forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1398 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1398 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines common loop utility functions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/LoopUtils.h"
 | |
| #include "llvm/ADT/ScopeExit.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/BasicAliasAnalysis.h"
 | |
| #include "llvm/Analysis/GlobalsModRef.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "loop-utils"
 | |
| 
 | |
| bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
 | |
|                                         SmallPtrSetImpl<Instruction *> &Set) {
 | |
|   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
 | |
|     if (!Set.count(dyn_cast<Instruction>(*Use)))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
 | |
|   switch (Kind) {
 | |
|   default:
 | |
|     break;
 | |
|   case RK_IntegerAdd:
 | |
|   case RK_IntegerMult:
 | |
|   case RK_IntegerOr:
 | |
|   case RK_IntegerAnd:
 | |
|   case RK_IntegerXor:
 | |
|   case RK_IntegerMinMax:
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
 | |
|   return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
 | |
| }
 | |
| 
 | |
| bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
 | |
|   switch (Kind) {
 | |
|   default:
 | |
|     break;
 | |
|   case RK_IntegerAdd:
 | |
|   case RK_IntegerMult:
 | |
|   case RK_FloatAdd:
 | |
|   case RK_FloatMult:
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Instruction *
 | |
| RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT,
 | |
|                                      SmallPtrSetImpl<Instruction *> &Visited,
 | |
|                                      SmallPtrSetImpl<Instruction *> &CI) {
 | |
|   if (!Phi->hasOneUse())
 | |
|     return Phi;
 | |
| 
 | |
|   const APInt *M = nullptr;
 | |
|   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
 | |
| 
 | |
|   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
 | |
|   // with a new integer type of the corresponding bit width.
 | |
|   if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
 | |
|     int32_t Bits = (*M + 1).exactLogBase2();
 | |
|     if (Bits > 0) {
 | |
|       RT = IntegerType::get(Phi->getContext(), Bits);
 | |
|       Visited.insert(Phi);
 | |
|       CI.insert(J);
 | |
|       return J;
 | |
|     }
 | |
|   }
 | |
|   return Phi;
 | |
| }
 | |
| 
 | |
| bool RecurrenceDescriptor::getSourceExtensionKind(
 | |
|     Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned,
 | |
|     SmallPtrSetImpl<Instruction *> &Visited,
 | |
|     SmallPtrSetImpl<Instruction *> &CI) {
 | |
| 
 | |
|   SmallVector<Instruction *, 8> Worklist;
 | |
|   bool FoundOneOperand = false;
 | |
|   unsigned DstSize = RT->getPrimitiveSizeInBits();
 | |
|   Worklist.push_back(Exit);
 | |
| 
 | |
|   // Traverse the instructions in the reduction expression, beginning with the
 | |
|   // exit value.
 | |
|   while (!Worklist.empty()) {
 | |
|     Instruction *I = Worklist.pop_back_val();
 | |
|     for (Use &U : I->operands()) {
 | |
| 
 | |
|       // Terminate the traversal if the operand is not an instruction, or we
 | |
|       // reach the starting value.
 | |
|       Instruction *J = dyn_cast<Instruction>(U.get());
 | |
|       if (!J || J == Start)
 | |
|         continue;
 | |
| 
 | |
|       // Otherwise, investigate the operation if it is also in the expression.
 | |
|       if (Visited.count(J)) {
 | |
|         Worklist.push_back(J);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // If the operand is not in Visited, it is not a reduction operation, but
 | |
|       // it does feed into one. Make sure it is either a single-use sign- or
 | |
|       // zero-extend instruction.
 | |
|       CastInst *Cast = dyn_cast<CastInst>(J);
 | |
|       bool IsSExtInst = isa<SExtInst>(J);
 | |
|       if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst))
 | |
|         return false;
 | |
| 
 | |
|       // Ensure the source type of the extend is no larger than the reduction
 | |
|       // type. It is not necessary for the types to be identical.
 | |
|       unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
 | |
|       if (SrcSize > DstSize)
 | |
|         return false;
 | |
| 
 | |
|       // Furthermore, ensure that all such extends are of the same kind.
 | |
|       if (FoundOneOperand) {
 | |
|         if (IsSigned != IsSExtInst)
 | |
|           return false;
 | |
|       } else {
 | |
|         FoundOneOperand = true;
 | |
|         IsSigned = IsSExtInst;
 | |
|       }
 | |
| 
 | |
|       // Lastly, if the source type of the extend matches the reduction type,
 | |
|       // add the extend to CI so that we can avoid accounting for it in the
 | |
|       // cost model.
 | |
|       if (SrcSize == DstSize)
 | |
|         CI.insert(Cast);
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
 | |
|                                            Loop *TheLoop, bool HasFunNoNaNAttr,
 | |
|                                            RecurrenceDescriptor &RedDes) {
 | |
|   if (Phi->getNumIncomingValues() != 2)
 | |
|     return false;
 | |
| 
 | |
|   // Reduction variables are only found in the loop header block.
 | |
|   if (Phi->getParent() != TheLoop->getHeader())
 | |
|     return false;
 | |
| 
 | |
|   // Obtain the reduction start value from the value that comes from the loop
 | |
|   // preheader.
 | |
|   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
 | |
| 
 | |
|   // ExitInstruction is the single value which is used outside the loop.
 | |
|   // We only allow for a single reduction value to be used outside the loop.
 | |
|   // This includes users of the reduction, variables (which form a cycle
 | |
|   // which ends in the phi node).
 | |
|   Instruction *ExitInstruction = nullptr;
 | |
|   // Indicates that we found a reduction operation in our scan.
 | |
|   bool FoundReduxOp = false;
 | |
| 
 | |
|   // We start with the PHI node and scan for all of the users of this
 | |
|   // instruction. All users must be instructions that can be used as reduction
 | |
|   // variables (such as ADD). We must have a single out-of-block user. The cycle
 | |
|   // must include the original PHI.
 | |
|   bool FoundStartPHI = false;
 | |
| 
 | |
|   // To recognize min/max patterns formed by a icmp select sequence, we store
 | |
|   // the number of instruction we saw from the recognized min/max pattern,
 | |
|   //  to make sure we only see exactly the two instructions.
 | |
|   unsigned NumCmpSelectPatternInst = 0;
 | |
|   InstDesc ReduxDesc(false, nullptr);
 | |
| 
 | |
|   // Data used for determining if the recurrence has been type-promoted.
 | |
|   Type *RecurrenceType = Phi->getType();
 | |
|   SmallPtrSet<Instruction *, 4> CastInsts;
 | |
|   Instruction *Start = Phi;
 | |
|   bool IsSigned = false;
 | |
| 
 | |
|   SmallPtrSet<Instruction *, 8> VisitedInsts;
 | |
|   SmallVector<Instruction *, 8> Worklist;
 | |
| 
 | |
|   // Return early if the recurrence kind does not match the type of Phi. If the
 | |
|   // recurrence kind is arithmetic, we attempt to look through AND operations
 | |
|   // resulting from the type promotion performed by InstCombine.  Vector
 | |
|   // operations are not limited to the legal integer widths, so we may be able
 | |
|   // to evaluate the reduction in the narrower width.
 | |
|   if (RecurrenceType->isFloatingPointTy()) {
 | |
|     if (!isFloatingPointRecurrenceKind(Kind))
 | |
|       return false;
 | |
|   } else {
 | |
|     if (!isIntegerRecurrenceKind(Kind))
 | |
|       return false;
 | |
|     if (isArithmeticRecurrenceKind(Kind))
 | |
|       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
 | |
|   }
 | |
| 
 | |
|   Worklist.push_back(Start);
 | |
|   VisitedInsts.insert(Start);
 | |
| 
 | |
|   // A value in the reduction can be used:
 | |
|   //  - By the reduction:
 | |
|   //      - Reduction operation:
 | |
|   //        - One use of reduction value (safe).
 | |
|   //        - Multiple use of reduction value (not safe).
 | |
|   //      - PHI:
 | |
|   //        - All uses of the PHI must be the reduction (safe).
 | |
|   //        - Otherwise, not safe.
 | |
|   //  - By instructions outside of the loop (safe).
 | |
|   //      * One value may have several outside users, but all outside
 | |
|   //        uses must be of the same value.
 | |
|   //  - By an instruction that is not part of the reduction (not safe).
 | |
|   //    This is either:
 | |
|   //      * An instruction type other than PHI or the reduction operation.
 | |
|   //      * A PHI in the header other than the initial PHI.
 | |
|   while (!Worklist.empty()) {
 | |
|     Instruction *Cur = Worklist.back();
 | |
|     Worklist.pop_back();
 | |
| 
 | |
|     // No Users.
 | |
|     // If the instruction has no users then this is a broken chain and can't be
 | |
|     // a reduction variable.
 | |
|     if (Cur->use_empty())
 | |
|       return false;
 | |
| 
 | |
|     bool IsAPhi = isa<PHINode>(Cur);
 | |
| 
 | |
|     // A header PHI use other than the original PHI.
 | |
|     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
 | |
|       return false;
 | |
| 
 | |
|     // Reductions of instructions such as Div, and Sub is only possible if the
 | |
|     // LHS is the reduction variable.
 | |
|     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
 | |
|         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
 | |
|         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
 | |
|       return false;
 | |
| 
 | |
|     // Any reduction instruction must be of one of the allowed kinds. We ignore
 | |
|     // the starting value (the Phi or an AND instruction if the Phi has been
 | |
|     // type-promoted).
 | |
|     if (Cur != Start) {
 | |
|       ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
 | |
|       if (!ReduxDesc.isRecurrence())
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // A reduction operation must only have one use of the reduction value.
 | |
|     if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
 | |
|         hasMultipleUsesOf(Cur, VisitedInsts))
 | |
|       return false;
 | |
| 
 | |
|     // All inputs to a PHI node must be a reduction value.
 | |
|     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
 | |
|       return false;
 | |
| 
 | |
|     if (Kind == RK_IntegerMinMax &&
 | |
|         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
 | |
|       ++NumCmpSelectPatternInst;
 | |
|     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
 | |
|       ++NumCmpSelectPatternInst;
 | |
| 
 | |
|     // Check  whether we found a reduction operator.
 | |
|     FoundReduxOp |= !IsAPhi && Cur != Start;
 | |
| 
 | |
|     // Process users of current instruction. Push non-PHI nodes after PHI nodes
 | |
|     // onto the stack. This way we are going to have seen all inputs to PHI
 | |
|     // nodes once we get to them.
 | |
|     SmallVector<Instruction *, 8> NonPHIs;
 | |
|     SmallVector<Instruction *, 8> PHIs;
 | |
|     for (User *U : Cur->users()) {
 | |
|       Instruction *UI = cast<Instruction>(U);
 | |
| 
 | |
|       // Check if we found the exit user.
 | |
|       BasicBlock *Parent = UI->getParent();
 | |
|       if (!TheLoop->contains(Parent)) {
 | |
|         // If we already know this instruction is used externally, move on to
 | |
|         // the next user.
 | |
|         if (ExitInstruction == Cur)
 | |
|           continue;
 | |
| 
 | |
|         // Exit if you find multiple values used outside or if the header phi
 | |
|         // node is being used. In this case the user uses the value of the
 | |
|         // previous iteration, in which case we would loose "VF-1" iterations of
 | |
|         // the reduction operation if we vectorize.
 | |
|         if (ExitInstruction != nullptr || Cur == Phi)
 | |
|           return false;
 | |
| 
 | |
|         // The instruction used by an outside user must be the last instruction
 | |
|         // before we feed back to the reduction phi. Otherwise, we loose VF-1
 | |
|         // operations on the value.
 | |
|         if (!is_contained(Phi->operands(), Cur))
 | |
|           return false;
 | |
| 
 | |
|         ExitInstruction = Cur;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Process instructions only once (termination). Each reduction cycle
 | |
|       // value must only be used once, except by phi nodes and min/max
 | |
|       // reductions which are represented as a cmp followed by a select.
 | |
|       InstDesc IgnoredVal(false, nullptr);
 | |
|       if (VisitedInsts.insert(UI).second) {
 | |
|         if (isa<PHINode>(UI))
 | |
|           PHIs.push_back(UI);
 | |
|         else
 | |
|           NonPHIs.push_back(UI);
 | |
|       } else if (!isa<PHINode>(UI) &&
 | |
|                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
 | |
|                    !isa<SelectInst>(UI)) ||
 | |
|                   !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
 | |
|         return false;
 | |
| 
 | |
|       // Remember that we completed the cycle.
 | |
|       if (UI == Phi)
 | |
|         FoundStartPHI = true;
 | |
|     }
 | |
|     Worklist.append(PHIs.begin(), PHIs.end());
 | |
|     Worklist.append(NonPHIs.begin(), NonPHIs.end());
 | |
|   }
 | |
| 
 | |
|   // This means we have seen one but not the other instruction of the
 | |
|   // pattern or more than just a select and cmp.
 | |
|   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
 | |
|       NumCmpSelectPatternInst != 2)
 | |
|     return false;
 | |
| 
 | |
|   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
 | |
|     return false;
 | |
| 
 | |
|   // If we think Phi may have been type-promoted, we also need to ensure that
 | |
|   // all source operands of the reduction are either SExtInsts or ZEstInsts. If
 | |
|   // so, we will be able to evaluate the reduction in the narrower bit width.
 | |
|   if (Start != Phi)
 | |
|     if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType,
 | |
|                                 IsSigned, VisitedInsts, CastInsts))
 | |
|       return false;
 | |
| 
 | |
|   // We found a reduction var if we have reached the original phi node and we
 | |
|   // only have a single instruction with out-of-loop users.
 | |
| 
 | |
|   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
 | |
|   // is saved as part of the RecurrenceDescriptor.
 | |
| 
 | |
|   // Save the description of this reduction variable.
 | |
|   RecurrenceDescriptor RD(
 | |
|       RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
 | |
|       ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
 | |
|   RedDes = RD;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
 | |
| /// pattern corresponding to a min(X, Y) or max(X, Y).
 | |
| RecurrenceDescriptor::InstDesc
 | |
| RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
 | |
| 
 | |
|   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
 | |
|          "Expect a select instruction");
 | |
|   Instruction *Cmp = nullptr;
 | |
|   SelectInst *Select = nullptr;
 | |
| 
 | |
|   // We must handle the select(cmp()) as a single instruction. Advance to the
 | |
|   // select.
 | |
|   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
 | |
|     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
 | |
|       return InstDesc(false, I);
 | |
|     return InstDesc(Select, Prev.getMinMaxKind());
 | |
|   }
 | |
| 
 | |
|   // Only handle single use cases for now.
 | |
|   if (!(Select = dyn_cast<SelectInst>(I)))
 | |
|     return InstDesc(false, I);
 | |
|   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
 | |
|       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
 | |
|     return InstDesc(false, I);
 | |
|   if (!Cmp->hasOneUse())
 | |
|     return InstDesc(false, I);
 | |
| 
 | |
|   Value *CmpLeft;
 | |
|   Value *CmpRight;
 | |
| 
 | |
|   // Look for a min/max pattern.
 | |
|   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | |
|     return InstDesc(Select, MRK_UIntMin);
 | |
|   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | |
|     return InstDesc(Select, MRK_UIntMax);
 | |
|   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | |
|     return InstDesc(Select, MRK_SIntMax);
 | |
|   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | |
|     return InstDesc(Select, MRK_SIntMin);
 | |
|   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | |
|     return InstDesc(Select, MRK_FloatMin);
 | |
|   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | |
|     return InstDesc(Select, MRK_FloatMax);
 | |
|   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | |
|     return InstDesc(Select, MRK_FloatMin);
 | |
|   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | |
|     return InstDesc(Select, MRK_FloatMax);
 | |
| 
 | |
|   return InstDesc(false, I);
 | |
| }
 | |
| 
 | |
| RecurrenceDescriptor::InstDesc
 | |
| RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
 | |
|                                         InstDesc &Prev, bool HasFunNoNaNAttr) {
 | |
|   bool FP = I->getType()->isFloatingPointTy();
 | |
|   Instruction *UAI = Prev.getUnsafeAlgebraInst();
 | |
|   if (!UAI && FP && !I->hasUnsafeAlgebra())
 | |
|     UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|   default:
 | |
|     return InstDesc(false, I);
 | |
|   case Instruction::PHI:
 | |
|     return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Add:
 | |
|     return InstDesc(Kind == RK_IntegerAdd, I);
 | |
|   case Instruction::Mul:
 | |
|     return InstDesc(Kind == RK_IntegerMult, I);
 | |
|   case Instruction::And:
 | |
|     return InstDesc(Kind == RK_IntegerAnd, I);
 | |
|   case Instruction::Or:
 | |
|     return InstDesc(Kind == RK_IntegerOr, I);
 | |
|   case Instruction::Xor:
 | |
|     return InstDesc(Kind == RK_IntegerXor, I);
 | |
|   case Instruction::FMul:
 | |
|     return InstDesc(Kind == RK_FloatMult, I, UAI);
 | |
|   case Instruction::FSub:
 | |
|   case Instruction::FAdd:
 | |
|     return InstDesc(Kind == RK_FloatAdd, I, UAI);
 | |
|   case Instruction::FCmp:
 | |
|   case Instruction::ICmp:
 | |
|   case Instruction::Select:
 | |
|     if (Kind != RK_IntegerMinMax &&
 | |
|         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
 | |
|       return InstDesc(false, I);
 | |
|     return isMinMaxSelectCmpPattern(I, Prev);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool RecurrenceDescriptor::hasMultipleUsesOf(
 | |
|     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
 | |
|   unsigned NumUses = 0;
 | |
|   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
 | |
|        ++Use) {
 | |
|     if (Insts.count(dyn_cast<Instruction>(*Use)))
 | |
|       ++NumUses;
 | |
|     if (NumUses > 1)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
 | |
|                                           RecurrenceDescriptor &RedDes) {
 | |
| 
 | |
|   BasicBlock *Header = TheLoop->getHeader();
 | |
|   Function &F = *Header->getParent();
 | |
|   bool HasFunNoNaNAttr =
 | |
|       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
 | |
| 
 | |
|   if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | |
|     DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | |
|     DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | |
|     DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | |
|     DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | |
|     DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
 | |
|                       RedDes)) {
 | |
|     DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | |
|     DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | |
|     DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
 | |
|     DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   // Not a reduction of known type.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool RecurrenceDescriptor::isFirstOrderRecurrence(
 | |
|     PHINode *Phi, Loop *TheLoop,
 | |
|     DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
 | |
| 
 | |
|   // Ensure the phi node is in the loop header and has two incoming values.
 | |
|   if (Phi->getParent() != TheLoop->getHeader() ||
 | |
|       Phi->getNumIncomingValues() != 2)
 | |
|     return false;
 | |
| 
 | |
|   // Ensure the loop has a preheader and a single latch block. The loop
 | |
|   // vectorizer will need the latch to set up the next iteration of the loop.
 | |
|   auto *Preheader = TheLoop->getLoopPreheader();
 | |
|   auto *Latch = TheLoop->getLoopLatch();
 | |
|   if (!Preheader || !Latch)
 | |
|     return false;
 | |
| 
 | |
|   // Ensure the phi node's incoming blocks are the loop preheader and latch.
 | |
|   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
 | |
|       Phi->getBasicBlockIndex(Latch) < 0)
 | |
|     return false;
 | |
| 
 | |
|   // Get the previous value. The previous value comes from the latch edge while
 | |
|   // the initial value comes form the preheader edge.
 | |
|   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
 | |
|   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
 | |
|       SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
 | |
|     return false;
 | |
| 
 | |
|   // Ensure every user of the phi node is dominated by the previous value.
 | |
|   // The dominance requirement ensures the loop vectorizer will not need to
 | |
|   // vectorize the initial value prior to the first iteration of the loop.
 | |
|   // TODO: Consider extending this sinking to handle other kinds of instructions
 | |
|   // and expressions, beyond sinking a single cast past Previous.
 | |
|   if (Phi->hasOneUse()) {
 | |
|     auto *I = Phi->user_back();
 | |
|     if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() &&
 | |
|         DT->dominates(Previous, I->user_back())) {
 | |
|       if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking.
 | |
|         SinkAfter[I] = Previous;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (User *U : Phi->users())
 | |
|     if (auto *I = dyn_cast<Instruction>(U)) {
 | |
|       if (!DT->dominates(Previous, I))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// This function returns the identity element (or neutral element) for
 | |
| /// the operation K.
 | |
| Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
 | |
|                                                       Type *Tp) {
 | |
|   switch (K) {
 | |
|   case RK_IntegerXor:
 | |
|   case RK_IntegerAdd:
 | |
|   case RK_IntegerOr:
 | |
|     // Adding, Xoring, Oring zero to a number does not change it.
 | |
|     return ConstantInt::get(Tp, 0);
 | |
|   case RK_IntegerMult:
 | |
|     // Multiplying a number by 1 does not change it.
 | |
|     return ConstantInt::get(Tp, 1);
 | |
|   case RK_IntegerAnd:
 | |
|     // AND-ing a number with an all-1 value does not change it.
 | |
|     return ConstantInt::get(Tp, -1, true);
 | |
|   case RK_FloatMult:
 | |
|     // Multiplying a number by 1 does not change it.
 | |
|     return ConstantFP::get(Tp, 1.0L);
 | |
|   case RK_FloatAdd:
 | |
|     // Adding zero to a number does not change it.
 | |
|     return ConstantFP::get(Tp, 0.0L);
 | |
|   default:
 | |
|     llvm_unreachable("Unknown recurrence kind");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// This function translates the recurrence kind to an LLVM binary operator.
 | |
| unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
 | |
|   switch (Kind) {
 | |
|   case RK_IntegerAdd:
 | |
|     return Instruction::Add;
 | |
|   case RK_IntegerMult:
 | |
|     return Instruction::Mul;
 | |
|   case RK_IntegerOr:
 | |
|     return Instruction::Or;
 | |
|   case RK_IntegerAnd:
 | |
|     return Instruction::And;
 | |
|   case RK_IntegerXor:
 | |
|     return Instruction::Xor;
 | |
|   case RK_FloatMult:
 | |
|     return Instruction::FMul;
 | |
|   case RK_FloatAdd:
 | |
|     return Instruction::FAdd;
 | |
|   case RK_IntegerMinMax:
 | |
|     return Instruction::ICmp;
 | |
|   case RK_FloatMinMax:
 | |
|     return Instruction::FCmp;
 | |
|   default:
 | |
|     llvm_unreachable("Unknown recurrence operation");
 | |
|   }
 | |
| }
 | |
| 
 | |
| Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
 | |
|                                             MinMaxRecurrenceKind RK,
 | |
|                                             Value *Left, Value *Right) {
 | |
|   CmpInst::Predicate P = CmpInst::ICMP_NE;
 | |
|   switch (RK) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown min/max recurrence kind");
 | |
|   case MRK_UIntMin:
 | |
|     P = CmpInst::ICMP_ULT;
 | |
|     break;
 | |
|   case MRK_UIntMax:
 | |
|     P = CmpInst::ICMP_UGT;
 | |
|     break;
 | |
|   case MRK_SIntMin:
 | |
|     P = CmpInst::ICMP_SLT;
 | |
|     break;
 | |
|   case MRK_SIntMax:
 | |
|     P = CmpInst::ICMP_SGT;
 | |
|     break;
 | |
|   case MRK_FloatMin:
 | |
|     P = CmpInst::FCMP_OLT;
 | |
|     break;
 | |
|   case MRK_FloatMax:
 | |
|     P = CmpInst::FCMP_OGT;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // We only match FP sequences with unsafe algebra, so we can unconditionally
 | |
|   // set it on any generated instructions.
 | |
|   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
 | |
|   FastMathFlags FMF;
 | |
|   FMF.setUnsafeAlgebra();
 | |
|   Builder.setFastMathFlags(FMF);
 | |
| 
 | |
|   Value *Cmp;
 | |
|   if (RK == MRK_FloatMin || RK == MRK_FloatMax)
 | |
|     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
 | |
|   else
 | |
|     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
 | |
| 
 | |
|   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
 | |
|   return Select;
 | |
| }
 | |
| 
 | |
| InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
 | |
|                                          const SCEV *Step, BinaryOperator *BOp)
 | |
|   : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
 | |
|   assert(IK != IK_NoInduction && "Not an induction");
 | |
| 
 | |
|   // Start value type should match the induction kind and the value
 | |
|   // itself should not be null.
 | |
|   assert(StartValue && "StartValue is null");
 | |
|   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
 | |
|          "StartValue is not a pointer for pointer induction");
 | |
|   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
 | |
|          "StartValue is not an integer for integer induction");
 | |
| 
 | |
|   // Check the Step Value. It should be non-zero integer value.
 | |
|   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
 | |
|          "Step value is zero");
 | |
| 
 | |
|   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
 | |
|          "Step value should be constant for pointer induction");
 | |
|   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
 | |
|          "StepValue is not an integer");
 | |
| 
 | |
|   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
 | |
|          "StepValue is not FP for FpInduction");
 | |
|   assert((IK != IK_FpInduction || (InductionBinOp &&
 | |
|           (InductionBinOp->getOpcode() == Instruction::FAdd ||
 | |
|            InductionBinOp->getOpcode() == Instruction::FSub))) &&
 | |
|          "Binary opcode should be specified for FP induction");
 | |
| }
 | |
| 
 | |
| int InductionDescriptor::getConsecutiveDirection() const {
 | |
|   ConstantInt *ConstStep = getConstIntStepValue();
 | |
|   if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
 | |
|     return ConstStep->getSExtValue();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| ConstantInt *InductionDescriptor::getConstIntStepValue() const {
 | |
|   if (isa<SCEVConstant>(Step))
 | |
|     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
 | |
|                                       ScalarEvolution *SE,
 | |
|                                       const DataLayout& DL) const {
 | |
| 
 | |
|   SCEVExpander Exp(*SE, DL, "induction");
 | |
|   assert(Index->getType() == Step->getType() &&
 | |
|          "Index type does not match StepValue type");
 | |
|   switch (IK) {
 | |
|   case IK_IntInduction: {
 | |
|     assert(Index->getType() == StartValue->getType() &&
 | |
|            "Index type does not match StartValue type");
 | |
| 
 | |
|     // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
 | |
|     // and calculate (Start + Index * Step) for all cases, without
 | |
|     // special handling for "isOne" and "isMinusOne".
 | |
|     // But in the real life the result code getting worse. We mix SCEV
 | |
|     // expressions and ADD/SUB operations and receive redundant
 | |
|     // intermediate values being calculated in different ways and
 | |
|     // Instcombine is unable to reduce them all.
 | |
| 
 | |
|     if (getConstIntStepValue() &&
 | |
|         getConstIntStepValue()->isMinusOne())
 | |
|       return B.CreateSub(StartValue, Index);
 | |
|     if (getConstIntStepValue() &&
 | |
|         getConstIntStepValue()->isOne())
 | |
|       return B.CreateAdd(StartValue, Index);
 | |
|     const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
 | |
|                                    SE->getMulExpr(Step, SE->getSCEV(Index)));
 | |
|     return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
 | |
|   }
 | |
|   case IK_PtrInduction: {
 | |
|     assert(isa<SCEVConstant>(Step) &&
 | |
|            "Expected constant step for pointer induction");
 | |
|     const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
 | |
|     Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
 | |
|     return B.CreateGEP(nullptr, StartValue, Index);
 | |
|   }
 | |
|   case IK_FpInduction: {
 | |
|     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
 | |
|     assert(InductionBinOp &&
 | |
|            (InductionBinOp->getOpcode() == Instruction::FAdd ||
 | |
|             InductionBinOp->getOpcode() == Instruction::FSub) &&
 | |
|            "Original bin op should be defined for FP induction");
 | |
| 
 | |
|     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
 | |
| 
 | |
|     // Floating point operations had to be 'fast' to enable the induction.
 | |
|     FastMathFlags Flags;
 | |
|     Flags.setUnsafeAlgebra();
 | |
| 
 | |
|     Value *MulExp = B.CreateFMul(StepValue, Index);
 | |
|     if (isa<Instruction>(MulExp))
 | |
|       // We have to check, the MulExp may be a constant.
 | |
|       cast<Instruction>(MulExp)->setFastMathFlags(Flags);
 | |
| 
 | |
|     Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue,
 | |
|                                MulExp, "induction");
 | |
|     if (isa<Instruction>(BOp))
 | |
|       cast<Instruction>(BOp)->setFastMathFlags(Flags);
 | |
| 
 | |
|     return BOp;
 | |
|   }
 | |
|   case IK_NoInduction:
 | |
|     return nullptr;
 | |
|   }
 | |
|   llvm_unreachable("invalid enum");
 | |
| }
 | |
| 
 | |
| bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
 | |
|                                            ScalarEvolution *SE,
 | |
|                                            InductionDescriptor &D) {
 | |
| 
 | |
|   // Here we only handle FP induction variables.
 | |
|   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
 | |
| 
 | |
|   if (TheLoop->getHeader() != Phi->getParent())
 | |
|     return false;
 | |
| 
 | |
|   // The loop may have multiple entrances or multiple exits; we can analyze
 | |
|   // this phi if it has a unique entry value and a unique backedge value.
 | |
|   if (Phi->getNumIncomingValues() != 2)
 | |
|     return false;
 | |
|   Value *BEValue = nullptr, *StartValue = nullptr;
 | |
|   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
 | |
|     BEValue = Phi->getIncomingValue(0);
 | |
|     StartValue = Phi->getIncomingValue(1);
 | |
|   } else {
 | |
|     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
 | |
|            "Unexpected Phi node in the loop"); 
 | |
|     BEValue = Phi->getIncomingValue(1);
 | |
|     StartValue = Phi->getIncomingValue(0);
 | |
|   }
 | |
| 
 | |
|   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
 | |
|   if (!BOp)
 | |
|     return false;
 | |
| 
 | |
|   Value *Addend = nullptr;
 | |
|   if (BOp->getOpcode() == Instruction::FAdd) {
 | |
|     if (BOp->getOperand(0) == Phi)
 | |
|       Addend = BOp->getOperand(1);
 | |
|     else if (BOp->getOperand(1) == Phi)
 | |
|       Addend = BOp->getOperand(0);
 | |
|   } else if (BOp->getOpcode() == Instruction::FSub)
 | |
|     if (BOp->getOperand(0) == Phi)
 | |
|       Addend = BOp->getOperand(1);
 | |
| 
 | |
|   if (!Addend)
 | |
|     return false;
 | |
| 
 | |
|   // The addend should be loop invariant
 | |
|   if (auto *I = dyn_cast<Instruction>(Addend))
 | |
|     if (TheLoop->contains(I))
 | |
|       return false;
 | |
| 
 | |
|   // FP Step has unknown SCEV
 | |
|   const SCEV *Step = SE->getUnknown(Addend);
 | |
|   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
 | |
|                                          PredicatedScalarEvolution &PSE,
 | |
|                                          InductionDescriptor &D,
 | |
|                                          bool Assume) {
 | |
|   Type *PhiTy = Phi->getType();
 | |
| 
 | |
|   // Handle integer and pointer inductions variables.
 | |
|   // Now we handle also FP induction but not trying to make a
 | |
|   // recurrent expression from the PHI node in-place.
 | |
| 
 | |
|   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
 | |
|       !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
 | |
|     return false;
 | |
| 
 | |
|   if (PhiTy->isFloatingPointTy())
 | |
|     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
 | |
| 
 | |
|   const SCEV *PhiScev = PSE.getSCEV(Phi);
 | |
|   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
 | |
| 
 | |
|   // We need this expression to be an AddRecExpr.
 | |
|   if (Assume && !AR)
 | |
|     AR = PSE.getAsAddRec(Phi);
 | |
| 
 | |
|   if (!AR) {
 | |
|     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
 | |
| }
 | |
| 
 | |
| bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
 | |
|                                          ScalarEvolution *SE,
 | |
|                                          InductionDescriptor &D,
 | |
|                                          const SCEV *Expr) {
 | |
|   Type *PhiTy = Phi->getType();
 | |
|   // We only handle integer and pointer inductions variables.
 | |
|   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
 | |
|     return false;
 | |
| 
 | |
|   // Check that the PHI is consecutive.
 | |
|   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
 | |
|   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
 | |
| 
 | |
|   if (!AR) {
 | |
|     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (AR->getLoop() != TheLoop) {
 | |
|     // FIXME: We should treat this as a uniform. Unfortunately, we
 | |
|     // don't currently know how to handled uniform PHIs.
 | |
|     DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
 | |
|     return false;    
 | |
|   }
 | |
| 
 | |
|   Value *StartValue =
 | |
|     Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
 | |
|   const SCEV *Step = AR->getStepRecurrence(*SE);
 | |
|   // Calculate the pointer stride and check if it is consecutive.
 | |
|   // The stride may be a constant or a loop invariant integer value.
 | |
|   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
 | |
|   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
 | |
|     return false;
 | |
| 
 | |
|   if (PhiTy->isIntegerTy()) {
 | |
|     D = InductionDescriptor(StartValue, IK_IntInduction, Step);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
 | |
|   // Pointer induction should be a constant.
 | |
|   if (!ConstStep)
 | |
|     return false;
 | |
| 
 | |
|   ConstantInt *CV = ConstStep->getValue();
 | |
|   Type *PointerElementType = PhiTy->getPointerElementType();
 | |
|   // The pointer stride cannot be determined if the pointer element type is not
 | |
|   // sized.
 | |
|   if (!PointerElementType->isSized())
 | |
|     return false;
 | |
| 
 | |
|   const DataLayout &DL = Phi->getModule()->getDataLayout();
 | |
|   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
 | |
|   if (!Size)
 | |
|     return false;
 | |
| 
 | |
|   int64_t CVSize = CV->getSExtValue();
 | |
|   if (CVSize % Size)
 | |
|     return false;
 | |
|   auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
 | |
|                                     true /* signed */);
 | |
|   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
 | |
|                                    bool PreserveLCSSA) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // We re-use a vector for the in-loop predecesosrs.
 | |
|   SmallVector<BasicBlock *, 4> InLoopPredecessors;
 | |
| 
 | |
|   auto RewriteExit = [&](BasicBlock *BB) {
 | |
|     assert(InLoopPredecessors.empty() &&
 | |
|            "Must start with an empty predecessors list!");
 | |
|     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
 | |
| 
 | |
|     // See if there are any non-loop predecessors of this exit block and
 | |
|     // keep track of the in-loop predecessors.
 | |
|     bool IsDedicatedExit = true;
 | |
|     for (auto *PredBB : predecessors(BB))
 | |
|       if (L->contains(PredBB)) {
 | |
|         if (isa<IndirectBrInst>(PredBB->getTerminator()))
 | |
|           // We cannot rewrite exiting edges from an indirectbr.
 | |
|           return false;
 | |
| 
 | |
|         InLoopPredecessors.push_back(PredBB);
 | |
|       } else {
 | |
|         IsDedicatedExit = false;
 | |
|       }
 | |
| 
 | |
|     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
 | |
| 
 | |
|     // Nothing to do if this is already a dedicated exit.
 | |
|     if (IsDedicatedExit)
 | |
|       return false;
 | |
| 
 | |
|     auto *NewExitBB = SplitBlockPredecessors(
 | |
|         BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA);
 | |
| 
 | |
|     if (!NewExitBB)
 | |
|       DEBUG(dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
 | |
|                    << *L << "\n");
 | |
|     else
 | |
|       DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
 | |
|                    << NewExitBB->getName() << "\n");
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   // Walk the exit blocks directly rather than building up a data structure for
 | |
|   // them, but only visit each one once.
 | |
|   SmallPtrSet<BasicBlock *, 4> Visited;
 | |
|   for (auto *BB : L->blocks())
 | |
|     for (auto *SuccBB : successors(BB)) {
 | |
|       // We're looking for exit blocks so skip in-loop successors.
 | |
|       if (L->contains(SuccBB))
 | |
|         continue;
 | |
| 
 | |
|       // Visit each exit block exactly once.
 | |
|       if (!Visited.insert(SuccBB).second)
 | |
|         continue;
 | |
| 
 | |
|       Changed |= RewriteExit(SuccBB);
 | |
|     }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// \brief Returns the instructions that use values defined in the loop.
 | |
| SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
 | |
|   SmallVector<Instruction *, 8> UsedOutside;
 | |
| 
 | |
|   for (auto *Block : L->getBlocks())
 | |
|     // FIXME: I believe that this could use copy_if if the Inst reference could
 | |
|     // be adapted into a pointer.
 | |
|     for (auto &Inst : *Block) {
 | |
|       auto Users = Inst.users();
 | |
|       if (any_of(Users, [&](User *U) {
 | |
|             auto *Use = cast<Instruction>(U);
 | |
|             return !L->contains(Use->getParent());
 | |
|           }))
 | |
|         UsedOutside.push_back(&Inst);
 | |
|     }
 | |
| 
 | |
|   return UsedOutside;
 | |
| }
 | |
| 
 | |
| void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
 | |
|   // By definition, all loop passes need the LoopInfo analysis and the
 | |
|   // Dominator tree it depends on. Because they all participate in the loop
 | |
|   // pass manager, they must also preserve these.
 | |
|   AU.addRequired<DominatorTreeWrapperPass>();
 | |
|   AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|   AU.addRequired<LoopInfoWrapperPass>();
 | |
|   AU.addPreserved<LoopInfoWrapperPass>();
 | |
| 
 | |
|   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
 | |
|   // here because users shouldn't directly get them from this header.
 | |
|   extern char &LoopSimplifyID;
 | |
|   extern char &LCSSAID;
 | |
|   AU.addRequiredID(LoopSimplifyID);
 | |
|   AU.addPreservedID(LoopSimplifyID);
 | |
|   AU.addRequiredID(LCSSAID);
 | |
|   AU.addPreservedID(LCSSAID);
 | |
|   // This is used in the LPPassManager to perform LCSSA verification on passes
 | |
|   // which preserve lcssa form
 | |
|   AU.addRequired<LCSSAVerificationPass>();
 | |
|   AU.addPreserved<LCSSAVerificationPass>();
 | |
| 
 | |
|   // Loop passes are designed to run inside of a loop pass manager which means
 | |
|   // that any function analyses they require must be required by the first loop
 | |
|   // pass in the manager (so that it is computed before the loop pass manager
 | |
|   // runs) and preserved by all loop pasess in the manager. To make this
 | |
|   // reasonably robust, the set needed for most loop passes is maintained here.
 | |
|   // If your loop pass requires an analysis not listed here, you will need to
 | |
|   // carefully audit the loop pass manager nesting structure that results.
 | |
|   AU.addRequired<AAResultsWrapperPass>();
 | |
|   AU.addPreserved<AAResultsWrapperPass>();
 | |
|   AU.addPreserved<BasicAAWrapperPass>();
 | |
|   AU.addPreserved<GlobalsAAWrapperPass>();
 | |
|   AU.addPreserved<SCEVAAWrapperPass>();
 | |
|   AU.addRequired<ScalarEvolutionWrapperPass>();
 | |
|   AU.addPreserved<ScalarEvolutionWrapperPass>();
 | |
| }
 | |
| 
 | |
| /// Manually defined generic "LoopPass" dependency initialization. This is used
 | |
| /// to initialize the exact set of passes from above in \c
 | |
| /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
 | |
| /// with:
 | |
| ///
 | |
| ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
 | |
| ///
 | |
| /// As-if "LoopPass" were a pass.
 | |
| void llvm::initializeLoopPassPass(PassRegistry &Registry) {
 | |
|   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
|   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
|   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | |
|   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
 | |
|   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | |
|   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
 | |
|   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
 | |
|   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
 | |
|   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 | |
| }
 | |
| 
 | |
| /// \brief Find string metadata for loop
 | |
| ///
 | |
| /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
 | |
| /// operand or null otherwise.  If the string metadata is not found return
 | |
| /// Optional's not-a-value.
 | |
| Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
 | |
|                                                             StringRef Name) {
 | |
|   MDNode *LoopID = TheLoop->getLoopID();
 | |
|   // Return none if LoopID is false.
 | |
|   if (!LoopID)
 | |
|     return None;
 | |
| 
 | |
|   // First operand should refer to the loop id itself.
 | |
|   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
 | |
|   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
 | |
| 
 | |
|   // Iterate over LoopID operands and look for MDString Metadata
 | |
|   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
 | |
|     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
 | |
|     if (!MD)
 | |
|       continue;
 | |
|     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
 | |
|     if (!S)
 | |
|       continue;
 | |
|     // Return true if MDString holds expected MetaData.
 | |
|     if (Name.equals(S->getString()))
 | |
|       switch (MD->getNumOperands()) {
 | |
|       case 1:
 | |
|         return nullptr;
 | |
|       case 2:
 | |
|         return &MD->getOperand(1);
 | |
|       default:
 | |
|         llvm_unreachable("loop metadata has 0 or 1 operand");
 | |
|       }
 | |
|   }
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| /// Returns true if the instruction in a loop is guaranteed to execute at least
 | |
| /// once.
 | |
| bool llvm::isGuaranteedToExecute(const Instruction &Inst,
 | |
|                                  const DominatorTree *DT, const Loop *CurLoop,
 | |
|                                  const LoopSafetyInfo *SafetyInfo) {
 | |
|   // We have to check to make sure that the instruction dominates all
 | |
|   // of the exit blocks.  If it doesn't, then there is a path out of the loop
 | |
|   // which does not execute this instruction, so we can't hoist it.
 | |
| 
 | |
|   // If the instruction is in the header block for the loop (which is very
 | |
|   // common), it is always guaranteed to dominate the exit blocks.  Since this
 | |
|   // is a common case, and can save some work, check it now.
 | |
|   if (Inst.getParent() == CurLoop->getHeader())
 | |
|     // If there's a throw in the header block, we can't guarantee we'll reach
 | |
|     // Inst.
 | |
|     return !SafetyInfo->HeaderMayThrow;
 | |
| 
 | |
|   // Somewhere in this loop there is an instruction which may throw and make us
 | |
|   // exit the loop.
 | |
|   if (SafetyInfo->MayThrow)
 | |
|     return false;
 | |
| 
 | |
|   // Get the exit blocks for the current loop.
 | |
|   SmallVector<BasicBlock *, 8> ExitBlocks;
 | |
|   CurLoop->getExitBlocks(ExitBlocks);
 | |
| 
 | |
|   // Verify that the block dominates each of the exit blocks of the loop.
 | |
|   for (BasicBlock *ExitBlock : ExitBlocks)
 | |
|     if (!DT->dominates(Inst.getParent(), ExitBlock))
 | |
|       return false;
 | |
| 
 | |
|   // As a degenerate case, if the loop is statically infinite then we haven't
 | |
|   // proven anything since there are no exit blocks.
 | |
|   if (ExitBlocks.empty())
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: In general, we have to prove that the loop isn't an infinite loop.
 | |
|   // See http::llvm.org/PR24078 .  (The "ExitBlocks.empty()" check above is
 | |
|   // just a special case of this.)
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
 | |
|   // Only support loops with a unique exiting block, and a latch.
 | |
|   if (!L->getExitingBlock())
 | |
|     return None;
 | |
| 
 | |
|   // Get the branch weights for the the loop's backedge.
 | |
|   BranchInst *LatchBR =
 | |
|       dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
 | |
|   if (!LatchBR || LatchBR->getNumSuccessors() != 2)
 | |
|     return None;
 | |
| 
 | |
|   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
 | |
|           LatchBR->getSuccessor(1) == L->getHeader()) &&
 | |
|          "At least one edge out of the latch must go to the header");
 | |
| 
 | |
|   // To estimate the number of times the loop body was executed, we want to
 | |
|   // know the number of times the backedge was taken, vs. the number of times
 | |
|   // we exited the loop.
 | |
|   uint64_t TrueVal, FalseVal;
 | |
|   if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
 | |
|     return None;
 | |
| 
 | |
|   if (!TrueVal || !FalseVal)
 | |
|     return 0;
 | |
| 
 | |
|   // Divide the count of the backedge by the count of the edge exiting the loop,
 | |
|   // rounding to nearest.
 | |
|   if (LatchBR->getSuccessor(0) == L->getHeader())
 | |
|     return (TrueVal + (FalseVal / 2)) / FalseVal;
 | |
|   else
 | |
|     return (FalseVal + (TrueVal / 2)) / TrueVal;
 | |
| }
 | |
| 
 | |
| /// \brief Adds a 'fast' flag to floating point operations.
 | |
| static Value *addFastMathFlag(Value *V) {
 | |
|   if (isa<FPMathOperator>(V)) {
 | |
|     FastMathFlags Flags;
 | |
|     Flags.setUnsafeAlgebra();
 | |
|     cast<Instruction>(V)->setFastMathFlags(Flags);
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| // Helper to generate a log2 shuffle reduction.
 | |
| Value *
 | |
| llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
 | |
|                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
 | |
|                           ArrayRef<Value *> RedOps) {
 | |
|   unsigned VF = Src->getType()->getVectorNumElements();
 | |
|   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
 | |
|   // and vector ops, reducing the set of values being computed by half each
 | |
|   // round.
 | |
|   assert(isPowerOf2_32(VF) &&
 | |
|          "Reduction emission only supported for pow2 vectors!");
 | |
|   Value *TmpVec = Src;
 | |
|   SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
 | |
|   for (unsigned i = VF; i != 1; i >>= 1) {
 | |
|     // Move the upper half of the vector to the lower half.
 | |
|     for (unsigned j = 0; j != i / 2; ++j)
 | |
|       ShuffleMask[j] = Builder.getInt32(i / 2 + j);
 | |
| 
 | |
|     // Fill the rest of the mask with undef.
 | |
|     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
 | |
|               UndefValue::get(Builder.getInt32Ty()));
 | |
| 
 | |
|     Value *Shuf = Builder.CreateShuffleVector(
 | |
|         TmpVec, UndefValue::get(TmpVec->getType()),
 | |
|         ConstantVector::get(ShuffleMask), "rdx.shuf");
 | |
| 
 | |
|     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
 | |
|       // Floating point operations had to be 'fast' to enable the reduction.
 | |
|       TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
 | |
|                                                    TmpVec, Shuf, "bin.rdx"));
 | |
|     } else {
 | |
|       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
 | |
|              "Invalid min/max");
 | |
|       TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec,
 | |
|                                                     Shuf);
 | |
|     }
 | |
|     if (!RedOps.empty())
 | |
|       propagateIRFlags(TmpVec, RedOps);
 | |
|   }
 | |
|   // The result is in the first element of the vector.
 | |
|   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
 | |
| }
 | |
| 
 | |
| /// Create a simple vector reduction specified by an opcode and some
 | |
| /// flags (if generating min/max reductions).
 | |
| Value *llvm::createSimpleTargetReduction(
 | |
|     IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
 | |
|     Value *Src, TargetTransformInfo::ReductionFlags Flags,
 | |
|     ArrayRef<Value *> RedOps) {
 | |
|   assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
 | |
| 
 | |
|   Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
 | |
|   std::function<Value*()> BuildFunc;
 | |
|   using RD = RecurrenceDescriptor;
 | |
|   RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
 | |
|   // TODO: Support creating ordered reductions.
 | |
|   FastMathFlags FMFUnsafe;
 | |
|   FMFUnsafe.setUnsafeAlgebra();
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   case Instruction::Add:
 | |
|     BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
 | |
|     break;
 | |
|   case Instruction::Mul:
 | |
|     BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
 | |
|     break;
 | |
|   case Instruction::And:
 | |
|     BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
 | |
|     break;
 | |
|   case Instruction::Or:
 | |
|     BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
 | |
|     break;
 | |
|   case Instruction::Xor:
 | |
|     BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
 | |
|     break;
 | |
|   case Instruction::FAdd:
 | |
|     BuildFunc = [&]() {
 | |
|       auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
 | |
|       cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe);
 | |
|       return Rdx;
 | |
|     };
 | |
|     break;
 | |
|   case Instruction::FMul:
 | |
|     BuildFunc = [&]() {
 | |
|       auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
 | |
|       cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe);
 | |
|       return Rdx;
 | |
|     };
 | |
|     break;
 | |
|   case Instruction::ICmp:
 | |
|     if (Flags.IsMaxOp) {
 | |
|       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
 | |
|       BuildFunc = [&]() {
 | |
|         return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
 | |
|       };
 | |
|     } else {
 | |
|       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
 | |
|       BuildFunc = [&]() {
 | |
|         return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
 | |
|       };
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::FCmp:
 | |
|     if (Flags.IsMaxOp) {
 | |
|       MinMaxKind = RD::MRK_FloatMax;
 | |
|       BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
 | |
|     } else {
 | |
|       MinMaxKind = RD::MRK_FloatMin;
 | |
|       BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("Unhandled opcode");
 | |
|     break;
 | |
|   }
 | |
|   if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
 | |
|     return BuildFunc();
 | |
|   return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
 | |
| }
 | |
| 
 | |
| /// Create a vector reduction using a given recurrence descriptor.
 | |
| Value *llvm::createTargetReduction(IRBuilder<> &Builder,
 | |
|                                    const TargetTransformInfo *TTI,
 | |
|                                    RecurrenceDescriptor &Desc, Value *Src,
 | |
|                                    bool NoNaN) {
 | |
|   // TODO: Support in-order reductions based on the recurrence descriptor.
 | |
|   RecurrenceDescriptor::RecurrenceKind RecKind = Desc.getRecurrenceKind();
 | |
|   TargetTransformInfo::ReductionFlags Flags;
 | |
|   Flags.NoNaN = NoNaN;
 | |
|   auto getSimpleRdx = [&](unsigned Opc) {
 | |
|     return createSimpleTargetReduction(Builder, TTI, Opc, Src, Flags);
 | |
|   };
 | |
|   switch (RecKind) {
 | |
|   case RecurrenceDescriptor::RK_FloatAdd:
 | |
|     return getSimpleRdx(Instruction::FAdd);
 | |
|   case RecurrenceDescriptor::RK_FloatMult:
 | |
|     return getSimpleRdx(Instruction::FMul);
 | |
|   case RecurrenceDescriptor::RK_IntegerAdd:
 | |
|     return getSimpleRdx(Instruction::Add);
 | |
|   case RecurrenceDescriptor::RK_IntegerMult:
 | |
|     return getSimpleRdx(Instruction::Mul);
 | |
|   case RecurrenceDescriptor::RK_IntegerAnd:
 | |
|     return getSimpleRdx(Instruction::And);
 | |
|   case RecurrenceDescriptor::RK_IntegerOr:
 | |
|     return getSimpleRdx(Instruction::Or);
 | |
|   case RecurrenceDescriptor::RK_IntegerXor:
 | |
|     return getSimpleRdx(Instruction::Xor);
 | |
|   case RecurrenceDescriptor::RK_IntegerMinMax: {
 | |
|     switch (Desc.getMinMaxRecurrenceKind()) {
 | |
|     case RecurrenceDescriptor::MRK_SIntMax:
 | |
|       Flags.IsSigned = true;
 | |
|       Flags.IsMaxOp = true;
 | |
|       break;
 | |
|     case RecurrenceDescriptor::MRK_UIntMax:
 | |
|       Flags.IsMaxOp = true;
 | |
|       break;
 | |
|     case RecurrenceDescriptor::MRK_SIntMin:
 | |
|       Flags.IsSigned = true;
 | |
|       break;
 | |
|     case RecurrenceDescriptor::MRK_UIntMin:
 | |
|       break;
 | |
|     default:
 | |
|       llvm_unreachable("Unhandled MRK");
 | |
|     }
 | |
|     return getSimpleRdx(Instruction::ICmp);
 | |
|   }
 | |
|   case RecurrenceDescriptor::RK_FloatMinMax: {
 | |
|     Flags.IsMaxOp =
 | |
|         Desc.getMinMaxRecurrenceKind() == RecurrenceDescriptor::MRK_FloatMax;
 | |
|     return getSimpleRdx(Instruction::FCmp);
 | |
|   }
 | |
|   default:
 | |
|     llvm_unreachable("Unhandled RecKind");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
 | |
|   auto *VecOp = dyn_cast<Instruction>(I);
 | |
|   if (!VecOp)
 | |
|     return;
 | |
|   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
 | |
|                                             : dyn_cast<Instruction>(OpValue);
 | |
|   if (!Intersection)
 | |
|     return;
 | |
|   const unsigned Opcode = Intersection->getOpcode();
 | |
|   VecOp->copyIRFlags(Intersection);
 | |
|   for (auto *V : VL) {
 | |
|     auto *Instr = dyn_cast<Instruction>(V);
 | |
|     if (!Instr)
 | |
|       continue;
 | |
|     if (OpValue == nullptr || Opcode == Instr->getOpcode())
 | |
|       VecOp->andIRFlags(V);
 | |
|   }
 | |
| }
 |