forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			790 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			790 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- VPlan.h - Represent A Vectorizer Plan ------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| ///
 | |
| /// \file
 | |
| /// This file contains the declarations of the Vectorization Plan base classes:
 | |
| /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
 | |
| ///    VPBlockBase, together implementing a Hierarchical CFG;
 | |
| /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
 | |
| ///    treated as proper graphs for generic algorithms;
 | |
| /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
 | |
| ///    within VPBasicBlocks;
 | |
| /// 4. The VPlan class holding a candidate for vectorization;
 | |
| /// 5. The VPlanPrinter class providing a way to print a plan in dot format.
 | |
| /// These are documented in docs/VectorizationPlan.rst.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
 | |
| #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
 | |
| 
 | |
| #include "llvm/ADT/GraphTraits.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/ilist.h"
 | |
| #include "llvm/ADT/ilist_node.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| // The (re)use of existing LoopVectorize classes is subject to future VPlan
 | |
| // refactoring.
 | |
| namespace {
 | |
| // Forward declarations.
 | |
| //class InnerLoopVectorizer;
 | |
| class LoopVectorizationLegality;
 | |
| class LoopVectorizationCostModel;
 | |
| } // namespace
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| // Forward declarations.
 | |
| class BasicBlock;
 | |
| class InnerLoopVectorizer;
 | |
| class VPBasicBlock;
 | |
| 
 | |
| /// In what follows, the term "input IR" refers to code that is fed into the
 | |
| /// vectorizer whereas the term "output IR" refers to code that is generated by
 | |
| /// the vectorizer.
 | |
| 
 | |
| /// VPIteration represents a single point in the iteration space of the output
 | |
| /// (vectorized and/or unrolled) IR loop.
 | |
| struct VPIteration {
 | |
|   unsigned Part; ///< in [0..UF)
 | |
|   unsigned Lane; ///< in [0..VF)
 | |
| };
 | |
| 
 | |
| /// This is a helper struct for maintaining vectorization state. It's used for
 | |
| /// mapping values from the original loop to their corresponding values in
 | |
| /// the new loop. Two mappings are maintained: one for vectorized values and
 | |
| /// one for scalarized values. Vectorized values are represented with UF
 | |
| /// vector values in the new loop, and scalarized values are represented with
 | |
| /// UF x VF scalar values in the new loop. UF and VF are the unroll and
 | |
| /// vectorization factors, respectively.
 | |
| ///
 | |
| /// Entries can be added to either map with setVectorValue and setScalarValue,
 | |
| /// which assert that an entry was not already added before. If an entry is to
 | |
| /// replace an existing one, call resetVectorValue and resetScalarValue. This is
 | |
| /// currently needed to modify the mapped values during "fix-up" operations that
 | |
| /// occur once the first phase of widening is complete. These operations include
 | |
| /// type truncation and the second phase of recurrence widening.
 | |
| ///
 | |
| /// Entries from either map can be retrieved using the getVectorValue and
 | |
| /// getScalarValue functions, which assert that the desired value exists.
 | |
| 
 | |
| struct VectorizerValueMap {
 | |
| private:
 | |
|   /// The unroll factor. Each entry in the vector map contains UF vector values.
 | |
|   unsigned UF;
 | |
| 
 | |
|   /// The vectorization factor. Each entry in the scalar map contains UF x VF
 | |
|   /// scalar values.
 | |
|   unsigned VF;
 | |
| 
 | |
|   /// The vector and scalar map storage. We use std::map and not DenseMap
 | |
|   /// because insertions to DenseMap invalidate its iterators.
 | |
|   typedef SmallVector<Value *, 2> VectorParts;
 | |
|   typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts;
 | |
|   std::map<Value *, VectorParts> VectorMapStorage;
 | |
|   std::map<Value *, ScalarParts> ScalarMapStorage;
 | |
| 
 | |
| public:
 | |
|   /// Construct an empty map with the given unroll and vectorization factors.
 | |
|   VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {}
 | |
| 
 | |
|   /// \return True if the map has any vector entry for \p Key.
 | |
|   bool hasAnyVectorValue(Value *Key) const {
 | |
|     return VectorMapStorage.count(Key);
 | |
|   }
 | |
| 
 | |
|   /// \return True if the map has a vector entry for \p Key and \p Part.
 | |
|   bool hasVectorValue(Value *Key, unsigned Part) const {
 | |
|     assert(Part < UF && "Queried Vector Part is too large.");
 | |
|     if (!hasAnyVectorValue(Key))
 | |
|       return false;
 | |
|     const VectorParts &Entry = VectorMapStorage.find(Key)->second;
 | |
|     assert(Entry.size() == UF && "VectorParts has wrong dimensions.");
 | |
|     return Entry[Part] != nullptr;
 | |
|   }
 | |
| 
 | |
|   /// \return True if the map has any scalar entry for \p Key.
 | |
|   bool hasAnyScalarValue(Value *Key) const {
 | |
|     return ScalarMapStorage.count(Key);
 | |
|   }
 | |
| 
 | |
|   /// \return True if the map has a scalar entry for \p Key and \p Instance.
 | |
|   bool hasScalarValue(Value *Key, const VPIteration &Instance) const {
 | |
|     assert(Instance.Part < UF && "Queried Scalar Part is too large.");
 | |
|     assert(Instance.Lane < VF && "Queried Scalar Lane is too large.");
 | |
|     if (!hasAnyScalarValue(Key))
 | |
|       return false;
 | |
|     const ScalarParts &Entry = ScalarMapStorage.find(Key)->second;
 | |
|     assert(Entry.size() == UF && "ScalarParts has wrong dimensions.");
 | |
|     assert(Entry[Instance.Part].size() == VF &&
 | |
|            "ScalarParts has wrong dimensions.");
 | |
|     return Entry[Instance.Part][Instance.Lane] != nullptr;
 | |
|   }
 | |
| 
 | |
|   /// Retrieve the existing vector value that corresponds to \p Key and
 | |
|   /// \p Part.
 | |
|   Value *getVectorValue(Value *Key, unsigned Part) {
 | |
|     assert(hasVectorValue(Key, Part) && "Getting non-existent value.");
 | |
|     return VectorMapStorage[Key][Part];
 | |
|   }
 | |
| 
 | |
|   /// Retrieve the existing scalar value that corresponds to \p Key and
 | |
|   /// \p Instance.
 | |
|   Value *getScalarValue(Value *Key, const VPIteration &Instance) {
 | |
|     assert(hasScalarValue(Key, Instance) && "Getting non-existent value.");
 | |
|     return ScalarMapStorage[Key][Instance.Part][Instance.Lane];
 | |
|   }
 | |
| 
 | |
|   /// Set a vector value associated with \p Key and \p Part. Assumes such a
 | |
|   /// value is not already set. If it is, use resetVectorValue() instead.
 | |
|   void setVectorValue(Value *Key, unsigned Part, Value *Vector) {
 | |
|     assert(!hasVectorValue(Key, Part) && "Vector value already set for part");
 | |
|     if (!VectorMapStorage.count(Key)) {
 | |
|       VectorParts Entry(UF);
 | |
|       VectorMapStorage[Key] = Entry;
 | |
|     }
 | |
|     VectorMapStorage[Key][Part] = Vector;
 | |
|   }
 | |
| 
 | |
|   /// Set a scalar value associated with \p Key and \p Instance. Assumes such a
 | |
|   /// value is not already set.
 | |
|   void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) {
 | |
|     assert(!hasScalarValue(Key, Instance) && "Scalar value already set");
 | |
|     if (!ScalarMapStorage.count(Key)) {
 | |
|       ScalarParts Entry(UF);
 | |
|       // TODO: Consider storing uniform values only per-part, as they occupy
 | |
|       //       lane 0 only, keeping the other VF-1 redundant entries null.
 | |
|       for (unsigned Part = 0; Part < UF; ++Part)
 | |
|         Entry[Part].resize(VF, nullptr);
 | |
|       ScalarMapStorage[Key] = Entry;
 | |
|     }
 | |
|     ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
 | |
|   }
 | |
| 
 | |
|   /// Reset the vector value associated with \p Key for the given \p Part.
 | |
|   /// This function can be used to update values that have already been
 | |
|   /// vectorized. This is the case for "fix-up" operations including type
 | |
|   /// truncation and the second phase of recurrence vectorization.
 | |
|   void resetVectorValue(Value *Key, unsigned Part, Value *Vector) {
 | |
|     assert(hasVectorValue(Key, Part) && "Vector value not set for part");
 | |
|     VectorMapStorage[Key][Part] = Vector;
 | |
|   }
 | |
| 
 | |
|   /// Reset the scalar value associated with \p Key for \p Part and \p Lane.
 | |
|   /// This function can be used to update values that have already been
 | |
|   /// scalarized. This is the case for "fix-up" operations including scalar phi
 | |
|   /// nodes for scalarized and predicated instructions.
 | |
|   void resetScalarValue(Value *Key, const VPIteration &Instance,
 | |
|                         Value *Scalar) {
 | |
|     assert(hasScalarValue(Key, Instance) &&
 | |
|            "Scalar value not set for part and lane");
 | |
|     ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// VPTransformState holds information passed down when "executing" a VPlan,
 | |
| /// needed for generating the output IR.
 | |
| struct VPTransformState {
 | |
| 
 | |
|   VPTransformState(unsigned VF, unsigned UF, class LoopInfo *LI,
 | |
|                    class DominatorTree *DT, IRBuilder<> &Builder,
 | |
|                    VectorizerValueMap &ValueMap, InnerLoopVectorizer *ILV)
 | |
|       : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder),
 | |
|         ValueMap(ValueMap), ILV(ILV) {}
 | |
| 
 | |
|   /// The chosen Vectorization and Unroll Factors of the loop being vectorized.
 | |
|   unsigned VF;
 | |
|   unsigned UF;
 | |
| 
 | |
|   /// Hold the indices to generate specific scalar instructions. Null indicates
 | |
|   /// that all instances are to be generated, using either scalar or vector
 | |
|   /// instructions.
 | |
|   Optional<VPIteration> Instance;
 | |
| 
 | |
|   /// Hold state information used when constructing the CFG of the output IR,
 | |
|   /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
 | |
|   struct CFGState {
 | |
|     /// The previous VPBasicBlock visited. Initially set to null.
 | |
|     VPBasicBlock *PrevVPBB;
 | |
|     /// The previous IR BasicBlock created or used. Initially set to the new
 | |
|     /// header BasicBlock.
 | |
|     BasicBlock *PrevBB;
 | |
|     /// The last IR BasicBlock in the output IR. Set to the new latch
 | |
|     /// BasicBlock, used for placing the newly created BasicBlocks.
 | |
|     BasicBlock *LastBB;
 | |
|     /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
 | |
|     /// of replication, maps the BasicBlock of the last replica created.
 | |
|     SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
 | |
| 
 | |
|     CFGState() : PrevVPBB(nullptr), PrevBB(nullptr), LastBB(nullptr) {}
 | |
|   } CFG;
 | |
| 
 | |
|   /// Hold a pointer to LoopInfo to register new basic blocks in the loop.
 | |
|   class LoopInfo *LI;
 | |
| 
 | |
|   /// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
 | |
|   class DominatorTree *DT;
 | |
| 
 | |
|   /// Hold a reference to the IRBuilder used to generate output IR code.
 | |
|   IRBuilder<> &Builder;
 | |
| 
 | |
|   /// Hold a reference to the Value state information used when generating the
 | |
|   /// Values of the output IR.
 | |
|   VectorizerValueMap &ValueMap;
 | |
| 
 | |
|   /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
 | |
|   class InnerLoopVectorizer *ILV;
 | |
| };
 | |
| 
 | |
| /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
 | |
| /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
 | |
| class VPBlockBase {
 | |
| private:
 | |
|   const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
 | |
| 
 | |
|   /// An optional name for the block.
 | |
|   std::string Name;
 | |
| 
 | |
|   /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
 | |
|   /// it is a topmost VPBlockBase.
 | |
|   class VPRegionBlock *Parent;
 | |
| 
 | |
|   /// List of predecessor blocks.
 | |
|   SmallVector<VPBlockBase *, 1> Predecessors;
 | |
| 
 | |
|   /// List of successor blocks.
 | |
|   SmallVector<VPBlockBase *, 1> Successors;
 | |
| 
 | |
|   /// Add \p Successor as the last successor to this block.
 | |
|   void appendSuccessor(VPBlockBase *Successor) {
 | |
|     assert(Successor && "Cannot add nullptr successor!");
 | |
|     Successors.push_back(Successor);
 | |
|   }
 | |
| 
 | |
|   /// Add \p Predecessor as the last predecessor to this block.
 | |
|   void appendPredecessor(VPBlockBase *Predecessor) {
 | |
|     assert(Predecessor && "Cannot add nullptr predecessor!");
 | |
|     Predecessors.push_back(Predecessor);
 | |
|   }
 | |
| 
 | |
|   /// Remove \p Predecessor from the predecessors of this block.
 | |
|   void removePredecessor(VPBlockBase *Predecessor) {
 | |
|     auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor);
 | |
|     assert(Pos && "Predecessor does not exist");
 | |
|     Predecessors.erase(Pos);
 | |
|   }
 | |
| 
 | |
|   /// Remove \p Successor from the successors of this block.
 | |
|   void removeSuccessor(VPBlockBase *Successor) {
 | |
|     auto Pos = std::find(Successors.begin(), Successors.end(), Successor);
 | |
|     assert(Pos && "Successor does not exist");
 | |
|     Successors.erase(Pos);
 | |
|   }
 | |
| 
 | |
| protected:
 | |
|   VPBlockBase(const unsigned char SC, const std::string &N)
 | |
|       : SubclassID(SC), Name(N), Parent(nullptr) {}
 | |
| 
 | |
| public:
 | |
|   /// An enumeration for keeping track of the concrete subclass of VPBlockBase
 | |
|   /// that are actually instantiated. Values of this enumeration are kept in the
 | |
|   /// SubclassID field of the VPBlockBase objects. They are used for concrete
 | |
|   /// type identification.
 | |
|   typedef enum { VPBasicBlockSC, VPRegionBlockSC } VPBlockTy;
 | |
| 
 | |
|   typedef SmallVectorImpl<VPBlockBase *> VPBlocksTy;
 | |
| 
 | |
|   virtual ~VPBlockBase() {}
 | |
| 
 | |
|   const std::string &getName() const { return Name; }
 | |
| 
 | |
|   void setName(const Twine &newName) { Name = newName.str(); }
 | |
| 
 | |
|   /// \return an ID for the concrete type of this object.
 | |
|   /// This is used to implement the classof checks. This should not be used
 | |
|   /// for any other purpose, as the values may change as LLVM evolves.
 | |
|   unsigned getVPBlockID() const { return SubclassID; }
 | |
| 
 | |
|   const VPRegionBlock *getParent() const { return Parent; }
 | |
| 
 | |
|   void setParent(VPRegionBlock *P) { Parent = P; }
 | |
| 
 | |
|   /// \return the VPBasicBlock that is the entry of this VPBlockBase,
 | |
|   /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
 | |
|   /// VPBlockBase is a VPBasicBlock, it is returned.
 | |
|   const VPBasicBlock *getEntryBasicBlock() const;
 | |
|   VPBasicBlock *getEntryBasicBlock();
 | |
| 
 | |
|   /// \return the VPBasicBlock that is the exit of this VPBlockBase,
 | |
|   /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
 | |
|   /// VPBlockBase is a VPBasicBlock, it is returned.
 | |
|   const VPBasicBlock *getExitBasicBlock() const;
 | |
|   VPBasicBlock *getExitBasicBlock();
 | |
| 
 | |
|   const VPBlocksTy &getSuccessors() const { return Successors; }
 | |
|   VPBlocksTy &getSuccessors() { return Successors; }
 | |
| 
 | |
|   const VPBlocksTy &getPredecessors() const { return Predecessors; }
 | |
|   VPBlocksTy &getPredecessors() { return Predecessors; }
 | |
| 
 | |
|   /// \return the successor of this VPBlockBase if it has a single successor.
 | |
|   /// Otherwise return a null pointer.
 | |
|   VPBlockBase *getSingleSuccessor() const {
 | |
|     return (Successors.size() == 1 ? *Successors.begin() : nullptr);
 | |
|   }
 | |
| 
 | |
|   /// \return the predecessor of this VPBlockBase if it has a single
 | |
|   /// predecessor. Otherwise return a null pointer.
 | |
|   VPBlockBase *getSinglePredecessor() const {
 | |
|     return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
 | |
|   }
 | |
| 
 | |
|   /// An Enclosing Block of a block B is any block containing B, including B
 | |
|   /// itself. \return the closest enclosing block starting from "this", which
 | |
|   /// has successors. \return the root enclosing block if all enclosing blocks
 | |
|   /// have no successors.
 | |
|   VPBlockBase *getEnclosingBlockWithSuccessors();
 | |
| 
 | |
|   /// \return the closest enclosing block starting from "this", which has
 | |
|   /// predecessors. \return the root enclosing block if all enclosing blocks
 | |
|   /// have no predecessors.
 | |
|   VPBlockBase *getEnclosingBlockWithPredecessors();
 | |
| 
 | |
|   /// \return the successors either attached directly to this VPBlockBase or, if
 | |
|   /// this VPBlockBase is the exit block of a VPRegionBlock and has no
 | |
|   /// successors of its own, search recursively for the first enclosing
 | |
|   /// VPRegionBlock that has successors and return them. If no such
 | |
|   /// VPRegionBlock exists, return the (empty) successors of the topmost
 | |
|   /// VPBlockBase reached.
 | |
|   const VPBlocksTy &getHierarchicalSuccessors() {
 | |
|     return getEnclosingBlockWithSuccessors()->getSuccessors();
 | |
|   }
 | |
| 
 | |
|   /// \return the hierarchical successor of this VPBlockBase if it has a single
 | |
|   /// hierarchical successor. Otherwise return a null pointer.
 | |
|   VPBlockBase *getSingleHierarchicalSuccessor() {
 | |
|     return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
 | |
|   }
 | |
| 
 | |
|   /// \return the predecessors either attached directly to this VPBlockBase or,
 | |
|   /// if this VPBlockBase is the entry block of a VPRegionBlock and has no
 | |
|   /// predecessors of its own, search recursively for the first enclosing
 | |
|   /// VPRegionBlock that has predecessors and return them. If no such
 | |
|   /// VPRegionBlock exists, return the (empty) predecessors of the topmost
 | |
|   /// VPBlockBase reached.
 | |
|   const VPBlocksTy &getHierarchicalPredecessors() {
 | |
|     return getEnclosingBlockWithPredecessors()->getPredecessors();
 | |
|   }
 | |
| 
 | |
|   /// \return the hierarchical predecessor of this VPBlockBase if it has a
 | |
|   /// single hierarchical predecessor. Otherwise return a null pointer.
 | |
|   VPBlockBase *getSingleHierarchicalPredecessor() {
 | |
|     return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
 | |
|   }
 | |
| 
 | |
|   /// Sets a given VPBlockBase \p Successor as the single successor and \return
 | |
|   /// \p Successor. The parent of this Block is copied to be the parent of
 | |
|   /// \p Successor.
 | |
|   VPBlockBase *setOneSuccessor(VPBlockBase *Successor) {
 | |
|     assert(Successors.empty() && "Setting one successor when others exist.");
 | |
|     appendSuccessor(Successor);
 | |
|     Successor->appendPredecessor(this);
 | |
|     Successor->Parent = Parent;
 | |
|     return Successor;
 | |
|   }
 | |
| 
 | |
|   /// Sets two given VPBlockBases \p IfTrue and \p IfFalse to be the two
 | |
|   /// successors. The parent of this Block is copied to be the parent of both
 | |
|   /// \p IfTrue and \p IfFalse.
 | |
|   void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse) {
 | |
|     assert(Successors.empty() && "Setting two successors when others exist.");
 | |
|     appendSuccessor(IfTrue);
 | |
|     appendSuccessor(IfFalse);
 | |
|     IfTrue->appendPredecessor(this);
 | |
|     IfFalse->appendPredecessor(this);
 | |
|     IfTrue->Parent = Parent;
 | |
|     IfFalse->Parent = Parent;
 | |
|   }
 | |
| 
 | |
|   void disconnectSuccessor(VPBlockBase *Successor) {
 | |
|     assert(Successor && "Successor to disconnect is null.");
 | |
|     removeSuccessor(Successor);
 | |
|     Successor->removePredecessor(this);
 | |
|   }
 | |
| 
 | |
|   /// The method which generates the output IR that correspond to this
 | |
|   /// VPBlockBase, thereby "executing" the VPlan.
 | |
|   virtual void execute(struct VPTransformState *State) = 0;
 | |
| 
 | |
|   /// Delete all blocks reachable from a given VPBlockBase, inclusive.
 | |
|   static void deleteCFG(VPBlockBase *Entry);
 | |
| };
 | |
| 
 | |
| /// VPRecipeBase is a base class modeling a sequence of one or more output IR
 | |
| /// instructions.
 | |
| class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> {
 | |
|   friend VPBasicBlock;
 | |
| 
 | |
| private:
 | |
|   const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
 | |
| 
 | |
|   /// Each VPRecipe belongs to a single VPBasicBlock.
 | |
|   VPBasicBlock *Parent;
 | |
| 
 | |
| public:
 | |
|   /// An enumeration for keeping track of the concrete subclass of VPRecipeBase
 | |
|   /// that is actually instantiated. Values of this enumeration are kept in the
 | |
|   /// SubclassID field of the VPRecipeBase objects. They are used for concrete
 | |
|   /// type identification.
 | |
|   typedef enum {
 | |
|     VPBranchOnMaskSC,
 | |
|     VPInterleaveSC,
 | |
|     VPPredInstPHISC,
 | |
|     VPReplicateSC,
 | |
|     VPWidenIntOrFpInductionSC,
 | |
|     VPWidenPHISC,
 | |
|     VPWidenSC,
 | |
|   } VPRecipeTy;
 | |
| 
 | |
|   VPRecipeBase(const unsigned char SC) : SubclassID(SC), Parent(nullptr) {}
 | |
| 
 | |
|   virtual ~VPRecipeBase() {}
 | |
| 
 | |
|   /// \return an ID for the concrete type of this object.
 | |
|   /// This is used to implement the classof checks. This should not be used
 | |
|   /// for any other purpose, as the values may change as LLVM evolves.
 | |
|   unsigned getVPRecipeID() const { return SubclassID; }
 | |
| 
 | |
|   /// \return the VPBasicBlock which this VPRecipe belongs to.
 | |
|   VPBasicBlock *getParent() { return Parent; }
 | |
|   const VPBasicBlock *getParent() const { return Parent; }
 | |
| 
 | |
|   /// The method which generates the output IR instructions that correspond to
 | |
|   /// this VPRecipe, thereby "executing" the VPlan.
 | |
|   virtual void execute(struct VPTransformState &State) = 0;
 | |
| 
 | |
|   /// Each recipe prints itself.
 | |
|   virtual void print(raw_ostream &O, const Twine &Indent) const = 0;
 | |
| };
 | |
| 
 | |
| /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
 | |
| /// holds a sequence of zero or more VPRecipe's each representing a sequence of
 | |
| /// output IR instructions.
 | |
| class VPBasicBlock : public VPBlockBase {
 | |
| public:
 | |
|   typedef iplist<VPRecipeBase> RecipeListTy;
 | |
| 
 | |
| private:
 | |
|   /// The VPRecipes held in the order of output instructions to generate.
 | |
|   RecipeListTy Recipes;
 | |
| 
 | |
| public:
 | |
|   /// Instruction iterators...
 | |
|   typedef RecipeListTy::iterator iterator;
 | |
|   typedef RecipeListTy::const_iterator const_iterator;
 | |
|   typedef RecipeListTy::reverse_iterator reverse_iterator;
 | |
|   typedef RecipeListTy::const_reverse_iterator const_reverse_iterator;
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// Recipe iterator methods
 | |
|   ///
 | |
|   inline iterator begin() { return Recipes.begin(); }
 | |
|   inline const_iterator begin() const { return Recipes.begin(); }
 | |
|   inline iterator end() { return Recipes.end(); }
 | |
|   inline const_iterator end() const { return Recipes.end(); }
 | |
| 
 | |
|   inline reverse_iterator rbegin() { return Recipes.rbegin(); }
 | |
|   inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
 | |
|   inline reverse_iterator rend() { return Recipes.rend(); }
 | |
|   inline const_reverse_iterator rend() const { return Recipes.rend(); }
 | |
| 
 | |
|   inline size_t size() const { return Recipes.size(); }
 | |
|   inline bool empty() const { return Recipes.empty(); }
 | |
|   inline const VPRecipeBase &front() const { return Recipes.front(); }
 | |
|   inline VPRecipeBase &front() { return Recipes.front(); }
 | |
|   inline const VPRecipeBase &back() const { return Recipes.back(); }
 | |
|   inline VPRecipeBase &back() { return Recipes.back(); }
 | |
| 
 | |
|   /// \brief Returns a pointer to a member of the recipe list.
 | |
|   static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
 | |
|     return &VPBasicBlock::Recipes;
 | |
|   }
 | |
| 
 | |
|   VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
 | |
|       : VPBlockBase(VPBasicBlockSC, Name.str()) {
 | |
|     if (Recipe)
 | |
|       appendRecipe(Recipe);
 | |
|   }
 | |
| 
 | |
|   ~VPBasicBlock() { Recipes.clear(); }
 | |
| 
 | |
|   /// Method to support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const VPBlockBase *V) {
 | |
|     return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
 | |
|   }
 | |
| 
 | |
|   /// Augment the existing recipes of a VPBasicBlock with an additional
 | |
|   /// \p Recipe as the last recipe.
 | |
|   void appendRecipe(VPRecipeBase *Recipe) {
 | |
|     assert(Recipe && "No recipe to append.");
 | |
|     assert(!Recipe->Parent && "Recipe already in VPlan");
 | |
|     Recipe->Parent = this;
 | |
|     return Recipes.push_back(Recipe);
 | |
|   }
 | |
| 
 | |
|   /// The method which generates the output IR instructions that correspond to
 | |
|   /// this VPBasicBlock, thereby "executing" the VPlan.
 | |
|   void execute(struct VPTransformState *State) override;
 | |
| 
 | |
| private:
 | |
|   /// Create an IR BasicBlock to hold the output instructions generated by this
 | |
|   /// VPBasicBlock, and return it. Update the CFGState accordingly.
 | |
|   BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
 | |
| };
 | |
| 
 | |
| /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
 | |
| /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
 | |
| /// A VPRegionBlock may indicate that its contents are to be replicated several
 | |
| /// times. This is designed to support predicated scalarization, in which a
 | |
| /// scalar if-then code structure needs to be generated VF * UF times. Having
 | |
| /// this replication indicator helps to keep a single model for multiple
 | |
| /// candidate VF's. The actual replication takes place only once the desired VF
 | |
| /// and UF have been determined.
 | |
| class VPRegionBlock : public VPBlockBase {
 | |
| private:
 | |
|   /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
 | |
|   VPBlockBase *Entry;
 | |
| 
 | |
|   /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
 | |
|   VPBlockBase *Exit;
 | |
| 
 | |
|   /// An indicator whether this region is to generate multiple replicated
 | |
|   /// instances of output IR corresponding to its VPBlockBases.
 | |
|   bool IsReplicator;
 | |
| 
 | |
| public:
 | |
|   VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit,
 | |
|                 const std::string &Name = "", bool IsReplicator = false)
 | |
|       : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
 | |
|         IsReplicator(IsReplicator) {
 | |
|     assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
 | |
|     assert(Exit->getSuccessors().empty() && "Exit block has successors.");
 | |
|     Entry->setParent(this);
 | |
|     Exit->setParent(this);
 | |
|   }
 | |
| 
 | |
|   ~VPRegionBlock() {
 | |
|     if (Entry)
 | |
|       deleteCFG(Entry);
 | |
|   }
 | |
| 
 | |
|   /// Method to support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const VPBlockBase *V) {
 | |
|     return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
 | |
|   }
 | |
| 
 | |
|   const VPBlockBase *getEntry() const { return Entry; }
 | |
|   VPBlockBase *getEntry() { return Entry; }
 | |
| 
 | |
|   const VPBlockBase *getExit() const { return Exit; }
 | |
|   VPBlockBase *getExit() { return Exit; }
 | |
| 
 | |
|   /// An indicator whether this region is to generate multiple replicated
 | |
|   /// instances of output IR corresponding to its VPBlockBases.
 | |
|   bool isReplicator() const { return IsReplicator; }
 | |
| 
 | |
|   /// The method which generates the output IR instructions that correspond to
 | |
|   /// this VPRegionBlock, thereby "executing" the VPlan.
 | |
|   void execute(struct VPTransformState *State) override;
 | |
| };
 | |
| 
 | |
| /// VPlan models a candidate for vectorization, encoding various decisions take
 | |
| /// to produce efficient output IR, including which branches, basic-blocks and
 | |
| /// output IR instructions to generate, and their cost. VPlan holds a
 | |
| /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
 | |
| /// VPBlock.
 | |
| class VPlan {
 | |
| private:
 | |
|   /// Hold the single entry to the Hierarchical CFG of the VPlan.
 | |
|   VPBlockBase *Entry;
 | |
| 
 | |
|   /// Holds the VFs applicable to this VPlan.
 | |
|   SmallSet<unsigned, 2> VFs;
 | |
| 
 | |
|   /// Holds the name of the VPlan, for printing.
 | |
|   std::string Name;
 | |
| 
 | |
| public:
 | |
|   VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {}
 | |
| 
 | |
|   ~VPlan() {
 | |
|     if (Entry)
 | |
|       VPBlockBase::deleteCFG(Entry);
 | |
|   }
 | |
| 
 | |
|   /// Generate the IR code for this VPlan.
 | |
|   void execute(struct VPTransformState *State);
 | |
| 
 | |
|   VPBlockBase *getEntry() { return Entry; }
 | |
|   const VPBlockBase *getEntry() const { return Entry; }
 | |
| 
 | |
|   VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; }
 | |
| 
 | |
|   void addVF(unsigned VF) { VFs.insert(VF); }
 | |
| 
 | |
|   bool hasVF(unsigned VF) { return VFs.count(VF); }
 | |
| 
 | |
|   const std::string &getName() const { return Name; }
 | |
| 
 | |
|   void setName(const Twine &newName) { Name = newName.str(); }
 | |
| 
 | |
| private:
 | |
|   /// Add to the given dominator tree the header block and every new basic block
 | |
|   /// that was created between it and the latch block, inclusive.
 | |
|   static void updateDominatorTree(class DominatorTree *DT,
 | |
|                                   BasicBlock *LoopPreHeaderBB,
 | |
|                                   BasicBlock *LoopLatchBB);
 | |
| };
 | |
| 
 | |
| /// VPlanPrinter prints a given VPlan to a given output stream. The printing is
 | |
| /// indented and follows the dot format.
 | |
| class VPlanPrinter {
 | |
|   friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan);
 | |
|   friend inline raw_ostream &operator<<(raw_ostream &OS,
 | |
|                                         const struct VPlanIngredient &I);
 | |
| 
 | |
| private:
 | |
|   raw_ostream &OS;
 | |
|   VPlan &Plan;
 | |
|   unsigned Depth;
 | |
|   unsigned TabWidth = 2;
 | |
|   std::string Indent;
 | |
| 
 | |
|   unsigned BID = 0;
 | |
| 
 | |
|   SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
 | |
| 
 | |
|   /// Handle indentation.
 | |
|   void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
 | |
| 
 | |
|   /// Print a given \p Block of the Plan.
 | |
|   void dumpBlock(const VPBlockBase *Block);
 | |
| 
 | |
|   /// Print the information related to the CFG edges going out of a given
 | |
|   /// \p Block, followed by printing the successor blocks themselves.
 | |
|   void dumpEdges(const VPBlockBase *Block);
 | |
| 
 | |
|   /// Print a given \p BasicBlock, including its VPRecipes, followed by printing
 | |
|   /// its successor blocks.
 | |
|   void dumpBasicBlock(const VPBasicBlock *BasicBlock);
 | |
| 
 | |
|   /// Print a given \p Region of the Plan.
 | |
|   void dumpRegion(const VPRegionBlock *Region);
 | |
| 
 | |
|   unsigned getOrCreateBID(const VPBlockBase *Block) {
 | |
|     return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
 | |
|   }
 | |
| 
 | |
|   const Twine getOrCreateName(const VPBlockBase *Block);
 | |
| 
 | |
|   const Twine getUID(const VPBlockBase *Block);
 | |
| 
 | |
|   /// Print the information related to a CFG edge between two VPBlockBases.
 | |
|   void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
 | |
|                 const Twine &Label);
 | |
| 
 | |
|   VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {}
 | |
| 
 | |
|   void dump();
 | |
| 
 | |
|   static void printAsIngredient(raw_ostream &O, Value *V);
 | |
| };
 | |
| 
 | |
| struct VPlanIngredient {
 | |
|   Value *V;
 | |
|   VPlanIngredient(Value *V) : V(V) {}
 | |
| };
 | |
| 
 | |
| inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
 | |
|   VPlanPrinter::printAsIngredient(OS, I.V);
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) {
 | |
|   VPlanPrinter Printer(OS, Plan);
 | |
|   Printer.dump();
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| //===--------------------------------------------------------------------===//
 | |
| // GraphTraits specializations for VPlan/VPRegionBlock Control-Flow Graphs  //
 | |
| //===--------------------------------------------------------------------===//
 | |
| 
 | |
| // Provide specializations of GraphTraits to be able to treat a VPBlockBase as a
 | |
| // graph of VPBlockBase nodes...
 | |
| 
 | |
| template <> struct GraphTraits<VPBlockBase *> {
 | |
|   typedef VPBlockBase *NodeRef;
 | |
|   typedef SmallVectorImpl<VPBlockBase *>::iterator ChildIteratorType;
 | |
| 
 | |
|   static NodeRef getEntryNode(NodeRef N) { return N; }
 | |
| 
 | |
|   static inline ChildIteratorType child_begin(NodeRef N) {
 | |
|     return N->getSuccessors().begin();
 | |
|   }
 | |
| 
 | |
|   static inline ChildIteratorType child_end(NodeRef N) {
 | |
|     return N->getSuccessors().end();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <> struct GraphTraits<const VPBlockBase *> {
 | |
|   typedef const VPBlockBase *NodeRef;
 | |
|   typedef SmallVectorImpl<VPBlockBase *>::const_iterator ChildIteratorType;
 | |
| 
 | |
|   static NodeRef getEntryNode(NodeRef N) { return N; }
 | |
| 
 | |
|   static inline ChildIteratorType child_begin(NodeRef N) {
 | |
|     return N->getSuccessors().begin();
 | |
|   }
 | |
| 
 | |
|   static inline ChildIteratorType child_end(NodeRef N) {
 | |
|     return N->getSuccessors().end();
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Provide specializations of GraphTraits to be able to treat a VPBlockBase as a
 | |
| // graph of VPBlockBase nodes... and to walk it in inverse order. Inverse order
 | |
| // for a VPBlockBase is considered to be when traversing the predecessors of a
 | |
| // VPBlockBase instead of its successors.
 | |
| //
 | |
| 
 | |
| template <> struct GraphTraits<Inverse<VPBlockBase *>> {
 | |
|   typedef VPBlockBase *NodeRef;
 | |
|   typedef SmallVectorImpl<VPBlockBase *>::iterator ChildIteratorType;
 | |
| 
 | |
|   static Inverse<VPBlockBase *> getEntryNode(Inverse<VPBlockBase *> B) {
 | |
|     return B;
 | |
|   }
 | |
| 
 | |
|   static inline ChildIteratorType child_begin(NodeRef N) {
 | |
|     return N->getPredecessors().begin();
 | |
|   }
 | |
| 
 | |
|   static inline ChildIteratorType child_end(NodeRef N) {
 | |
|     return N->getPredecessors().end();
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // namespace llvm
 | |
| 
 | |
| #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
 |