forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			913 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			913 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements some loop unrolling utilities for loops with run-time
 | |
| // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
 | |
| // trip counts.
 | |
| //
 | |
| // The functions in this file are used to generate extra code when the
 | |
| // run-time trip count modulo the unroll factor is not 0.  When this is the
 | |
| // case, we need to generate code to execute these 'left over' iterations.
 | |
| //
 | |
| // The current strategy generates an if-then-else sequence prior to the
 | |
| // unrolled loop to execute the 'left over' iterations before or after the
 | |
| // unrolled loop.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/LoopIterator.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Transforms/Utils/LoopUtils.h"
 | |
| #include "llvm/Transforms/Utils/UnrollLoop.h"
 | |
| #include <algorithm>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "loop-unroll"
 | |
| 
 | |
| STATISTIC(NumRuntimeUnrolled,
 | |
|           "Number of loops unrolled with run-time trip counts");
 | |
| static cl::opt<bool> UnrollRuntimeMultiExit(
 | |
|     "unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
 | |
|     cl::desc("Allow runtime unrolling for loops with multiple exits, when "
 | |
|              "epilog is generated"));
 | |
| 
 | |
| /// Connect the unrolling prolog code to the original loop.
 | |
| /// The unrolling prolog code contains code to execute the
 | |
| /// 'extra' iterations if the run-time trip count modulo the
 | |
| /// unroll count is non-zero.
 | |
| ///
 | |
| /// This function performs the following:
 | |
| /// - Create PHI nodes at prolog end block to combine values
 | |
| ///   that exit the prolog code and jump around the prolog.
 | |
| /// - Add a PHI operand to a PHI node at the loop exit block
 | |
| ///   for values that exit the prolog and go around the loop.
 | |
| /// - Branch around the original loop if the trip count is less
 | |
| ///   than the unroll factor.
 | |
| ///
 | |
| static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
 | |
|                           BasicBlock *PrologExit,
 | |
|                           BasicBlock *OriginalLoopLatchExit,
 | |
|                           BasicBlock *PreHeader, BasicBlock *NewPreHeader,
 | |
|                           ValueToValueMapTy &VMap, DominatorTree *DT,
 | |
|                           LoopInfo *LI, bool PreserveLCSSA) {
 | |
|   BasicBlock *Latch = L->getLoopLatch();
 | |
|   assert(Latch && "Loop must have a latch");
 | |
|   BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
 | |
| 
 | |
|   // Create a PHI node for each outgoing value from the original loop
 | |
|   // (which means it is an outgoing value from the prolog code too).
 | |
|   // The new PHI node is inserted in the prolog end basic block.
 | |
|   // The new PHI node value is added as an operand of a PHI node in either
 | |
|   // the loop header or the loop exit block.
 | |
|   for (BasicBlock *Succ : successors(Latch)) {
 | |
|     for (Instruction &BBI : *Succ) {
 | |
|       PHINode *PN = dyn_cast<PHINode>(&BBI);
 | |
|       // Exit when we passed all PHI nodes.
 | |
|       if (!PN)
 | |
|         break;
 | |
|       // Add a new PHI node to the prolog end block and add the
 | |
|       // appropriate incoming values.
 | |
|       PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
 | |
|                                        PrologExit->getFirstNonPHI());
 | |
|       // Adding a value to the new PHI node from the original loop preheader.
 | |
|       // This is the value that skips all the prolog code.
 | |
|       if (L->contains(PN)) {
 | |
|         NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader),
 | |
|                            PreHeader);
 | |
|       } else {
 | |
|         NewPN->addIncoming(UndefValue::get(PN->getType()), PreHeader);
 | |
|       }
 | |
| 
 | |
|       Value *V = PN->getIncomingValueForBlock(Latch);
 | |
|       if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|         if (L->contains(I)) {
 | |
|           V = VMap.lookup(I);
 | |
|         }
 | |
|       }
 | |
|       // Adding a value to the new PHI node from the last prolog block
 | |
|       // that was created.
 | |
|       NewPN->addIncoming(V, PrologLatch);
 | |
| 
 | |
|       // Update the existing PHI node operand with the value from the
 | |
|       // new PHI node.  How this is done depends on if the existing
 | |
|       // PHI node is in the original loop block, or the exit block.
 | |
|       if (L->contains(PN)) {
 | |
|         PN->setIncomingValue(PN->getBasicBlockIndex(NewPreHeader), NewPN);
 | |
|       } else {
 | |
|         PN->addIncoming(NewPN, PrologExit);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Make sure that created prolog loop is in simplified form
 | |
|   SmallVector<BasicBlock *, 4> PrologExitPreds;
 | |
|   Loop *PrologLoop = LI->getLoopFor(PrologLatch);
 | |
|   if (PrologLoop) {
 | |
|     for (BasicBlock *PredBB : predecessors(PrologExit))
 | |
|       if (PrologLoop->contains(PredBB))
 | |
|         PrologExitPreds.push_back(PredBB);
 | |
| 
 | |
|     SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
 | |
|                            PreserveLCSSA);
 | |
|   }
 | |
| 
 | |
|   // Create a branch around the original loop, which is taken if there are no
 | |
|   // iterations remaining to be executed after running the prologue.
 | |
|   Instruction *InsertPt = PrologExit->getTerminator();
 | |
|   IRBuilder<> B(InsertPt);
 | |
| 
 | |
|   assert(Count != 0 && "nonsensical Count!");
 | |
| 
 | |
|   // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
 | |
|   // This means %xtraiter is (BECount + 1) and all of the iterations of this
 | |
|   // loop were executed by the prologue.  Note that if BECount <u (Count - 1)
 | |
|   // then (BECount + 1) cannot unsigned-overflow.
 | |
|   Value *BrLoopExit =
 | |
|       B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
 | |
|   // Split the exit to maintain loop canonicalization guarantees
 | |
|   SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
 | |
|   SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
 | |
|                          PreserveLCSSA);
 | |
|   // Add the branch to the exit block (around the unrolled loop)
 | |
|   B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader);
 | |
|   InsertPt->eraseFromParent();
 | |
|   if (DT)
 | |
|     DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit);
 | |
| }
 | |
| 
 | |
| /// Connect the unrolling epilog code to the original loop.
 | |
| /// The unrolling epilog code contains code to execute the
 | |
| /// 'extra' iterations if the run-time trip count modulo the
 | |
| /// unroll count is non-zero.
 | |
| ///
 | |
| /// This function performs the following:
 | |
| /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
 | |
| /// - Create PHI nodes at the unrolling loop exit to combine
 | |
| ///   values that exit the unrolling loop code and jump around it.
 | |
| /// - Update PHI operands in the epilog loop by the new PHI nodes
 | |
| /// - Branch around the epilog loop if extra iters (ModVal) is zero.
 | |
| ///
 | |
| static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
 | |
|                           BasicBlock *Exit, BasicBlock *PreHeader,
 | |
|                           BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
 | |
|                           ValueToValueMapTy &VMap, DominatorTree *DT,
 | |
|                           LoopInfo *LI, bool PreserveLCSSA)  {
 | |
|   BasicBlock *Latch = L->getLoopLatch();
 | |
|   assert(Latch && "Loop must have a latch");
 | |
|   BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
 | |
| 
 | |
|   // Loop structure should be the following:
 | |
|   //
 | |
|   // PreHeader
 | |
|   // NewPreHeader
 | |
|   //   Header
 | |
|   //   ...
 | |
|   //   Latch
 | |
|   // NewExit (PN)
 | |
|   // EpilogPreHeader
 | |
|   //   EpilogHeader
 | |
|   //   ...
 | |
|   //   EpilogLatch
 | |
|   // Exit (EpilogPN)
 | |
| 
 | |
|   // Update PHI nodes at NewExit and Exit.
 | |
|   for (Instruction &BBI : *NewExit) {
 | |
|     PHINode *PN = dyn_cast<PHINode>(&BBI);
 | |
|     // Exit when we passed all PHI nodes.
 | |
|     if (!PN)
 | |
|       break;
 | |
|     // PN should be used in another PHI located in Exit block as
 | |
|     // Exit was split by SplitBlockPredecessors into Exit and NewExit
 | |
|     // Basicaly it should look like:
 | |
|     // NewExit:
 | |
|     //   PN = PHI [I, Latch]
 | |
|     // ...
 | |
|     // Exit:
 | |
|     //   EpilogPN = PHI [PN, EpilogPreHeader]
 | |
|     //
 | |
|     // There is EpilogPreHeader incoming block instead of NewExit as
 | |
|     // NewExit was spilt 1 more time to get EpilogPreHeader.
 | |
|     assert(PN->hasOneUse() && "The phi should have 1 use");
 | |
|     PHINode *EpilogPN = cast<PHINode> (PN->use_begin()->getUser());
 | |
|     assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
 | |
| 
 | |
|     // Add incoming PreHeader from branch around the Loop
 | |
|     PN->addIncoming(UndefValue::get(PN->getType()), PreHeader);
 | |
| 
 | |
|     Value *V = PN->getIncomingValueForBlock(Latch);
 | |
|     Instruction *I = dyn_cast<Instruction>(V);
 | |
|     if (I && L->contains(I))
 | |
|       // If value comes from an instruction in the loop add VMap value.
 | |
|       V = VMap.lookup(I);
 | |
|     // For the instruction out of the loop, constant or undefined value
 | |
|     // insert value itself.
 | |
|     EpilogPN->addIncoming(V, EpilogLatch);
 | |
| 
 | |
|     assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
 | |
|           "EpilogPN should have EpilogPreHeader incoming block");
 | |
|     // Change EpilogPreHeader incoming block to NewExit.
 | |
|     EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
 | |
|                                NewExit);
 | |
|     // Now PHIs should look like:
 | |
|     // NewExit:
 | |
|     //   PN = PHI [I, Latch], [undef, PreHeader]
 | |
|     // ...
 | |
|     // Exit:
 | |
|     //   EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
 | |
|   }
 | |
| 
 | |
|   // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
 | |
|   // Update corresponding PHI nodes in epilog loop.
 | |
|   for (BasicBlock *Succ : successors(Latch)) {
 | |
|     // Skip this as we already updated phis in exit blocks.
 | |
|     if (!L->contains(Succ))
 | |
|       continue;
 | |
|     for (Instruction &BBI : *Succ) {
 | |
|       PHINode *PN = dyn_cast<PHINode>(&BBI);
 | |
|       // Exit when we passed all PHI nodes.
 | |
|       if (!PN)
 | |
|         break;
 | |
|       // Add new PHI nodes to the loop exit block and update epilog
 | |
|       // PHIs with the new PHI values.
 | |
|       PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
 | |
|                                        NewExit->getFirstNonPHI());
 | |
|       // Adding a value to the new PHI node from the unrolling loop preheader.
 | |
|       NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), PreHeader);
 | |
|       // Adding a value to the new PHI node from the unrolling loop latch.
 | |
|       NewPN->addIncoming(PN->getIncomingValueForBlock(Latch), Latch);
 | |
| 
 | |
|       // Update the existing PHI node operand with the value from the new PHI
 | |
|       // node.  Corresponding instruction in epilog loop should be PHI.
 | |
|       PHINode *VPN = cast<PHINode>(VMap[&BBI]);
 | |
|       VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Instruction *InsertPt = NewExit->getTerminator();
 | |
|   IRBuilder<> B(InsertPt);
 | |
|   Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
 | |
|   assert(Exit && "Loop must have a single exit block only");
 | |
|   // Split the epilogue exit to maintain loop canonicalization guarantees
 | |
|   SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
 | |
|   SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI,
 | |
|                          PreserveLCSSA);
 | |
|   // Add the branch to the exit block (around the unrolling loop)
 | |
|   B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
 | |
|   InsertPt->eraseFromParent();
 | |
|   if (DT)
 | |
|     DT->changeImmediateDominator(Exit, NewExit);
 | |
| 
 | |
|   // Split the main loop exit to maintain canonicalization guarantees.
 | |
|   SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
 | |
|   SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI,
 | |
|                          PreserveLCSSA);
 | |
| }
 | |
| 
 | |
| /// Create a clone of the blocks in a loop and connect them together.
 | |
| /// If CreateRemainderLoop is false, loop structure will not be cloned,
 | |
| /// otherwise a new loop will be created including all cloned blocks, and the
 | |
| /// iterator of it switches to count NewIter down to 0.
 | |
| /// The cloned blocks should be inserted between InsertTop and InsertBot.
 | |
| /// If loop structure is cloned InsertTop should be new preheader, InsertBot
 | |
| /// new loop exit.
 | |
| /// Return the new cloned loop that is created when CreateRemainderLoop is true.
 | |
| static Loop *
 | |
| CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop,
 | |
|                 const bool UseEpilogRemainder, const bool UnrollRemainder,
 | |
|                 BasicBlock *InsertTop,
 | |
|                 BasicBlock *InsertBot, BasicBlock *Preheader,
 | |
|                 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
 | |
|                 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) {
 | |
|   StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   BasicBlock *Latch = L->getLoopLatch();
 | |
|   Function *F = Header->getParent();
 | |
|   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
 | |
|   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
 | |
|   Loop *ParentLoop = L->getParentLoop();
 | |
|   NewLoopsMap NewLoops;
 | |
|   NewLoops[ParentLoop] = ParentLoop;
 | |
|   if (!CreateRemainderLoop)
 | |
|     NewLoops[L] = ParentLoop;
 | |
| 
 | |
|   // For each block in the original loop, create a new copy,
 | |
|   // and update the value map with the newly created values.
 | |
|   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
 | |
|     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
 | |
|     NewBlocks.push_back(NewBB);
 | |
| 
 | |
|     // If we're unrolling the outermost loop, there's no remainder loop,
 | |
|     // and this block isn't in a nested loop, then the new block is not
 | |
|     // in any loop. Otherwise, add it to loopinfo.
 | |
|     if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop)
 | |
|       addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
 | |
| 
 | |
|     VMap[*BB] = NewBB;
 | |
|     if (Header == *BB) {
 | |
|       // For the first block, add a CFG connection to this newly
 | |
|       // created block.
 | |
|       InsertTop->getTerminator()->setSuccessor(0, NewBB);
 | |
|     }
 | |
| 
 | |
|     if (DT) {
 | |
|       if (Header == *BB) {
 | |
|         // The header is dominated by the preheader.
 | |
|         DT->addNewBlock(NewBB, InsertTop);
 | |
|       } else {
 | |
|         // Copy information from original loop to unrolled loop.
 | |
|         BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
 | |
|         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Latch == *BB) {
 | |
|       // For the last block, if CreateRemainderLoop is false, create a direct
 | |
|       // jump to InsertBot. If not, create a loop back to cloned head.
 | |
|       VMap.erase((*BB)->getTerminator());
 | |
|       BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
 | |
|       BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
 | |
|       IRBuilder<> Builder(LatchBR);
 | |
|       if (!CreateRemainderLoop) {
 | |
|         Builder.CreateBr(InsertBot);
 | |
|       } else {
 | |
|         PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
 | |
|                                           suffix + ".iter",
 | |
|                                           FirstLoopBB->getFirstNonPHI());
 | |
|         Value *IdxSub =
 | |
|             Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
 | |
|                               NewIdx->getName() + ".sub");
 | |
|         Value *IdxCmp =
 | |
|             Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
 | |
|         Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
 | |
|         NewIdx->addIncoming(NewIter, InsertTop);
 | |
|         NewIdx->addIncoming(IdxSub, NewBB);
 | |
|       }
 | |
|       LatchBR->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Change the incoming values to the ones defined in the preheader or
 | |
|   // cloned loop.
 | |
|   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
 | |
|     if (!CreateRemainderLoop) {
 | |
|       if (UseEpilogRemainder) {
 | |
|         unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
 | |
|         NewPHI->setIncomingBlock(idx, InsertTop);
 | |
|         NewPHI->removeIncomingValue(Latch, false);
 | |
|       } else {
 | |
|         VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
 | |
|         cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
 | |
|       }
 | |
|     } else {
 | |
|       unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
 | |
|       NewPHI->setIncomingBlock(idx, InsertTop);
 | |
|       BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
 | |
|       idx = NewPHI->getBasicBlockIndex(Latch);
 | |
|       Value *InVal = NewPHI->getIncomingValue(idx);
 | |
|       NewPHI->setIncomingBlock(idx, NewLatch);
 | |
|       if (Value *V = VMap.lookup(InVal))
 | |
|         NewPHI->setIncomingValue(idx, V);
 | |
|     }
 | |
|   }
 | |
|   if (CreateRemainderLoop) {
 | |
|     Loop *NewLoop = NewLoops[L];
 | |
|     assert(NewLoop && "L should have been cloned");
 | |
| 
 | |
|     // Only add loop metadata if the loop is not going to be completely
 | |
|     // unrolled.
 | |
|     if (UnrollRemainder)
 | |
|       return NewLoop;
 | |
| 
 | |
|     // Add unroll disable metadata to disable future unrolling for this loop.
 | |
|     SmallVector<Metadata *, 4> MDs;
 | |
|     // Reserve first location for self reference to the LoopID metadata node.
 | |
|     MDs.push_back(nullptr);
 | |
|     MDNode *LoopID = NewLoop->getLoopID();
 | |
|     if (LoopID) {
 | |
|       // First remove any existing loop unrolling metadata.
 | |
|       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
 | |
|         bool IsUnrollMetadata = false;
 | |
|         MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
 | |
|         if (MD) {
 | |
|           const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
 | |
|           IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
 | |
|         }
 | |
|         if (!IsUnrollMetadata)
 | |
|           MDs.push_back(LoopID->getOperand(i));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     LLVMContext &Context = NewLoop->getHeader()->getContext();
 | |
|     SmallVector<Metadata *, 1> DisableOperands;
 | |
|     DisableOperands.push_back(MDString::get(Context,
 | |
|                                             "llvm.loop.unroll.disable"));
 | |
|     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
 | |
|     MDs.push_back(DisableNode);
 | |
| 
 | |
|     MDNode *NewLoopID = MDNode::get(Context, MDs);
 | |
|     // Set operand 0 to refer to the loop id itself.
 | |
|     NewLoopID->replaceOperandWith(0, NewLoopID);
 | |
|     NewLoop->setLoopID(NewLoopID);
 | |
|     return NewLoop;
 | |
|   }
 | |
|   else
 | |
|     return nullptr;
 | |
| }
 | |
| 
 | |
| /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits
 | |
| /// is populated with all the loop exit blocks other than the LatchExit block.
 | |
| static bool
 | |
| canSafelyUnrollMultiExitLoop(Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits,
 | |
|                              BasicBlock *LatchExit, bool PreserveLCSSA,
 | |
|                              bool UseEpilogRemainder) {
 | |
| 
 | |
|   // We currently have some correctness constrains in unrolling a multi-exit
 | |
|   // loop. Check for these below.
 | |
| 
 | |
|   // We rely on LCSSA form being preserved when the exit blocks are transformed.
 | |
|   if (!PreserveLCSSA)
 | |
|     return false;
 | |
|   SmallVector<BasicBlock *, 4> Exits;
 | |
|   L->getUniqueExitBlocks(Exits);
 | |
|   for (auto *BB : Exits)
 | |
|     if (BB != LatchExit)
 | |
|       OtherExits.push_back(BB);
 | |
| 
 | |
|   // TODO: Support multiple exiting blocks jumping to the `LatchExit` when
 | |
|   // UnrollRuntimeMultiExit is true. This will need updating the logic in
 | |
|   // connectEpilog/connectProlog.
 | |
|   if (!LatchExit->getSinglePredecessor()) {
 | |
|     DEBUG(dbgs() << "Bailout for multi-exit handling when latch exit has >1 "
 | |
|                     "predecessor.\n");
 | |
|     return false;
 | |
|   }
 | |
|   // FIXME: We bail out of multi-exit unrolling when epilog loop is generated
 | |
|   // and L is an inner loop. This is because in presence of multiple exits, the
 | |
|   // outer loop is incorrect: we do not add the EpilogPreheader and exit to the
 | |
|   // outer loop. This is automatically handled in the prolog case, so we do not
 | |
|   // have that bug in prolog generation.
 | |
|   if (UseEpilogRemainder && L->getParentLoop())
 | |
|     return false;
 | |
| 
 | |
|   // All constraints have been satisfied.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Returns true if we can profitably unroll the multi-exit loop L. Currently,
 | |
| /// we return true only if UnrollRuntimeMultiExit is set to true.
 | |
| static bool canProfitablyUnrollMultiExitLoop(
 | |
|     Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
 | |
|     bool PreserveLCSSA, bool UseEpilogRemainder) {
 | |
| 
 | |
| #if !defined(NDEBUG)
 | |
|   SmallVector<BasicBlock *, 8> OtherExitsDummyCheck;
 | |
|   assert(canSafelyUnrollMultiExitLoop(L, OtherExitsDummyCheck, LatchExit,
 | |
|                                       PreserveLCSSA, UseEpilogRemainder) &&
 | |
|          "Should be safe to unroll before checking profitability!");
 | |
| #endif
 | |
|   // Priority goes to UnrollRuntimeMultiExit if it's supplied.
 | |
|   return UnrollRuntimeMultiExit.getNumOccurrences() ? UnrollRuntimeMultiExit
 | |
|                                                     : false;
 | |
| }
 | |
| 
 | |
| /// Insert code in the prolog/epilog code when unrolling a loop with a
 | |
| /// run-time trip-count.
 | |
| ///
 | |
| /// This method assumes that the loop unroll factor is total number
 | |
| /// of loop bodies in the loop after unrolling. (Some folks refer
 | |
| /// to the unroll factor as the number of *extra* copies added).
 | |
| /// We assume also that the loop unroll factor is a power-of-two. So, after
 | |
| /// unrolling the loop, the number of loop bodies executed is 2,
 | |
| /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
 | |
| /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
 | |
| /// the switch instruction is generated.
 | |
| ///
 | |
| /// ***Prolog case***
 | |
| ///        extraiters = tripcount % loopfactor
 | |
| ///        if (extraiters == 0) jump Loop:
 | |
| ///        else jump Prol:
 | |
| /// Prol:  LoopBody;
 | |
| ///        extraiters -= 1                 // Omitted if unroll factor is 2.
 | |
| ///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
 | |
| ///        if (tripcount < loopfactor) jump End:
 | |
| /// Loop:
 | |
| /// ...
 | |
| /// End:
 | |
| ///
 | |
| /// ***Epilog case***
 | |
| ///        extraiters = tripcount % loopfactor
 | |
| ///        if (tripcount < loopfactor) jump LoopExit:
 | |
| ///        unroll_iters = tripcount - extraiters
 | |
| /// Loop:  LoopBody; (executes unroll_iter times);
 | |
| ///        unroll_iter -= 1
 | |
| ///        if (unroll_iter != 0) jump Loop:
 | |
| /// LoopExit:
 | |
| ///        if (extraiters == 0) jump EpilExit:
 | |
| /// Epil:  LoopBody; (executes extraiters times)
 | |
| ///        extraiters -= 1                 // Omitted if unroll factor is 2.
 | |
| ///        if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
 | |
| /// EpilExit:
 | |
| 
 | |
| bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count,
 | |
|                                       bool AllowExpensiveTripCount,
 | |
|                                       bool UseEpilogRemainder,
 | |
|                                       bool UnrollRemainder,
 | |
|                                       LoopInfo *LI, ScalarEvolution *SE,
 | |
|                                       DominatorTree *DT, AssumptionCache *AC,
 | |
|                                       OptimizationRemarkEmitter *ORE,
 | |
|                                       bool PreserveLCSSA) {
 | |
|   DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
 | |
|   DEBUG(L->dump());
 | |
|   DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n" :
 | |
|         dbgs() << "Using prolog remainder.\n");
 | |
| 
 | |
|   // Make sure the loop is in canonical form.
 | |
|   if (!L->isLoopSimplifyForm()) {
 | |
|     DEBUG(dbgs() << "Not in simplify form!\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Guaranteed by LoopSimplifyForm.
 | |
|   BasicBlock *Latch = L->getLoopLatch();
 | |
|   BasicBlock *Header = L->getHeader();
 | |
| 
 | |
|   BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
 | |
|   unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
 | |
|   BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
 | |
|   // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
 | |
|   // targets of the Latch be an exit block out of the loop. This needs
 | |
|   // to be guaranteed by the callers of UnrollRuntimeLoopRemainder.
 | |
|   assert(!L->contains(LatchExit) &&
 | |
|          "one of the loop latch successors should be the exit block!");
 | |
|   // These are exit blocks other than the target of the latch exiting block.
 | |
|   SmallVector<BasicBlock *, 4> OtherExits;
 | |
|   bool isMultiExitUnrollingEnabled =
 | |
|       canSafelyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
 | |
|                                    UseEpilogRemainder) &&
 | |
|       canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
 | |
|                                        UseEpilogRemainder);
 | |
|   // Support only single exit and exiting block unless multi-exit loop unrolling is enabled.
 | |
|   if (!isMultiExitUnrollingEnabled &&
 | |
|       (!L->getExitingBlock() || OtherExits.size())) {
 | |
|     DEBUG(
 | |
|         dbgs()
 | |
|         << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
 | |
|            "enabled!\n");
 | |
|     return false;
 | |
|   }
 | |
|   // Use Scalar Evolution to compute the trip count. This allows more loops to
 | |
|   // be unrolled than relying on induction var simplification.
 | |
|   if (!SE)
 | |
|     return false;
 | |
| 
 | |
|   // Only unroll loops with a computable trip count, and the trip count needs
 | |
|   // to be an int value (allowing a pointer type is a TODO item).
 | |
|   // We calculate the backedge count by using getExitCount on the Latch block,
 | |
|   // which is proven to be the only exiting block in this loop. This is same as
 | |
|   // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
 | |
|   // exiting blocks).
 | |
|   const SCEV *BECountSC = SE->getExitCount(L, Latch);
 | |
|   if (isa<SCEVCouldNotCompute>(BECountSC) ||
 | |
|       !BECountSC->getType()->isIntegerTy()) {
 | |
|     DEBUG(dbgs() << "Could not compute exit block SCEV\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
 | |
| 
 | |
|   // Add 1 since the backedge count doesn't include the first loop iteration.
 | |
|   const SCEV *TripCountSC =
 | |
|       SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
 | |
|   if (isa<SCEVCouldNotCompute>(TripCountSC)) {
 | |
|     DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   BasicBlock *PreHeader = L->getLoopPreheader();
 | |
|   BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
 | |
|   const DataLayout &DL = Header->getModule()->getDataLayout();
 | |
|   SCEVExpander Expander(*SE, DL, "loop-unroll");
 | |
|   if (!AllowExpensiveTripCount &&
 | |
|       Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) {
 | |
|     DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // This constraint lets us deal with an overflowing trip count easily; see the
 | |
|   // comment on ModVal below.
 | |
|   if (Log2_32(Count) > BEWidth) {
 | |
|     DEBUG(dbgs()
 | |
|           << "Count failed constraint on overflow trip count calculation.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Loop structure is the following:
 | |
|   //
 | |
|   // PreHeader
 | |
|   //   Header
 | |
|   //   ...
 | |
|   //   Latch
 | |
|   // LatchExit
 | |
| 
 | |
|   BasicBlock *NewPreHeader;
 | |
|   BasicBlock *NewExit = nullptr;
 | |
|   BasicBlock *PrologExit = nullptr;
 | |
|   BasicBlock *EpilogPreHeader = nullptr;
 | |
|   BasicBlock *PrologPreHeader = nullptr;
 | |
| 
 | |
|   if (UseEpilogRemainder) {
 | |
|     // If epilog remainder
 | |
|     // Split PreHeader to insert a branch around loop for unrolling.
 | |
|     NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
 | |
|     NewPreHeader->setName(PreHeader->getName() + ".new");
 | |
|     // Split LatchExit to create phi nodes from branch above.
 | |
|     SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit));
 | |
|     NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa",
 | |
|                                      DT, LI, PreserveLCSSA);
 | |
|     // Split NewExit to insert epilog remainder loop.
 | |
|     EpilogPreHeader = SplitBlock(NewExit, NewExit->getTerminator(), DT, LI);
 | |
|     EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
 | |
|   } else {
 | |
|     // If prolog remainder
 | |
|     // Split the original preheader twice to insert prolog remainder loop
 | |
|     PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
 | |
|     PrologPreHeader->setName(Header->getName() + ".prol.preheader");
 | |
|     PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
 | |
|                             DT, LI);
 | |
|     PrologExit->setName(Header->getName() + ".prol.loopexit");
 | |
|     // Split PrologExit to get NewPreHeader.
 | |
|     NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
 | |
|     NewPreHeader->setName(PreHeader->getName() + ".new");
 | |
|   }
 | |
|   // Loop structure should be the following:
 | |
|   //  Epilog             Prolog
 | |
|   //
 | |
|   // PreHeader         PreHeader
 | |
|   // *NewPreHeader     *PrologPreHeader
 | |
|   //   Header          *PrologExit
 | |
|   //   ...             *NewPreHeader
 | |
|   //   Latch             Header
 | |
|   // *NewExit            ...
 | |
|   // *EpilogPreHeader    Latch
 | |
|   // LatchExit              LatchExit
 | |
| 
 | |
|   // Calculate conditions for branch around loop for unrolling
 | |
|   // in epilog case and around prolog remainder loop in prolog case.
 | |
|   // Compute the number of extra iterations required, which is:
 | |
|   //  extra iterations = run-time trip count % loop unroll factor
 | |
|   PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
 | |
|   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
 | |
|                                             PreHeaderBR);
 | |
|   Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
 | |
|                                           PreHeaderBR);
 | |
|   IRBuilder<> B(PreHeaderBR);
 | |
|   Value *ModVal;
 | |
|   // Calculate ModVal = (BECount + 1) % Count.
 | |
|   // Note that TripCount is BECount + 1.
 | |
|   if (isPowerOf2_32(Count)) {
 | |
|     // When Count is power of 2 we don't BECount for epilog case, however we'll
 | |
|     // need it for a branch around unrolling loop for prolog case.
 | |
|     ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
 | |
|     //  1. There are no iterations to be run in the prolog/epilog loop.
 | |
|     // OR
 | |
|     //  2. The addition computing TripCount overflowed.
 | |
|     //
 | |
|     // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
 | |
|     // the number of iterations that remain to be run in the original loop is a
 | |
|     // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
 | |
|     // explicitly check this above).
 | |
|   } else {
 | |
|     // As (BECount + 1) can potentially unsigned overflow we count
 | |
|     // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
 | |
|     Value *ModValTmp = B.CreateURem(BECount,
 | |
|                                     ConstantInt::get(BECount->getType(),
 | |
|                                                      Count));
 | |
|     Value *ModValAdd = B.CreateAdd(ModValTmp,
 | |
|                                    ConstantInt::get(ModValTmp->getType(), 1));
 | |
|     // At that point (BECount % Count) + 1 could be equal to Count.
 | |
|     // To handle this case we need to take mod by Count one more time.
 | |
|     ModVal = B.CreateURem(ModValAdd,
 | |
|                           ConstantInt::get(BECount->getType(), Count),
 | |
|                           "xtraiter");
 | |
|   }
 | |
|   Value *BranchVal =
 | |
|       UseEpilogRemainder ? B.CreateICmpULT(BECount,
 | |
|                                            ConstantInt::get(BECount->getType(),
 | |
|                                                             Count - 1)) :
 | |
|                            B.CreateIsNotNull(ModVal, "lcmp.mod");
 | |
|   BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
 | |
|   BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
 | |
|   // Branch to either remainder (extra iterations) loop or unrolling loop.
 | |
|   B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
 | |
|   PreHeaderBR->eraseFromParent();
 | |
|   if (DT) {
 | |
|     if (UseEpilogRemainder)
 | |
|       DT->changeImmediateDominator(NewExit, PreHeader);
 | |
|     else
 | |
|       DT->changeImmediateDominator(PrologExit, PreHeader);
 | |
|   }
 | |
|   Function *F = Header->getParent();
 | |
|   // Get an ordered list of blocks in the loop to help with the ordering of the
 | |
|   // cloned blocks in the prolog/epilog code
 | |
|   LoopBlocksDFS LoopBlocks(L);
 | |
|   LoopBlocks.perform(LI);
 | |
| 
 | |
|   //
 | |
|   // For each extra loop iteration, create a copy of the loop's basic blocks
 | |
|   // and generate a condition that branches to the copy depending on the
 | |
|   // number of 'left over' iterations.
 | |
|   //
 | |
|   std::vector<BasicBlock *> NewBlocks;
 | |
|   ValueToValueMapTy VMap;
 | |
| 
 | |
|   // For unroll factor 2 remainder loop will have 1 iterations.
 | |
|   // Do not create 1 iteration loop.
 | |
|   bool CreateRemainderLoop = (Count != 2);
 | |
| 
 | |
|   // Clone all the basic blocks in the loop. If Count is 2, we don't clone
 | |
|   // the loop, otherwise we create a cloned loop to execute the extra
 | |
|   // iterations. This function adds the appropriate CFG connections.
 | |
|   BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
 | |
|   BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
 | |
|   Loop *remainderLoop = CloneLoopBlocks(
 | |
|       L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder,
 | |
|       InsertTop, InsertBot,
 | |
|       NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI);
 | |
| 
 | |
|   // Insert the cloned blocks into the function.
 | |
|   F->getBasicBlockList().splice(InsertBot->getIterator(),
 | |
|                                 F->getBasicBlockList(),
 | |
|                                 NewBlocks[0]->getIterator(),
 | |
|                                 F->end());
 | |
| 
 | |
|   // Now the loop blocks are cloned and the other exiting blocks from the
 | |
|   // remainder are connected to the original Loop's exit blocks. The remaining
 | |
|   // work is to update the phi nodes in the original loop, and take in the
 | |
|   // values from the cloned region. Also update the dominator info for
 | |
|   // OtherExits and their immediate successors, since we have new edges into
 | |
|   // OtherExits.
 | |
|   SmallSet<BasicBlock*, 8> ImmediateSuccessorsOfExitBlocks;
 | |
|   for (auto *BB : OtherExits) {
 | |
|    for (auto &II : *BB) {
 | |
| 
 | |
|      // Given we preserve LCSSA form, we know that the values used outside the
 | |
|      // loop will be used through these phi nodes at the exit blocks that are
 | |
|      // transformed below.
 | |
|      if (!isa<PHINode>(II))
 | |
|        break;
 | |
|      PHINode *Phi = cast<PHINode>(&II);
 | |
|      unsigned oldNumOperands = Phi->getNumIncomingValues();
 | |
|      // Add the incoming values from the remainder code to the end of the phi
 | |
|      // node.
 | |
|      for (unsigned i =0; i < oldNumOperands; i++){
 | |
|        Value *newVal = VMap[Phi->getIncomingValue(i)];
 | |
|        // newVal can be a constant or derived from values outside the loop, and
 | |
|        // hence need not have a VMap value.
 | |
|        if (!newVal)
 | |
|          newVal = Phi->getIncomingValue(i);
 | |
|        Phi->addIncoming(newVal,
 | |
|                            cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)]));
 | |
|      }
 | |
|    }
 | |
| #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
 | |
|     for (BasicBlock *SuccBB : successors(BB)) {
 | |
|       assert(!(any_of(OtherExits,
 | |
|                       [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) ||
 | |
|                SuccBB == LatchExit) &&
 | |
|              "Breaks the definition of dedicated exits!");
 | |
|     }
 | |
| #endif
 | |
|    // Update the dominator info because the immediate dominator is no longer the
 | |
|    // header of the original Loop. BB has edges both from L and remainder code.
 | |
|    // Since the preheader determines which loop is run (L or directly jump to
 | |
|    // the remainder code), we set the immediate dominator as the preheader.
 | |
|    if (DT) {
 | |
|      DT->changeImmediateDominator(BB, PreHeader);
 | |
|      // Also update the IDom for immediate successors of BB.  If the current
 | |
|      // IDom is the header, update the IDom to be the preheader because that is
 | |
|      // the nearest common dominator of all predecessors of SuccBB.  We need to
 | |
|      // check for IDom being the header because successors of exit blocks can
 | |
|      // have edges from outside the loop, and we should not incorrectly update
 | |
|      // the IDom in that case.
 | |
|      for (BasicBlock *SuccBB: successors(BB))
 | |
|        if (ImmediateSuccessorsOfExitBlocks.insert(SuccBB).second) {
 | |
|          if (DT->getNode(SuccBB)->getIDom()->getBlock() == Header) {
 | |
|            assert(!SuccBB->getSinglePredecessor() &&
 | |
|                   "BB should be the IDom then!");
 | |
|            DT->changeImmediateDominator(SuccBB, PreHeader);
 | |
|          }
 | |
|        }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Loop structure should be the following:
 | |
|   //  Epilog             Prolog
 | |
|   //
 | |
|   // PreHeader         PreHeader
 | |
|   // NewPreHeader      PrologPreHeader
 | |
|   //   Header            PrologHeader
 | |
|   //   ...               ...
 | |
|   //   Latch             PrologLatch
 | |
|   // NewExit           PrologExit
 | |
|   // EpilogPreHeader   NewPreHeader
 | |
|   //   EpilogHeader      Header
 | |
|   //   ...               ...
 | |
|   //   EpilogLatch       Latch
 | |
|   // LatchExit              LatchExit
 | |
| 
 | |
|   // Rewrite the cloned instruction operands to use the values created when the
 | |
|   // clone is created.
 | |
|   for (BasicBlock *BB : NewBlocks) {
 | |
|     for (Instruction &I : *BB) {
 | |
|       RemapInstruction(&I, VMap,
 | |
|                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (UseEpilogRemainder) {
 | |
|     // Connect the epilog code to the original loop and update the
 | |
|     // PHI functions.
 | |
|     ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader,
 | |
|                   EpilogPreHeader, NewPreHeader, VMap, DT, LI,
 | |
|                   PreserveLCSSA);
 | |
| 
 | |
|     // Update counter in loop for unrolling.
 | |
|     // I should be multiply of Count.
 | |
|     IRBuilder<> B2(NewPreHeader->getTerminator());
 | |
|     Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
 | |
|     BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
 | |
|     B2.SetInsertPoint(LatchBR);
 | |
|     PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
 | |
|                                       Header->getFirstNonPHI());
 | |
|     Value *IdxSub =
 | |
|         B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
 | |
|                      NewIdx->getName() + ".nsub");
 | |
|     Value *IdxCmp;
 | |
|     if (LatchBR->getSuccessor(0) == Header)
 | |
|       IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp");
 | |
|     else
 | |
|       IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp");
 | |
|     NewIdx->addIncoming(TestVal, NewPreHeader);
 | |
|     NewIdx->addIncoming(IdxSub, Latch);
 | |
|     LatchBR->setCondition(IdxCmp);
 | |
|   } else {
 | |
|     // Connect the prolog code to the original loop and update the
 | |
|     // PHI functions.
 | |
|     ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
 | |
|                   NewPreHeader, VMap, DT, LI, PreserveLCSSA);
 | |
|   }
 | |
| 
 | |
|   // If this loop is nested, then the loop unroller changes the code in the
 | |
|   // parent loop, so the Scalar Evolution pass needs to be run again.
 | |
|   if (Loop *ParentLoop = L->getParentLoop())
 | |
|     SE->forgetLoop(ParentLoop);
 | |
| 
 | |
|   // Canonicalize to LoopSimplifyForm both original and remainder loops. We
 | |
|   // cannot rely on the LoopUnrollPass to do this because it only does
 | |
|   // canonicalization for parent/subloops and not the sibling loops.
 | |
|   if (OtherExits.size() > 0) {
 | |
|     // Generate dedicated exit blocks for the original loop, to preserve
 | |
|     // LoopSimplifyForm.
 | |
|     formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA);
 | |
|     // Generate dedicated exit blocks for the remainder loop if one exists, to
 | |
|     // preserve LoopSimplifyForm.
 | |
|     if (remainderLoop)
 | |
|       formDedicatedExitBlocks(remainderLoop, DT, LI, PreserveLCSSA);
 | |
|   }
 | |
| 
 | |
|   if (remainderLoop && UnrollRemainder) {
 | |
|     DEBUG(dbgs() << "Unrolling remainder loop\n");
 | |
|     UnrollLoop(remainderLoop, /*Count*/Count - 1, /*TripCount*/Count - 1,
 | |
|                /*Force*/false, /*AllowRuntime*/false,
 | |
|                /*AllowExpensiveTripCount*/false, /*PreserveCondBr*/true,
 | |
|                /*PreserveOnlyFirst*/false, /*TripMultiple*/1,
 | |
|                /*PeelCount*/0, /*UnrollRemainder*/false, LI, SE, DT, AC, ORE,
 | |
|                PreserveLCSSA);
 | |
|   }
 | |
| 
 | |
|   NumRuntimeUnrolled++;
 | |
|   return true;
 | |
| }
 |