forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			766 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			766 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements induction variable simplification. It does
 | |
| // not define any actual pass or policy, but provides a single function to
 | |
| // simplify a loop's induction variables based on ScalarEvolution.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/SimplifyIndVar.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "indvars"
 | |
| 
 | |
| STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
 | |
| STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
 | |
| STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
 | |
| STATISTIC(
 | |
|     NumSimplifiedSDiv,
 | |
|     "Number of IV signed division operations converted to unsigned division");
 | |
| STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
 | |
| 
 | |
| namespace {
 | |
|   /// This is a utility for simplifying induction variables
 | |
|   /// based on ScalarEvolution. It is the primary instrument of the
 | |
|   /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
 | |
|   /// other loop passes that preserve SCEV.
 | |
|   class SimplifyIndvar {
 | |
|     Loop             *L;
 | |
|     LoopInfo         *LI;
 | |
|     ScalarEvolution  *SE;
 | |
|     DominatorTree    *DT;
 | |
| 
 | |
|     SmallVectorImpl<WeakTrackingVH> &DeadInsts;
 | |
| 
 | |
|     bool Changed;
 | |
| 
 | |
|   public:
 | |
|     SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
 | |
|                    LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead)
 | |
|         : L(Loop), LI(LI), SE(SE), DT(DT), DeadInsts(Dead), Changed(false) {
 | |
|       assert(LI && "IV simplification requires LoopInfo");
 | |
|     }
 | |
| 
 | |
|     bool hasChanged() const { return Changed; }
 | |
| 
 | |
|     /// Iteratively perform simplification on a worklist of users of the
 | |
|     /// specified induction variable. This is the top-level driver that applies
 | |
|     /// all simplifications to users of an IV.
 | |
|     void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
 | |
| 
 | |
|     Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
 | |
| 
 | |
|     bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
 | |
| 
 | |
|     bool eliminateOverflowIntrinsic(CallInst *CI);
 | |
|     bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
 | |
|     void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
 | |
|     void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand,
 | |
|                               bool IsSigned);
 | |
|     bool eliminateSDiv(BinaryOperator *SDiv);
 | |
|     bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
 | |
|     bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand);
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// Fold an IV operand into its use.  This removes increments of an
 | |
| /// aligned IV when used by a instruction that ignores the low bits.
 | |
| ///
 | |
| /// IVOperand is guaranteed SCEVable, but UseInst may not be.
 | |
| ///
 | |
| /// Return the operand of IVOperand for this induction variable if IVOperand can
 | |
| /// be folded (in case more folding opportunities have been exposed).
 | |
| /// Otherwise return null.
 | |
| Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
 | |
|   Value *IVSrc = nullptr;
 | |
|   unsigned OperIdx = 0;
 | |
|   const SCEV *FoldedExpr = nullptr;
 | |
|   switch (UseInst->getOpcode()) {
 | |
|   default:
 | |
|     return nullptr;
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::LShr:
 | |
|     // We're only interested in the case where we know something about
 | |
|     // the numerator and have a constant denominator.
 | |
|     if (IVOperand != UseInst->getOperand(OperIdx) ||
 | |
|         !isa<ConstantInt>(UseInst->getOperand(1)))
 | |
|       return nullptr;
 | |
| 
 | |
|     // Attempt to fold a binary operator with constant operand.
 | |
|     // e.g. ((I + 1) >> 2) => I >> 2
 | |
|     if (!isa<BinaryOperator>(IVOperand)
 | |
|         || !isa<ConstantInt>(IVOperand->getOperand(1)))
 | |
|       return nullptr;
 | |
| 
 | |
|     IVSrc = IVOperand->getOperand(0);
 | |
|     // IVSrc must be the (SCEVable) IV, since the other operand is const.
 | |
|     assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
 | |
| 
 | |
|     ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
 | |
|     if (UseInst->getOpcode() == Instruction::LShr) {
 | |
|       // Get a constant for the divisor. See createSCEV.
 | |
|       uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
 | |
|       if (D->getValue().uge(BitWidth))
 | |
|         return nullptr;
 | |
| 
 | |
|       D = ConstantInt::get(UseInst->getContext(),
 | |
|                            APInt::getOneBitSet(BitWidth, D->getZExtValue()));
 | |
|     }
 | |
|     FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
 | |
|   }
 | |
|   // We have something that might fold it's operand. Compare SCEVs.
 | |
|   if (!SE->isSCEVable(UseInst->getType()))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Bypass the operand if SCEV can prove it has no effect.
 | |
|   if (SE->getSCEV(UseInst) != FoldedExpr)
 | |
|     return nullptr;
 | |
| 
 | |
|   DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
 | |
|         << " -> " << *UseInst << '\n');
 | |
| 
 | |
|   UseInst->setOperand(OperIdx, IVSrc);
 | |
|   assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
 | |
| 
 | |
|   ++NumElimOperand;
 | |
|   Changed = true;
 | |
|   if (IVOperand->use_empty())
 | |
|     DeadInsts.emplace_back(IVOperand);
 | |
|   return IVSrc;
 | |
| }
 | |
| 
 | |
| /// SimplifyIVUsers helper for eliminating useless
 | |
| /// comparisons against an induction variable.
 | |
| void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
 | |
|   unsigned IVOperIdx = 0;
 | |
|   ICmpInst::Predicate Pred = ICmp->getPredicate();
 | |
|   ICmpInst::Predicate OriginalPred = Pred;
 | |
|   if (IVOperand != ICmp->getOperand(0)) {
 | |
|     // Swapped
 | |
|     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
 | |
|     IVOperIdx = 1;
 | |
|     Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
| 
 | |
|   // Get the SCEVs for the ICmp operands.
 | |
|   const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
 | |
|   const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
 | |
| 
 | |
|   // Simplify unnecessary loops away.
 | |
|   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
 | |
|   S = SE->getSCEVAtScope(S, ICmpLoop);
 | |
|   X = SE->getSCEVAtScope(X, ICmpLoop);
 | |
| 
 | |
|   ICmpInst::Predicate InvariantPredicate;
 | |
|   const SCEV *InvariantLHS, *InvariantRHS;
 | |
| 
 | |
|   // If the condition is always true or always false, replace it with
 | |
|   // a constant value.
 | |
|   if (SE->isKnownPredicate(Pred, S, X)) {
 | |
|     ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
 | |
|     DeadInsts.emplace_back(ICmp);
 | |
|     DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
 | |
|   } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) {
 | |
|     ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
 | |
|     DeadInsts.emplace_back(ICmp);
 | |
|     DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
 | |
|   } else if (isa<PHINode>(IVOperand) &&
 | |
|              SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate,
 | |
|                                           InvariantLHS, InvariantRHS)) {
 | |
| 
 | |
|     // Rewrite the comparison to a loop invariant comparison if it can be done
 | |
|     // cheaply, where cheaply means "we don't need to emit any new
 | |
|     // instructions".
 | |
| 
 | |
|     Value *NewLHS = nullptr, *NewRHS = nullptr;
 | |
| 
 | |
|     if (S == InvariantLHS || X == InvariantLHS)
 | |
|       NewLHS =
 | |
|           ICmp->getOperand(S == InvariantLHS ? IVOperIdx : (1 - IVOperIdx));
 | |
| 
 | |
|     if (S == InvariantRHS || X == InvariantRHS)
 | |
|       NewRHS =
 | |
|           ICmp->getOperand(S == InvariantRHS ? IVOperIdx : (1 - IVOperIdx));
 | |
| 
 | |
|     auto *PN = cast<PHINode>(IVOperand);
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues();
 | |
|          i != e && (!NewLHS || !NewRHS);
 | |
|          ++i) {
 | |
| 
 | |
|       // If this is a value incoming from the backedge, then it cannot be a loop
 | |
|       // invariant value (since we know that IVOperand is an induction variable).
 | |
|       if (L->contains(PN->getIncomingBlock(i)))
 | |
|         continue;
 | |
| 
 | |
|       // NB! This following assert does not fundamentally have to be true, but
 | |
|       // it is true today given how SCEV analyzes induction variables.
 | |
|       // Specifically, today SCEV will *not* recognize %iv as an induction
 | |
|       // variable in the following case:
 | |
|       //
 | |
|       // define void @f(i32 %k) {
 | |
|       // entry:
 | |
|       //   br i1 undef, label %r, label %l
 | |
|       //
 | |
|       // l:
 | |
|       //   %k.inc.l = add i32 %k, 1
 | |
|       //   br label %loop
 | |
|       //
 | |
|       // r:
 | |
|       //   %k.inc.r = add i32 %k, 1
 | |
|       //   br label %loop
 | |
|       //
 | |
|       // loop:
 | |
|       //   %iv = phi i32 [ %k.inc.l, %l ], [ %k.inc.r, %r ], [ %iv.inc, %loop ]
 | |
|       //   %iv.inc = add i32 %iv, 1
 | |
|       //   br label %loop
 | |
|       // }
 | |
|       //
 | |
|       // but if it starts to, at some point, then the assertion below will have
 | |
|       // to be changed to a runtime check.
 | |
| 
 | |
|       Value *Incoming = PN->getIncomingValue(i);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|       if (auto *I = dyn_cast<Instruction>(Incoming))
 | |
|         assert(DT->dominates(I, ICmp) && "Should be a unique loop dominating value!");
 | |
| #endif
 | |
| 
 | |
|       const SCEV *IncomingS = SE->getSCEV(Incoming);
 | |
| 
 | |
|       if (!NewLHS && IncomingS == InvariantLHS)
 | |
|         NewLHS = Incoming;
 | |
|       if (!NewRHS && IncomingS == InvariantRHS)
 | |
|         NewRHS = Incoming;
 | |
|     }
 | |
| 
 | |
|     if (!NewLHS || !NewRHS)
 | |
|       // We could not find an existing value to replace either LHS or RHS.
 | |
|       // Generating new instructions has subtler tradeoffs, so avoid doing that
 | |
|       // for now.
 | |
|       return;
 | |
| 
 | |
|     DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
 | |
|     ICmp->setPredicate(InvariantPredicate);
 | |
|     ICmp->setOperand(0, NewLHS);
 | |
|     ICmp->setOperand(1, NewRHS);
 | |
|   } else if (ICmpInst::isSigned(OriginalPred) &&
 | |
|              SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
 | |
|     // If we were unable to make anything above, all we can is to canonicalize
 | |
|     // the comparison hoping that it will open the doors for other
 | |
|     // optimizations. If we find out that we compare two non-negative values,
 | |
|     // we turn the instruction's predicate to its unsigned version. Note that
 | |
|     // we cannot rely on Pred here unless we check if we have swapped it.
 | |
|     assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
 | |
|     DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp << '\n');
 | |
|     ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
 | |
|   } else
 | |
|     return;
 | |
| 
 | |
|   ++NumElimCmp;
 | |
|   Changed = true;
 | |
| }
 | |
| 
 | |
| bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
 | |
|   // Get the SCEVs for the ICmp operands.
 | |
|   auto *N = SE->getSCEV(SDiv->getOperand(0));
 | |
|   auto *D = SE->getSCEV(SDiv->getOperand(1));
 | |
| 
 | |
|   // Simplify unnecessary loops away.
 | |
|   const Loop *L = LI->getLoopFor(SDiv->getParent());
 | |
|   N = SE->getSCEVAtScope(N, L);
 | |
|   D = SE->getSCEVAtScope(D, L);
 | |
| 
 | |
|   // Replace sdiv by udiv if both of the operands are non-negative
 | |
|   if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
 | |
|     auto *UDiv = BinaryOperator::Create(
 | |
|         BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
 | |
|         SDiv->getName() + ".udiv", SDiv);
 | |
|     UDiv->setIsExact(SDiv->isExact());
 | |
|     SDiv->replaceAllUsesWith(UDiv);
 | |
|     DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
 | |
|     ++NumSimplifiedSDiv;
 | |
|     Changed = true;
 | |
|     DeadInsts.push_back(SDiv);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SimplifyIVUsers helper for eliminating useless
 | |
| /// remainder operations operating on an induction variable.
 | |
| void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem,
 | |
|                                       Value *IVOperand,
 | |
|                                       bool IsSigned) {
 | |
|   // We're only interested in the case where we know something about
 | |
|   // the numerator.
 | |
|   if (IVOperand != Rem->getOperand(0))
 | |
|     return;
 | |
| 
 | |
|   // Get the SCEVs for the ICmp operands.
 | |
|   const SCEV *S = SE->getSCEV(Rem->getOperand(0));
 | |
|   const SCEV *X = SE->getSCEV(Rem->getOperand(1));
 | |
| 
 | |
|   // Simplify unnecessary loops away.
 | |
|   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
 | |
|   S = SE->getSCEVAtScope(S, ICmpLoop);
 | |
|   X = SE->getSCEVAtScope(X, ICmpLoop);
 | |
| 
 | |
|   // i % n  -->  i  if i is in [0,n).
 | |
|   if ((!IsSigned || SE->isKnownNonNegative(S)) &&
 | |
|       SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
 | |
|                            S, X))
 | |
|     Rem->replaceAllUsesWith(Rem->getOperand(0));
 | |
|   else {
 | |
|     // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
 | |
|     const SCEV *LessOne = SE->getMinusSCEV(S, SE->getOne(S->getType()));
 | |
|     if (IsSigned && !SE->isKnownNonNegative(LessOne))
 | |
|       return;
 | |
| 
 | |
|     if (!SE->isKnownPredicate(IsSigned ?
 | |
|                               ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
 | |
|                               LessOne, X))
 | |
|       return;
 | |
| 
 | |
|     ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
 | |
|                                   Rem->getOperand(0), Rem->getOperand(1));
 | |
|     SelectInst *Sel =
 | |
|       SelectInst::Create(ICmp,
 | |
|                          ConstantInt::get(Rem->getType(), 0),
 | |
|                          Rem->getOperand(0), "tmp", Rem);
 | |
|     Rem->replaceAllUsesWith(Sel);
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
 | |
|   ++NumElimRem;
 | |
|   Changed = true;
 | |
|   DeadInsts.emplace_back(Rem);
 | |
| }
 | |
| 
 | |
| bool SimplifyIndvar::eliminateOverflowIntrinsic(CallInst *CI) {
 | |
|   auto *F = CI->getCalledFunction();
 | |
|   if (!F)
 | |
|     return false;
 | |
| 
 | |
|   typedef const SCEV *(ScalarEvolution::*OperationFunctionTy)(
 | |
|       const SCEV *, const SCEV *, SCEV::NoWrapFlags, unsigned);
 | |
|   typedef const SCEV *(ScalarEvolution::*ExtensionFunctionTy)(
 | |
|       const SCEV *, Type *, unsigned);
 | |
| 
 | |
|   OperationFunctionTy Operation;
 | |
|   ExtensionFunctionTy Extension;
 | |
| 
 | |
|   Instruction::BinaryOps RawOp;
 | |
| 
 | |
|   // We always have exactly one of nsw or nuw.  If NoSignedOverflow is false, we
 | |
|   // have nuw.
 | |
|   bool NoSignedOverflow;
 | |
| 
 | |
|   switch (F->getIntrinsicID()) {
 | |
|   default:
 | |
|     return false;
 | |
| 
 | |
|   case Intrinsic::sadd_with_overflow:
 | |
|     Operation = &ScalarEvolution::getAddExpr;
 | |
|     Extension = &ScalarEvolution::getSignExtendExpr;
 | |
|     RawOp = Instruction::Add;
 | |
|     NoSignedOverflow = true;
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::uadd_with_overflow:
 | |
|     Operation = &ScalarEvolution::getAddExpr;
 | |
|     Extension = &ScalarEvolution::getZeroExtendExpr;
 | |
|     RawOp = Instruction::Add;
 | |
|     NoSignedOverflow = false;
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::ssub_with_overflow:
 | |
|     Operation = &ScalarEvolution::getMinusSCEV;
 | |
|     Extension = &ScalarEvolution::getSignExtendExpr;
 | |
|     RawOp = Instruction::Sub;
 | |
|     NoSignedOverflow = true;
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::usub_with_overflow:
 | |
|     Operation = &ScalarEvolution::getMinusSCEV;
 | |
|     Extension = &ScalarEvolution::getZeroExtendExpr;
 | |
|     RawOp = Instruction::Sub;
 | |
|     NoSignedOverflow = false;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   const SCEV *LHS = SE->getSCEV(CI->getArgOperand(0));
 | |
|   const SCEV *RHS = SE->getSCEV(CI->getArgOperand(1));
 | |
| 
 | |
|   auto *NarrowTy = cast<IntegerType>(LHS->getType());
 | |
|   auto *WideTy =
 | |
|     IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
 | |
| 
 | |
|   const SCEV *A =
 | |
|       (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0),
 | |
|                        WideTy, 0);
 | |
|   const SCEV *B =
 | |
|       (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0),
 | |
|                        (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0);
 | |
| 
 | |
|   if (A != B)
 | |
|     return false;
 | |
| 
 | |
|   // Proved no overflow, nuke the overflow check and, if possible, the overflow
 | |
|   // intrinsic as well.
 | |
| 
 | |
|   BinaryOperator *NewResult = BinaryOperator::Create(
 | |
|       RawOp, CI->getArgOperand(0), CI->getArgOperand(1), "", CI);
 | |
| 
 | |
|   if (NoSignedOverflow)
 | |
|     NewResult->setHasNoSignedWrap(true);
 | |
|   else
 | |
|     NewResult->setHasNoUnsignedWrap(true);
 | |
| 
 | |
|   SmallVector<ExtractValueInst *, 4> ToDelete;
 | |
| 
 | |
|   for (auto *U : CI->users()) {
 | |
|     if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
 | |
|       if (EVI->getIndices()[0] == 1)
 | |
|         EVI->replaceAllUsesWith(ConstantInt::getFalse(CI->getContext()));
 | |
|       else {
 | |
|         assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
 | |
|         EVI->replaceAllUsesWith(NewResult);
 | |
|       }
 | |
|       ToDelete.push_back(EVI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (auto *EVI : ToDelete)
 | |
|     EVI->eraseFromParent();
 | |
| 
 | |
|   if (CI->use_empty())
 | |
|     CI->eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Eliminate an operation that consumes a simple IV and has no observable
 | |
| /// side-effect given the range of IV values.  IVOperand is guaranteed SCEVable,
 | |
| /// but UseInst may not be.
 | |
| bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
 | |
|                                      Instruction *IVOperand) {
 | |
|   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
 | |
|     eliminateIVComparison(ICmp, IVOperand);
 | |
|     return true;
 | |
|   }
 | |
|   if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
 | |
|     bool IsSRem = Bin->getOpcode() == Instruction::SRem;
 | |
|     if (IsSRem || Bin->getOpcode() == Instruction::URem) {
 | |
|       eliminateIVRemainder(Bin, IVOperand, IsSRem);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (Bin->getOpcode() == Instruction::SDiv)
 | |
|       return eliminateSDiv(Bin);
 | |
|   }
 | |
| 
 | |
|   if (auto *CI = dyn_cast<CallInst>(UseInst))
 | |
|     if (eliminateOverflowIntrinsic(CI))
 | |
|       return true;
 | |
| 
 | |
|   if (eliminateIdentitySCEV(UseInst, IVOperand))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Eliminate any operation that SCEV can prove is an identity function.
 | |
| bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
 | |
|                                            Instruction *IVOperand) {
 | |
|   if (!SE->isSCEVable(UseInst->getType()) ||
 | |
|       (UseInst->getType() != IVOperand->getType()) ||
 | |
|       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
 | |
|     return false;
 | |
| 
 | |
|   // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
 | |
|   // dominator tree, even if X is an operand to Y.  For instance, in
 | |
|   //
 | |
|   //     %iv = phi i32 {0,+,1}
 | |
|   //     br %cond, label %left, label %merge
 | |
|   //
 | |
|   //   left:
 | |
|   //     %X = add i32 %iv, 0
 | |
|   //     br label %merge
 | |
|   //
 | |
|   //   merge:
 | |
|   //     %M = phi (%X, %iv)
 | |
|   //
 | |
|   // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
 | |
|   // %M.replaceAllUsesWith(%X) would be incorrect.
 | |
| 
 | |
|   if (isa<PHINode>(UseInst))
 | |
|     // If UseInst is not a PHI node then we know that IVOperand dominates
 | |
|     // UseInst directly from the legality of SSA.
 | |
|     if (!DT || !DT->dominates(IVOperand, UseInst))
 | |
|       return false;
 | |
| 
 | |
|   if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
 | |
| 
 | |
|   UseInst->replaceAllUsesWith(IVOperand);
 | |
|   ++NumElimIdentity;
 | |
|   Changed = true;
 | |
|   DeadInsts.emplace_back(UseInst);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
 | |
| /// unsigned-overflow.  Returns true if anything changed, false otherwise.
 | |
| bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
 | |
|                                                     Value *IVOperand) {
 | |
| 
 | |
|   // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`.
 | |
|   if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
 | |
|     return false;
 | |
| 
 | |
|   const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *,
 | |
|                                                SCEV::NoWrapFlags, unsigned);
 | |
|   switch (BO->getOpcode()) {
 | |
|   default:
 | |
|     return false;
 | |
| 
 | |
|   case Instruction::Add:
 | |
|     GetExprForBO = &ScalarEvolution::getAddExpr;
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Sub:
 | |
|     GetExprForBO = &ScalarEvolution::getMinusSCEV;
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Mul:
 | |
|     GetExprForBO = &ScalarEvolution::getMulExpr;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth();
 | |
|   Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2);
 | |
|   const SCEV *LHS = SE->getSCEV(BO->getOperand(0));
 | |
|   const SCEV *RHS = SE->getSCEV(BO->getOperand(1));
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   if (!BO->hasNoUnsignedWrap()) {
 | |
|     const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy);
 | |
|     const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
 | |
|       SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy),
 | |
|       SCEV::FlagAnyWrap, 0u);
 | |
|     if (ExtendAfterOp == OpAfterExtend) {
 | |
|       BO->setHasNoUnsignedWrap();
 | |
|       SE->forgetValue(BO);
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!BO->hasNoSignedWrap()) {
 | |
|     const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy);
 | |
|     const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
 | |
|       SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy),
 | |
|       SCEV::FlagAnyWrap, 0u);
 | |
|     if (ExtendAfterOp == OpAfterExtend) {
 | |
|       BO->setHasNoSignedWrap();
 | |
|       SE->forgetValue(BO);
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// Annotate the Shr in (X << IVOperand) >> C as exact using the
 | |
| /// information from the IV's range. Returns true if anything changed, false
 | |
| /// otherwise.
 | |
| bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
 | |
|                                           Value *IVOperand) {
 | |
|   using namespace llvm::PatternMatch;
 | |
| 
 | |
|   if (BO->getOpcode() == Instruction::Shl) {
 | |
|     bool Changed = false;
 | |
|     ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
 | |
|     for (auto *U : BO->users()) {
 | |
|       const APInt *C;
 | |
|       if (match(U,
 | |
|                 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
 | |
|           match(U,
 | |
|                 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
 | |
|         BinaryOperator *Shr = cast<BinaryOperator>(U);
 | |
|         if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
 | |
|           Shr->setIsExact(true);
 | |
|           Changed = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     return Changed;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Add all uses of Def to the current IV's worklist.
 | |
| static void pushIVUsers(
 | |
|   Instruction *Def,
 | |
|   SmallPtrSet<Instruction*,16> &Simplified,
 | |
|   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
 | |
| 
 | |
|   for (User *U : Def->users()) {
 | |
|     Instruction *UI = cast<Instruction>(U);
 | |
| 
 | |
|     // Avoid infinite or exponential worklist processing.
 | |
|     // Also ensure unique worklist users.
 | |
|     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
 | |
|     // self edges first.
 | |
|     if (UI != Def && Simplified.insert(UI).second)
 | |
|       SimpleIVUsers.push_back(std::make_pair(UI, Def));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return true if this instruction generates a simple SCEV
 | |
| /// expression in terms of that IV.
 | |
| ///
 | |
| /// This is similar to IVUsers' isInteresting() but processes each instruction
 | |
| /// non-recursively when the operand is already known to be a simpleIVUser.
 | |
| ///
 | |
| static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
 | |
|   if (!SE->isSCEVable(I->getType()))
 | |
|     return false;
 | |
| 
 | |
|   // Get the symbolic expression for this instruction.
 | |
|   const SCEV *S = SE->getSCEV(I);
 | |
| 
 | |
|   // Only consider affine recurrences.
 | |
|   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
 | |
|   if (AR && AR->getLoop() == L)
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Iteratively perform simplification on a worklist of users
 | |
| /// of the specified induction variable. Each successive simplification may push
 | |
| /// more users which may themselves be candidates for simplification.
 | |
| ///
 | |
| /// This algorithm does not require IVUsers analysis. Instead, it simplifies
 | |
| /// instructions in-place during analysis. Rather than rewriting induction
 | |
| /// variables bottom-up from their users, it transforms a chain of IVUsers
 | |
| /// top-down, updating the IR only when it encounters a clear optimization
 | |
| /// opportunity.
 | |
| ///
 | |
| /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
 | |
| ///
 | |
| void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
 | |
|   if (!SE->isSCEVable(CurrIV->getType()))
 | |
|     return;
 | |
| 
 | |
|   // Instructions processed by SimplifyIndvar for CurrIV.
 | |
|   SmallPtrSet<Instruction*,16> Simplified;
 | |
| 
 | |
|   // Use-def pairs if IV users waiting to be processed for CurrIV.
 | |
|   SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
 | |
| 
 | |
|   // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
 | |
|   // called multiple times for the same LoopPhi. This is the proper thing to
 | |
|   // do for loop header phis that use each other.
 | |
|   pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
 | |
| 
 | |
|   while (!SimpleIVUsers.empty()) {
 | |
|     std::pair<Instruction*, Instruction*> UseOper =
 | |
|       SimpleIVUsers.pop_back_val();
 | |
|     Instruction *UseInst = UseOper.first;
 | |
| 
 | |
|     // Bypass back edges to avoid extra work.
 | |
|     if (UseInst == CurrIV) continue;
 | |
| 
 | |
|     Instruction *IVOperand = UseOper.second;
 | |
|     for (unsigned N = 0; IVOperand; ++N) {
 | |
|       assert(N <= Simplified.size() && "runaway iteration");
 | |
| 
 | |
|       Value *NewOper = foldIVUser(UseOper.first, IVOperand);
 | |
|       if (!NewOper)
 | |
|         break; // done folding
 | |
|       IVOperand = dyn_cast<Instruction>(NewOper);
 | |
|     }
 | |
|     if (!IVOperand)
 | |
|       continue;
 | |
| 
 | |
|     if (eliminateIVUser(UseOper.first, IVOperand)) {
 | |
|       pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) {
 | |
|       if ((isa<OverflowingBinaryOperator>(BO) &&
 | |
|            strengthenOverflowingOperation(BO, IVOperand)) ||
 | |
|           (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
 | |
|         // re-queue uses of the now modified binary operator and fall
 | |
|         // through to the checks that remain.
 | |
|         pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     CastInst *Cast = dyn_cast<CastInst>(UseOper.first);
 | |
|     if (V && Cast) {
 | |
|       V->visitCast(Cast);
 | |
|       continue;
 | |
|     }
 | |
|     if (isSimpleIVUser(UseOper.first, L, SE)) {
 | |
|       pushIVUsers(UseOper.first, Simplified, SimpleIVUsers);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| void IVVisitor::anchor() { }
 | |
| 
 | |
| /// Simplify instructions that use this induction variable
 | |
| /// by using ScalarEvolution to analyze the IV's recurrence.
 | |
| bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
 | |
|                        LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead,
 | |
|                        IVVisitor *V) {
 | |
|   SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Dead);
 | |
|   SIV.simplifyUsers(CurrIV, V);
 | |
|   return SIV.hasChanged();
 | |
| }
 | |
| 
 | |
| /// Simplify users of induction variables within this
 | |
| /// loop. This does not actually change or add IVs.
 | |
| bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
 | |
|                      LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead) {
 | |
|   bool Changed = false;
 | |
|   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
 | |
|     Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead);
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| } // namespace llvm
 |