forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2477 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2477 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This is a utility pass used for testing the InstructionSimplify analysis.
 | |
| // The analysis is applied to every instruction, and if it simplifies then the
 | |
| // instruction is replaced by the simplification.  If you are looking for a pass
 | |
| // that performs serious instruction folding, use the instcombine pass instead.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/StringMap.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include "llvm/Transforms/Utils/BuildLibCalls.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
 | |
|                          cl::init(false),
 | |
|                          cl::desc("Enable unsafe double to float "
 | |
|                                   "shrinking for math lib calls"));
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Helper Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static bool ignoreCallingConv(LibFunc Func) {
 | |
|   return Func == LibFunc_abs || Func == LibFunc_labs ||
 | |
|          Func == LibFunc_llabs || Func == LibFunc_strlen;
 | |
| }
 | |
| 
 | |
| static bool isCallingConvCCompatible(CallInst *CI) {
 | |
|   switch(CI->getCallingConv()) {
 | |
|   default:
 | |
|     return false;
 | |
|   case llvm::CallingConv::C:
 | |
|     return true;
 | |
|   case llvm::CallingConv::ARM_APCS:
 | |
|   case llvm::CallingConv::ARM_AAPCS:
 | |
|   case llvm::CallingConv::ARM_AAPCS_VFP: {
 | |
| 
 | |
|     // The iOS ABI diverges from the standard in some cases, so for now don't
 | |
|     // try to simplify those calls.
 | |
|     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
 | |
|       return false;
 | |
| 
 | |
|     auto *FuncTy = CI->getFunctionType();
 | |
| 
 | |
|     if (!FuncTy->getReturnType()->isPointerTy() &&
 | |
|         !FuncTy->getReturnType()->isIntegerTy() &&
 | |
|         !FuncTy->getReturnType()->isVoidTy())
 | |
|       return false;
 | |
| 
 | |
|     for (auto Param : FuncTy->params()) {
 | |
|       if (!Param->isPointerTy() && !Param->isIntegerTy())
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Return true if it is only used in equality comparisons with With.
 | |
| static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
 | |
|   for (User *U : V->users()) {
 | |
|     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
 | |
|       if (IC->isEquality() && IC->getOperand(1) == With)
 | |
|         continue;
 | |
|     // Unknown instruction.
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool callHasFloatingPointArgument(const CallInst *CI) {
 | |
|   return any_of(CI->operands(), [](const Use &OI) {
 | |
|     return OI->getType()->isFloatingPointTy();
 | |
|   });
 | |
| }
 | |
| 
 | |
| /// \brief Check whether the overloaded unary floating point function
 | |
| /// corresponding to \a Ty is available.
 | |
| static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
 | |
|                             LibFunc DoubleFn, LibFunc FloatFn,
 | |
|                             LibFunc LongDoubleFn) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::FloatTyID:
 | |
|     return TLI->has(FloatFn);
 | |
|   case Type::DoubleTyID:
 | |
|     return TLI->has(DoubleFn);
 | |
|   default:
 | |
|     return TLI->has(LongDoubleFn);
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // String and Memory Library Call Optimizations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
 | |
|   // Extract some information from the instruction
 | |
|   Value *Dst = CI->getArgOperand(0);
 | |
|   Value *Src = CI->getArgOperand(1);
 | |
| 
 | |
|   // See if we can get the length of the input string.
 | |
|   uint64_t Len = GetStringLength(Src);
 | |
|   if (Len == 0)
 | |
|     return nullptr;
 | |
|   --Len; // Unbias length.
 | |
| 
 | |
|   // Handle the simple, do-nothing case: strcat(x, "") -> x
 | |
|   if (Len == 0)
 | |
|     return Dst;
 | |
| 
 | |
|   return emitStrLenMemCpy(Src, Dst, Len, B);
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
 | |
|                                            IRBuilder<> &B) {
 | |
|   // We need to find the end of the destination string.  That's where the
 | |
|   // memory is to be moved to. We just generate a call to strlen.
 | |
|   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
 | |
|   if (!DstLen)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Now that we have the destination's length, we must index into the
 | |
|   // destination's pointer to get the actual memcpy destination (end of
 | |
|   // the string .. we're concatenating).
 | |
|   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
 | |
| 
 | |
|   // We have enough information to now generate the memcpy call to do the
 | |
|   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
 | |
|   B.CreateMemCpy(CpyDst, Src,
 | |
|                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1),
 | |
|                  1);
 | |
|   return Dst;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
 | |
|   // Extract some information from the instruction.
 | |
|   Value *Dst = CI->getArgOperand(0);
 | |
|   Value *Src = CI->getArgOperand(1);
 | |
|   uint64_t Len;
 | |
| 
 | |
|   // We don't do anything if length is not constant.
 | |
|   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
 | |
|     Len = LengthArg->getZExtValue();
 | |
|   else
 | |
|     return nullptr;
 | |
| 
 | |
|   // See if we can get the length of the input string.
 | |
|   uint64_t SrcLen = GetStringLength(Src);
 | |
|   if (SrcLen == 0)
 | |
|     return nullptr;
 | |
|   --SrcLen; // Unbias length.
 | |
| 
 | |
|   // Handle the simple, do-nothing cases:
 | |
|   // strncat(x, "", c) -> x
 | |
|   // strncat(x,  c, 0) -> x
 | |
|   if (SrcLen == 0 || Len == 0)
 | |
|     return Dst;
 | |
| 
 | |
|   // We don't optimize this case.
 | |
|   if (Len < SrcLen)
 | |
|     return nullptr;
 | |
| 
 | |
|   // strncat(x, s, c) -> strcat(x, s)
 | |
|   // s is constant so the strcat can be optimized further.
 | |
|   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
|   FunctionType *FT = Callee->getFunctionType();
 | |
|   Value *SrcStr = CI->getArgOperand(0);
 | |
| 
 | |
|   // If the second operand is non-constant, see if we can compute the length
 | |
|   // of the input string and turn this into memchr.
 | |
|   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
 | |
|   if (!CharC) {
 | |
|     uint64_t Len = GetStringLength(SrcStr);
 | |
|     if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
 | |
|       return nullptr;
 | |
| 
 | |
|     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
 | |
|                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
 | |
|                       B, DL, TLI);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, the character is a constant, see if the first argument is
 | |
|   // a string literal.  If so, we can constant fold.
 | |
|   StringRef Str;
 | |
|   if (!getConstantStringInfo(SrcStr, Str)) {
 | |
|     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
 | |
|       return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
 | |
|                          "strchr");
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Compute the offset, make sure to handle the case when we're searching for
 | |
|   // zero (a weird way to spell strlen).
 | |
|   size_t I = (0xFF & CharC->getSExtValue()) == 0
 | |
|                  ? Str.size()
 | |
|                  : Str.find(CharC->getSExtValue());
 | |
|   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
 | |
|     return Constant::getNullValue(CI->getType());
 | |
| 
 | |
|   // strchr(s+n,c)  -> gep(s+n+i,c)
 | |
|   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
 | |
|   Value *SrcStr = CI->getArgOperand(0);
 | |
|   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
 | |
| 
 | |
|   // Cannot fold anything if we're not looking for a constant.
 | |
|   if (!CharC)
 | |
|     return nullptr;
 | |
| 
 | |
|   StringRef Str;
 | |
|   if (!getConstantStringInfo(SrcStr, Str)) {
 | |
|     // strrchr(s, 0) -> strchr(s, 0)
 | |
|     if (CharC->isZero())
 | |
|       return emitStrChr(SrcStr, '\0', B, TLI);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Compute the offset.
 | |
|   size_t I = (0xFF & CharC->getSExtValue()) == 0
 | |
|                  ? Str.size()
 | |
|                  : Str.rfind(CharC->getSExtValue());
 | |
|   if (I == StringRef::npos) // Didn't find the char. Return null.
 | |
|     return Constant::getNullValue(CI->getType());
 | |
| 
 | |
|   // strrchr(s+n,c) -> gep(s+n+i,c)
 | |
|   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
 | |
|   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
 | |
|   if (Str1P == Str2P) // strcmp(x,x)  -> 0
 | |
|     return ConstantInt::get(CI->getType(), 0);
 | |
| 
 | |
|   StringRef Str1, Str2;
 | |
|   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
 | |
|   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
 | |
| 
 | |
|   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
 | |
|   if (HasStr1 && HasStr2)
 | |
|     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
 | |
| 
 | |
|   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
 | |
|     return B.CreateNeg(
 | |
|         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
 | |
| 
 | |
|   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
 | |
|     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
 | |
| 
 | |
|   // strcmp(P, "x") -> memcmp(P, "x", 2)
 | |
|   uint64_t Len1 = GetStringLength(Str1P);
 | |
|   uint64_t Len2 = GetStringLength(Str2P);
 | |
|   if (Len1 && Len2) {
 | |
|     return emitMemCmp(Str1P, Str2P,
 | |
|                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
 | |
|                                        std::min(Len1, Len2)),
 | |
|                       B, DL, TLI);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
 | |
|   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
 | |
|   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
 | |
|     return ConstantInt::get(CI->getType(), 0);
 | |
| 
 | |
|   // Get the length argument if it is constant.
 | |
|   uint64_t Length;
 | |
|   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
 | |
|     Length = LengthArg->getZExtValue();
 | |
|   else
 | |
|     return nullptr;
 | |
| 
 | |
|   if (Length == 0) // strncmp(x,y,0)   -> 0
 | |
|     return ConstantInt::get(CI->getType(), 0);
 | |
| 
 | |
|   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
 | |
|     return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
 | |
| 
 | |
|   StringRef Str1, Str2;
 | |
|   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
 | |
|   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
 | |
| 
 | |
|   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
 | |
|   if (HasStr1 && HasStr2) {
 | |
|     StringRef SubStr1 = Str1.substr(0, Length);
 | |
|     StringRef SubStr2 = Str2.substr(0, Length);
 | |
|     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
 | |
|   }
 | |
| 
 | |
|   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
 | |
|     return B.CreateNeg(
 | |
|         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
 | |
| 
 | |
|   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
 | |
|     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
 | |
|   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
 | |
|   if (Dst == Src) // strcpy(x,x)  -> x
 | |
|     return Src;
 | |
| 
 | |
|   // See if we can get the length of the input string.
 | |
|   uint64_t Len = GetStringLength(Src);
 | |
|   if (Len == 0)
 | |
|     return nullptr;
 | |
| 
 | |
|   // We have enough information to now generate the memcpy call to do the
 | |
|   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
 | |
|   B.CreateMemCpy(Dst, Src,
 | |
|                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1);
 | |
|   return Dst;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
|   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
 | |
|   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
 | |
|     Value *StrLen = emitStrLen(Src, B, DL, TLI);
 | |
|     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
 | |
|   }
 | |
| 
 | |
|   // See if we can get the length of the input string.
 | |
|   uint64_t Len = GetStringLength(Src);
 | |
|   if (Len == 0)
 | |
|     return nullptr;
 | |
| 
 | |
|   Type *PT = Callee->getFunctionType()->getParamType(0);
 | |
|   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
 | |
|   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
 | |
|                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
 | |
| 
 | |
|   // We have enough information to now generate the memcpy call to do the
 | |
|   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
 | |
|   B.CreateMemCpy(Dst, Src, LenV, 1);
 | |
|   return DstEnd;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
|   Value *Dst = CI->getArgOperand(0);
 | |
|   Value *Src = CI->getArgOperand(1);
 | |
|   Value *LenOp = CI->getArgOperand(2);
 | |
| 
 | |
|   // See if we can get the length of the input string.
 | |
|   uint64_t SrcLen = GetStringLength(Src);
 | |
|   if (SrcLen == 0)
 | |
|     return nullptr;
 | |
|   --SrcLen;
 | |
| 
 | |
|   if (SrcLen == 0) {
 | |
|     // strncpy(x, "", y) -> memset(x, '\0', y, 1)
 | |
|     B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
 | |
|     return Dst;
 | |
|   }
 | |
| 
 | |
|   uint64_t Len;
 | |
|   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
 | |
|     Len = LengthArg->getZExtValue();
 | |
|   else
 | |
|     return nullptr;
 | |
| 
 | |
|   if (Len == 0)
 | |
|     return Dst; // strncpy(x, y, 0) -> x
 | |
| 
 | |
|   // Let strncpy handle the zero padding
 | |
|   if (Len > SrcLen + 1)
 | |
|     return nullptr;
 | |
| 
 | |
|   Type *PT = Callee->getFunctionType()->getParamType(0);
 | |
|   // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
 | |
|   B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1);
 | |
| 
 | |
|   return Dst;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
 | |
|                                                unsigned CharSize) {
 | |
|   Value *Src = CI->getArgOperand(0);
 | |
| 
 | |
|   // Constant folding: strlen("xyz") -> 3
 | |
|   if (uint64_t Len = GetStringLength(Src, CharSize))
 | |
|     return ConstantInt::get(CI->getType(), Len - 1);
 | |
| 
 | |
|   // If s is a constant pointer pointing to a string literal, we can fold
 | |
|   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
 | |
|   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
 | |
|   // We only try to simplify strlen when the pointer s points to an array
 | |
|   // of i8. Otherwise, we would need to scale the offset x before doing the
 | |
|   // subtraction. This will make the optimization more complex, and it's not
 | |
|   // very useful because calling strlen for a pointer of other types is
 | |
|   // very uncommon.
 | |
|   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
 | |
|     if (!isGEPBasedOnPointerToString(GEP, CharSize))
 | |
|       return nullptr;
 | |
| 
 | |
|     ConstantDataArraySlice Slice;
 | |
|     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
 | |
|       uint64_t NullTermIdx;
 | |
|       if (Slice.Array == nullptr) {
 | |
|         NullTermIdx = 0;
 | |
|       } else {
 | |
|         NullTermIdx = ~((uint64_t)0);
 | |
|         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
 | |
|           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
 | |
|             NullTermIdx = I;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         // If the string does not have '\0', leave it to strlen to compute
 | |
|         // its length.
 | |
|         if (NullTermIdx == ~((uint64_t)0))
 | |
|           return nullptr;
 | |
|       }
 | |
| 
 | |
|       Value *Offset = GEP->getOperand(2);
 | |
|       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
 | |
|       Known.Zero.flipAllBits();
 | |
|       uint64_t ArrSize =
 | |
|              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
 | |
| 
 | |
|       // KnownZero's bits are flipped, so zeros in KnownZero now represent
 | |
|       // bits known to be zeros in Offset, and ones in KnowZero represent
 | |
|       // bits unknown in Offset. Therefore, Offset is known to be in range
 | |
|       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
 | |
|       // unsigned-less-than NullTermIdx.
 | |
|       //
 | |
|       // If Offset is not provably in the range [0, NullTermIdx], we can still
 | |
|       // optimize if we can prove that the program has undefined behavior when
 | |
|       // Offset is outside that range. That is the case when GEP->getOperand(0)
 | |
|       // is a pointer to an object whose memory extent is NullTermIdx+1.
 | |
|       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
 | |
|           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
 | |
|            NullTermIdx == ArrSize - 1)) {
 | |
|         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
 | |
|         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
 | |
|                            Offset);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // strlen(x?"foo":"bars") --> x ? 3 : 4
 | |
|   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
 | |
|     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
 | |
|     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
 | |
|     if (LenTrue && LenFalse) {
 | |
|       ORE.emit(OptimizationRemark("instcombine", "simplify-libcalls", CI)
 | |
|                << "folded strlen(select) to select of constants");
 | |
|       return B.CreateSelect(SI->getCondition(),
 | |
|                             ConstantInt::get(CI->getType(), LenTrue - 1),
 | |
|                             ConstantInt::get(CI->getType(), LenFalse - 1));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // strlen(x) != 0 --> *x != 0
 | |
|   // strlen(x) == 0 --> *x == 0
 | |
|   if (isOnlyUsedInZeroEqualityComparison(CI))
 | |
|     return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
 | |
|   return optimizeStringLength(CI, B, 8);
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
 | |
|   Module &M = *CI->getParent()->getParent()->getParent();
 | |
|   unsigned WCharSize = TLI->getWCharSize(M) * 8;
 | |
| 
 | |
|   return optimizeStringLength(CI, B, WCharSize);
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
 | |
|   StringRef S1, S2;
 | |
|   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
 | |
|   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
 | |
| 
 | |
|   // strpbrk(s, "") -> nullptr
 | |
|   // strpbrk("", s) -> nullptr
 | |
|   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
 | |
|     return Constant::getNullValue(CI->getType());
 | |
| 
 | |
|   // Constant folding.
 | |
|   if (HasS1 && HasS2) {
 | |
|     size_t I = S1.find_first_of(S2);
 | |
|     if (I == StringRef::npos) // No match.
 | |
|       return Constant::getNullValue(CI->getType());
 | |
| 
 | |
|     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
 | |
|                        "strpbrk");
 | |
|   }
 | |
| 
 | |
|   // strpbrk(s, "a") -> strchr(s, 'a')
 | |
|   if (HasS2 && S2.size() == 1)
 | |
|     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
 | |
|   Value *EndPtr = CI->getArgOperand(1);
 | |
|   if (isa<ConstantPointerNull>(EndPtr)) {
 | |
|     // With a null EndPtr, this function won't capture the main argument.
 | |
|     // It would be readonly too, except that it still may write to errno.
 | |
|     CI->addParamAttr(0, Attribute::NoCapture);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
 | |
|   StringRef S1, S2;
 | |
|   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
 | |
|   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
 | |
| 
 | |
|   // strspn(s, "") -> 0
 | |
|   // strspn("", s) -> 0
 | |
|   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
 | |
|     return Constant::getNullValue(CI->getType());
 | |
| 
 | |
|   // Constant folding.
 | |
|   if (HasS1 && HasS2) {
 | |
|     size_t Pos = S1.find_first_not_of(S2);
 | |
|     if (Pos == StringRef::npos)
 | |
|       Pos = S1.size();
 | |
|     return ConstantInt::get(CI->getType(), Pos);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
 | |
|   StringRef S1, S2;
 | |
|   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
 | |
|   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
 | |
| 
 | |
|   // strcspn("", s) -> 0
 | |
|   if (HasS1 && S1.empty())
 | |
|     return Constant::getNullValue(CI->getType());
 | |
| 
 | |
|   // Constant folding.
 | |
|   if (HasS1 && HasS2) {
 | |
|     size_t Pos = S1.find_first_of(S2);
 | |
|     if (Pos == StringRef::npos)
 | |
|       Pos = S1.size();
 | |
|     return ConstantInt::get(CI->getType(), Pos);
 | |
|   }
 | |
| 
 | |
|   // strcspn(s, "") -> strlen(s)
 | |
|   if (HasS2 && S2.empty())
 | |
|     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
 | |
|   // fold strstr(x, x) -> x.
 | |
|   if (CI->getArgOperand(0) == CI->getArgOperand(1))
 | |
|     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
 | |
| 
 | |
|   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
 | |
|   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
 | |
|     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
 | |
|     if (!StrLen)
 | |
|       return nullptr;
 | |
|     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
 | |
|                                  StrLen, B, DL, TLI);
 | |
|     if (!StrNCmp)
 | |
|       return nullptr;
 | |
|     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
 | |
|       ICmpInst *Old = cast<ICmpInst>(*UI++);
 | |
|       Value *Cmp =
 | |
|           B.CreateICmp(Old->getPredicate(), StrNCmp,
 | |
|                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
 | |
|       replaceAllUsesWith(Old, Cmp);
 | |
|     }
 | |
|     return CI;
 | |
|   }
 | |
| 
 | |
|   // See if either input string is a constant string.
 | |
|   StringRef SearchStr, ToFindStr;
 | |
|   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
 | |
|   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
 | |
| 
 | |
|   // fold strstr(x, "") -> x.
 | |
|   if (HasStr2 && ToFindStr.empty())
 | |
|     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
 | |
| 
 | |
|   // If both strings are known, constant fold it.
 | |
|   if (HasStr1 && HasStr2) {
 | |
|     size_t Offset = SearchStr.find(ToFindStr);
 | |
| 
 | |
|     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
 | |
|       return Constant::getNullValue(CI->getType());
 | |
| 
 | |
|     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
 | |
|     Value *Result = castToCStr(CI->getArgOperand(0), B);
 | |
|     Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
 | |
|     return B.CreateBitCast(Result, CI->getType());
 | |
|   }
 | |
| 
 | |
|   // fold strstr(x, "y") -> strchr(x, 'y').
 | |
|   if (HasStr2 && ToFindStr.size() == 1) {
 | |
|     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
 | |
|     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
 | |
|   Value *SrcStr = CI->getArgOperand(0);
 | |
|   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
 | |
|   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
 | |
| 
 | |
|   // memchr(x, y, 0) -> null
 | |
|   if (LenC && LenC->isZero())
 | |
|     return Constant::getNullValue(CI->getType());
 | |
| 
 | |
|   // From now on we need at least constant length and string.
 | |
|   StringRef Str;
 | |
|   if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Truncate the string to LenC. If Str is smaller than LenC we will still only
 | |
|   // scan the string, as reading past the end of it is undefined and we can just
 | |
|   // return null if we don't find the char.
 | |
|   Str = Str.substr(0, LenC->getZExtValue());
 | |
| 
 | |
|   // If the char is variable but the input str and length are not we can turn
 | |
|   // this memchr call into a simple bit field test. Of course this only works
 | |
|   // when the return value is only checked against null.
 | |
|   //
 | |
|   // It would be really nice to reuse switch lowering here but we can't change
 | |
|   // the CFG at this point.
 | |
|   //
 | |
|   // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
 | |
|   //   after bounds check.
 | |
|   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
 | |
|     unsigned char Max =
 | |
|         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
 | |
|                           reinterpret_cast<const unsigned char *>(Str.end()));
 | |
| 
 | |
|     // Make sure the bit field we're about to create fits in a register on the
 | |
|     // target.
 | |
|     // FIXME: On a 64 bit architecture this prevents us from using the
 | |
|     // interesting range of alpha ascii chars. We could do better by emitting
 | |
|     // two bitfields or shifting the range by 64 if no lower chars are used.
 | |
|     if (!DL.fitsInLegalInteger(Max + 1))
 | |
|       return nullptr;
 | |
| 
 | |
|     // For the bit field use a power-of-2 type with at least 8 bits to avoid
 | |
|     // creating unnecessary illegal types.
 | |
|     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
 | |
| 
 | |
|     // Now build the bit field.
 | |
|     APInt Bitfield(Width, 0);
 | |
|     for (char C : Str)
 | |
|       Bitfield.setBit((unsigned char)C);
 | |
|     Value *BitfieldC = B.getInt(Bitfield);
 | |
| 
 | |
|     // First check that the bit field access is within bounds.
 | |
|     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
 | |
|     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
 | |
|                                  "memchr.bounds");
 | |
| 
 | |
|     // Create code that checks if the given bit is set in the field.
 | |
|     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
 | |
|     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
 | |
| 
 | |
|     // Finally merge both checks and cast to pointer type. The inttoptr
 | |
|     // implicitly zexts the i1 to intptr type.
 | |
|     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
 | |
|   }
 | |
| 
 | |
|   // Check if all arguments are constants.  If so, we can constant fold.
 | |
|   if (!CharC)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Compute the offset.
 | |
|   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
 | |
|   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
 | |
|     return Constant::getNullValue(CI->getType());
 | |
| 
 | |
|   // memchr(s+n,c,l) -> gep(s+n+i,c)
 | |
|   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
 | |
|   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
 | |
| 
 | |
|   if (LHS == RHS) // memcmp(s,s,x) -> 0
 | |
|     return Constant::getNullValue(CI->getType());
 | |
| 
 | |
|   // Make sure we have a constant length.
 | |
|   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
 | |
|   if (!LenC)
 | |
|     return nullptr;
 | |
| 
 | |
|   uint64_t Len = LenC->getZExtValue();
 | |
|   if (Len == 0) // memcmp(s1,s2,0) -> 0
 | |
|     return Constant::getNullValue(CI->getType());
 | |
| 
 | |
|   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
 | |
|   if (Len == 1) {
 | |
|     Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
 | |
|                                CI->getType(), "lhsv");
 | |
|     Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
 | |
|                                CI->getType(), "rhsv");
 | |
|     return B.CreateSub(LHSV, RHSV, "chardiff");
 | |
|   }
 | |
| 
 | |
|   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
 | |
|   // TODO: The case where both inputs are constants does not need to be limited
 | |
|   // to legal integers or equality comparison. See block below this.
 | |
|   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
 | |
|     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
 | |
|     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
 | |
| 
 | |
|     // First, see if we can fold either argument to a constant.
 | |
|     Value *LHSV = nullptr;
 | |
|     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
 | |
|       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
 | |
|       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
 | |
|     }
 | |
|     Value *RHSV = nullptr;
 | |
|     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
 | |
|       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
 | |
|       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
 | |
|     }
 | |
| 
 | |
|     // Don't generate unaligned loads. If either source is constant data,
 | |
|     // alignment doesn't matter for that source because there is no load.
 | |
|     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
 | |
|         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
 | |
|       if (!LHSV) {
 | |
|         Type *LHSPtrTy =
 | |
|             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
 | |
|         LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
 | |
|       }
 | |
|       if (!RHSV) {
 | |
|         Type *RHSPtrTy =
 | |
|             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
 | |
|         RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
 | |
|       }
 | |
|       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
 | |
|   // TODO: This is limited to i8 arrays.
 | |
|   StringRef LHSStr, RHSStr;
 | |
|   if (getConstantStringInfo(LHS, LHSStr) &&
 | |
|       getConstantStringInfo(RHS, RHSStr)) {
 | |
|     // Make sure we're not reading out-of-bounds memory.
 | |
|     if (Len > LHSStr.size() || Len > RHSStr.size())
 | |
|       return nullptr;
 | |
|     // Fold the memcmp and normalize the result.  This way we get consistent
 | |
|     // results across multiple platforms.
 | |
|     uint64_t Ret = 0;
 | |
|     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
 | |
|     if (Cmp < 0)
 | |
|       Ret = -1;
 | |
|     else if (Cmp > 0)
 | |
|       Ret = 1;
 | |
|     return ConstantInt::get(CI->getType(), Ret);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
 | |
|   // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
 | |
|   B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
 | |
|                  CI->getArgOperand(2), 1);
 | |
|   return CI->getArgOperand(0);
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
 | |
|   // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
 | |
|   B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
 | |
|                   CI->getArgOperand(2), 1);
 | |
|   return CI->getArgOperand(0);
 | |
| }
 | |
| 
 | |
| // TODO: Does this belong in BuildLibCalls or should all of those similar
 | |
| // functions be moved here?
 | |
| static Value *emitCalloc(Value *Num, Value *Size, const AttributeList &Attrs,
 | |
|                          IRBuilder<> &B, const TargetLibraryInfo &TLI) {
 | |
|   LibFunc Func;
 | |
|   if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func))
 | |
|     return nullptr;
 | |
| 
 | |
|   Module *M = B.GetInsertBlock()->getModule();
 | |
|   const DataLayout &DL = M->getDataLayout();
 | |
|   IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext()));
 | |
|   Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(),
 | |
|                                          PtrType, PtrType);
 | |
|   CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc");
 | |
| 
 | |
|   if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts()))
 | |
|     CI->setCallingConv(F->getCallingConv());
 | |
| 
 | |
|   return CI;
 | |
| }
 | |
| 
 | |
| /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
 | |
| static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B,
 | |
|                                const TargetLibraryInfo &TLI) {
 | |
|   // This has to be a memset of zeros (bzero).
 | |
|   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
 | |
|   if (!FillValue || FillValue->getZExtValue() != 0)
 | |
|     return nullptr;
 | |
| 
 | |
|   // TODO: We should handle the case where the malloc has more than one use.
 | |
|   // This is necessary to optimize common patterns such as when the result of
 | |
|   // the malloc is checked against null or when a memset intrinsic is used in
 | |
|   // place of a memset library call.
 | |
|   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
 | |
|   if (!Malloc || !Malloc->hasOneUse())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Is the inner call really malloc()?
 | |
|   Function *InnerCallee = Malloc->getCalledFunction();
 | |
|   if (!InnerCallee)
 | |
|     return nullptr;
 | |
| 
 | |
|   LibFunc Func;
 | |
|   if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
 | |
|       Func != LibFunc_malloc)
 | |
|     return nullptr;
 | |
| 
 | |
|   // The memset must cover the same number of bytes that are malloc'd.
 | |
|   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Replace the malloc with a calloc. We need the data layout to know what the
 | |
|   // actual size of a 'size_t' parameter is. 
 | |
|   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
 | |
|   const DataLayout &DL = Malloc->getModule()->getDataLayout();
 | |
|   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
 | |
|   Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
 | |
|                              Malloc->getArgOperand(0), Malloc->getAttributes(),
 | |
|                              B, TLI);
 | |
|   if (!Calloc)
 | |
|     return nullptr;
 | |
| 
 | |
|   Malloc->replaceAllUsesWith(Calloc);
 | |
|   Malloc->eraseFromParent();
 | |
| 
 | |
|   return Calloc;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
 | |
|   if (auto *Calloc = foldMallocMemset(CI, B, *TLI))
 | |
|     return Calloc;
 | |
| 
 | |
|   // memset(p, v, n) -> llvm.memset(p, v, n, 1)
 | |
|   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
 | |
|   B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
 | |
|   return CI->getArgOperand(0);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Math Library Optimizations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Return a variant of Val with float type.
 | |
| /// Currently this works in two cases: If Val is an FPExtension of a float
 | |
| /// value to something bigger, simply return the operand.
 | |
| /// If Val is a ConstantFP but can be converted to a float ConstantFP without
 | |
| /// loss of precision do so.
 | |
| static Value *valueHasFloatPrecision(Value *Val) {
 | |
|   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
 | |
|     Value *Op = Cast->getOperand(0);
 | |
|     if (Op->getType()->isFloatTy())
 | |
|       return Op;
 | |
|   }
 | |
|   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
 | |
|     APFloat F = Const->getValueAPF();
 | |
|     bool losesInfo;
 | |
|     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
 | |
|                     &losesInfo);
 | |
|     if (!losesInfo)
 | |
|       return ConstantFP::get(Const->getContext(), F);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Shrink double -> float for unary functions like 'floor'.
 | |
| static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
 | |
|                                     bool CheckRetType) {
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
|   // We know this libcall has a valid prototype, but we don't know which.
 | |
|   if (!CI->getType()->isDoubleTy())
 | |
|     return nullptr;
 | |
| 
 | |
|   if (CheckRetType) {
 | |
|     // Check if all the uses for function like 'sin' are converted to float.
 | |
|     for (User *U : CI->users()) {
 | |
|       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
 | |
|       if (!Cast || !Cast->getType()->isFloatTy())
 | |
|         return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is something like 'floor((double)floatval)', convert to floorf.
 | |
|   Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
 | |
|   if (V == nullptr)
 | |
|     return nullptr;
 | |
|   
 | |
|   // If call isn't an intrinsic, check that it isn't within a function with the
 | |
|   // same name as the float version of this call.
 | |
|   //
 | |
|   // e.g. inline float expf(float val) { return (float) exp((double) val); }
 | |
|   //
 | |
|   // A similar such definition exists in the MinGW-w64 math.h header file which
 | |
|   // when compiled with -O2 -ffast-math causes the generation of infinite loops
 | |
|   // where expf is called.
 | |
|   if (!Callee->isIntrinsic()) {
 | |
|     const Function *F = CI->getFunction();
 | |
|     StringRef FName = F->getName();
 | |
|     StringRef CalleeName = Callee->getName();
 | |
|     if ((FName.size() == (CalleeName.size() + 1)) &&
 | |
|         (FName.back() == 'f') &&
 | |
|         FName.startswith(CalleeName))
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Propagate fast-math flags from the existing call to the new call.
 | |
|   IRBuilder<>::FastMathFlagGuard Guard(B);
 | |
|   B.setFastMathFlags(CI->getFastMathFlags());
 | |
| 
 | |
|   // floor((double)floatval) -> (double)floorf(floatval)
 | |
|   if (Callee->isIntrinsic()) {
 | |
|     Module *M = CI->getModule();
 | |
|     Intrinsic::ID IID = Callee->getIntrinsicID();
 | |
|     Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
 | |
|     V = B.CreateCall(F, V);
 | |
|   } else {
 | |
|     // The call is a library call rather than an intrinsic.
 | |
|     V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
 | |
|   }
 | |
| 
 | |
|   return B.CreateFPExt(V, B.getDoubleTy());
 | |
| }
 | |
| 
 | |
| // Replace a libcall \p CI with a call to intrinsic \p IID
 | |
| static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
 | |
|   // Propagate fast-math flags from the existing call to the new call.
 | |
|   IRBuilder<>::FastMathFlagGuard Guard(B);
 | |
|   B.setFastMathFlags(CI->getFastMathFlags());
 | |
| 
 | |
|   Module *M = CI->getModule();
 | |
|   Value *V = CI->getArgOperand(0);
 | |
|   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
 | |
|   CallInst *NewCall = B.CreateCall(F, V);
 | |
|   NewCall->takeName(CI);
 | |
|   return NewCall;
 | |
| }
 | |
| 
 | |
| /// Shrink double -> float for binary functions like 'fmin/fmax'.
 | |
| static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
|   // We know this libcall has a valid prototype, but we don't know which.
 | |
|   if (!CI->getType()->isDoubleTy())
 | |
|     return nullptr;
 | |
| 
 | |
|   // If this is something like 'fmin((double)floatval1, (double)floatval2)',
 | |
|   // or fmin(1.0, (double)floatval), then we convert it to fminf.
 | |
|   Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
 | |
|   if (V1 == nullptr)
 | |
|     return nullptr;
 | |
|   Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
 | |
|   if (V2 == nullptr)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Propagate fast-math flags from the existing call to the new call.
 | |
|   IRBuilder<>::FastMathFlagGuard Guard(B);
 | |
|   B.setFastMathFlags(CI->getFastMathFlags());
 | |
| 
 | |
|   // fmin((double)floatval1, (double)floatval2)
 | |
|   //                      -> (double)fminf(floatval1, floatval2)
 | |
|   // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
 | |
|   Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
 | |
|                                    Callee->getAttributes());
 | |
|   return B.CreateFPExt(V, B.getDoubleTy());
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
|   Value *Ret = nullptr;
 | |
|   StringRef Name = Callee->getName();
 | |
|   if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name))
 | |
|     Ret = optimizeUnaryDoubleFP(CI, B, true);
 | |
| 
 | |
|   // cos(-x) -> cos(x)
 | |
|   Value *Op1 = CI->getArgOperand(0);
 | |
|   if (BinaryOperator::isFNeg(Op1)) {
 | |
|     BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
 | |
|     return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
 | |
|   }
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
 | |
|   // Multiplications calculated using Addition Chains.
 | |
|   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
 | |
| 
 | |
|   assert(Exp != 0 && "Incorrect exponent 0 not handled");
 | |
| 
 | |
|   if (InnerChain[Exp])
 | |
|     return InnerChain[Exp];
 | |
| 
 | |
|   static const unsigned AddChain[33][2] = {
 | |
|       {0, 0}, // Unused.
 | |
|       {0, 0}, // Unused (base case = pow1).
 | |
|       {1, 1}, // Unused (pre-computed).
 | |
|       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
 | |
|       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
 | |
|       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
 | |
|       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
 | |
|       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
 | |
|   };
 | |
| 
 | |
|   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
 | |
|                                  getPow(InnerChain, AddChain[Exp][1], B));
 | |
|   return InnerChain[Exp];
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
|   Value *Ret = nullptr;
 | |
|   StringRef Name = Callee->getName();
 | |
|   if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name))
 | |
|     Ret = optimizeUnaryDoubleFP(CI, B, true);
 | |
| 
 | |
|   Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
 | |
| 
 | |
|   // pow(1.0, x) -> 1.0
 | |
|   if (match(Op1, m_SpecificFP(1.0)))
 | |
|     return Op1;
 | |
|   // pow(2.0, x) -> llvm.exp2(x)
 | |
|   if (match(Op1, m_SpecificFP(2.0))) {
 | |
|     Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2,
 | |
|                                             CI->getType());
 | |
|     return B.CreateCall(Exp2, Op2, "exp2");
 | |
|   }
 | |
| 
 | |
|   // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will
 | |
|   // be one.
 | |
|   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
 | |
|     // pow(10.0, x) -> exp10(x)
 | |
|     if (Op1C->isExactlyValue(10.0) &&
 | |
|         hasUnaryFloatFn(TLI, Op1->getType(), LibFunc_exp10, LibFunc_exp10f,
 | |
|                         LibFunc_exp10l))
 | |
|       return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc_exp10), B,
 | |
|                                   Callee->getAttributes());
 | |
|   }
 | |
| 
 | |
|   // pow(exp(x), y) -> exp(x * y)
 | |
|   // pow(exp2(x), y) -> exp2(x * y)
 | |
|   // We enable these only with fast-math. Besides rounding differences, the
 | |
|   // transformation changes overflow and underflow behavior quite dramatically.
 | |
|   // Example: x = 1000, y = 0.001.
 | |
|   // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1).
 | |
|   auto *OpC = dyn_cast<CallInst>(Op1);
 | |
|   if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) {
 | |
|     LibFunc Func;
 | |
|     Function *OpCCallee = OpC->getCalledFunction();
 | |
|     if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) &&
 | |
|         TLI->has(Func) && (Func == LibFunc_exp || Func == LibFunc_exp2)) {
 | |
|       IRBuilder<>::FastMathFlagGuard Guard(B);
 | |
|       B.setFastMathFlags(CI->getFastMathFlags());
 | |
|       Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul");
 | |
|       return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B,
 | |
|                                   OpCCallee->getAttributes());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
 | |
|   if (!Op2C)
 | |
|     return Ret;
 | |
| 
 | |
|   if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
 | |
|     return ConstantFP::get(CI->getType(), 1.0);
 | |
| 
 | |
|   if (Op2C->isExactlyValue(-0.5) &&
 | |
|       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf,
 | |
|                       LibFunc_sqrtl)) {
 | |
|     // If -ffast-math:
 | |
|     // pow(x, -0.5) -> 1.0 / sqrt(x)
 | |
|     if (CI->hasUnsafeAlgebra()) {
 | |
|       IRBuilder<>::FastMathFlagGuard Guard(B);
 | |
|       B.setFastMathFlags(CI->getFastMathFlags());
 | |
| 
 | |
|       // TODO: If the pow call is an intrinsic, we should lower to the sqrt
 | |
|       // intrinsic, so we match errno semantics.  We also should check that the
 | |
|       // target can in fact lower the sqrt intrinsic -- we currently have no way
 | |
|       // to ask this question other than asking whether the target has a sqrt
 | |
|       // libcall, which is a sufficient but not necessary condition.
 | |
|       Value *Sqrt = emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B,
 | |
|                                          Callee->getAttributes());
 | |
| 
 | |
|       return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Sqrt, "sqrtrecip");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Op2C->isExactlyValue(0.5) &&
 | |
|       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf,
 | |
|                       LibFunc_sqrtl)) {
 | |
| 
 | |
|     // In -ffast-math, pow(x, 0.5) -> sqrt(x).
 | |
|     if (CI->hasUnsafeAlgebra()) {
 | |
|       IRBuilder<>::FastMathFlagGuard Guard(B);
 | |
|       B.setFastMathFlags(CI->getFastMathFlags());
 | |
| 
 | |
|       // TODO: As above, we should lower to the sqrt intrinsic if the pow is an
 | |
|       // intrinsic, to match errno semantics.
 | |
|       return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B,
 | |
|                                   Callee->getAttributes());
 | |
|     }
 | |
| 
 | |
|     // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
 | |
|     // This is faster than calling pow, and still handles negative zero
 | |
|     // and negative infinity correctly.
 | |
|     // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
 | |
|     Value *Inf = ConstantFP::getInfinity(CI->getType());
 | |
|     Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
 | |
| 
 | |
|     // TODO: As above, we should lower to the sqrt intrinsic if the pow is an
 | |
|     // intrinsic, to match errno semantics.
 | |
|     Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
 | |
| 
 | |
|     Module *M = Callee->getParent();
 | |
|     Function *FabsF = Intrinsic::getDeclaration(M, Intrinsic::fabs,
 | |
|                                                 CI->getType());
 | |
|     Value *FAbs = B.CreateCall(FabsF, Sqrt);
 | |
| 
 | |
|     Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
 | |
|     Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
 | |
|     return Sel;
 | |
|   }
 | |
| 
 | |
|   if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
 | |
|     return Op1;
 | |
|   if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
 | |
|     return B.CreateFMul(Op1, Op1, "pow2");
 | |
|   if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
 | |
|     return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
 | |
| 
 | |
|   // In -ffast-math, generate repeated fmul instead of generating pow(x, n).
 | |
|   if (CI->hasUnsafeAlgebra()) {
 | |
|     APFloat V = abs(Op2C->getValueAPF());
 | |
|     // We limit to a max of 7 fmul(s). Thus max exponent is 32.
 | |
|     // This transformation applies to integer exponents only.
 | |
|     if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan ||
 | |
|         !V.isInteger())
 | |
|       return nullptr;
 | |
| 
 | |
|     // Propagate fast math flags.
 | |
|     IRBuilder<>::FastMathFlagGuard Guard(B);
 | |
|     B.setFastMathFlags(CI->getFastMathFlags());
 | |
| 
 | |
|     // We will memoize intermediate products of the Addition Chain.
 | |
|     Value *InnerChain[33] = {nullptr};
 | |
|     InnerChain[1] = Op1;
 | |
|     InnerChain[2] = B.CreateFMul(Op1, Op1);
 | |
| 
 | |
|     // We cannot readily convert a non-double type (like float) to a double.
 | |
|     // So we first convert V to something which could be converted to double.
 | |
|     bool ignored;
 | |
|     V.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &ignored);
 | |
|     
 | |
|     Value *FMul = getPow(InnerChain, V.convertToDouble(), B);
 | |
|     // For negative exponents simply compute the reciprocal.
 | |
|     if (Op2C->isNegative())
 | |
|       FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul);
 | |
|     return FMul;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
|   Value *Ret = nullptr;
 | |
|   StringRef Name = Callee->getName();
 | |
|   if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
 | |
|     Ret = optimizeUnaryDoubleFP(CI, B, true);
 | |
| 
 | |
|   Value *Op = CI->getArgOperand(0);
 | |
|   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
 | |
|   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
 | |
|   LibFunc LdExp = LibFunc_ldexpl;
 | |
|   if (Op->getType()->isFloatTy())
 | |
|     LdExp = LibFunc_ldexpf;
 | |
|   else if (Op->getType()->isDoubleTy())
 | |
|     LdExp = LibFunc_ldexp;
 | |
| 
 | |
|   if (TLI->has(LdExp)) {
 | |
|     Value *LdExpArg = nullptr;
 | |
|     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
 | |
|       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
 | |
|         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
 | |
|     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
 | |
|       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
 | |
|         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
 | |
|     }
 | |
| 
 | |
|     if (LdExpArg) {
 | |
|       Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
 | |
|       if (!Op->getType()->isFloatTy())
 | |
|         One = ConstantExpr::getFPExtend(One, Op->getType());
 | |
| 
 | |
|       Module *M = CI->getModule();
 | |
|       Value *NewCallee =
 | |
|           M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
 | |
|                                  Op->getType(), B.getInt32Ty());
 | |
|       CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
 | |
|       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
 | |
|         CI->setCallingConv(F->getCallingConv());
 | |
| 
 | |
|       return CI;
 | |
|     }
 | |
|   }
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
|   // If we can shrink the call to a float function rather than a double
 | |
|   // function, do that first.
 | |
|   StringRef Name = Callee->getName();
 | |
|   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
 | |
|     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
 | |
|       return Ret;
 | |
| 
 | |
|   IRBuilder<>::FastMathFlagGuard Guard(B);
 | |
|   FastMathFlags FMF;
 | |
|   if (CI->hasUnsafeAlgebra()) {
 | |
|     // Unsafe algebra sets all fast-math-flags to true.
 | |
|     FMF.setUnsafeAlgebra();
 | |
|   } else {
 | |
|     // At a minimum, no-nans-fp-math must be true.
 | |
|     if (!CI->hasNoNaNs())
 | |
|       return nullptr;
 | |
|     // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
 | |
|     // "Ideally, fmax would be sensitive to the sign of zero, for example
 | |
|     // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
 | |
|     // might be impractical."
 | |
|     FMF.setNoSignedZeros();
 | |
|     FMF.setNoNaNs();
 | |
|   }
 | |
|   B.setFastMathFlags(FMF);
 | |
| 
 | |
|   // We have a relaxed floating-point environment. We can ignore NaN-handling
 | |
|   // and transform to a compare and select. We do not have to consider errno or
 | |
|   // exceptions, because fmin/fmax do not have those.
 | |
|   Value *Op0 = CI->getArgOperand(0);
 | |
|   Value *Op1 = CI->getArgOperand(1);
 | |
|   Value *Cmp = Callee->getName().startswith("fmin") ?
 | |
|     B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
 | |
|   return B.CreateSelect(Cmp, Op0, Op1);
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
|   Value *Ret = nullptr;
 | |
|   StringRef Name = Callee->getName();
 | |
|   if (UnsafeFPShrink && hasFloatVersion(Name))
 | |
|     Ret = optimizeUnaryDoubleFP(CI, B, true);
 | |
| 
 | |
|   if (!CI->hasUnsafeAlgebra())
 | |
|     return Ret;
 | |
|   Value *Op1 = CI->getArgOperand(0);
 | |
|   auto *OpC = dyn_cast<CallInst>(Op1);
 | |
| 
 | |
|   // The earlier call must also be unsafe in order to do these transforms.
 | |
|   if (!OpC || !OpC->hasUnsafeAlgebra())
 | |
|     return Ret;
 | |
| 
 | |
|   // log(pow(x,y)) -> y*log(x)
 | |
|   // This is only applicable to log, log2, log10.
 | |
|   if (Name != "log" && Name != "log2" && Name != "log10")
 | |
|     return Ret;
 | |
| 
 | |
|   IRBuilder<>::FastMathFlagGuard Guard(B);
 | |
|   FastMathFlags FMF;
 | |
|   FMF.setUnsafeAlgebra();
 | |
|   B.setFastMathFlags(FMF);
 | |
| 
 | |
|   LibFunc Func;
 | |
|   Function *F = OpC->getCalledFunction();
 | |
|   if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
 | |
|       Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow))
 | |
|     return B.CreateFMul(OpC->getArgOperand(1),
 | |
|       emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
 | |
|                            Callee->getAttributes()), "mul");
 | |
| 
 | |
|   // log(exp2(y)) -> y*log(2)
 | |
|   if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
 | |
|       TLI->has(Func) && Func == LibFunc_exp2)
 | |
|     return B.CreateFMul(
 | |
|         OpC->getArgOperand(0),
 | |
|         emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
 | |
|                              Callee->getName(), B, Callee->getAttributes()),
 | |
|         "logmul");
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
|   Value *Ret = nullptr;
 | |
|   // TODO: Once we have a way (other than checking for the existince of the
 | |
|   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
 | |
|   // condition below.
 | |
|   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
 | |
|                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
 | |
|     Ret = optimizeUnaryDoubleFP(CI, B, true);
 | |
| 
 | |
|   if (!CI->hasUnsafeAlgebra())
 | |
|     return Ret;
 | |
| 
 | |
|   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
 | |
|   if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
 | |
|     return Ret;
 | |
| 
 | |
|   // We're looking for a repeated factor in a multiplication tree,
 | |
|   // so we can do this fold: sqrt(x * x) -> fabs(x);
 | |
|   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
 | |
|   Value *Op0 = I->getOperand(0);
 | |
|   Value *Op1 = I->getOperand(1);
 | |
|   Value *RepeatOp = nullptr;
 | |
|   Value *OtherOp = nullptr;
 | |
|   if (Op0 == Op1) {
 | |
|     // Simple match: the operands of the multiply are identical.
 | |
|     RepeatOp = Op0;
 | |
|   } else {
 | |
|     // Look for a more complicated pattern: one of the operands is itself
 | |
|     // a multiply, so search for a common factor in that multiply.
 | |
|     // Note: We don't bother looking any deeper than this first level or for
 | |
|     // variations of this pattern because instcombine's visitFMUL and/or the
 | |
|     // reassociation pass should give us this form.
 | |
|     Value *OtherMul0, *OtherMul1;
 | |
|     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
 | |
|       // Pattern: sqrt((x * y) * z)
 | |
|       if (OtherMul0 == OtherMul1 &&
 | |
|           cast<Instruction>(Op0)->hasUnsafeAlgebra()) {
 | |
|         // Matched: sqrt((x * x) * z)
 | |
|         RepeatOp = OtherMul0;
 | |
|         OtherOp = Op1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (!RepeatOp)
 | |
|     return Ret;
 | |
| 
 | |
|   // Fast math flags for any created instructions should match the sqrt
 | |
|   // and multiply.
 | |
|   IRBuilder<>::FastMathFlagGuard Guard(B);
 | |
|   B.setFastMathFlags(I->getFastMathFlags());
 | |
| 
 | |
|   // If we found a repeated factor, hoist it out of the square root and
 | |
|   // replace it with the fabs of that factor.
 | |
|   Module *M = Callee->getParent();
 | |
|   Type *ArgType = I->getType();
 | |
|   Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
 | |
|   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
 | |
|   if (OtherOp) {
 | |
|     // If we found a non-repeated factor, we still need to get its square
 | |
|     // root. We then multiply that by the value that was simplified out
 | |
|     // of the square root calculation.
 | |
|     Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
 | |
|     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
 | |
|     return B.CreateFMul(FabsCall, SqrtCall);
 | |
|   }
 | |
|   return FabsCall;
 | |
| }
 | |
| 
 | |
| // TODO: Generalize to handle any trig function and its inverse.
 | |
| Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
|   Value *Ret = nullptr;
 | |
|   StringRef Name = Callee->getName();
 | |
|   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
 | |
|     Ret = optimizeUnaryDoubleFP(CI, B, true);
 | |
| 
 | |
|   Value *Op1 = CI->getArgOperand(0);
 | |
|   auto *OpC = dyn_cast<CallInst>(Op1);
 | |
|   if (!OpC)
 | |
|     return Ret;
 | |
| 
 | |
|   // Both calls must allow unsafe optimizations in order to remove them.
 | |
|   if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra())
 | |
|     return Ret;
 | |
| 
 | |
|   // tan(atan(x)) -> x
 | |
|   // tanf(atanf(x)) -> x
 | |
|   // tanl(atanl(x)) -> x
 | |
|   LibFunc Func;
 | |
|   Function *F = OpC->getCalledFunction();
 | |
|   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
 | |
|       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
 | |
|        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
 | |
|        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
 | |
|     Ret = OpC->getArgOperand(0);
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| static bool isTrigLibCall(CallInst *CI) {
 | |
|   // We can only hope to do anything useful if we can ignore things like errno
 | |
|   // and floating-point exceptions.
 | |
|   // We already checked the prototype.
 | |
|   return CI->hasFnAttr(Attribute::NoUnwind) &&
 | |
|          CI->hasFnAttr(Attribute::ReadNone);
 | |
| }
 | |
| 
 | |
| static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
 | |
|                              bool UseFloat, Value *&Sin, Value *&Cos,
 | |
|                              Value *&SinCos) {
 | |
|   Type *ArgTy = Arg->getType();
 | |
|   Type *ResTy;
 | |
|   StringRef Name;
 | |
| 
 | |
|   Triple T(OrigCallee->getParent()->getTargetTriple());
 | |
|   if (UseFloat) {
 | |
|     Name = "__sincospif_stret";
 | |
| 
 | |
|     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
 | |
|     // x86_64 can't use {float, float} since that would be returned in both
 | |
|     // xmm0 and xmm1, which isn't what a real struct would do.
 | |
|     ResTy = T.getArch() == Triple::x86_64
 | |
|                 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
 | |
|                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
 | |
|   } else {
 | |
|     Name = "__sincospi_stret";
 | |
|     ResTy = StructType::get(ArgTy, ArgTy);
 | |
|   }
 | |
| 
 | |
|   Module *M = OrigCallee->getParent();
 | |
|   Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
 | |
|                                          ResTy, ArgTy);
 | |
| 
 | |
|   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
 | |
|     // If the argument is an instruction, it must dominate all uses so put our
 | |
|     // sincos call there.
 | |
|     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
 | |
|   } else {
 | |
|     // Otherwise (e.g. for a constant) the beginning of the function is as
 | |
|     // good a place as any.
 | |
|     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
 | |
|     B.SetInsertPoint(&EntryBB, EntryBB.begin());
 | |
|   }
 | |
| 
 | |
|   SinCos = B.CreateCall(Callee, Arg, "sincospi");
 | |
| 
 | |
|   if (SinCos->getType()->isStructTy()) {
 | |
|     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
 | |
|     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
 | |
|   } else {
 | |
|     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
 | |
|                                  "sinpi");
 | |
|     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
 | |
|                                  "cospi");
 | |
|   }
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
 | |
|   // Make sure the prototype is as expected, otherwise the rest of the
 | |
|   // function is probably invalid and likely to abort.
 | |
|   if (!isTrigLibCall(CI))
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *Arg = CI->getArgOperand(0);
 | |
|   SmallVector<CallInst *, 1> SinCalls;
 | |
|   SmallVector<CallInst *, 1> CosCalls;
 | |
|   SmallVector<CallInst *, 1> SinCosCalls;
 | |
| 
 | |
|   bool IsFloat = Arg->getType()->isFloatTy();
 | |
| 
 | |
|   // Look for all compatible sinpi, cospi and sincospi calls with the same
 | |
|   // argument. If there are enough (in some sense) we can make the
 | |
|   // substitution.
 | |
|   Function *F = CI->getFunction();
 | |
|   for (User *U : Arg->users())
 | |
|     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
 | |
| 
 | |
|   // It's only worthwhile if both sinpi and cospi are actually used.
 | |
|   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *Sin, *Cos, *SinCos;
 | |
|   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
 | |
| 
 | |
|   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
 | |
|                                  Value *Res) {
 | |
|     for (CallInst *C : Calls)
 | |
|       replaceAllUsesWith(C, Res);
 | |
|   };
 | |
| 
 | |
|   replaceTrigInsts(SinCalls, Sin);
 | |
|   replaceTrigInsts(CosCalls, Cos);
 | |
|   replaceTrigInsts(SinCosCalls, SinCos);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void LibCallSimplifier::classifyArgUse(
 | |
|     Value *Val, Function *F, bool IsFloat,
 | |
|     SmallVectorImpl<CallInst *> &SinCalls,
 | |
|     SmallVectorImpl<CallInst *> &CosCalls,
 | |
|     SmallVectorImpl<CallInst *> &SinCosCalls) {
 | |
|   CallInst *CI = dyn_cast<CallInst>(Val);
 | |
| 
 | |
|   if (!CI)
 | |
|     return;
 | |
| 
 | |
|   // Don't consider calls in other functions.
 | |
|   if (CI->getFunction() != F)
 | |
|     return;
 | |
| 
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
|   LibFunc Func;
 | |
|   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
 | |
|       !isTrigLibCall(CI))
 | |
|     return;
 | |
| 
 | |
|   if (IsFloat) {
 | |
|     if (Func == LibFunc_sinpif)
 | |
|       SinCalls.push_back(CI);
 | |
|     else if (Func == LibFunc_cospif)
 | |
|       CosCalls.push_back(CI);
 | |
|     else if (Func == LibFunc_sincospif_stret)
 | |
|       SinCosCalls.push_back(CI);
 | |
|   } else {
 | |
|     if (Func == LibFunc_sinpi)
 | |
|       SinCalls.push_back(CI);
 | |
|     else if (Func == LibFunc_cospi)
 | |
|       CosCalls.push_back(CI);
 | |
|     else if (Func == LibFunc_sincospi_stret)
 | |
|       SinCosCalls.push_back(CI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Integer Library Call Optimizations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
 | |
|   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
 | |
|   Value *Op = CI->getArgOperand(0);
 | |
|   Type *ArgType = Op->getType();
 | |
|   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
 | |
|                                        Intrinsic::cttz, ArgType);
 | |
|   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
 | |
|   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
 | |
|   V = B.CreateIntCast(V, B.getInt32Ty(), false);
 | |
| 
 | |
|   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
 | |
|   return B.CreateSelect(Cond, V, B.getInt32(0));
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
 | |
|   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
 | |
|   Value *Op = CI->getArgOperand(0);
 | |
|   Type *ArgType = Op->getType();
 | |
|   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
 | |
|                                        Intrinsic::ctlz, ArgType);
 | |
|   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
 | |
|   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
 | |
|                   V);
 | |
|   return B.CreateIntCast(V, CI->getType(), false);
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
 | |
|   // abs(x) -> x >s -1 ? x : -x
 | |
|   Value *Op = CI->getArgOperand(0);
 | |
|   Value *Pos =
 | |
|       B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
 | |
|   Value *Neg = B.CreateNeg(Op, "neg");
 | |
|   return B.CreateSelect(Pos, Op, Neg);
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
 | |
|   // isdigit(c) -> (c-'0') <u 10
 | |
|   Value *Op = CI->getArgOperand(0);
 | |
|   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
 | |
|   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
 | |
|   return B.CreateZExt(Op, CI->getType());
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
 | |
|   // isascii(c) -> c <u 128
 | |
|   Value *Op = CI->getArgOperand(0);
 | |
|   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
 | |
|   return B.CreateZExt(Op, CI->getType());
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
 | |
|   // toascii(c) -> c & 0x7f
 | |
|   return B.CreateAnd(CI->getArgOperand(0),
 | |
|                      ConstantInt::get(CI->getType(), 0x7F));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Formatting and IO Library Call Optimizations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
 | |
|                                                  int StreamArg) {
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
|   // Error reporting calls should be cold, mark them as such.
 | |
|   // This applies even to non-builtin calls: it is only a hint and applies to
 | |
|   // functions that the frontend might not understand as builtins.
 | |
| 
 | |
|   // This heuristic was suggested in:
 | |
|   // Improving Static Branch Prediction in a Compiler
 | |
|   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
 | |
|   // Proceedings of PACT'98, Oct. 1998, IEEE
 | |
|   if (!CI->hasFnAttr(Attribute::Cold) &&
 | |
|       isReportingError(Callee, CI, StreamArg)) {
 | |
|     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
 | |
|   if (!Callee || !Callee->isDeclaration())
 | |
|     return false;
 | |
| 
 | |
|   if (StreamArg < 0)
 | |
|     return true;
 | |
| 
 | |
|   // These functions might be considered cold, but only if their stream
 | |
|   // argument is stderr.
 | |
| 
 | |
|   if (StreamArg >= (int)CI->getNumArgOperands())
 | |
|     return false;
 | |
|   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
 | |
|   if (!LI)
 | |
|     return false;
 | |
|   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
 | |
|   if (!GV || !GV->isDeclaration())
 | |
|     return false;
 | |
|   return GV->getName() == "stderr";
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
 | |
|   // Check for a fixed format string.
 | |
|   StringRef FormatStr;
 | |
|   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Empty format string -> noop.
 | |
|   if (FormatStr.empty()) // Tolerate printf's declared void.
 | |
|     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
 | |
| 
 | |
|   // Do not do any of the following transformations if the printf return value
 | |
|   // is used, in general the printf return value is not compatible with either
 | |
|   // putchar() or puts().
 | |
|   if (!CI->use_empty())
 | |
|     return nullptr;
 | |
| 
 | |
|   // printf("x") -> putchar('x'), even for "%" and "%%".
 | |
|   if (FormatStr.size() == 1 || FormatStr == "%%")
 | |
|     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
 | |
| 
 | |
|   // printf("%s", "a") --> putchar('a')
 | |
|   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
 | |
|     StringRef ChrStr;
 | |
|     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
 | |
|       return nullptr;
 | |
|     if (ChrStr.size() != 1)
 | |
|       return nullptr;
 | |
|     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
 | |
|   }
 | |
| 
 | |
|   // printf("foo\n") --> puts("foo")
 | |
|   if (FormatStr[FormatStr.size() - 1] == '\n' &&
 | |
|       FormatStr.find('%') == StringRef::npos) { // No format characters.
 | |
|     // Create a string literal with no \n on it.  We expect the constant merge
 | |
|     // pass to be run after this pass, to merge duplicate strings.
 | |
|     FormatStr = FormatStr.drop_back();
 | |
|     Value *GV = B.CreateGlobalString(FormatStr, "str");
 | |
|     return emitPutS(GV, B, TLI);
 | |
|   }
 | |
| 
 | |
|   // Optimize specific format strings.
 | |
|   // printf("%c", chr) --> putchar(chr)
 | |
|   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
 | |
|       CI->getArgOperand(1)->getType()->isIntegerTy())
 | |
|     return emitPutChar(CI->getArgOperand(1), B, TLI);
 | |
| 
 | |
|   // printf("%s\n", str) --> puts(str)
 | |
|   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
 | |
|       CI->getArgOperand(1)->getType()->isPointerTy())
 | |
|     return emitPutS(CI->getArgOperand(1), B, TLI);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
 | |
| 
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
|   FunctionType *FT = Callee->getFunctionType();
 | |
|   if (Value *V = optimizePrintFString(CI, B)) {
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   // printf(format, ...) -> iprintf(format, ...) if no floating point
 | |
|   // arguments.
 | |
|   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
 | |
|     Module *M = B.GetInsertBlock()->getParent()->getParent();
 | |
|     Constant *IPrintFFn =
 | |
|         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
 | |
|     CallInst *New = cast<CallInst>(CI->clone());
 | |
|     New->setCalledFunction(IPrintFFn);
 | |
|     B.Insert(New);
 | |
|     return New;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
 | |
|   // Check for a fixed format string.
 | |
|   StringRef FormatStr;
 | |
|   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
 | |
|     return nullptr;
 | |
| 
 | |
|   // If we just have a format string (nothing else crazy) transform it.
 | |
|   if (CI->getNumArgOperands() == 2) {
 | |
|     // Make sure there's no % in the constant array.  We could try to handle
 | |
|     // %% -> % in the future if we cared.
 | |
|     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
 | |
|       if (FormatStr[i] == '%')
 | |
|         return nullptr; // we found a format specifier, bail out.
 | |
| 
 | |
|     // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
 | |
|     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
 | |
|                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
 | |
|                                     FormatStr.size() + 1),
 | |
|                    1); // Copy the null byte.
 | |
|     return ConstantInt::get(CI->getType(), FormatStr.size());
 | |
|   }
 | |
| 
 | |
|   // The remaining optimizations require the format string to be "%s" or "%c"
 | |
|   // and have an extra operand.
 | |
|   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
 | |
|       CI->getNumArgOperands() < 3)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Decode the second character of the format string.
 | |
|   if (FormatStr[1] == 'c') {
 | |
|     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
 | |
|     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
 | |
|       return nullptr;
 | |
|     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
 | |
|     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
 | |
|     B.CreateStore(V, Ptr);
 | |
|     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
 | |
|     B.CreateStore(B.getInt8(0), Ptr);
 | |
| 
 | |
|     return ConstantInt::get(CI->getType(), 1);
 | |
|   }
 | |
| 
 | |
|   if (FormatStr[1] == 's') {
 | |
|     // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
 | |
|     if (!CI->getArgOperand(2)->getType()->isPointerTy())
 | |
|       return nullptr;
 | |
| 
 | |
|     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
 | |
|     if (!Len)
 | |
|       return nullptr;
 | |
|     Value *IncLen =
 | |
|         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
 | |
|     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
 | |
| 
 | |
|     // The sprintf result is the unincremented number of bytes in the string.
 | |
|     return B.CreateIntCast(Len, CI->getType(), false);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
|   FunctionType *FT = Callee->getFunctionType();
 | |
|   if (Value *V = optimizeSPrintFString(CI, B)) {
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
 | |
|   // point arguments.
 | |
|   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
 | |
|     Module *M = B.GetInsertBlock()->getParent()->getParent();
 | |
|     Constant *SIPrintFFn =
 | |
|         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
 | |
|     CallInst *New = cast<CallInst>(CI->clone());
 | |
|     New->setCalledFunction(SIPrintFFn);
 | |
|     B.Insert(New);
 | |
|     return New;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
 | |
|   optimizeErrorReporting(CI, B, 0);
 | |
| 
 | |
|   // All the optimizations depend on the format string.
 | |
|   StringRef FormatStr;
 | |
|   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Do not do any of the following transformations if the fprintf return
 | |
|   // value is used, in general the fprintf return value is not compatible
 | |
|   // with fwrite(), fputc() or fputs().
 | |
|   if (!CI->use_empty())
 | |
|     return nullptr;
 | |
| 
 | |
|   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
 | |
|   if (CI->getNumArgOperands() == 2) {
 | |
|     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
 | |
|       if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
 | |
|         return nullptr;        // We found a format specifier.
 | |
| 
 | |
|     return emitFWrite(
 | |
|         CI->getArgOperand(1),
 | |
|         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
 | |
|         CI->getArgOperand(0), B, DL, TLI);
 | |
|   }
 | |
| 
 | |
|   // The remaining optimizations require the format string to be "%s" or "%c"
 | |
|   // and have an extra operand.
 | |
|   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
 | |
|       CI->getNumArgOperands() < 3)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Decode the second character of the format string.
 | |
|   if (FormatStr[1] == 'c') {
 | |
|     // fprintf(F, "%c", chr) --> fputc(chr, F)
 | |
|     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
 | |
|       return nullptr;
 | |
|     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
 | |
|   }
 | |
| 
 | |
|   if (FormatStr[1] == 's') {
 | |
|     // fprintf(F, "%s", str) --> fputs(str, F)
 | |
|     if (!CI->getArgOperand(2)->getType()->isPointerTy())
 | |
|       return nullptr;
 | |
|     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
|   FunctionType *FT = Callee->getFunctionType();
 | |
|   if (Value *V = optimizeFPrintFString(CI, B)) {
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
 | |
|   // floating point arguments.
 | |
|   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
 | |
|     Module *M = B.GetInsertBlock()->getParent()->getParent();
 | |
|     Constant *FIPrintFFn =
 | |
|         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
 | |
|     CallInst *New = cast<CallInst>(CI->clone());
 | |
|     New->setCalledFunction(FIPrintFFn);
 | |
|     B.Insert(New);
 | |
|     return New;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
 | |
|   optimizeErrorReporting(CI, B, 3);
 | |
| 
 | |
|   // Get the element size and count.
 | |
|   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
 | |
|   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
 | |
|   if (!SizeC || !CountC)
 | |
|     return nullptr;
 | |
|   uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
 | |
| 
 | |
|   // If this is writing zero records, remove the call (it's a noop).
 | |
|   if (Bytes == 0)
 | |
|     return ConstantInt::get(CI->getType(), 0);
 | |
| 
 | |
|   // If this is writing one byte, turn it into fputc.
 | |
|   // This optimisation is only valid, if the return value is unused.
 | |
|   if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
 | |
|     Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
 | |
|     Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
 | |
|     return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
 | |
|   optimizeErrorReporting(CI, B, 1);
 | |
| 
 | |
|   // Don't rewrite fputs to fwrite when optimising for size because fwrite
 | |
|   // requires more arguments and thus extra MOVs are required.
 | |
|   if (CI->getParent()->getParent()->optForSize())
 | |
|     return nullptr;
 | |
| 
 | |
|   // We can't optimize if return value is used.
 | |
|   if (!CI->use_empty())
 | |
|     return nullptr;
 | |
| 
 | |
|   // fputs(s,F) --> fwrite(s,1,strlen(s),F)
 | |
|   uint64_t Len = GetStringLength(CI->getArgOperand(0));
 | |
|   if (!Len)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Known to have no uses (see above).
 | |
|   return emitFWrite(
 | |
|       CI->getArgOperand(0),
 | |
|       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
 | |
|       CI->getArgOperand(1), B, DL, TLI);
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
 | |
|   // Check for a constant string.
 | |
|   StringRef Str;
 | |
|   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
 | |
|     return nullptr;
 | |
| 
 | |
|   if (Str.empty() && CI->use_empty()) {
 | |
|     // puts("") -> putchar('\n')
 | |
|     Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
 | |
|     if (CI->use_empty() || !Res)
 | |
|       return Res;
 | |
|     return B.CreateIntCast(Res, CI->getType(), true);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
 | |
|   LibFunc Func;
 | |
|   SmallString<20> FloatFuncName = FuncName;
 | |
|   FloatFuncName += 'f';
 | |
|   if (TLI->getLibFunc(FloatFuncName, Func))
 | |
|     return TLI->has(Func);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
 | |
|                                                       IRBuilder<> &Builder) {
 | |
|   LibFunc Func;
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
|   // Check for string/memory library functions.
 | |
|   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
 | |
|     // Make sure we never change the calling convention.
 | |
|     assert((ignoreCallingConv(Func) ||
 | |
|             isCallingConvCCompatible(CI)) &&
 | |
|       "Optimizing string/memory libcall would change the calling convention");
 | |
|     switch (Func) {
 | |
|     case LibFunc_strcat:
 | |
|       return optimizeStrCat(CI, Builder);
 | |
|     case LibFunc_strncat:
 | |
|       return optimizeStrNCat(CI, Builder);
 | |
|     case LibFunc_strchr:
 | |
|       return optimizeStrChr(CI, Builder);
 | |
|     case LibFunc_strrchr:
 | |
|       return optimizeStrRChr(CI, Builder);
 | |
|     case LibFunc_strcmp:
 | |
|       return optimizeStrCmp(CI, Builder);
 | |
|     case LibFunc_strncmp:
 | |
|       return optimizeStrNCmp(CI, Builder);
 | |
|     case LibFunc_strcpy:
 | |
|       return optimizeStrCpy(CI, Builder);
 | |
|     case LibFunc_stpcpy:
 | |
|       return optimizeStpCpy(CI, Builder);
 | |
|     case LibFunc_strncpy:
 | |
|       return optimizeStrNCpy(CI, Builder);
 | |
|     case LibFunc_strlen:
 | |
|       return optimizeStrLen(CI, Builder);
 | |
|     case LibFunc_strpbrk:
 | |
|       return optimizeStrPBrk(CI, Builder);
 | |
|     case LibFunc_strtol:
 | |
|     case LibFunc_strtod:
 | |
|     case LibFunc_strtof:
 | |
|     case LibFunc_strtoul:
 | |
|     case LibFunc_strtoll:
 | |
|     case LibFunc_strtold:
 | |
|     case LibFunc_strtoull:
 | |
|       return optimizeStrTo(CI, Builder);
 | |
|     case LibFunc_strspn:
 | |
|       return optimizeStrSpn(CI, Builder);
 | |
|     case LibFunc_strcspn:
 | |
|       return optimizeStrCSpn(CI, Builder);
 | |
|     case LibFunc_strstr:
 | |
|       return optimizeStrStr(CI, Builder);
 | |
|     case LibFunc_memchr:
 | |
|       return optimizeMemChr(CI, Builder);
 | |
|     case LibFunc_memcmp:
 | |
|       return optimizeMemCmp(CI, Builder);
 | |
|     case LibFunc_memcpy:
 | |
|       return optimizeMemCpy(CI, Builder);
 | |
|     case LibFunc_memmove:
 | |
|       return optimizeMemMove(CI, Builder);
 | |
|     case LibFunc_memset:
 | |
|       return optimizeMemSet(CI, Builder);
 | |
|     case LibFunc_wcslen:
 | |
|       return optimizeWcslen(CI, Builder);
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
 | |
|                                                        LibFunc Func,
 | |
|                                                        IRBuilder<> &Builder) {
 | |
|   // Don't optimize calls that require strict floating point semantics.
 | |
|   if (CI->isStrictFP())
 | |
|     return nullptr;
 | |
| 
 | |
|   switch (Func) {
 | |
|   case LibFunc_cosf:
 | |
|   case LibFunc_cos:
 | |
|   case LibFunc_cosl:
 | |
|     return optimizeCos(CI, Builder);
 | |
|   case LibFunc_sinpif:
 | |
|   case LibFunc_sinpi:
 | |
|   case LibFunc_cospif:
 | |
|   case LibFunc_cospi:
 | |
|     return optimizeSinCosPi(CI, Builder);
 | |
|   case LibFunc_powf:
 | |
|   case LibFunc_pow:
 | |
|   case LibFunc_powl:
 | |
|     return optimizePow(CI, Builder);
 | |
|   case LibFunc_exp2l:
 | |
|   case LibFunc_exp2:
 | |
|   case LibFunc_exp2f:
 | |
|     return optimizeExp2(CI, Builder);
 | |
|   case LibFunc_fabsf:
 | |
|   case LibFunc_fabs:
 | |
|   case LibFunc_fabsl:
 | |
|     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
 | |
|   case LibFunc_sqrtf:
 | |
|   case LibFunc_sqrt:
 | |
|   case LibFunc_sqrtl:
 | |
|     return optimizeSqrt(CI, Builder);
 | |
|   case LibFunc_log:
 | |
|   case LibFunc_log10:
 | |
|   case LibFunc_log1p:
 | |
|   case LibFunc_log2:
 | |
|   case LibFunc_logb:
 | |
|     return optimizeLog(CI, Builder);
 | |
|   case LibFunc_tan:
 | |
|   case LibFunc_tanf:
 | |
|   case LibFunc_tanl:
 | |
|     return optimizeTan(CI, Builder);
 | |
|   case LibFunc_ceil:
 | |
|     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
 | |
|   case LibFunc_floor:
 | |
|     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
 | |
|   case LibFunc_round:
 | |
|     return replaceUnaryCall(CI, Builder, Intrinsic::round);
 | |
|   case LibFunc_nearbyint:
 | |
|     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
 | |
|   case LibFunc_rint:
 | |
|     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
 | |
|   case LibFunc_trunc:
 | |
|     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
 | |
|   case LibFunc_acos:
 | |
|   case LibFunc_acosh:
 | |
|   case LibFunc_asin:
 | |
|   case LibFunc_asinh:
 | |
|   case LibFunc_atan:
 | |
|   case LibFunc_atanh:
 | |
|   case LibFunc_cbrt:
 | |
|   case LibFunc_cosh:
 | |
|   case LibFunc_exp:
 | |
|   case LibFunc_exp10:
 | |
|   case LibFunc_expm1:
 | |
|   case LibFunc_sin:
 | |
|   case LibFunc_sinh:
 | |
|   case LibFunc_tanh:
 | |
|     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
 | |
|       return optimizeUnaryDoubleFP(CI, Builder, true);
 | |
|     return nullptr;
 | |
|   case LibFunc_copysign:
 | |
|     if (hasFloatVersion(CI->getCalledFunction()->getName()))
 | |
|       return optimizeBinaryDoubleFP(CI, Builder);
 | |
|     return nullptr;
 | |
|   case LibFunc_fminf:
 | |
|   case LibFunc_fmin:
 | |
|   case LibFunc_fminl:
 | |
|   case LibFunc_fmaxf:
 | |
|   case LibFunc_fmax:
 | |
|   case LibFunc_fmaxl:
 | |
|     return optimizeFMinFMax(CI, Builder);
 | |
|   default:
 | |
|     return nullptr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
 | |
|   // TODO: Split out the code below that operates on FP calls so that
 | |
|   //       we can all non-FP calls with the StrictFP attribute to be
 | |
|   //       optimized.
 | |
|   if (CI->isNoBuiltin())
 | |
|     return nullptr;
 | |
| 
 | |
|   LibFunc Func;
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
| 
 | |
|   SmallVector<OperandBundleDef, 2> OpBundles;
 | |
|   CI->getOperandBundlesAsDefs(OpBundles);
 | |
|   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
 | |
|   bool isCallingConvC = isCallingConvCCompatible(CI);
 | |
| 
 | |
|   // Command-line parameter overrides instruction attribute.
 | |
|   // This can't be moved to optimizeFloatingPointLibCall() because it may be
 | |
|   // used by the intrinsic optimizations. 
 | |
|   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
 | |
|     UnsafeFPShrink = EnableUnsafeFPShrink;
 | |
|   else if (isa<FPMathOperator>(CI) && CI->hasUnsafeAlgebra())
 | |
|     UnsafeFPShrink = true;
 | |
| 
 | |
|   // First, check for intrinsics.
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
 | |
|     if (!isCallingConvC)
 | |
|       return nullptr;
 | |
|     // The FP intrinsics have corresponding constrained versions so we don't
 | |
|     // need to check for the StrictFP attribute here.
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     case Intrinsic::pow:
 | |
|       return optimizePow(CI, Builder);
 | |
|     case Intrinsic::exp2:
 | |
|       return optimizeExp2(CI, Builder);
 | |
|     case Intrinsic::log:
 | |
|       return optimizeLog(CI, Builder);
 | |
|     case Intrinsic::sqrt:
 | |
|       return optimizeSqrt(CI, Builder);
 | |
|     // TODO: Use foldMallocMemset() with memset intrinsic.
 | |
|     default:
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Also try to simplify calls to fortified library functions.
 | |
|   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
 | |
|     // Try to further simplify the result.
 | |
|     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
 | |
|     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
 | |
|       // Use an IR Builder from SimplifiedCI if available instead of CI
 | |
|       // to guarantee we reach all uses we might replace later on.
 | |
|       IRBuilder<> TmpBuilder(SimplifiedCI);
 | |
|       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
 | |
|         // If we were able to further simplify, remove the now redundant call.
 | |
|         SimplifiedCI->replaceAllUsesWith(V);
 | |
|         SimplifiedCI->eraseFromParent();
 | |
|         return V;
 | |
|       }
 | |
|     }
 | |
|     return SimplifiedFortifiedCI;
 | |
|   }
 | |
| 
 | |
|   // Then check for known library functions.
 | |
|   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
 | |
|     // We never change the calling convention.
 | |
|     if (!ignoreCallingConv(Func) && !isCallingConvC)
 | |
|       return nullptr;
 | |
|     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
 | |
|       return V;
 | |
|     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
 | |
|       return V;
 | |
|     switch (Func) {
 | |
|     case LibFunc_ffs:
 | |
|     case LibFunc_ffsl:
 | |
|     case LibFunc_ffsll:
 | |
|       return optimizeFFS(CI, Builder);
 | |
|     case LibFunc_fls:
 | |
|     case LibFunc_flsl:
 | |
|     case LibFunc_flsll:
 | |
|       return optimizeFls(CI, Builder);
 | |
|     case LibFunc_abs:
 | |
|     case LibFunc_labs:
 | |
|     case LibFunc_llabs:
 | |
|       return optimizeAbs(CI, Builder);
 | |
|     case LibFunc_isdigit:
 | |
|       return optimizeIsDigit(CI, Builder);
 | |
|     case LibFunc_isascii:
 | |
|       return optimizeIsAscii(CI, Builder);
 | |
|     case LibFunc_toascii:
 | |
|       return optimizeToAscii(CI, Builder);
 | |
|     case LibFunc_printf:
 | |
|       return optimizePrintF(CI, Builder);
 | |
|     case LibFunc_sprintf:
 | |
|       return optimizeSPrintF(CI, Builder);
 | |
|     case LibFunc_fprintf:
 | |
|       return optimizeFPrintF(CI, Builder);
 | |
|     case LibFunc_fwrite:
 | |
|       return optimizeFWrite(CI, Builder);
 | |
|     case LibFunc_fputs:
 | |
|       return optimizeFPuts(CI, Builder);
 | |
|     case LibFunc_puts:
 | |
|       return optimizePuts(CI, Builder);
 | |
|     case LibFunc_perror:
 | |
|       return optimizeErrorReporting(CI, Builder);
 | |
|     case LibFunc_vfprintf:
 | |
|     case LibFunc_fiprintf:
 | |
|       return optimizeErrorReporting(CI, Builder, 0);
 | |
|     case LibFunc_fputc:
 | |
|       return optimizeErrorReporting(CI, Builder, 1);
 | |
|     default:
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| LibCallSimplifier::LibCallSimplifier(
 | |
|     const DataLayout &DL, const TargetLibraryInfo *TLI,
 | |
|     OptimizationRemarkEmitter &ORE,
 | |
|     function_ref<void(Instruction *, Value *)> Replacer)
 | |
|     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE),
 | |
|       UnsafeFPShrink(false), Replacer(Replacer) {}
 | |
| 
 | |
| void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
 | |
|   // Indirect through the replacer used in this instance.
 | |
|   Replacer(I, With);
 | |
| }
 | |
| 
 | |
| // TODO:
 | |
| //   Additional cases that we need to add to this file:
 | |
| //
 | |
| // cbrt:
 | |
| //   * cbrt(expN(X))  -> expN(x/3)
 | |
| //   * cbrt(sqrt(x))  -> pow(x,1/6)
 | |
| //   * cbrt(cbrt(x))  -> pow(x,1/9)
 | |
| //
 | |
| // exp, expf, expl:
 | |
| //   * exp(log(x))  -> x
 | |
| //
 | |
| // log, logf, logl:
 | |
| //   * log(exp(x))   -> x
 | |
| //   * log(exp(y))   -> y*log(e)
 | |
| //   * log(exp10(y)) -> y*log(10)
 | |
| //   * log(sqrt(x))  -> 0.5*log(x)
 | |
| //
 | |
| // pow, powf, powl:
 | |
| //   * pow(sqrt(x),y) -> pow(x,y*0.5)
 | |
| //   * pow(pow(x,y),z)-> pow(x,y*z)
 | |
| //
 | |
| // signbit:
 | |
| //   * signbit(cnst) -> cnst'
 | |
| //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
 | |
| //
 | |
| // sqrt, sqrtf, sqrtl:
 | |
| //   * sqrt(expN(x))  -> expN(x*0.5)
 | |
| //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
 | |
| //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
 | |
| //
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Fortified Library Call Optimizations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
 | |
|                                                          unsigned ObjSizeOp,
 | |
|                                                          unsigned SizeOp,
 | |
|                                                          bool isString) {
 | |
|   if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
 | |
|     return true;
 | |
|   if (ConstantInt *ObjSizeCI =
 | |
|           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
 | |
|     if (ObjSizeCI->isMinusOne())
 | |
|       return true;
 | |
|     // If the object size wasn't -1 (unknown), bail out if we were asked to.
 | |
|     if (OnlyLowerUnknownSize)
 | |
|       return false;
 | |
|     if (isString) {
 | |
|       uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
 | |
|       // If the length is 0 we don't know how long it is and so we can't
 | |
|       // remove the check.
 | |
|       if (Len == 0)
 | |
|         return false;
 | |
|       return ObjSizeCI->getZExtValue() >= Len;
 | |
|     }
 | |
|     if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
 | |
|       return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
 | |
|                                                      IRBuilder<> &B) {
 | |
|   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
 | |
|     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
 | |
|                    CI->getArgOperand(2), 1);
 | |
|     return CI->getArgOperand(0);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
 | |
|                                                       IRBuilder<> &B) {
 | |
|   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
 | |
|     B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
 | |
|                     CI->getArgOperand(2), 1);
 | |
|     return CI->getArgOperand(0);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
 | |
|                                                      IRBuilder<> &B) {
 | |
|   // TODO: Try foldMallocMemset() here.
 | |
| 
 | |
|   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
 | |
|     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
 | |
|     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
 | |
|     return CI->getArgOperand(0);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
 | |
|                                                       IRBuilder<> &B,
 | |
|                                                       LibFunc Func) {
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
|   StringRef Name = Callee->getName();
 | |
|   const DataLayout &DL = CI->getModule()->getDataLayout();
 | |
|   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
 | |
|         *ObjSize = CI->getArgOperand(2);
 | |
| 
 | |
|   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
 | |
|   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
 | |
|     Value *StrLen = emitStrLen(Src, B, DL, TLI);
 | |
|     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
 | |
|   }
 | |
| 
 | |
|   // If a) we don't have any length information, or b) we know this will
 | |
|   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
 | |
|   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
 | |
|   // TODO: It might be nice to get a maximum length out of the possible
 | |
|   // string lengths for varying.
 | |
|   if (isFortifiedCallFoldable(CI, 2, 1, true))
 | |
|     return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
 | |
| 
 | |
|   if (OnlyLowerUnknownSize)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
 | |
|   uint64_t Len = GetStringLength(Src);
 | |
|   if (Len == 0)
 | |
|     return nullptr;
 | |
| 
 | |
|   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
 | |
|   Value *LenV = ConstantInt::get(SizeTTy, Len);
 | |
|   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
 | |
|   // If the function was an __stpcpy_chk, and we were able to fold it into
 | |
|   // a __memcpy_chk, we still need to return the correct end pointer.
 | |
|   if (Ret && Func == LibFunc_stpcpy_chk)
 | |
|     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
 | |
|                                                        IRBuilder<> &B,
 | |
|                                                        LibFunc Func) {
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
|   StringRef Name = Callee->getName();
 | |
|   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
 | |
|     Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
 | |
|                              CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
 | |
|     return Ret;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
 | |
|   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
 | |
|   // Some clang users checked for _chk libcall availability using:
 | |
|   //   __has_builtin(__builtin___memcpy_chk)
 | |
|   // When compiling with -fno-builtin, this is always true.
 | |
|   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
 | |
|   // end up with fortified libcalls, which isn't acceptable in a freestanding
 | |
|   // environment which only provides their non-fortified counterparts.
 | |
|   //
 | |
|   // Until we change clang and/or teach external users to check for availability
 | |
|   // differently, disregard the "nobuiltin" attribute and TLI::has.
 | |
|   //
 | |
|   // PR23093.
 | |
| 
 | |
|   LibFunc Func;
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
| 
 | |
|   SmallVector<OperandBundleDef, 2> OpBundles;
 | |
|   CI->getOperandBundlesAsDefs(OpBundles);
 | |
|   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
 | |
|   bool isCallingConvC = isCallingConvCCompatible(CI);
 | |
| 
 | |
|   // First, check that this is a known library functions and that the prototype
 | |
|   // is correct.
 | |
|   if (!TLI->getLibFunc(*Callee, Func))
 | |
|     return nullptr;
 | |
| 
 | |
|   // We never change the calling convention.
 | |
|   if (!ignoreCallingConv(Func) && !isCallingConvC)
 | |
|     return nullptr;
 | |
| 
 | |
|   switch (Func) {
 | |
|   case LibFunc_memcpy_chk:
 | |
|     return optimizeMemCpyChk(CI, Builder);
 | |
|   case LibFunc_memmove_chk:
 | |
|     return optimizeMemMoveChk(CI, Builder);
 | |
|   case LibFunc_memset_chk:
 | |
|     return optimizeMemSetChk(CI, Builder);
 | |
|   case LibFunc_stpcpy_chk:
 | |
|   case LibFunc_strcpy_chk:
 | |
|     return optimizeStrpCpyChk(CI, Builder, Func);
 | |
|   case LibFunc_stpncpy_chk:
 | |
|   case LibFunc_strncpy_chk:
 | |
|     return optimizeStrpNCpyChk(CI, Builder, Func);
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
 | |
|     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
 | |
|     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
 |