predecessor "
 | |
|                 << IBB->getName() << "\n");
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       Value* Val = PN->getIncomingValueForBlock(BB);
 | |
|       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
 | |
|         // See if the incoming value for the common predecessor is equal to the
 | |
|         // one for BB, in which case this phi node will not prevent the merging
 | |
|         // of the block.
 | |
|         BasicBlock *IBB = PN->getIncomingBlock(PI);
 | |
|         if (BBPreds.count(IBB) &&
 | |
|             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
 | |
|           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
 | |
|                 << Succ->getName() << " is conflicting with regard to common "
 | |
|                 << "predecessor " << IBB->getName() << "\n");
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| typedef SmallVector<BasicBlock *, 16> PredBlockVector;
 | |
| typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
 | |
| 
 | |
| /// \brief Determines the value to use as the phi node input for a block.
 | |
| ///
 | |
| /// Select between \p OldVal any value that we know flows from \p BB
 | |
| /// to a particular phi on the basis of which one (if either) is not
 | |
| /// undef. Update IncomingValues based on the selected value.
 | |
| ///
 | |
| /// \param OldVal The value we are considering selecting.
 | |
| /// \param BB The block that the value flows in from.
 | |
| /// \param IncomingValues A map from block-to-value for other phi inputs
 | |
| /// that we have examined.
 | |
| ///
 | |
| /// \returns the selected value.
 | |
| static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
 | |
|                                           IncomingValueMap &IncomingValues) {
 | |
|   if (!isa<UndefValue>(OldVal)) {
 | |
|     assert((!IncomingValues.count(BB) ||
 | |
|             IncomingValues.find(BB)->second == OldVal) &&
 | |
|            "Expected OldVal to match incoming value from BB!");
 | |
| 
 | |
|     IncomingValues.insert(std::make_pair(BB, OldVal));
 | |
|     return OldVal;
 | |
|   }
 | |
| 
 | |
|   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
 | |
|   if (It != IncomingValues.end()) return It->second;
 | |
| 
 | |
|   return OldVal;
 | |
| }
 | |
| 
 | |
| /// \brief Create a map from block to value for the operands of a
 | |
| /// given phi.
 | |
| ///
 | |
| /// Create a map from block to value for each non-undef value flowing
 | |
| /// into \p PN.
 | |
| ///
 | |
| /// \param PN The phi we are collecting the map for.
 | |
| /// \param IncomingValues [out] The map from block to value for this phi.
 | |
| static void gatherIncomingValuesToPhi(PHINode *PN,
 | |
|                                       IncomingValueMap &IncomingValues) {
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     BasicBlock *BB = PN->getIncomingBlock(i);
 | |
|     Value *V = PN->getIncomingValue(i);
 | |
| 
 | |
|     if (!isa<UndefValue>(V))
 | |
|       IncomingValues.insert(std::make_pair(BB, V));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Replace the incoming undef values to a phi with the values
 | |
| /// from a block-to-value map.
 | |
| ///
 | |
| /// \param PN The phi we are replacing the undefs in.
 | |
| /// \param IncomingValues A map from block to value.
 | |
| static void replaceUndefValuesInPhi(PHINode *PN,
 | |
|                                     const IncomingValueMap &IncomingValues) {
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *V = PN->getIncomingValue(i);
 | |
| 
 | |
|     if (!isa<UndefValue>(V)) continue;
 | |
| 
 | |
|     BasicBlock *BB = PN->getIncomingBlock(i);
 | |
|     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
 | |
|     if (It == IncomingValues.end()) continue;
 | |
| 
 | |
|     PN->setIncomingValue(i, It->second);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Replace a value flowing from a block to a phi with
 | |
| /// potentially multiple instances of that value flowing from the
 | |
| /// block's predecessors to the phi.
 | |
| ///
 | |
| /// \param BB The block with the value flowing into the phi.
 | |
| /// \param BBPreds The predecessors of BB.
 | |
| /// \param PN The phi that we are updating.
 | |
| static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
 | |
|                                                 const PredBlockVector &BBPreds,
 | |
|                                                 PHINode *PN) {
 | |
|   Value *OldVal = PN->removeIncomingValue(BB, false);
 | |
|   assert(OldVal && "No entry in PHI for Pred BB!");
 | |
| 
 | |
|   IncomingValueMap IncomingValues;
 | |
| 
 | |
|   // We are merging two blocks - BB, and the block containing PN - and
 | |
|   // as a result we need to redirect edges from the predecessors of BB
 | |
|   // to go to the block containing PN, and update PN
 | |
|   // accordingly. Since we allow merging blocks in the case where the
 | |
|   // predecessor and successor blocks both share some predecessors,
 | |
|   // and where some of those common predecessors might have undef
 | |
|   // values flowing into PN, we want to rewrite those values to be
 | |
|   // consistent with the non-undef values.
 | |
| 
 | |
|   gatherIncomingValuesToPhi(PN, IncomingValues);
 | |
| 
 | |
|   // If this incoming value is one of the PHI nodes in BB, the new entries
 | |
|   // in the PHI node are the entries from the old PHI.
 | |
|   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
 | |
|     PHINode *OldValPN = cast<PHINode>(OldVal);
 | |
|     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
 | |
|       // Note that, since we are merging phi nodes and BB and Succ might
 | |
|       // have common predecessors, we could end up with a phi node with
 | |
|       // identical incoming branches. This will be cleaned up later (and
 | |
|       // will trigger asserts if we try to clean it up now, without also
 | |
|       // simplifying the corresponding conditional branch).
 | |
|       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
 | |
|       Value *PredVal = OldValPN->getIncomingValue(i);
 | |
|       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
 | |
|                                                     IncomingValues);
 | |
| 
 | |
|       // And add a new incoming value for this predecessor for the
 | |
|       // newly retargeted branch.
 | |
|       PN->addIncoming(Selected, PredBB);
 | |
|     }
 | |
|   } else {
 | |
|     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
 | |
|       // Update existing incoming values in PN for this
 | |
|       // predecessor of BB.
 | |
|       BasicBlock *PredBB = BBPreds[i];
 | |
|       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
 | |
|                                                     IncomingValues);
 | |
| 
 | |
|       // And add a new incoming value for this predecessor for the
 | |
|       // newly retargeted branch.
 | |
|       PN->addIncoming(Selected, PredBB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   replaceUndefValuesInPhi(PN, IncomingValues);
 | |
| }
 | |
| 
 | |
| /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
 | |
| /// unconditional branch, and contains no instructions other than PHI nodes,
 | |
| /// potential side-effect free intrinsics and the branch.  If possible,
 | |
| /// eliminate BB by rewriting all the predecessors to branch to the successor
 | |
| /// block and return true.  If we can't transform, return false.
 | |
| bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
 | |
|   assert(BB != &BB->getParent()->getEntryBlock() &&
 | |
|          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
 | |
| 
 | |
|   // We can't eliminate infinite loops.
 | |
|   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
 | |
|   if (BB == Succ) return false;
 | |
| 
 | |
|   // Check to see if merging these blocks would cause conflicts for any of the
 | |
|   // phi nodes in BB or Succ. If not, we can safely merge.
 | |
|   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
 | |
| 
 | |
|   // Check for cases where Succ has multiple predecessors and a PHI node in BB
 | |
|   // has uses which will not disappear when the PHI nodes are merged.  It is
 | |
|   // possible to handle such cases, but difficult: it requires checking whether
 | |
|   // BB dominates Succ, which is non-trivial to calculate in the case where
 | |
|   // Succ has multiple predecessors.  Also, it requires checking whether
 | |
|   // constructing the necessary self-referential PHI node doesn't introduce any
 | |
|   // conflicts; this isn't too difficult, but the previous code for doing this
 | |
|   // was incorrect.
 | |
|   //
 | |
|   // Note that if this check finds a live use, BB dominates Succ, so BB is
 | |
|   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
 | |
|   // folding the branch isn't profitable in that case anyway.
 | |
|   if (!Succ->getSinglePredecessor()) {
 | |
|     BasicBlock::iterator BBI = BB->begin();
 | |
|     while (isa<PHINode>(*BBI)) {
 | |
|       for (Use &U : BBI->uses()) {
 | |
|         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
 | |
|           if (PN->getIncomingBlock(U) != BB)
 | |
|             return false;
 | |
|         } else {
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
|       ++BBI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
 | |
| 
 | |
|   if (isa<PHINode>(Succ->begin())) {
 | |
|     // If there is more than one pred of succ, and there are PHI nodes in
 | |
|     // the successor, then we need to add incoming edges for the PHI nodes
 | |
|     //
 | |
|     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
 | |
| 
 | |
|     // Loop over all of the PHI nodes in the successor of BB.
 | |
|     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
 | |
|       PHINode *PN = cast<PHINode>(I);
 | |
| 
 | |
|       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Succ->getSinglePredecessor()) {
 | |
|     // BB is the only predecessor of Succ, so Succ will end up with exactly
 | |
|     // the same predecessors BB had.
 | |
| 
 | |
|     // Copy over any phi, debug or lifetime instruction.
 | |
|     BB->getTerminator()->eraseFromParent();
 | |
|     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
 | |
|                                BB->getInstList());
 | |
|   } else {
 | |
|     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
 | |
|       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
 | |
|       assert(PN->use_empty() && "There shouldn't be any uses here!");
 | |
|       PN->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the unconditional branch we replaced contains llvm.loop metadata, we
 | |
|   // add the metadata to the branch instructions in the predecessors.
 | |
|   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
 | |
|   Instruction *TI = BB->getTerminator();
 | |
|   if (TI)
 | |
|     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
 | |
|       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | |
|         BasicBlock *Pred = *PI;
 | |
|         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
 | |
|       }
 | |
| 
 | |
|   // Everything that jumped to BB now goes to Succ.
 | |
|   BB->replaceAllUsesWith(Succ);
 | |
|   if (!Succ->hasName()) Succ->takeName(BB);
 | |
|   BB->eraseFromParent();              // Delete the old basic block.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
 | |
| /// nodes in this block. This doesn't try to be clever about PHI nodes
 | |
| /// which differ only in the order of the incoming values, but instcombine
 | |
| /// orders them so it usually won't matter.
 | |
| ///
 | |
| bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
 | |
|   // This implementation doesn't currently consider undef operands
 | |
|   // specially. Theoretically, two phis which are identical except for
 | |
|   // one having an undef where the other doesn't could be collapsed.
 | |
| 
 | |
|   struct PHIDenseMapInfo {
 | |
|     static PHINode *getEmptyKey() {
 | |
|       return DenseMapInfo<PHINode *>::getEmptyKey();
 | |
|     }
 | |
|     static PHINode *getTombstoneKey() {
 | |
|       return DenseMapInfo<PHINode *>::getTombstoneKey();
 | |
|     }
 | |
|     static unsigned getHashValue(PHINode *PN) {
 | |
|       // Compute a hash value on the operands. Instcombine will likely have
 | |
|       // sorted them, which helps expose duplicates, but we have to check all
 | |
|       // the operands to be safe in case instcombine hasn't run.
 | |
|       return static_cast<unsigned>(hash_combine(
 | |
|           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
 | |
|           hash_combine_range(PN->block_begin(), PN->block_end())));
 | |
|     }
 | |
|     static bool isEqual(PHINode *LHS, PHINode *RHS) {
 | |
|       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
 | |
|           RHS == getEmptyKey() || RHS == getTombstoneKey())
 | |
|         return LHS == RHS;
 | |
|       return LHS->isIdenticalTo(RHS);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // Set of unique PHINodes.
 | |
|   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
 | |
| 
 | |
|   // Examine each PHI.
 | |
|   bool Changed = false;
 | |
|   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
 | |
|     auto Inserted = PHISet.insert(PN);
 | |
|     if (!Inserted.second) {
 | |
|       // A duplicate. Replace this PHI with its duplicate.
 | |
|       PN->replaceAllUsesWith(*Inserted.first);
 | |
|       PN->eraseFromParent();
 | |
|       Changed = true;
 | |
| 
 | |
|       // The RAUW can change PHIs that we already visited. Start over from the
 | |
|       // beginning.
 | |
|       PHISet.clear();
 | |
|       I = BB->begin();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// enforceKnownAlignment - If the specified pointer points to an object that
 | |
| /// we control, modify the object's alignment to PrefAlign. This isn't
 | |
| /// often possible though. If alignment is important, a more reliable approach
 | |
| /// is to simply align all global variables and allocation instructions to
 | |
| /// their preferred alignment from the beginning.
 | |
| ///
 | |
| static unsigned enforceKnownAlignment(Value *V, unsigned Align,
 | |
|                                       unsigned PrefAlign,
 | |
|                                       const DataLayout &DL) {
 | |
|   assert(PrefAlign > Align);
 | |
| 
 | |
|   V = V->stripPointerCasts();
 | |
| 
 | |
|   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
 | |
|     // TODO: ideally, computeKnownBits ought to have used
 | |
|     // AllocaInst::getAlignment() in its computation already, making
 | |
|     // the below max redundant. But, as it turns out,
 | |
|     // stripPointerCasts recurses through infinite layers of bitcasts,
 | |
|     // while computeKnownBits is not allowed to traverse more than 6
 | |
|     // levels.
 | |
|     Align = std::max(AI->getAlignment(), Align);
 | |
|     if (PrefAlign <= Align)
 | |
|       return Align;
 | |
| 
 | |
|     // If the preferred alignment is greater than the natural stack alignment
 | |
|     // then don't round up. This avoids dynamic stack realignment.
 | |
|     if (DL.exceedsNaturalStackAlignment(PrefAlign))
 | |
|       return Align;
 | |
|     AI->setAlignment(PrefAlign);
 | |
|     return PrefAlign;
 | |
|   }
 | |
| 
 | |
|   if (auto *GO = dyn_cast<GlobalObject>(V)) {
 | |
|     // TODO: as above, this shouldn't be necessary.
 | |
|     Align = std::max(GO->getAlignment(), Align);
 | |
|     if (PrefAlign <= Align)
 | |
|       return Align;
 | |
| 
 | |
|     // If there is a large requested alignment and we can, bump up the alignment
 | |
|     // of the global.  If the memory we set aside for the global may not be the
 | |
|     // memory used by the final program then it is impossible for us to reliably
 | |
|     // enforce the preferred alignment.
 | |
|     if (!GO->canIncreaseAlignment())
 | |
|       return Align;
 | |
| 
 | |
|     GO->setAlignment(PrefAlign);
 | |
|     return PrefAlign;
 | |
|   }
 | |
| 
 | |
|   return Align;
 | |
| }
 | |
| 
 | |
| unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
 | |
|                                           const DataLayout &DL,
 | |
|                                           const Instruction *CxtI,
 | |
|                                           AssumptionCache *AC,
 | |
|                                           const DominatorTree *DT) {
 | |
|   assert(V->getType()->isPointerTy() &&
 | |
|          "getOrEnforceKnownAlignment expects a pointer!");
 | |
| 
 | |
|   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
 | |
|   unsigned TrailZ = Known.countMinTrailingZeros();
 | |
| 
 | |
|   // Avoid trouble with ridiculously large TrailZ values, such as
 | |
|   // those computed from a null pointer.
 | |
|   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
 | |
| 
 | |
|   unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
 | |
| 
 | |
|   // LLVM doesn't support alignments larger than this currently.
 | |
|   Align = std::min(Align, +Value::MaximumAlignment);
 | |
| 
 | |
|   if (PrefAlign > Align)
 | |
|     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
 | |
| 
 | |
|   // We don't need to make any adjustment.
 | |
|   return Align;
 | |
| }
 | |
| 
 | |
| ///===---------------------------------------------------------------------===//
 | |
| ///  Dbg Intrinsic utilities
 | |
| ///
 | |
| 
 | |
| /// See if there is a dbg.value intrinsic for DIVar before I.
 | |
| static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
 | |
|                               Instruction *I) {
 | |
|   // Since we can't guarantee that the original dbg.declare instrinsic
 | |
|   // is removed by LowerDbgDeclare(), we need to make sure that we are
 | |
|   // not inserting the same dbg.value intrinsic over and over.
 | |
|   llvm::BasicBlock::InstListType::iterator PrevI(I);
 | |
|   if (PrevI != I->getParent()->getInstList().begin()) {
 | |
|     --PrevI;
 | |
|     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
 | |
|       if (DVI->getValue() == I->getOperand(0) &&
 | |
|           DVI->getVariable() == DIVar &&
 | |
|           DVI->getExpression() == DIExpr)
 | |
|         return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
 | |
| static bool PhiHasDebugValue(DILocalVariable *DIVar,
 | |
|                              DIExpression *DIExpr,
 | |
|                              PHINode *APN) {
 | |
|   // Since we can't guarantee that the original dbg.declare instrinsic
 | |
|   // is removed by LowerDbgDeclare(), we need to make sure that we are
 | |
|   // not inserting the same dbg.value intrinsic over and over.
 | |
|   SmallVector<DbgValueInst *, 1> DbgValues;
 | |
|   findDbgValues(DbgValues, APN);
 | |
|   for (auto *DVI : DbgValues) {
 | |
|     assert(DVI->getValue() == APN);
 | |
|     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
 | |
| /// that has an associated llvm.dbg.decl intrinsic.
 | |
| void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
 | |
|                                            StoreInst *SI, DIBuilder &Builder) {
 | |
|   auto *DIVar = DDI->getVariable();
 | |
|   assert(DIVar && "Missing variable");
 | |
|   auto *DIExpr = DDI->getExpression();
 | |
|   Value *DV = SI->getOperand(0);
 | |
| 
 | |
|   // If an argument is zero extended then use argument directly. The ZExt
 | |
|   // may be zapped by an optimization pass in future.
 | |
|   Argument *ExtendedArg = nullptr;
 | |
|   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
 | |
|     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
 | |
|   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
 | |
|     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
 | |
|   if (ExtendedArg) {
 | |
|     // If this DDI was already describing only a fragment of a variable, ensure
 | |
|     // that fragment is appropriately narrowed here.
 | |
|     // But if a fragment wasn't used, describe the value as the original
 | |
|     // argument (rather than the zext or sext) so that it remains described even
 | |
|     // if the sext/zext is optimized away. This widens the variable description,
 | |
|     // leaving it up to the consumer to know how the smaller value may be
 | |
|     // represented in a larger register.
 | |
|     if (auto Fragment = DIExpr->getFragmentInfo()) {
 | |
|       unsigned FragmentOffset = Fragment->OffsetInBits;
 | |
|       SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(),
 | |
|                                    DIExpr->elements_end() - 3);
 | |
|       Ops.push_back(dwarf::DW_OP_LLVM_fragment);
 | |
|       Ops.push_back(FragmentOffset);
 | |
|       const DataLayout &DL = DDI->getModule()->getDataLayout();
 | |
|       Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType()));
 | |
|       DIExpr = Builder.createExpression(Ops);
 | |
|     }
 | |
|     DV = ExtendedArg;
 | |
|   }
 | |
|   if (!LdStHasDebugValue(DIVar, DIExpr, SI))
 | |
|     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DDI->getDebugLoc(),
 | |
|                                     SI);
 | |
| }
 | |
| 
 | |
| /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
 | |
| /// that has an associated llvm.dbg.decl intrinsic.
 | |
| void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
 | |
|                                            LoadInst *LI, DIBuilder &Builder) {
 | |
|   auto *DIVar = DDI->getVariable();
 | |
|   auto *DIExpr = DDI->getExpression();
 | |
|   assert(DIVar && "Missing variable");
 | |
| 
 | |
|   if (LdStHasDebugValue(DIVar, DIExpr, LI))
 | |
|     return;
 | |
| 
 | |
|   // We are now tracking the loaded value instead of the address. In the
 | |
|   // future if multi-location support is added to the IR, it might be
 | |
|   // preferable to keep tracking both the loaded value and the original
 | |
|   // address in case the alloca can not be elided.
 | |
|   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
 | |
|       LI, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr);
 | |
|   DbgValue->insertAfter(LI);
 | |
| }
 | |
| 
 | |
| /// Inserts a llvm.dbg.value intrinsic after a phi
 | |
| /// that has an associated llvm.dbg.decl intrinsic.
 | |
| void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
 | |
|                                            PHINode *APN, DIBuilder &Builder) {
 | |
|   auto *DIVar = DDI->getVariable();
 | |
|   auto *DIExpr = DDI->getExpression();
 | |
|   assert(DIVar && "Missing variable");
 | |
| 
 | |
|   if (PhiHasDebugValue(DIVar, DIExpr, APN))
 | |
|     return;
 | |
| 
 | |
|   BasicBlock *BB = APN->getParent();
 | |
|   auto InsertionPt = BB->getFirstInsertionPt();
 | |
| 
 | |
|   // The block may be a catchswitch block, which does not have a valid
 | |
|   // insertion point.
 | |
|   // FIXME: Insert dbg.value markers in the successors when appropriate.
 | |
|   if (InsertionPt != BB->end())
 | |
|     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DDI->getDebugLoc(),
 | |
|                                     &*InsertionPt);
 | |
| }
 | |
| 
 | |
| /// Determine whether this alloca is either a VLA or an array.
 | |
| static bool isArray(AllocaInst *AI) {
 | |
|   return AI->isArrayAllocation() ||
 | |
|     AI->getType()->getElementType()->isArrayTy();
 | |
| }
 | |
| 
 | |
| /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
 | |
| /// of llvm.dbg.value intrinsics.
 | |
| bool llvm::LowerDbgDeclare(Function &F) {
 | |
|   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
 | |
|   SmallVector<DbgDeclareInst *, 4> Dbgs;
 | |
|   for (auto &FI : F)
 | |
|     for (Instruction &BI : FI)
 | |
|       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
 | |
|         Dbgs.push_back(DDI);
 | |
| 
 | |
|   if (Dbgs.empty())
 | |
|     return false;
 | |
| 
 | |
|   for (auto &I : Dbgs) {
 | |
|     DbgDeclareInst *DDI = I;
 | |
|     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
 | |
|     // If this is an alloca for a scalar variable, insert a dbg.value
 | |
|     // at each load and store to the alloca and erase the dbg.declare.
 | |
|     // The dbg.values allow tracking a variable even if it is not
 | |
|     // stored on the stack, while the dbg.declare can only describe
 | |
|     // the stack slot (and at a lexical-scope granularity). Later
 | |
|     // passes will attempt to elide the stack slot.
 | |
|     if (AI && !isArray(AI)) {
 | |
|       for (auto &AIUse : AI->uses()) {
 | |
|         User *U = AIUse.getUser();
 | |
|         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
 | |
|           if (AIUse.getOperandNo() == 1)
 | |
|             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
 | |
|         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
 | |
|           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
 | |
|         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
 | |
|           // This is a call by-value or some other instruction that
 | |
|           // takes a pointer to the variable. Insert a *value*
 | |
|           // intrinsic that describes the alloca.
 | |
|           DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(),
 | |
|                                       DDI->getExpression(), DDI->getDebugLoc(),
 | |
|                                       CI);
 | |
|         }
 | |
|       }
 | |
|       DDI->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
 | |
| /// alloca 'V', if any.
 | |
| DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
 | |
|   if (auto *L = LocalAsMetadata::getIfExists(V))
 | |
|     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
 | |
|       for (User *U : MDV->users())
 | |
|         if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
 | |
|           return DDI;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
 | |
|   if (auto *L = LocalAsMetadata::getIfExists(V))
 | |
|     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
 | |
|       for (User *U : MDV->users())
 | |
|         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
 | |
|           DbgValues.push_back(DVI);
 | |
| }
 | |
| 
 | |
| 
 | |
| bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
 | |
|                              Instruction *InsertBefore, DIBuilder &Builder,
 | |
|                              bool Deref, int Offset) {
 | |
|   DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address);
 | |
|   if (!DDI)
 | |
|     return false;
 | |
|   DebugLoc Loc = DDI->getDebugLoc();
 | |
|   auto *DIVar = DDI->getVariable();
 | |
|   auto *DIExpr = DDI->getExpression();
 | |
|   assert(DIVar && "Missing variable");
 | |
|   DIExpr = DIExpression::prepend(DIExpr, Deref, Offset);
 | |
|   // Insert llvm.dbg.declare immediately after the original alloca, and remove
 | |
|   // old llvm.dbg.declare.
 | |
|   Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
 | |
|   DDI->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
 | |
|                                       DIBuilder &Builder, bool Deref, int Offset) {
 | |
|   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
 | |
|                            Deref, Offset);
 | |
| }
 | |
| 
 | |
| static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
 | |
|                                         DIBuilder &Builder, int Offset) {
 | |
|   DebugLoc Loc = DVI->getDebugLoc();
 | |
|   auto *DIVar = DVI->getVariable();
 | |
|   auto *DIExpr = DVI->getExpression();
 | |
|   assert(DIVar && "Missing variable");
 | |
| 
 | |
|   // This is an alloca-based llvm.dbg.value. The first thing it should do with
 | |
|   // the alloca pointer is dereference it. Otherwise we don't know how to handle
 | |
|   // it and give up.
 | |
|   if (!DIExpr || DIExpr->getNumElements() < 1 ||
 | |
|       DIExpr->getElement(0) != dwarf::DW_OP_deref)
 | |
|     return;
 | |
| 
 | |
|   // Insert the offset immediately after the first deref.
 | |
|   // We could just change the offset argument of dbg.value, but it's unsigned...
 | |
|   if (Offset) {
 | |
|     SmallVector<uint64_t, 4> Ops;
 | |
|     Ops.push_back(dwarf::DW_OP_deref);
 | |
|     DIExpression::appendOffset(Ops, Offset);
 | |
|     Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
 | |
|     DIExpr = Builder.createExpression(Ops);
 | |
|   }
 | |
| 
 | |
|   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
 | |
|   DVI->eraseFromParent();
 | |
| }
 | |
| 
 | |
| void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
 | |
|                                     DIBuilder &Builder, int Offset) {
 | |
|   if (auto *L = LocalAsMetadata::getIfExists(AI))
 | |
|     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
 | |
|       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
 | |
|         Use &U = *UI++;
 | |
|         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
 | |
|           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
 | |
|       }
 | |
| }
 | |
| 
 | |
| void llvm::salvageDebugInfo(Instruction &I) {
 | |
|   SmallVector<DbgValueInst *, 1> DbgValues;
 | |
|   auto &M = *I.getModule();
 | |
| 
 | |
|   auto MDWrap = [&](Value *V) {
 | |
|     return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V));
 | |
|   };
 | |
| 
 | |
|   if (isa<BitCastInst>(&I)) {
 | |
|     findDbgValues(DbgValues, &I);
 | |
|     for (auto *DVI : DbgValues) {
 | |
|       // Bitcasts are entirely irrelevant for debug info. Rewrite the dbg.value
 | |
|       // to use the cast's source.
 | |
|       DVI->setOperand(0, MDWrap(I.getOperand(0)));
 | |
|       DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n');
 | |
|     }
 | |
|   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
 | |
|     findDbgValues(DbgValues, &I);
 | |
|     for (auto *DVI : DbgValues) {
 | |
|       unsigned BitWidth =
 | |
|           M.getDataLayout().getPointerSizeInBits(GEP->getPointerAddressSpace());
 | |
|       APInt Offset(BitWidth, 0);
 | |
|       // Rewrite a constant GEP into a DIExpression.  Since we are performing
 | |
|       // arithmetic to compute the variable's *value* in the DIExpression, we
 | |
|       // need to mark the expression with a DW_OP_stack_value.
 | |
|       if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
 | |
|         auto *DIExpr = DVI->getExpression();
 | |
|         DIBuilder DIB(M, /*AllowUnresolved*/ false);
 | |
|         // GEP offsets are i32 and thus always fit into an int64_t.
 | |
|         DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref,
 | |
|                                        Offset.getSExtValue(),
 | |
|                                        DIExpression::WithStackValue);
 | |
|         DVI->setOperand(0, MDWrap(I.getOperand(0)));
 | |
|         DVI->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr));
 | |
|         DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n');
 | |
|       }
 | |
|     }
 | |
|   } else if (isa<LoadInst>(&I)) {
 | |
|     findDbgValues(DbgValues, &I);
 | |
|     for (auto *DVI : DbgValues) {
 | |
|       // Rewrite the load into DW_OP_deref.
 | |
|       auto *DIExpr = DVI->getExpression();
 | |
|       DIBuilder DIB(M, /*AllowUnresolved*/ false);
 | |
|       DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref);
 | |
|       DVI->setOperand(0, MDWrap(I.getOperand(0)));
 | |
|       DVI->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr));
 | |
|       DEBUG(dbgs() << "SALVAGE:  " << *DVI << '\n');
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
 | |
|   unsigned NumDeadInst = 0;
 | |
|   // Delete the instructions backwards, as it has a reduced likelihood of
 | |
|   // having to update as many def-use and use-def chains.
 | |
|   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
 | |
|   while (EndInst != &BB->front()) {
 | |
|     // Delete the next to last instruction.
 | |
|     Instruction *Inst = &*--EndInst->getIterator();
 | |
|     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
 | |
|       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
 | |
|     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
 | |
|       EndInst = Inst;
 | |
|       continue;
 | |
|     }
 | |
|     if (!isa<DbgInfoIntrinsic>(Inst))
 | |
|       ++NumDeadInst;
 | |
|     Inst->eraseFromParent();
 | |
|   }
 | |
|   return NumDeadInst;
 | |
| }
 | |
| 
 | |
| unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
 | |
|                                    bool PreserveLCSSA) {
 | |
|   BasicBlock *BB = I->getParent();
 | |
|   // Loop over all of the successors, removing BB's entry from any PHI
 | |
|   // nodes.
 | |
|   for (BasicBlock *Successor : successors(BB))
 | |
|     Successor->removePredecessor(BB, PreserveLCSSA);
 | |
| 
 | |
|   // Insert a call to llvm.trap right before this.  This turns the undefined
 | |
|   // behavior into a hard fail instead of falling through into random code.
 | |
|   if (UseLLVMTrap) {
 | |
|     Function *TrapFn =
 | |
|       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
 | |
|     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
 | |
|     CallTrap->setDebugLoc(I->getDebugLoc());
 | |
|   }
 | |
|   new UnreachableInst(I->getContext(), I);
 | |
| 
 | |
|   // All instructions after this are dead.
 | |
|   unsigned NumInstrsRemoved = 0;
 | |
|   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
 | |
|   while (BBI != BBE) {
 | |
|     if (!BBI->use_empty())
 | |
|       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
 | |
|     BB->getInstList().erase(BBI++);
 | |
|     ++NumInstrsRemoved;
 | |
|   }
 | |
|   return NumInstrsRemoved;
 | |
| }
 | |
| 
 | |
| /// changeToCall - Convert the specified invoke into a normal call.
 | |
| static void changeToCall(InvokeInst *II) {
 | |
|   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
 | |
|   SmallVector<OperandBundleDef, 1> OpBundles;
 | |
|   II->getOperandBundlesAsDefs(OpBundles);
 | |
|   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
 | |
|                                        "", II);
 | |
|   NewCall->takeName(II);
 | |
|   NewCall->setCallingConv(II->getCallingConv());
 | |
|   NewCall->setAttributes(II->getAttributes());
 | |
|   NewCall->setDebugLoc(II->getDebugLoc());
 | |
|   II->replaceAllUsesWith(NewCall);
 | |
| 
 | |
|   // Follow the call by a branch to the normal destination.
 | |
|   BranchInst::Create(II->getNormalDest(), II);
 | |
| 
 | |
|   // Update PHI nodes in the unwind destination
 | |
|   II->getUnwindDest()->removePredecessor(II->getParent());
 | |
|   II->eraseFromParent();
 | |
| }
 | |
| 
 | |
| BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
 | |
|                                                    BasicBlock *UnwindEdge) {
 | |
|   BasicBlock *BB = CI->getParent();
 | |
| 
 | |
|   // Convert this function call into an invoke instruction.  First, split the
 | |
|   // basic block.
 | |
|   BasicBlock *Split =
 | |
|       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
 | |
| 
 | |
|   // Delete the unconditional branch inserted by splitBasicBlock
 | |
|   BB->getInstList().pop_back();
 | |
| 
 | |
|   // Create the new invoke instruction.
 | |
|   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
 | |
|   SmallVector<OperandBundleDef, 1> OpBundles;
 | |
| 
 | |
|   CI->getOperandBundlesAsDefs(OpBundles);
 | |
| 
 | |
|   // Note: we're round tripping operand bundles through memory here, and that
 | |
|   // can potentially be avoided with a cleverer API design that we do not have
 | |
|   // as of this time.
 | |
| 
 | |
|   InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
 | |
|                                       InvokeArgs, OpBundles, CI->getName(), BB);
 | |
|   II->setDebugLoc(CI->getDebugLoc());
 | |
|   II->setCallingConv(CI->getCallingConv());
 | |
|   II->setAttributes(CI->getAttributes());
 | |
| 
 | |
|   // Make sure that anything using the call now uses the invoke!  This also
 | |
|   // updates the CallGraph if present, because it uses a WeakTrackingVH.
 | |
|   CI->replaceAllUsesWith(II);
 | |
| 
 | |
|   // Delete the original call
 | |
|   Split->getInstList().pop_front();
 | |
|   return Split;
 | |
| }
 | |
| 
 | |
| static bool markAliveBlocks(Function &F,
 | |
|                             SmallPtrSetImpl<BasicBlock*> &Reachable) {
 | |
| 
 | |
|   SmallVector<BasicBlock*, 128> Worklist;
 | |
|   BasicBlock *BB = &F.front();
 | |
|   Worklist.push_back(BB);
 | |
|   Reachable.insert(BB);
 | |
|   bool Changed = false;
 | |
|   do {
 | |
|     BB = Worklist.pop_back_val();
 | |
| 
 | |
|     // Do a quick scan of the basic block, turning any obviously unreachable
 | |
|     // instructions into LLVM unreachable insts.  The instruction combining pass
 | |
|     // canonicalizes unreachable insts into stores to null or undef.
 | |
|     for (Instruction &I : *BB) {
 | |
|       // Assumptions that are known to be false are equivalent to unreachable.
 | |
|       // Also, if the condition is undefined, then we make the choice most
 | |
|       // beneficial to the optimizer, and choose that to also be unreachable.
 | |
|       if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
 | |
|         if (II->getIntrinsicID() == Intrinsic::assume) {
 | |
|           if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
 | |
|             // Don't insert a call to llvm.trap right before the unreachable.
 | |
|             changeToUnreachable(II, false);
 | |
|             Changed = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (II->getIntrinsicID() == Intrinsic::experimental_guard) {
 | |
|           // A call to the guard intrinsic bails out of the current compilation
 | |
|           // unit if the predicate passed to it is false.  If the predicate is a
 | |
|           // constant false, then we know the guard will bail out of the current
 | |
|           // compile unconditionally, so all code following it is dead.
 | |
|           //
 | |
|           // Note: unlike in llvm.assume, it is not "obviously profitable" for
 | |
|           // guards to treat `undef` as `false` since a guard on `undef` can
 | |
|           // still be useful for widening.
 | |
|           if (match(II->getArgOperand(0), m_Zero()))
 | |
|             if (!isa<UnreachableInst>(II->getNextNode())) {
 | |
|               changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false);
 | |
|               Changed = true;
 | |
|               break;
 | |
|             }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (auto *CI = dyn_cast<CallInst>(&I)) {
 | |
|         Value *Callee = CI->getCalledValue();
 | |
|         if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
 | |
|           changeToUnreachable(CI, /*UseLLVMTrap=*/false);
 | |
|           Changed = true;
 | |
|           break;
 | |
|         }
 | |
|         if (CI->doesNotReturn()) {
 | |
|           // If we found a call to a no-return function, insert an unreachable
 | |
|           // instruction after it.  Make sure there isn't *already* one there
 | |
|           // though.
 | |
|           if (!isa<UnreachableInst>(CI->getNextNode())) {
 | |
|             // Don't insert a call to llvm.trap right before the unreachable.
 | |
|             changeToUnreachable(CI->getNextNode(), false);
 | |
|             Changed = true;
 | |
|           }
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Store to undef and store to null are undefined and used to signal that
 | |
|       // they should be changed to unreachable by passes that can't modify the
 | |
|       // CFG.
 | |
|       if (auto *SI = dyn_cast<StoreInst>(&I)) {
 | |
|         // Don't touch volatile stores.
 | |
|         if (SI->isVolatile()) continue;
 | |
| 
 | |
|         Value *Ptr = SI->getOperand(1);
 | |
| 
 | |
|         if (isa<UndefValue>(Ptr) ||
 | |
|             (isa<ConstantPointerNull>(Ptr) &&
 | |
|              SI->getPointerAddressSpace() == 0)) {
 | |
|           changeToUnreachable(SI, true);
 | |
|           Changed = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     TerminatorInst *Terminator = BB->getTerminator();
 | |
|     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
 | |
|       // Turn invokes that call 'nounwind' functions into ordinary calls.
 | |
|       Value *Callee = II->getCalledValue();
 | |
|       if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
 | |
|         changeToUnreachable(II, true);
 | |
|         Changed = true;
 | |
|       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
 | |
|         if (II->use_empty() && II->onlyReadsMemory()) {
 | |
|           // jump to the normal destination branch.
 | |
|           BranchInst::Create(II->getNormalDest(), II);
 | |
|           II->getUnwindDest()->removePredecessor(II->getParent());
 | |
|           II->eraseFromParent();
 | |
|         } else
 | |
|           changeToCall(II);
 | |
|         Changed = true;
 | |
|       }
 | |
|     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
 | |
|       // Remove catchpads which cannot be reached.
 | |
|       struct CatchPadDenseMapInfo {
 | |
|         static CatchPadInst *getEmptyKey() {
 | |
|           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
 | |
|         }
 | |
|         static CatchPadInst *getTombstoneKey() {
 | |
|           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
 | |
|         }
 | |
|         static unsigned getHashValue(CatchPadInst *CatchPad) {
 | |
|           return static_cast<unsigned>(hash_combine_range(
 | |
|               CatchPad->value_op_begin(), CatchPad->value_op_end()));
 | |
|         }
 | |
|         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
 | |
|           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
 | |
|               RHS == getEmptyKey() || RHS == getTombstoneKey())
 | |
|             return LHS == RHS;
 | |
|           return LHS->isIdenticalTo(RHS);
 | |
|         }
 | |
|       };
 | |
| 
 | |
|       // Set of unique CatchPads.
 | |
|       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
 | |
|                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
 | |
|           HandlerSet;
 | |
|       detail::DenseSetEmpty Empty;
 | |
|       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
 | |
|                                              E = CatchSwitch->handler_end();
 | |
|            I != E; ++I) {
 | |
|         BasicBlock *HandlerBB = *I;
 | |
|         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
 | |
|         if (!HandlerSet.insert({CatchPad, Empty}).second) {
 | |
|           CatchSwitch->removeHandler(I);
 | |
|           --I;
 | |
|           --E;
 | |
|           Changed = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Changed |= ConstantFoldTerminator(BB, true);
 | |
|     for (BasicBlock *Successor : successors(BB))
 | |
|       if (Reachable.insert(Successor).second)
 | |
|         Worklist.push_back(Successor);
 | |
|   } while (!Worklist.empty());
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| void llvm::removeUnwindEdge(BasicBlock *BB) {
 | |
|   TerminatorInst *TI = BB->getTerminator();
 | |
| 
 | |
|   if (auto *II = dyn_cast<InvokeInst>(TI)) {
 | |
|     changeToCall(II);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   TerminatorInst *NewTI;
 | |
|   BasicBlock *UnwindDest;
 | |
| 
 | |
|   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
 | |
|     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
 | |
|     UnwindDest = CRI->getUnwindDest();
 | |
|   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
 | |
|     auto *NewCatchSwitch = CatchSwitchInst::Create(
 | |
|         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
 | |
|         CatchSwitch->getName(), CatchSwitch);
 | |
|     for (BasicBlock *PadBB : CatchSwitch->handlers())
 | |
|       NewCatchSwitch->addHandler(PadBB);
 | |
| 
 | |
|     NewTI = NewCatchSwitch;
 | |
|     UnwindDest = CatchSwitch->getUnwindDest();
 | |
|   } else {
 | |
|     llvm_unreachable("Could not find unwind successor");
 | |
|   }
 | |
| 
 | |
|   NewTI->takeName(TI);
 | |
|   NewTI->setDebugLoc(TI->getDebugLoc());
 | |
|   UnwindDest->removePredecessor(BB);
 | |
|   TI->replaceAllUsesWith(NewTI);
 | |
|   TI->eraseFromParent();
 | |
| }
 | |
| 
 | |
| /// removeUnreachableBlocks - Remove blocks that are not reachable, even
 | |
| /// if they are in a dead cycle.  Return true if a change was made, false
 | |
| /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
 | |
| /// after modifying the CFG.
 | |
| bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) {
 | |
|   SmallPtrSet<BasicBlock*, 16> Reachable;
 | |
|   bool Changed = markAliveBlocks(F, Reachable);
 | |
| 
 | |
|   // If there are unreachable blocks in the CFG...
 | |
|   if (Reachable.size() == F.size())
 | |
|     return Changed;
 | |
| 
 | |
|   assert(Reachable.size() < F.size());
 | |
|   NumRemoved += F.size()-Reachable.size();
 | |
| 
 | |
|   // Loop over all of the basic blocks that are not reachable, dropping all of
 | |
|   // their internal references...
 | |
|   for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
 | |
|     if (Reachable.count(&*BB))
 | |
|       continue;
 | |
| 
 | |
|     for (BasicBlock *Successor : successors(&*BB))
 | |
|       if (Reachable.count(Successor))
 | |
|         Successor->removePredecessor(&*BB);
 | |
|     if (LVI)
 | |
|       LVI->eraseBlock(&*BB);
 | |
|     BB->dropAllReferences();
 | |
|   }
 | |
| 
 | |
|   for (Function::iterator I = ++F.begin(); I != F.end();)
 | |
|     if (!Reachable.count(&*I))
 | |
|       I = F.getBasicBlockList().erase(I);
 | |
|     else
 | |
|       ++I;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void llvm::combineMetadata(Instruction *K, const Instruction *J,
 | |
|                            ArrayRef<unsigned> KnownIDs) {
 | |
|   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
 | |
|   K->dropUnknownNonDebugMetadata(KnownIDs);
 | |
|   K->getAllMetadataOtherThanDebugLoc(Metadata);
 | |
|   for (const auto &MD : Metadata) {
 | |
|     unsigned Kind = MD.first;
 | |
|     MDNode *JMD = J->getMetadata(Kind);
 | |
|     MDNode *KMD = MD.second;
 | |
| 
 | |
|     switch (Kind) {
 | |
|       default:
 | |
|         K->setMetadata(Kind, nullptr); // Remove unknown metadata
 | |
|         break;
 | |
|       case LLVMContext::MD_dbg:
 | |
|         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
 | |
|       case LLVMContext::MD_tbaa:
 | |
|         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
 | |
|         break;
 | |
|       case LLVMContext::MD_alias_scope:
 | |
|         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
 | |
|         break;
 | |
|       case LLVMContext::MD_noalias:
 | |
|       case LLVMContext::MD_mem_parallel_loop_access:
 | |
|         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
 | |
|         break;
 | |
|       case LLVMContext::MD_range:
 | |
|         K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
 | |
|         break;
 | |
|       case LLVMContext::MD_fpmath:
 | |
|         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
 | |
|         break;
 | |
|       case LLVMContext::MD_invariant_load:
 | |
|         // Only set the !invariant.load if it is present in both instructions.
 | |
|         K->setMetadata(Kind, JMD);
 | |
|         break;
 | |
|       case LLVMContext::MD_nonnull:
 | |
|         // Only set the !nonnull if it is present in both instructions.
 | |
|         K->setMetadata(Kind, JMD);
 | |
|         break;
 | |
|       case LLVMContext::MD_invariant_group:
 | |
|         // Preserve !invariant.group in K.
 | |
|         break;
 | |
|       case LLVMContext::MD_align:
 | |
|         K->setMetadata(Kind,
 | |
|           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
 | |
|         break;
 | |
|       case LLVMContext::MD_dereferenceable:
 | |
|       case LLVMContext::MD_dereferenceable_or_null:
 | |
|         K->setMetadata(Kind,
 | |
|           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
|   // Set !invariant.group from J if J has it. If both instructions have it
 | |
|   // then we will just pick it from J - even when they are different.
 | |
|   // Also make sure that K is load or store - f.e. combining bitcast with load
 | |
|   // could produce bitcast with invariant.group metadata, which is invalid.
 | |
|   // FIXME: we should try to preserve both invariant.group md if they are
 | |
|   // different, but right now instruction can only have one invariant.group.
 | |
|   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
 | |
|     if (isa<LoadInst>(K) || isa<StoreInst>(K))
 | |
|       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
 | |
| }
 | |
| 
 | |
| void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) {
 | |
|   unsigned KnownIDs[] = {
 | |
|       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
 | |
|       LLVMContext::MD_noalias,         LLVMContext::MD_range,
 | |
|       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
 | |
|       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
 | |
|       LLVMContext::MD_dereferenceable,
 | |
|       LLVMContext::MD_dereferenceable_or_null};
 | |
|   combineMetadata(K, J, KnownIDs);
 | |
| }
 | |
| 
 | |
| template <typename RootType, typename DominatesFn>
 | |
| static unsigned replaceDominatedUsesWith(Value *From, Value *To,
 | |
|                                          const RootType &Root,
 | |
|                                          const DominatesFn &Dominates) {
 | |
|   assert(From->getType() == To->getType());
 | |
| 
 | |
|   unsigned Count = 0;
 | |
|   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
 | |
|        UI != UE;) {
 | |
|     Use &U = *UI++;
 | |
|     if (!Dominates(Root, U))
 | |
|       continue;
 | |
|     U.set(To);
 | |
|     DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as "
 | |
|                  << *To << " in " << *U << "\n");
 | |
|     ++Count;
 | |
|   }
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
 | |
|    assert(From->getType() == To->getType());
 | |
|    auto *BB = From->getParent();
 | |
|    unsigned Count = 0;
 | |
| 
 | |
|   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
 | |
|        UI != UE;) {
 | |
|     Use &U = *UI++;
 | |
|     auto *I = cast<Instruction>(U.getUser());
 | |
|     if (I->getParent() == BB)
 | |
|       continue;
 | |
|     U.set(To);
 | |
|     ++Count;
 | |
|   }
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
 | |
|                                         DominatorTree &DT,
 | |
|                                         const BasicBlockEdge &Root) {
 | |
|   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
 | |
|     return DT.dominates(Root, U);
 | |
|   };
 | |
|   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
 | |
| }
 | |
| 
 | |
| unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
 | |
|                                         DominatorTree &DT,
 | |
|                                         const BasicBlock *BB) {
 | |
|   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
 | |
|     auto *I = cast<Instruction>(U.getUser())->getParent();
 | |
|     return DT.properlyDominates(BB, I);
 | |
|   };
 | |
|   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
 | |
| }
 | |
| 
 | |
| bool llvm::callsGCLeafFunction(ImmutableCallSite CS,
 | |
|                                const TargetLibraryInfo &TLI) {
 | |
|   // Check if the function is specifically marked as a gc leaf function.
 | |
|   if (CS.hasFnAttr("gc-leaf-function"))
 | |
|     return true;
 | |
|   if (const Function *F = CS.getCalledFunction()) {
 | |
|     if (F->hasFnAttribute("gc-leaf-function"))
 | |
|       return true;
 | |
| 
 | |
|     if (auto IID = F->getIntrinsicID())
 | |
|       // Most LLVM intrinsics do not take safepoints.
 | |
|       return IID != Intrinsic::experimental_gc_statepoint &&
 | |
|              IID != Intrinsic::experimental_deoptimize;
 | |
|   }
 | |
| 
 | |
|   // Lib calls can be materialized by some passes, and won't be
 | |
|   // marked as 'gc-leaf-function.' All available Libcalls are
 | |
|   // GC-leaf.
 | |
|   LibFunc LF;
 | |
|   if (TLI.getLibFunc(CS, LF)) {
 | |
|     return TLI.has(LF);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
 | |
|                                LoadInst &NewLI) {
 | |
|   auto *NewTy = NewLI.getType();
 | |
| 
 | |
|   // This only directly applies if the new type is also a pointer.
 | |
|   if (NewTy->isPointerTy()) {
 | |
|     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // The only other translation we can do is to integral loads with !range
 | |
|   // metadata.
 | |
|   if (!NewTy->isIntegerTy())
 | |
|     return;
 | |
| 
 | |
|   MDBuilder MDB(NewLI.getContext());
 | |
|   const Value *Ptr = OldLI.getPointerOperand();
 | |
|   auto *ITy = cast<IntegerType>(NewTy);
 | |
|   auto *NullInt = ConstantExpr::getPtrToInt(
 | |
|       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
 | |
|   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
 | |
|   NewLI.setMetadata(LLVMContext::MD_range,
 | |
|                     MDB.createRange(NonNullInt, NullInt));
 | |
| }
 | |
| 
 | |
| void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
 | |
|                              MDNode *N, LoadInst &NewLI) {
 | |
|   auto *NewTy = NewLI.getType();
 | |
| 
 | |
|   // Give up unless it is converted to a pointer where there is a single very
 | |
|   // valuable mapping we can do reliably.
 | |
|   // FIXME: It would be nice to propagate this in more ways, but the type
 | |
|   // conversions make it hard.
 | |
|   if (!NewTy->isPointerTy())
 | |
|     return;
 | |
| 
 | |
|   unsigned BitWidth = DL.getTypeSizeInBits(NewTy);
 | |
|   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
 | |
|     MDNode *NN = MDNode::get(OldLI.getContext(), None);
 | |
|     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// A potential constituent of a bitreverse or bswap expression. See
 | |
| /// collectBitParts for a fuller explanation.
 | |
| struct BitPart {
 | |
|   BitPart(Value *P, unsigned BW) : Provider(P) {
 | |
|     Provenance.resize(BW);
 | |
|   }
 | |
| 
 | |
|   /// The Value that this is a bitreverse/bswap of.
 | |
|   Value *Provider;
 | |
|   /// The "provenance" of each bit. Provenance[A] = B means that bit A
 | |
|   /// in Provider becomes bit B in the result of this expression.
 | |
|   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
 | |
| 
 | |
|   enum { Unset = -1 };
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Analyze the specified subexpression and see if it is capable of providing
 | |
| /// pieces of a bswap or bitreverse. The subexpression provides a potential
 | |
| /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
 | |
| /// the output of the expression came from a corresponding bit in some other
 | |
| /// value. This function is recursive, and the end result is a mapping of
 | |
| /// bitnumber to bitnumber. It is the caller's responsibility to validate that
 | |
| /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
 | |
| ///
 | |
| /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
 | |
| /// that the expression deposits the low byte of %X into the high byte of the
 | |
| /// result and that all other bits are zero. This expression is accepted and a
 | |
| /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
 | |
| /// [0-7].
 | |
| ///
 | |
| /// To avoid revisiting values, the BitPart results are memoized into the
 | |
| /// provided map. To avoid unnecessary copying of BitParts, BitParts are
 | |
| /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
 | |
| /// store BitParts objects, not pointers. As we need the concept of a nullptr
 | |
| /// BitParts (Value has been analyzed and the analysis failed), we an Optional
 | |
| /// type instead to provide the same functionality.
 | |
| ///
 | |
| /// Because we pass around references into \c BPS, we must use a container that
 | |
| /// does not invalidate internal references (std::map instead of DenseMap).
 | |
| ///
 | |
| static const Optional<BitPart> &
 | |
| collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
 | |
|                 std::map<Value *, Optional<BitPart>> &BPS) {
 | |
|   auto I = BPS.find(V);
 | |
|   if (I != BPS.end())
 | |
|     return I->second;
 | |
| 
 | |
|   auto &Result = BPS[V] = None;
 | |
|   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
 | |
| 
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     // If this is an or instruction, it may be an inner node of the bswap.
 | |
|     if (I->getOpcode() == Instruction::Or) {
 | |
|       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
 | |
|                                 MatchBitReversals, BPS);
 | |
|       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
 | |
|                                 MatchBitReversals, BPS);
 | |
|       if (!A || !B)
 | |
|         return Result;
 | |
| 
 | |
|       // Try and merge the two together.
 | |
|       if (!A->Provider || A->Provider != B->Provider)
 | |
|         return Result;
 | |
| 
 | |
|       Result = BitPart(A->Provider, BitWidth);
 | |
|       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
 | |
|         if (A->Provenance[i] != BitPart::Unset &&
 | |
|             B->Provenance[i] != BitPart::Unset &&
 | |
|             A->Provenance[i] != B->Provenance[i])
 | |
|           return Result = None;
 | |
| 
 | |
|         if (A->Provenance[i] == BitPart::Unset)
 | |
|           Result->Provenance[i] = B->Provenance[i];
 | |
|         else
 | |
|           Result->Provenance[i] = A->Provenance[i];
 | |
|       }
 | |
| 
 | |
|       return Result;
 | |
|     }
 | |
| 
 | |
|     // If this is a logical shift by a constant, recurse then shift the result.
 | |
|     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
 | |
|       unsigned BitShift =
 | |
|           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
 | |
|       // Ensure the shift amount is defined.
 | |
|       if (BitShift > BitWidth)
 | |
|         return Result;
 | |
| 
 | |
|       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
 | |
|                                   MatchBitReversals, BPS);
 | |
|       if (!Res)
 | |
|         return Result;
 | |
|       Result = Res;
 | |
| 
 | |
|       // Perform the "shift" on BitProvenance.
 | |
|       auto &P = Result->Provenance;
 | |
|       if (I->getOpcode() == Instruction::Shl) {
 | |
|         P.erase(std::prev(P.end(), BitShift), P.end());
 | |
|         P.insert(P.begin(), BitShift, BitPart::Unset);
 | |
|       } else {
 | |
|         P.erase(P.begin(), std::next(P.begin(), BitShift));
 | |
|         P.insert(P.end(), BitShift, BitPart::Unset);
 | |
|       }
 | |
| 
 | |
|       return Result;
 | |
|     }
 | |
| 
 | |
|     // If this is a logical 'and' with a mask that clears bits, recurse then
 | |
|     // unset the appropriate bits.
 | |
|     if (I->getOpcode() == Instruction::And &&
 | |
|         isa<ConstantInt>(I->getOperand(1))) {
 | |
|       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
 | |
|       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
 | |
| 
 | |
|       // Check that the mask allows a multiple of 8 bits for a bswap, for an
 | |
|       // early exit.
 | |
|       unsigned NumMaskedBits = AndMask.countPopulation();
 | |
|       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
 | |
|         return Result;
 | |
| 
 | |
|       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
 | |
|                                   MatchBitReversals, BPS);
 | |
|       if (!Res)
 | |
|         return Result;
 | |
|       Result = Res;
 | |
| 
 | |
|       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
 | |
|         // If the AndMask is zero for this bit, clear the bit.
 | |
|         if ((AndMask & Bit) == 0)
 | |
|           Result->Provenance[i] = BitPart::Unset;
 | |
|       return Result;
 | |
|     }
 | |
| 
 | |
|     // If this is a zext instruction zero extend the result.
 | |
|     if (I->getOpcode() == Instruction::ZExt) {
 | |
|       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
 | |
|                                   MatchBitReversals, BPS);
 | |
|       if (!Res)
 | |
|         return Result;
 | |
| 
 | |
|       Result = BitPart(Res->Provider, BitWidth);
 | |
|       auto NarrowBitWidth =
 | |
|           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
 | |
|       for (unsigned i = 0; i < NarrowBitWidth; ++i)
 | |
|         Result->Provenance[i] = Res->Provenance[i];
 | |
|       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
 | |
|         Result->Provenance[i] = BitPart::Unset;
 | |
|       return Result;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
 | |
|   // the input value to the bswap/bitreverse.
 | |
|   Result = BitPart(V, BitWidth);
 | |
|   for (unsigned i = 0; i < BitWidth; ++i)
 | |
|     Result->Provenance[i] = i;
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
 | |
|                                           unsigned BitWidth) {
 | |
|   if (From % 8 != To % 8)
 | |
|     return false;
 | |
|   // Convert from bit indices to byte indices and check for a byte reversal.
 | |
|   From >>= 3;
 | |
|   To >>= 3;
 | |
|   BitWidth >>= 3;
 | |
|   return From == BitWidth - To - 1;
 | |
| }
 | |
| 
 | |
| static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
 | |
|                                                unsigned BitWidth) {
 | |
|   return From == BitWidth - To - 1;
 | |
| }
 | |
| 
 | |
| /// Given an OR instruction, check to see if this is a bitreverse
 | |
| /// idiom. If so, insert the new intrinsic and return true.
 | |
| bool llvm::recognizeBSwapOrBitReverseIdiom(
 | |
|     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
 | |
|     SmallVectorImpl<Instruction *> &InsertedInsts) {
 | |
|   if (Operator::getOpcode(I) != Instruction::Or)
 | |
|     return false;
 | |
|   if (!MatchBSwaps && !MatchBitReversals)
 | |
|     return false;
 | |
|   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
 | |
|   if (!ITy || ITy->getBitWidth() > 128)
 | |
|     return false;   // Can't do vectors or integers > 128 bits.
 | |
|   unsigned BW = ITy->getBitWidth();
 | |
| 
 | |
|   unsigned DemandedBW = BW;
 | |
|   IntegerType *DemandedTy = ITy;
 | |
|   if (I->hasOneUse()) {
 | |
|     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
 | |
|       DemandedTy = cast<IntegerType>(Trunc->getType());
 | |
|       DemandedBW = DemandedTy->getBitWidth();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Try to find all the pieces corresponding to the bswap.
 | |
|   std::map<Value *, Optional<BitPart>> BPS;
 | |
|   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
 | |
|   if (!Res)
 | |
|     return false;
 | |
|   auto &BitProvenance = Res->Provenance;
 | |
| 
 | |
|   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
 | |
|   // only byteswap values with an even number of bytes.
 | |
|   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
 | |
|   for (unsigned i = 0; i < DemandedBW; ++i) {
 | |
|     OKForBSwap &=
 | |
|         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
 | |
|     OKForBitReverse &=
 | |
|         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
 | |
|   }
 | |
| 
 | |
|   Intrinsic::ID Intrin;
 | |
|   if (OKForBSwap && MatchBSwaps)
 | |
|     Intrin = Intrinsic::bswap;
 | |
|   else if (OKForBitReverse && MatchBitReversals)
 | |
|     Intrin = Intrinsic::bitreverse;
 | |
|   else
 | |
|     return false;
 | |
| 
 | |
|   if (ITy != DemandedTy) {
 | |
|     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
 | |
|     Value *Provider = Res->Provider;
 | |
|     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
 | |
|     // We may need to truncate the provider.
 | |
|     if (DemandedTy != ProviderTy) {
 | |
|       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
 | |
|                                      "trunc", I);
 | |
|       InsertedInsts.push_back(Trunc);
 | |
|       Provider = Trunc;
 | |
|     }
 | |
|     auto *CI = CallInst::Create(F, Provider, "rev", I);
 | |
|     InsertedInsts.push_back(CI);
 | |
|     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
 | |
|     InsertedInsts.push_back(ExtInst);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
 | |
|   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // CodeGen has special handling for some string functions that may replace
 | |
| // them with target-specific intrinsics.  Since that'd skip our interceptors
 | |
| // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
 | |
| // we mark affected calls as NoBuiltin, which will disable optimization
 | |
| // in CodeGen.
 | |
| void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
 | |
|     CallInst *CI, const TargetLibraryInfo *TLI) {
 | |
|   Function *F = CI->getCalledFunction();
 | |
|   LibFunc Func;
 | |
|   if (F && !F->hasLocalLinkage() && F->hasName() &&
 | |
|       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
 | |
|       !F->doesNotAccessMemory())
 | |
|     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
 | |
| }
 | |
| 
 | |
| bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
 | |
|   // We can't have a PHI with a metadata type.
 | |
|   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
 | |
|     return false;
 | |
| 
 | |
|   // Early exit.
 | |
|   if (!isa<Constant>(I->getOperand(OpIdx)))
 | |
|     return true;
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|   default:
 | |
|     return true;
 | |
|   case Instruction::Call:
 | |
|   case Instruction::Invoke:
 | |
|     // Can't handle inline asm. Skip it.
 | |
|     if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
 | |
|       return false;
 | |
|     // Many arithmetic intrinsics have no issue taking a
 | |
|     // variable, however it's hard to distingish these from
 | |
|     // specials such as @llvm.frameaddress that require a constant.
 | |
|     if (isa<IntrinsicInst>(I))
 | |
|       return false;
 | |
| 
 | |
|     // Constant bundle operands may need to retain their constant-ness for
 | |
|     // correctness.
 | |
|     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
 | |
|       return false;
 | |
|     return true;
 | |
|   case Instruction::ShuffleVector:
 | |
|     // Shufflevector masks are constant.
 | |
|     return OpIdx != 2;
 | |
|   case Instruction::Switch:
 | |
|   case Instruction::ExtractValue:
 | |
|     // All operands apart from the first are constant.
 | |
|     return OpIdx == 0;
 | |
|   case Instruction::InsertValue:
 | |
|     // All operands apart from the first and the second are constant.
 | |
|     return OpIdx < 2;
 | |
|   case Instruction::Alloca:
 | |
|     // Static allocas (constant size in the entry block) are handled by
 | |
|     // prologue/epilogue insertion so they're free anyway. We definitely don't
 | |
|     // want to make them non-constant.
 | |
|     return !dyn_cast<AllocaInst>(I)->isStaticAlloca();
 | |
|   case Instruction::GetElementPtr:
 | |
|     if (OpIdx == 0)
 | |
|       return true;
 | |
|     gep_type_iterator It = gep_type_begin(I);
 | |
|     for (auto E = std::next(It, OpIdx); It != E; ++It)
 | |
|       if (It.isStruct())
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
| }
 |