forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			10806 lines
		
	
	
		
			390 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			10806 lines
		
	
	
		
			390 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements the ASTContext interface.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "CXXABI.h"
 | |
| #include "Interp/Context.h"
 | |
| #include "clang/AST/APValue.h"
 | |
| #include "clang/AST/ASTConcept.h"
 | |
| #include "clang/AST/ASTMutationListener.h"
 | |
| #include "clang/AST/ASTTypeTraits.h"
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/AST/AttrIterator.h"
 | |
| #include "clang/AST/CharUnits.h"
 | |
| #include "clang/AST/Comment.h"
 | |
| #include "clang/AST/Decl.h"
 | |
| #include "clang/AST/DeclBase.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclContextInternals.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/DeclOpenMP.h"
 | |
| #include "clang/AST/DeclTemplate.h"
 | |
| #include "clang/AST/DeclarationName.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/ExprConcepts.h"
 | |
| #include "clang/AST/ExternalASTSource.h"
 | |
| #include "clang/AST/Mangle.h"
 | |
| #include "clang/AST/MangleNumberingContext.h"
 | |
| #include "clang/AST/NestedNameSpecifier.h"
 | |
| #include "clang/AST/ParentMapContext.h"
 | |
| #include "clang/AST/RawCommentList.h"
 | |
| #include "clang/AST/RecordLayout.h"
 | |
| #include "clang/AST/Stmt.h"
 | |
| #include "clang/AST/TemplateBase.h"
 | |
| #include "clang/AST/TemplateName.h"
 | |
| #include "clang/AST/Type.h"
 | |
| #include "clang/AST/TypeLoc.h"
 | |
| #include "clang/AST/UnresolvedSet.h"
 | |
| #include "clang/AST/VTableBuilder.h"
 | |
| #include "clang/Basic/AddressSpaces.h"
 | |
| #include "clang/Basic/Builtins.h"
 | |
| #include "clang/Basic/CommentOptions.h"
 | |
| #include "clang/Basic/ExceptionSpecificationType.h"
 | |
| #include "clang/Basic/FixedPoint.h"
 | |
| #include "clang/Basic/IdentifierTable.h"
 | |
| #include "clang/Basic/LLVM.h"
 | |
| #include "clang/Basic/LangOptions.h"
 | |
| #include "clang/Basic/Linkage.h"
 | |
| #include "clang/Basic/Module.h"
 | |
| #include "clang/Basic/ObjCRuntime.h"
 | |
| #include "clang/Basic/SanitizerBlacklist.h"
 | |
| #include "clang/Basic/SourceLocation.h"
 | |
| #include "clang/Basic/SourceManager.h"
 | |
| #include "clang/Basic/Specifiers.h"
 | |
| #include "clang/Basic/TargetCXXABI.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/Basic/XRayLists.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/APSInt.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/FoldingSet.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/PointerUnion.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/Support/Capacity.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <cstdlib>
 | |
| #include <map>
 | |
| #include <memory>
 | |
| #include <string>
 | |
| #include <tuple>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace clang;
 | |
| 
 | |
| enum FloatingRank {
 | |
|   Float16Rank, HalfRank, FloatRank, DoubleRank, LongDoubleRank, Float128Rank
 | |
| };
 | |
| 
 | |
| /// \returns location that is relevant when searching for Doc comments related
 | |
| /// to \p D.
 | |
| static SourceLocation getDeclLocForCommentSearch(const Decl *D,
 | |
|                                                  SourceManager &SourceMgr) {
 | |
|   assert(D);
 | |
| 
 | |
|   // User can not attach documentation to implicit declarations.
 | |
|   if (D->isImplicit())
 | |
|     return {};
 | |
| 
 | |
|   // User can not attach documentation to implicit instantiations.
 | |
|   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
 | |
|     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
 | |
|       return {};
 | |
|   }
 | |
| 
 | |
|   if (const auto *VD = dyn_cast<VarDecl>(D)) {
 | |
|     if (VD->isStaticDataMember() &&
 | |
|         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
 | |
|       return {};
 | |
|   }
 | |
| 
 | |
|   if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
 | |
|     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
 | |
|       return {};
 | |
|   }
 | |
| 
 | |
|   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
 | |
|     TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
 | |
|     if (TSK == TSK_ImplicitInstantiation ||
 | |
|         TSK == TSK_Undeclared)
 | |
|       return {};
 | |
|   }
 | |
| 
 | |
|   if (const auto *ED = dyn_cast<EnumDecl>(D)) {
 | |
|     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
 | |
|       return {};
 | |
|   }
 | |
|   if (const auto *TD = dyn_cast<TagDecl>(D)) {
 | |
|     // When tag declaration (but not definition!) is part of the
 | |
|     // decl-specifier-seq of some other declaration, it doesn't get comment
 | |
|     if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
 | |
|       return {};
 | |
|   }
 | |
|   // TODO: handle comments for function parameters properly.
 | |
|   if (isa<ParmVarDecl>(D))
 | |
|     return {};
 | |
| 
 | |
|   // TODO: we could look up template parameter documentation in the template
 | |
|   // documentation.
 | |
|   if (isa<TemplateTypeParmDecl>(D) ||
 | |
|       isa<NonTypeTemplateParmDecl>(D) ||
 | |
|       isa<TemplateTemplateParmDecl>(D))
 | |
|     return {};
 | |
| 
 | |
|   // Find declaration location.
 | |
|   // For Objective-C declarations we generally don't expect to have multiple
 | |
|   // declarators, thus use declaration starting location as the "declaration
 | |
|   // location".
 | |
|   // For all other declarations multiple declarators are used quite frequently,
 | |
|   // so we use the location of the identifier as the "declaration location".
 | |
|   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
 | |
|       isa<ObjCPropertyDecl>(D) ||
 | |
|       isa<RedeclarableTemplateDecl>(D) ||
 | |
|       isa<ClassTemplateSpecializationDecl>(D) ||
 | |
|       // Allow association with Y across {} in `typedef struct X {} Y`.
 | |
|       isa<TypedefDecl>(D))
 | |
|     return D->getBeginLoc();
 | |
|   else {
 | |
|     const SourceLocation DeclLoc = D->getLocation();
 | |
|     if (DeclLoc.isMacroID()) {
 | |
|       if (isa<TypedefDecl>(D)) {
 | |
|         // If location of the typedef name is in a macro, it is because being
 | |
|         // declared via a macro. Try using declaration's starting location as
 | |
|         // the "declaration location".
 | |
|         return D->getBeginLoc();
 | |
|       } else if (const auto *TD = dyn_cast<TagDecl>(D)) {
 | |
|         // If location of the tag decl is inside a macro, but the spelling of
 | |
|         // the tag name comes from a macro argument, it looks like a special
 | |
|         // macro like NS_ENUM is being used to define the tag decl.  In that
 | |
|         // case, adjust the source location to the expansion loc so that we can
 | |
|         // attach the comment to the tag decl.
 | |
|         if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
 | |
|             TD->isCompleteDefinition())
 | |
|           return SourceMgr.getExpansionLoc(DeclLoc);
 | |
|       }
 | |
|     }
 | |
|     return DeclLoc;
 | |
|   }
 | |
| 
 | |
|   return {};
 | |
| }
 | |
| 
 | |
| RawComment *ASTContext::getRawCommentForDeclNoCacheImpl(
 | |
|     const Decl *D, const SourceLocation RepresentativeLocForDecl,
 | |
|     const std::map<unsigned, RawComment *> &CommentsInTheFile) const {
 | |
|   // If the declaration doesn't map directly to a location in a file, we
 | |
|   // can't find the comment.
 | |
|   if (RepresentativeLocForDecl.isInvalid() ||
 | |
|       !RepresentativeLocForDecl.isFileID())
 | |
|     return nullptr;
 | |
| 
 | |
|   // If there are no comments anywhere, we won't find anything.
 | |
|   if (CommentsInTheFile.empty())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Decompose the location for the declaration and find the beginning of the
 | |
|   // file buffer.
 | |
|   const std::pair<FileID, unsigned> DeclLocDecomp =
 | |
|       SourceMgr.getDecomposedLoc(RepresentativeLocForDecl);
 | |
| 
 | |
|   // Slow path.
 | |
|   auto OffsetCommentBehindDecl =
 | |
|       CommentsInTheFile.lower_bound(DeclLocDecomp.second);
 | |
| 
 | |
|   // First check whether we have a trailing comment.
 | |
|   if (OffsetCommentBehindDecl != CommentsInTheFile.end()) {
 | |
|     RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second;
 | |
|     if ((CommentBehindDecl->isDocumentation() ||
 | |
|          LangOpts.CommentOpts.ParseAllComments) &&
 | |
|         CommentBehindDecl->isTrailingComment() &&
 | |
|         (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
 | |
|          isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
 | |
| 
 | |
|       // Check that Doxygen trailing comment comes after the declaration, starts
 | |
|       // on the same line and in the same file as the declaration.
 | |
|       if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) ==
 | |
|           Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first,
 | |
|                                        OffsetCommentBehindDecl->first)) {
 | |
|         return CommentBehindDecl;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The comment just after the declaration was not a trailing comment.
 | |
|   // Let's look at the previous comment.
 | |
|   if (OffsetCommentBehindDecl == CommentsInTheFile.begin())
 | |
|     return nullptr;
 | |
| 
 | |
|   auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl;
 | |
|   RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second;
 | |
| 
 | |
|   // Check that we actually have a non-member Doxygen comment.
 | |
|   if (!(CommentBeforeDecl->isDocumentation() ||
 | |
|         LangOpts.CommentOpts.ParseAllComments) ||
 | |
|       CommentBeforeDecl->isTrailingComment())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Decompose the end of the comment.
 | |
|   const unsigned CommentEndOffset =
 | |
|       Comments.getCommentEndOffset(CommentBeforeDecl);
 | |
| 
 | |
|   // Get the corresponding buffer.
 | |
|   bool Invalid = false;
 | |
|   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
 | |
|                                                &Invalid).data();
 | |
|   if (Invalid)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Extract text between the comment and declaration.
 | |
|   StringRef Text(Buffer + CommentEndOffset,
 | |
|                  DeclLocDecomp.second - CommentEndOffset);
 | |
| 
 | |
|   // There should be no other declarations or preprocessor directives between
 | |
|   // comment and declaration.
 | |
|   if (Text.find_first_of(";{}#@") != StringRef::npos)
 | |
|     return nullptr;
 | |
| 
 | |
|   return CommentBeforeDecl;
 | |
| }
 | |
| 
 | |
| RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
 | |
|   const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
 | |
| 
 | |
|   // If the declaration doesn't map directly to a location in a file, we
 | |
|   // can't find the comment.
 | |
|   if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
 | |
|     return nullptr;
 | |
| 
 | |
|   if (ExternalSource && !CommentsLoaded) {
 | |
|     ExternalSource->ReadComments();
 | |
|     CommentsLoaded = true;
 | |
|   }
 | |
| 
 | |
|   if (Comments.empty())
 | |
|     return nullptr;
 | |
| 
 | |
|   const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first;
 | |
|   const auto CommentsInThisFile = Comments.getCommentsInFile(File);
 | |
|   if (!CommentsInThisFile || CommentsInThisFile->empty())
 | |
|     return nullptr;
 | |
| 
 | |
|   return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile);
 | |
| }
 | |
| 
 | |
| void ASTContext::addComment(const RawComment &RC) {
 | |
|   assert(LangOpts.RetainCommentsFromSystemHeaders ||
 | |
|          !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
 | |
|   Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc);
 | |
| }
 | |
| 
 | |
| /// If we have a 'templated' declaration for a template, adjust 'D' to
 | |
| /// refer to the actual template.
 | |
| /// If we have an implicit instantiation, adjust 'D' to refer to template.
 | |
| static const Decl &adjustDeclToTemplate(const Decl &D) {
 | |
|   if (const auto *FD = dyn_cast<FunctionDecl>(&D)) {
 | |
|     // Is this function declaration part of a function template?
 | |
|     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
 | |
|       return *FTD;
 | |
| 
 | |
|     // Nothing to do if function is not an implicit instantiation.
 | |
|     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
 | |
|       return D;
 | |
| 
 | |
|     // Function is an implicit instantiation of a function template?
 | |
|     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
 | |
|       return *FTD;
 | |
| 
 | |
|     // Function is instantiated from a member definition of a class template?
 | |
|     if (const FunctionDecl *MemberDecl =
 | |
|             FD->getInstantiatedFromMemberFunction())
 | |
|       return *MemberDecl;
 | |
| 
 | |
|     return D;
 | |
|   }
 | |
|   if (const auto *VD = dyn_cast<VarDecl>(&D)) {
 | |
|     // Static data member is instantiated from a member definition of a class
 | |
|     // template?
 | |
|     if (VD->isStaticDataMember())
 | |
|       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
 | |
|         return *MemberDecl;
 | |
| 
 | |
|     return D;
 | |
|   }
 | |
|   if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) {
 | |
|     // Is this class declaration part of a class template?
 | |
|     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
 | |
|       return *CTD;
 | |
| 
 | |
|     // Class is an implicit instantiation of a class template or partial
 | |
|     // specialization?
 | |
|     if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
 | |
|       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
 | |
|         return D;
 | |
|       llvm::PointerUnion<ClassTemplateDecl *,
 | |
|                          ClassTemplatePartialSpecializationDecl *>
 | |
|           PU = CTSD->getSpecializedTemplateOrPartial();
 | |
|       return PU.is<ClassTemplateDecl *>()
 | |
|                  ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>())
 | |
|                  : *static_cast<const Decl *>(
 | |
|                        PU.get<ClassTemplatePartialSpecializationDecl *>());
 | |
|     }
 | |
| 
 | |
|     // Class is instantiated from a member definition of a class template?
 | |
|     if (const MemberSpecializationInfo *Info =
 | |
|             CRD->getMemberSpecializationInfo())
 | |
|       return *Info->getInstantiatedFrom();
 | |
| 
 | |
|     return D;
 | |
|   }
 | |
|   if (const auto *ED = dyn_cast<EnumDecl>(&D)) {
 | |
|     // Enum is instantiated from a member definition of a class template?
 | |
|     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
 | |
|       return *MemberDecl;
 | |
| 
 | |
|     return D;
 | |
|   }
 | |
|   // FIXME: Adjust alias templates?
 | |
|   return D;
 | |
| }
 | |
| 
 | |
| const RawComment *ASTContext::getRawCommentForAnyRedecl(
 | |
|                                                 const Decl *D,
 | |
|                                                 const Decl **OriginalDecl) const {
 | |
|   if (!D) {
 | |
|     if (OriginalDecl)
 | |
|       OriginalDecl = nullptr;
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   D = &adjustDeclToTemplate(*D);
 | |
| 
 | |
|   // Any comment directly attached to D?
 | |
|   {
 | |
|     auto DeclComment = DeclRawComments.find(D);
 | |
|     if (DeclComment != DeclRawComments.end()) {
 | |
|       if (OriginalDecl)
 | |
|         *OriginalDecl = D;
 | |
|       return DeclComment->second;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Any comment attached to any redeclaration of D?
 | |
|   const Decl *CanonicalD = D->getCanonicalDecl();
 | |
|   if (!CanonicalD)
 | |
|     return nullptr;
 | |
| 
 | |
|   {
 | |
|     auto RedeclComment = RedeclChainComments.find(CanonicalD);
 | |
|     if (RedeclComment != RedeclChainComments.end()) {
 | |
|       if (OriginalDecl)
 | |
|         *OriginalDecl = RedeclComment->second;
 | |
|       auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second);
 | |
|       assert(CommentAtRedecl != DeclRawComments.end() &&
 | |
|              "This decl is supposed to have comment attached.");
 | |
|       return CommentAtRedecl->second;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Any redeclarations of D that we haven't checked for comments yet?
 | |
|   // We can't use DenseMap::iterator directly since it'd get invalid.
 | |
|   auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * {
 | |
|     auto LookupRes = CommentlessRedeclChains.find(CanonicalD);
 | |
|     if (LookupRes != CommentlessRedeclChains.end())
 | |
|       return LookupRes->second;
 | |
|     return nullptr;
 | |
|   }();
 | |
| 
 | |
|   for (const auto Redecl : D->redecls()) {
 | |
|     assert(Redecl);
 | |
|     // Skip all redeclarations that have been checked previously.
 | |
|     if (LastCheckedRedecl) {
 | |
|       if (LastCheckedRedecl == Redecl) {
 | |
|         LastCheckedRedecl = nullptr;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
|     const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl);
 | |
|     if (RedeclComment) {
 | |
|       cacheRawCommentForDecl(*Redecl, *RedeclComment);
 | |
|       if (OriginalDecl)
 | |
|         *OriginalDecl = Redecl;
 | |
|       return RedeclComment;
 | |
|     }
 | |
|     CommentlessRedeclChains[CanonicalD] = Redecl;
 | |
|   }
 | |
| 
 | |
|   if (OriginalDecl)
 | |
|     *OriginalDecl = nullptr;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD,
 | |
|                                         const RawComment &Comment) const {
 | |
|   assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
 | |
|   DeclRawComments.try_emplace(&OriginalD, &Comment);
 | |
|   const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl();
 | |
|   RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD);
 | |
|   CommentlessRedeclChains.erase(CanonicalDecl);
 | |
| }
 | |
| 
 | |
| static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
 | |
|                    SmallVectorImpl<const NamedDecl *> &Redeclared) {
 | |
|   const DeclContext *DC = ObjCMethod->getDeclContext();
 | |
|   if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
 | |
|     const ObjCInterfaceDecl *ID = IMD->getClassInterface();
 | |
|     if (!ID)
 | |
|       return;
 | |
|     // Add redeclared method here.
 | |
|     for (const auto *Ext : ID->known_extensions()) {
 | |
|       if (ObjCMethodDecl *RedeclaredMethod =
 | |
|             Ext->getMethod(ObjCMethod->getSelector(),
 | |
|                                   ObjCMethod->isInstanceMethod()))
 | |
|         Redeclared.push_back(RedeclaredMethod);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
 | |
|                                                  const Preprocessor *PP) {
 | |
|   if (Comments.empty() || Decls.empty())
 | |
|     return;
 | |
| 
 | |
|   FileID File;
 | |
|   for (Decl *D : Decls) {
 | |
|     SourceLocation Loc = D->getLocation();
 | |
|     if (Loc.isValid()) {
 | |
|       // See if there are any new comments that are not attached to a decl.
 | |
|       // The location doesn't have to be precise - we care only about the file.
 | |
|       File = SourceMgr.getDecomposedLoc(Loc).first;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (File.isInvalid())
 | |
|     return;
 | |
| 
 | |
|   auto CommentsInThisFile = Comments.getCommentsInFile(File);
 | |
|   if (!CommentsInThisFile || CommentsInThisFile->empty() ||
 | |
|       CommentsInThisFile->rbegin()->second->isAttached())
 | |
|     return;
 | |
| 
 | |
|   // There is at least one comment not attached to a decl.
 | |
|   // Maybe it should be attached to one of Decls?
 | |
|   //
 | |
|   // Note that this way we pick up not only comments that precede the
 | |
|   // declaration, but also comments that *follow* the declaration -- thanks to
 | |
|   // the lookahead in the lexer: we've consumed the semicolon and looked
 | |
|   // ahead through comments.
 | |
| 
 | |
|   for (const Decl *D : Decls) {
 | |
|     assert(D);
 | |
|     if (D->isInvalidDecl())
 | |
|       continue;
 | |
| 
 | |
|     D = &adjustDeclToTemplate(*D);
 | |
| 
 | |
|     const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
 | |
| 
 | |
|     if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
 | |
|       continue;
 | |
| 
 | |
|     if (DeclRawComments.count(D) > 0)
 | |
|       continue;
 | |
| 
 | |
|     if (RawComment *const DocComment =
 | |
|             getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) {
 | |
|       cacheRawCommentForDecl(*D, *DocComment);
 | |
|       comments::FullComment *FC = DocComment->parse(*this, PP, D);
 | |
|       ParsedComments[D->getCanonicalDecl()] = FC;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
 | |
|                                                     const Decl *D) const {
 | |
|   auto *ThisDeclInfo = new (*this) comments::DeclInfo;
 | |
|   ThisDeclInfo->CommentDecl = D;
 | |
|   ThisDeclInfo->IsFilled = false;
 | |
|   ThisDeclInfo->fill();
 | |
|   ThisDeclInfo->CommentDecl = FC->getDecl();
 | |
|   if (!ThisDeclInfo->TemplateParameters)
 | |
|     ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
 | |
|   comments::FullComment *CFC =
 | |
|     new (*this) comments::FullComment(FC->getBlocks(),
 | |
|                                       ThisDeclInfo);
 | |
|   return CFC;
 | |
| }
 | |
| 
 | |
| comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
 | |
|   const RawComment *RC = getRawCommentForDeclNoCache(D);
 | |
|   return RC ? RC->parse(*this, nullptr, D) : nullptr;
 | |
| }
 | |
| 
 | |
| comments::FullComment *ASTContext::getCommentForDecl(
 | |
|                                               const Decl *D,
 | |
|                                               const Preprocessor *PP) const {
 | |
|   if (!D || D->isInvalidDecl())
 | |
|     return nullptr;
 | |
|   D = &adjustDeclToTemplate(*D);
 | |
| 
 | |
|   const Decl *Canonical = D->getCanonicalDecl();
 | |
|   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
 | |
|       ParsedComments.find(Canonical);
 | |
| 
 | |
|   if (Pos != ParsedComments.end()) {
 | |
|     if (Canonical != D) {
 | |
|       comments::FullComment *FC = Pos->second;
 | |
|       comments::FullComment *CFC = cloneFullComment(FC, D);
 | |
|       return CFC;
 | |
|     }
 | |
|     return Pos->second;
 | |
|   }
 | |
| 
 | |
|   const Decl *OriginalDecl = nullptr;
 | |
| 
 | |
|   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
 | |
|   if (!RC) {
 | |
|     if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
 | |
|       SmallVector<const NamedDecl*, 8> Overridden;
 | |
|       const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
 | |
|       if (OMD && OMD->isPropertyAccessor())
 | |
|         if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
 | |
|           if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
 | |
|             return cloneFullComment(FC, D);
 | |
|       if (OMD)
 | |
|         addRedeclaredMethods(OMD, Overridden);
 | |
|       getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
 | |
|       for (unsigned i = 0, e = Overridden.size(); i < e; i++)
 | |
|         if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
 | |
|           return cloneFullComment(FC, D);
 | |
|     }
 | |
|     else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
 | |
|       // Attach any tag type's documentation to its typedef if latter
 | |
|       // does not have one of its own.
 | |
|       QualType QT = TD->getUnderlyingType();
 | |
|       if (const auto *TT = QT->getAs<TagType>())
 | |
|         if (const Decl *TD = TT->getDecl())
 | |
|           if (comments::FullComment *FC = getCommentForDecl(TD, PP))
 | |
|             return cloneFullComment(FC, D);
 | |
|     }
 | |
|     else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
 | |
|       while (IC->getSuperClass()) {
 | |
|         IC = IC->getSuperClass();
 | |
|         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
 | |
|           return cloneFullComment(FC, D);
 | |
|       }
 | |
|     }
 | |
|     else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
 | |
|       if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
 | |
|         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
 | |
|           return cloneFullComment(FC, D);
 | |
|     }
 | |
|     else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
 | |
|       if (!(RD = RD->getDefinition()))
 | |
|         return nullptr;
 | |
|       // Check non-virtual bases.
 | |
|       for (const auto &I : RD->bases()) {
 | |
|         if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
 | |
|           continue;
 | |
|         QualType Ty = I.getType();
 | |
|         if (Ty.isNull())
 | |
|           continue;
 | |
|         if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
 | |
|           if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
 | |
|             continue;
 | |
| 
 | |
|           if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
 | |
|             return cloneFullComment(FC, D);
 | |
|         }
 | |
|       }
 | |
|       // Check virtual bases.
 | |
|       for (const auto &I : RD->vbases()) {
 | |
|         if (I.getAccessSpecifier() != AS_public)
 | |
|           continue;
 | |
|         QualType Ty = I.getType();
 | |
|         if (Ty.isNull())
 | |
|           continue;
 | |
|         if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
 | |
|           if (!(VirtualBase= VirtualBase->getDefinition()))
 | |
|             continue;
 | |
|           if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
 | |
|             return cloneFullComment(FC, D);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // If the RawComment was attached to other redeclaration of this Decl, we
 | |
|   // should parse the comment in context of that other Decl.  This is important
 | |
|   // because comments can contain references to parameter names which can be
 | |
|   // different across redeclarations.
 | |
|   if (D != OriginalDecl && OriginalDecl)
 | |
|     return getCommentForDecl(OriginalDecl, PP);
 | |
| 
 | |
|   comments::FullComment *FC = RC->parse(*this, PP, D);
 | |
|   ParsedComments[Canonical] = FC;
 | |
|   return FC;
 | |
| }
 | |
| 
 | |
| void
 | |
| ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
 | |
|                                                    const ASTContext &C,
 | |
|                                                TemplateTemplateParmDecl *Parm) {
 | |
|   ID.AddInteger(Parm->getDepth());
 | |
|   ID.AddInteger(Parm->getPosition());
 | |
|   ID.AddBoolean(Parm->isParameterPack());
 | |
| 
 | |
|   TemplateParameterList *Params = Parm->getTemplateParameters();
 | |
|   ID.AddInteger(Params->size());
 | |
|   for (TemplateParameterList::const_iterator P = Params->begin(),
 | |
|                                           PEnd = Params->end();
 | |
|        P != PEnd; ++P) {
 | |
|     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
 | |
|       ID.AddInteger(0);
 | |
|       ID.AddBoolean(TTP->isParameterPack());
 | |
|       const TypeConstraint *TC = TTP->getTypeConstraint();
 | |
|       ID.AddBoolean(TC != nullptr);
 | |
|       if (TC)
 | |
|         TC->getImmediatelyDeclaredConstraint()->Profile(ID, C,
 | |
|                                                         /*Canonical=*/true);
 | |
|       if (TTP->isExpandedParameterPack()) {
 | |
|         ID.AddBoolean(true);
 | |
|         ID.AddInteger(TTP->getNumExpansionParameters());
 | |
|       } else
 | |
|         ID.AddBoolean(false);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
 | |
|       ID.AddInteger(1);
 | |
|       ID.AddBoolean(NTTP->isParameterPack());
 | |
|       ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
 | |
|       if (NTTP->isExpandedParameterPack()) {
 | |
|         ID.AddBoolean(true);
 | |
|         ID.AddInteger(NTTP->getNumExpansionTypes());
 | |
|         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
 | |
|           QualType T = NTTP->getExpansionType(I);
 | |
|           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
 | |
|         }
 | |
|       } else
 | |
|         ID.AddBoolean(false);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     auto *TTP = cast<TemplateTemplateParmDecl>(*P);
 | |
|     ID.AddInteger(2);
 | |
|     Profile(ID, C, TTP);
 | |
|   }
 | |
|   Expr *RequiresClause = Parm->getTemplateParameters()->getRequiresClause();
 | |
|   ID.AddBoolean(RequiresClause != nullptr);
 | |
|   if (RequiresClause)
 | |
|     RequiresClause->Profile(ID, C, /*Canonical=*/true);
 | |
| }
 | |
| 
 | |
| static Expr *
 | |
| canonicalizeImmediatelyDeclaredConstraint(const ASTContext &C, Expr *IDC,
 | |
|                                           QualType ConstrainedType) {
 | |
|   // This is a bit ugly - we need to form a new immediately-declared
 | |
|   // constraint that references the new parameter; this would ideally
 | |
|   // require semantic analysis (e.g. template<C T> struct S {}; - the
 | |
|   // converted arguments of C<T> could be an argument pack if C is
 | |
|   // declared as template<typename... T> concept C = ...).
 | |
|   // We don't have semantic analysis here so we dig deep into the
 | |
|   // ready-made constraint expr and change the thing manually.
 | |
|   ConceptSpecializationExpr *CSE;
 | |
|   if (const auto *Fold = dyn_cast<CXXFoldExpr>(IDC))
 | |
|     CSE = cast<ConceptSpecializationExpr>(Fold->getLHS());
 | |
|   else
 | |
|     CSE = cast<ConceptSpecializationExpr>(IDC);
 | |
|   ArrayRef<TemplateArgument> OldConverted = CSE->getTemplateArguments();
 | |
|   SmallVector<TemplateArgument, 3> NewConverted;
 | |
|   NewConverted.reserve(OldConverted.size());
 | |
|   if (OldConverted.front().getKind() == TemplateArgument::Pack) {
 | |
|     // The case:
 | |
|     // template<typename... T> concept C = true;
 | |
|     // template<C<int> T> struct S; -> constraint is C<{T, int}>
 | |
|     NewConverted.push_back(ConstrainedType);
 | |
|     for (auto &Arg : OldConverted.front().pack_elements().drop_front(1))
 | |
|       NewConverted.push_back(Arg);
 | |
|     TemplateArgument NewPack(NewConverted);
 | |
| 
 | |
|     NewConverted.clear();
 | |
|     NewConverted.push_back(NewPack);
 | |
|     assert(OldConverted.size() == 1 &&
 | |
|            "Template parameter pack should be the last parameter");
 | |
|   } else {
 | |
|     assert(OldConverted.front().getKind() == TemplateArgument::Type &&
 | |
|            "Unexpected first argument kind for immediately-declared "
 | |
|            "constraint");
 | |
|     NewConverted.push_back(ConstrainedType);
 | |
|     for (auto &Arg : OldConverted.drop_front(1))
 | |
|       NewConverted.push_back(Arg);
 | |
|   }
 | |
|   Expr *NewIDC = ConceptSpecializationExpr::Create(
 | |
|       C, CSE->getNamedConcept(), NewConverted, nullptr,
 | |
|       CSE->isInstantiationDependent(), CSE->containsUnexpandedParameterPack());
 | |
| 
 | |
|   if (auto *OrigFold = dyn_cast<CXXFoldExpr>(IDC))
 | |
|     NewIDC = new (C) CXXFoldExpr(OrigFold->getType(), SourceLocation(), NewIDC,
 | |
|                                  BinaryOperatorKind::BO_LAnd,
 | |
|                                  SourceLocation(), /*RHS=*/nullptr,
 | |
|                                  SourceLocation(), /*NumExpansions=*/None);
 | |
|   return NewIDC;
 | |
| }
 | |
| 
 | |
| TemplateTemplateParmDecl *
 | |
| ASTContext::getCanonicalTemplateTemplateParmDecl(
 | |
|                                           TemplateTemplateParmDecl *TTP) const {
 | |
|   // Check if we already have a canonical template template parameter.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   CanonicalTemplateTemplateParm::Profile(ID, *this, TTP);
 | |
|   void *InsertPos = nullptr;
 | |
|   CanonicalTemplateTemplateParm *Canonical
 | |
|     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   if (Canonical)
 | |
|     return Canonical->getParam();
 | |
| 
 | |
|   // Build a canonical template parameter list.
 | |
|   TemplateParameterList *Params = TTP->getTemplateParameters();
 | |
|   SmallVector<NamedDecl *, 4> CanonParams;
 | |
|   CanonParams.reserve(Params->size());
 | |
|   for (TemplateParameterList::const_iterator P = Params->begin(),
 | |
|                                           PEnd = Params->end();
 | |
|        P != PEnd; ++P) {
 | |
|     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
 | |
|       TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(*this,
 | |
|           getTranslationUnitDecl(), SourceLocation(), SourceLocation(),
 | |
|           TTP->getDepth(), TTP->getIndex(), nullptr, false,
 | |
|           TTP->isParameterPack(), TTP->hasTypeConstraint(),
 | |
|           TTP->isExpandedParameterPack() ?
 | |
|           llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
 | |
|       if (const auto *TC = TTP->getTypeConstraint()) {
 | |
|         QualType ParamAsArgument(NewTTP->getTypeForDecl(), 0);
 | |
|         Expr *NewIDC = canonicalizeImmediatelyDeclaredConstraint(
 | |
|                 *this, TC->getImmediatelyDeclaredConstraint(),
 | |
|                 ParamAsArgument);
 | |
|         TemplateArgumentListInfo CanonArgsAsWritten;
 | |
|         if (auto *Args = TC->getTemplateArgsAsWritten())
 | |
|           for (const auto &ArgLoc : Args->arguments())
 | |
|             CanonArgsAsWritten.addArgument(
 | |
|                 TemplateArgumentLoc(ArgLoc.getArgument(),
 | |
|                                     TemplateArgumentLocInfo()));
 | |
|         NewTTP->setTypeConstraint(
 | |
|             NestedNameSpecifierLoc(),
 | |
|             DeclarationNameInfo(TC->getNamedConcept()->getDeclName(),
 | |
|                                 SourceLocation()), /*FoundDecl=*/nullptr,
 | |
|             // Actually canonicalizing a TemplateArgumentLoc is difficult so we
 | |
|             // simply omit the ArgsAsWritten
 | |
|             TC->getNamedConcept(), /*ArgsAsWritten=*/nullptr, NewIDC);
 | |
|       }
 | |
|       CanonParams.push_back(NewTTP);
 | |
|     } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
 | |
|       QualType T = getCanonicalType(NTTP->getType());
 | |
|       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
 | |
|       NonTypeTemplateParmDecl *Param;
 | |
|       if (NTTP->isExpandedParameterPack()) {
 | |
|         SmallVector<QualType, 2> ExpandedTypes;
 | |
|         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
 | |
|         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
 | |
|           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
 | |
|           ExpandedTInfos.push_back(
 | |
|                                 getTrivialTypeSourceInfo(ExpandedTypes.back()));
 | |
|         }
 | |
| 
 | |
|         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
 | |
|                                                 SourceLocation(),
 | |
|                                                 SourceLocation(),
 | |
|                                                 NTTP->getDepth(),
 | |
|                                                 NTTP->getPosition(), nullptr,
 | |
|                                                 T,
 | |
|                                                 TInfo,
 | |
|                                                 ExpandedTypes,
 | |
|                                                 ExpandedTInfos);
 | |
|       } else {
 | |
|         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
 | |
|                                                 SourceLocation(),
 | |
|                                                 SourceLocation(),
 | |
|                                                 NTTP->getDepth(),
 | |
|                                                 NTTP->getPosition(), nullptr,
 | |
|                                                 T,
 | |
|                                                 NTTP->isParameterPack(),
 | |
|                                                 TInfo);
 | |
|       }
 | |
|       if (AutoType *AT = T->getContainedAutoType()) {
 | |
|         if (AT->isConstrained()) {
 | |
|           Param->setPlaceholderTypeConstraint(
 | |
|               canonicalizeImmediatelyDeclaredConstraint(
 | |
|                   *this, NTTP->getPlaceholderTypeConstraint(), T));
 | |
|         }
 | |
|       }
 | |
|       CanonParams.push_back(Param);
 | |
| 
 | |
|     } else
 | |
|       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
 | |
|                                            cast<TemplateTemplateParmDecl>(*P)));
 | |
|   }
 | |
| 
 | |
|   Expr *CanonRequiresClause = nullptr;
 | |
|   if (Expr *RequiresClause = TTP->getTemplateParameters()->getRequiresClause())
 | |
|     CanonRequiresClause = RequiresClause;
 | |
| 
 | |
|   TemplateTemplateParmDecl *CanonTTP
 | |
|     = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
 | |
|                                        SourceLocation(), TTP->getDepth(),
 | |
|                                        TTP->getPosition(),
 | |
|                                        TTP->isParameterPack(),
 | |
|                                        nullptr,
 | |
|                          TemplateParameterList::Create(*this, SourceLocation(),
 | |
|                                                        SourceLocation(),
 | |
|                                                        CanonParams,
 | |
|                                                        SourceLocation(),
 | |
|                                                        CanonRequiresClause));
 | |
| 
 | |
|   // Get the new insert position for the node we care about.
 | |
|   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   assert(!Canonical && "Shouldn't be in the map!");
 | |
|   (void)Canonical;
 | |
| 
 | |
|   // Create the canonical template template parameter entry.
 | |
|   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
 | |
|   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
 | |
|   return CanonTTP;
 | |
| }
 | |
| 
 | |
| CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
 | |
|   if (!LangOpts.CPlusPlus) return nullptr;
 | |
| 
 | |
|   switch (T.getCXXABI().getKind()) {
 | |
|   case TargetCXXABI::Fuchsia:
 | |
|   case TargetCXXABI::GenericARM: // Same as Itanium at this level
 | |
|   case TargetCXXABI::iOS:
 | |
|   case TargetCXXABI::iOS64:
 | |
|   case TargetCXXABI::WatchOS:
 | |
|   case TargetCXXABI::GenericAArch64:
 | |
|   case TargetCXXABI::GenericMIPS:
 | |
|   case TargetCXXABI::GenericItanium:
 | |
|   case TargetCXXABI::WebAssembly:
 | |
|   case TargetCXXABI::XL:
 | |
|     return CreateItaniumCXXABI(*this);
 | |
|   case TargetCXXABI::Microsoft:
 | |
|     return CreateMicrosoftCXXABI(*this);
 | |
|   }
 | |
|   llvm_unreachable("Invalid CXXABI type!");
 | |
| }
 | |
| 
 | |
| interp::Context &ASTContext::getInterpContext() {
 | |
|   if (!InterpContext) {
 | |
|     InterpContext.reset(new interp::Context(*this));
 | |
|   }
 | |
|   return *InterpContext.get();
 | |
| }
 | |
| 
 | |
| ParentMapContext &ASTContext::getParentMapContext() {
 | |
|   if (!ParentMapCtx)
 | |
|     ParentMapCtx.reset(new ParentMapContext(*this));
 | |
|   return *ParentMapCtx.get();
 | |
| }
 | |
| 
 | |
| static const LangASMap *getAddressSpaceMap(const TargetInfo &T,
 | |
|                                            const LangOptions &LOpts) {
 | |
|   if (LOpts.FakeAddressSpaceMap) {
 | |
|     // The fake address space map must have a distinct entry for each
 | |
|     // language-specific address space.
 | |
|     static const unsigned FakeAddrSpaceMap[] = {
 | |
|         0, // Default
 | |
|         1, // opencl_global
 | |
|         3, // opencl_local
 | |
|         2, // opencl_constant
 | |
|         0, // opencl_private
 | |
|         4, // opencl_generic
 | |
|         5, // cuda_device
 | |
|         6, // cuda_constant
 | |
|         7, // cuda_shared
 | |
|         8, // ptr32_sptr
 | |
|         9, // ptr32_uptr
 | |
|         10 // ptr64
 | |
|     };
 | |
|     return &FakeAddrSpaceMap;
 | |
|   } else {
 | |
|     return &T.getAddressSpaceMap();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
 | |
|                                           const LangOptions &LangOpts) {
 | |
|   switch (LangOpts.getAddressSpaceMapMangling()) {
 | |
|   case LangOptions::ASMM_Target:
 | |
|     return TI.useAddressSpaceMapMangling();
 | |
|   case LangOptions::ASMM_On:
 | |
|     return true;
 | |
|   case LangOptions::ASMM_Off:
 | |
|     return false;
 | |
|   }
 | |
|   llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
 | |
| }
 | |
| 
 | |
| ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
 | |
|                        IdentifierTable &idents, SelectorTable &sels,
 | |
|                        Builtin::Context &builtins)
 | |
|     : ConstantArrayTypes(this_()), FunctionProtoTypes(this_()),
 | |
|       TemplateSpecializationTypes(this_()),
 | |
|       DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()),
 | |
|       SubstTemplateTemplateParmPacks(this_()),
 | |
|       CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts),
 | |
|       SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)),
 | |
|       XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
 | |
|                                         LangOpts.XRayNeverInstrumentFiles,
 | |
|                                         LangOpts.XRayAttrListFiles, SM)),
 | |
|       PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
 | |
|       BuiltinInfo(builtins), DeclarationNames(*this), Comments(SM),
 | |
|       CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
 | |
|       CompCategories(this_()), LastSDM(nullptr, 0) {
 | |
|   TUDecl = TranslationUnitDecl::Create(*this);
 | |
|   TraversalScope = {TUDecl};
 | |
| }
 | |
| 
 | |
| ASTContext::~ASTContext() {
 | |
|   // Release the DenseMaps associated with DeclContext objects.
 | |
|   // FIXME: Is this the ideal solution?
 | |
|   ReleaseDeclContextMaps();
 | |
| 
 | |
|   // Call all of the deallocation functions on all of their targets.
 | |
|   for (auto &Pair : Deallocations)
 | |
|     (Pair.first)(Pair.second);
 | |
| 
 | |
|   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
 | |
|   // because they can contain DenseMaps.
 | |
|   for (llvm::DenseMap<const ObjCContainerDecl*,
 | |
|        const ASTRecordLayout*>::iterator
 | |
|        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
 | |
|     // Increment in loop to prevent using deallocated memory.
 | |
|     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
 | |
|       R->Destroy(*this);
 | |
| 
 | |
|   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
 | |
|        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
 | |
|     // Increment in loop to prevent using deallocated memory.
 | |
|     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
 | |
|       R->Destroy(*this);
 | |
|   }
 | |
| 
 | |
|   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
 | |
|                                                     AEnd = DeclAttrs.end();
 | |
|        A != AEnd; ++A)
 | |
|     A->second->~AttrVec();
 | |
| 
 | |
|   for (const auto &Value : ModuleInitializers)
 | |
|     Value.second->~PerModuleInitializers();
 | |
| 
 | |
|   for (APValue *Value : APValueCleanups)
 | |
|     Value->~APValue();
 | |
| }
 | |
| 
 | |
| void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
 | |
|   TraversalScope = TopLevelDecls;
 | |
|   getParentMapContext().clear();
 | |
| }
 | |
| 
 | |
| void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const {
 | |
|   Deallocations.push_back({Callback, Data});
 | |
| }
 | |
| 
 | |
| void
 | |
| ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
 | |
|   ExternalSource = std::move(Source);
 | |
| }
 | |
| 
 | |
| void ASTContext::PrintStats() const {
 | |
|   llvm::errs() << "\n*** AST Context Stats:\n";
 | |
|   llvm::errs() << "  " << Types.size() << " types total.\n";
 | |
| 
 | |
|   unsigned counts[] = {
 | |
| #define TYPE(Name, Parent) 0,
 | |
| #define ABSTRACT_TYPE(Name, Parent)
 | |
| #include "clang/AST/TypeNodes.inc"
 | |
|     0 // Extra
 | |
|   };
 | |
| 
 | |
|   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
 | |
|     Type *T = Types[i];
 | |
|     counts[(unsigned)T->getTypeClass()]++;
 | |
|   }
 | |
| 
 | |
|   unsigned Idx = 0;
 | |
|   unsigned TotalBytes = 0;
 | |
| #define TYPE(Name, Parent)                                              \
 | |
|   if (counts[Idx])                                                      \
 | |
|     llvm::errs() << "    " << counts[Idx] << " " << #Name               \
 | |
|                  << " types, " << sizeof(Name##Type) << " each "        \
 | |
|                  << "(" << counts[Idx] * sizeof(Name##Type)             \
 | |
|                  << " bytes)\n";                                        \
 | |
|   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
 | |
|   ++Idx;
 | |
| #define ABSTRACT_TYPE(Name, Parent)
 | |
| #include "clang/AST/TypeNodes.inc"
 | |
| 
 | |
|   llvm::errs() << "Total bytes = " << TotalBytes << "\n";
 | |
| 
 | |
|   // Implicit special member functions.
 | |
|   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
 | |
|                << NumImplicitDefaultConstructors
 | |
|                << " implicit default constructors created\n";
 | |
|   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
 | |
|                << NumImplicitCopyConstructors
 | |
|                << " implicit copy constructors created\n";
 | |
|   if (getLangOpts().CPlusPlus)
 | |
|     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
 | |
|                  << NumImplicitMoveConstructors
 | |
|                  << " implicit move constructors created\n";
 | |
|   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
 | |
|                << NumImplicitCopyAssignmentOperators
 | |
|                << " implicit copy assignment operators created\n";
 | |
|   if (getLangOpts().CPlusPlus)
 | |
|     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
 | |
|                  << NumImplicitMoveAssignmentOperators
 | |
|                  << " implicit move assignment operators created\n";
 | |
|   llvm::errs() << NumImplicitDestructorsDeclared << "/"
 | |
|                << NumImplicitDestructors
 | |
|                << " implicit destructors created\n";
 | |
| 
 | |
|   if (ExternalSource) {
 | |
|     llvm::errs() << "\n";
 | |
|     ExternalSource->PrintStats();
 | |
|   }
 | |
| 
 | |
|   BumpAlloc.PrintStats();
 | |
| }
 | |
| 
 | |
| void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
 | |
|                                            bool NotifyListeners) {
 | |
|   if (NotifyListeners)
 | |
|     if (auto *Listener = getASTMutationListener())
 | |
|       Listener->RedefinedHiddenDefinition(ND, M);
 | |
| 
 | |
|   MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
 | |
| }
 | |
| 
 | |
| void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
 | |
|   auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
 | |
|   if (It == MergedDefModules.end())
 | |
|     return;
 | |
| 
 | |
|   auto &Merged = It->second;
 | |
|   llvm::DenseSet<Module*> Found;
 | |
|   for (Module *&M : Merged)
 | |
|     if (!Found.insert(M).second)
 | |
|       M = nullptr;
 | |
|   Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end());
 | |
| }
 | |
| 
 | |
| ArrayRef<Module *>
 | |
| ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) {
 | |
|   auto MergedIt =
 | |
|       MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl()));
 | |
|   if (MergedIt == MergedDefModules.end())
 | |
|     return None;
 | |
|   return MergedIt->second;
 | |
| }
 | |
| 
 | |
| void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
 | |
|   if (LazyInitializers.empty())
 | |
|     return;
 | |
| 
 | |
|   auto *Source = Ctx.getExternalSource();
 | |
|   assert(Source && "lazy initializers but no external source");
 | |
| 
 | |
|   auto LazyInits = std::move(LazyInitializers);
 | |
|   LazyInitializers.clear();
 | |
| 
 | |
|   for (auto ID : LazyInits)
 | |
|     Initializers.push_back(Source->GetExternalDecl(ID));
 | |
| 
 | |
|   assert(LazyInitializers.empty() &&
 | |
|          "GetExternalDecl for lazy module initializer added more inits");
 | |
| }
 | |
| 
 | |
| void ASTContext::addModuleInitializer(Module *M, Decl *D) {
 | |
|   // One special case: if we add a module initializer that imports another
 | |
|   // module, and that module's only initializer is an ImportDecl, simplify.
 | |
|   if (const auto *ID = dyn_cast<ImportDecl>(D)) {
 | |
|     auto It = ModuleInitializers.find(ID->getImportedModule());
 | |
| 
 | |
|     // Maybe the ImportDecl does nothing at all. (Common case.)
 | |
|     if (It == ModuleInitializers.end())
 | |
|       return;
 | |
| 
 | |
|     // Maybe the ImportDecl only imports another ImportDecl.
 | |
|     auto &Imported = *It->second;
 | |
|     if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
 | |
|       Imported.resolve(*this);
 | |
|       auto *OnlyDecl = Imported.Initializers.front();
 | |
|       if (isa<ImportDecl>(OnlyDecl))
 | |
|         D = OnlyDecl;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   auto *&Inits = ModuleInitializers[M];
 | |
|   if (!Inits)
 | |
|     Inits = new (*this) PerModuleInitializers;
 | |
|   Inits->Initializers.push_back(D);
 | |
| }
 | |
| 
 | |
| void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
 | |
|   auto *&Inits = ModuleInitializers[M];
 | |
|   if (!Inits)
 | |
|     Inits = new (*this) PerModuleInitializers;
 | |
|   Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
 | |
|                                  IDs.begin(), IDs.end());
 | |
| }
 | |
| 
 | |
| ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
 | |
|   auto It = ModuleInitializers.find(M);
 | |
|   if (It == ModuleInitializers.end())
 | |
|     return None;
 | |
| 
 | |
|   auto *Inits = It->second;
 | |
|   Inits->resolve(*this);
 | |
|   return Inits->Initializers;
 | |
| }
 | |
| 
 | |
| ExternCContextDecl *ASTContext::getExternCContextDecl() const {
 | |
|   if (!ExternCContext)
 | |
|     ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
 | |
| 
 | |
|   return ExternCContext;
 | |
| }
 | |
| 
 | |
| BuiltinTemplateDecl *
 | |
| ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
 | |
|                                      const IdentifierInfo *II) const {
 | |
|   auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK);
 | |
|   BuiltinTemplate->setImplicit();
 | |
|   TUDecl->addDecl(BuiltinTemplate);
 | |
| 
 | |
|   return BuiltinTemplate;
 | |
| }
 | |
| 
 | |
| BuiltinTemplateDecl *
 | |
| ASTContext::getMakeIntegerSeqDecl() const {
 | |
|   if (!MakeIntegerSeqDecl)
 | |
|     MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
 | |
|                                                   getMakeIntegerSeqName());
 | |
|   return MakeIntegerSeqDecl;
 | |
| }
 | |
| 
 | |
| BuiltinTemplateDecl *
 | |
| ASTContext::getTypePackElementDecl() const {
 | |
|   if (!TypePackElementDecl)
 | |
|     TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
 | |
|                                                    getTypePackElementName());
 | |
|   return TypePackElementDecl;
 | |
| }
 | |
| 
 | |
| RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
 | |
|                                             RecordDecl::TagKind TK) const {
 | |
|   SourceLocation Loc;
 | |
|   RecordDecl *NewDecl;
 | |
|   if (getLangOpts().CPlusPlus)
 | |
|     NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
 | |
|                                     Loc, &Idents.get(Name));
 | |
|   else
 | |
|     NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
 | |
|                                  &Idents.get(Name));
 | |
|   NewDecl->setImplicit();
 | |
|   NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
 | |
|       const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
 | |
|   return NewDecl;
 | |
| }
 | |
| 
 | |
| TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
 | |
|                                               StringRef Name) const {
 | |
|   TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
 | |
|   TypedefDecl *NewDecl = TypedefDecl::Create(
 | |
|       const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
 | |
|       SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
 | |
|   NewDecl->setImplicit();
 | |
|   return NewDecl;
 | |
| }
 | |
| 
 | |
| TypedefDecl *ASTContext::getInt128Decl() const {
 | |
|   if (!Int128Decl)
 | |
|     Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
 | |
|   return Int128Decl;
 | |
| }
 | |
| 
 | |
| TypedefDecl *ASTContext::getUInt128Decl() const {
 | |
|   if (!UInt128Decl)
 | |
|     UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
 | |
|   return UInt128Decl;
 | |
| }
 | |
| 
 | |
| void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
 | |
|   auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
 | |
|   R = CanQualType::CreateUnsafe(QualType(Ty, 0));
 | |
|   Types.push_back(Ty);
 | |
| }
 | |
| 
 | |
| void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
 | |
|                                   const TargetInfo *AuxTarget) {
 | |
|   assert((!this->Target || this->Target == &Target) &&
 | |
|          "Incorrect target reinitialization");
 | |
|   assert(VoidTy.isNull() && "Context reinitialized?");
 | |
| 
 | |
|   this->Target = &Target;
 | |
|   this->AuxTarget = AuxTarget;
 | |
| 
 | |
|   ABI.reset(createCXXABI(Target));
 | |
|   AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
 | |
|   AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
 | |
| 
 | |
|   // C99 6.2.5p19.
 | |
|   InitBuiltinType(VoidTy,              BuiltinType::Void);
 | |
| 
 | |
|   // C99 6.2.5p2.
 | |
|   InitBuiltinType(BoolTy,              BuiltinType::Bool);
 | |
|   // C99 6.2.5p3.
 | |
|   if (LangOpts.CharIsSigned)
 | |
|     InitBuiltinType(CharTy,            BuiltinType::Char_S);
 | |
|   else
 | |
|     InitBuiltinType(CharTy,            BuiltinType::Char_U);
 | |
|   // C99 6.2.5p4.
 | |
|   InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
 | |
|   InitBuiltinType(ShortTy,             BuiltinType::Short);
 | |
|   InitBuiltinType(IntTy,               BuiltinType::Int);
 | |
|   InitBuiltinType(LongTy,              BuiltinType::Long);
 | |
|   InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
 | |
| 
 | |
|   // C99 6.2.5p6.
 | |
|   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
 | |
|   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
 | |
|   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
 | |
|   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
 | |
|   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
 | |
| 
 | |
|   // C99 6.2.5p10.
 | |
|   InitBuiltinType(FloatTy,             BuiltinType::Float);
 | |
|   InitBuiltinType(DoubleTy,            BuiltinType::Double);
 | |
|   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
 | |
| 
 | |
|   // GNU extension, __float128 for IEEE quadruple precision
 | |
|   InitBuiltinType(Float128Ty,          BuiltinType::Float128);
 | |
| 
 | |
|   // C11 extension ISO/IEC TS 18661-3
 | |
|   InitBuiltinType(Float16Ty,           BuiltinType::Float16);
 | |
| 
 | |
|   // ISO/IEC JTC1 SC22 WG14 N1169 Extension
 | |
|   InitBuiltinType(ShortAccumTy,            BuiltinType::ShortAccum);
 | |
|   InitBuiltinType(AccumTy,                 BuiltinType::Accum);
 | |
|   InitBuiltinType(LongAccumTy,             BuiltinType::LongAccum);
 | |
|   InitBuiltinType(UnsignedShortAccumTy,    BuiltinType::UShortAccum);
 | |
|   InitBuiltinType(UnsignedAccumTy,         BuiltinType::UAccum);
 | |
|   InitBuiltinType(UnsignedLongAccumTy,     BuiltinType::ULongAccum);
 | |
|   InitBuiltinType(ShortFractTy,            BuiltinType::ShortFract);
 | |
|   InitBuiltinType(FractTy,                 BuiltinType::Fract);
 | |
|   InitBuiltinType(LongFractTy,             BuiltinType::LongFract);
 | |
|   InitBuiltinType(UnsignedShortFractTy,    BuiltinType::UShortFract);
 | |
|   InitBuiltinType(UnsignedFractTy,         BuiltinType::UFract);
 | |
|   InitBuiltinType(UnsignedLongFractTy,     BuiltinType::ULongFract);
 | |
|   InitBuiltinType(SatShortAccumTy,         BuiltinType::SatShortAccum);
 | |
|   InitBuiltinType(SatAccumTy,              BuiltinType::SatAccum);
 | |
|   InitBuiltinType(SatLongAccumTy,          BuiltinType::SatLongAccum);
 | |
|   InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
 | |
|   InitBuiltinType(SatUnsignedAccumTy,      BuiltinType::SatUAccum);
 | |
|   InitBuiltinType(SatUnsignedLongAccumTy,  BuiltinType::SatULongAccum);
 | |
|   InitBuiltinType(SatShortFractTy,         BuiltinType::SatShortFract);
 | |
|   InitBuiltinType(SatFractTy,              BuiltinType::SatFract);
 | |
|   InitBuiltinType(SatLongFractTy,          BuiltinType::SatLongFract);
 | |
|   InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
 | |
|   InitBuiltinType(SatUnsignedFractTy,      BuiltinType::SatUFract);
 | |
|   InitBuiltinType(SatUnsignedLongFractTy,  BuiltinType::SatULongFract);
 | |
| 
 | |
|   // GNU extension, 128-bit integers.
 | |
|   InitBuiltinType(Int128Ty,            BuiltinType::Int128);
 | |
|   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
 | |
| 
 | |
|   // C++ 3.9.1p5
 | |
|   if (TargetInfo::isTypeSigned(Target.getWCharType()))
 | |
|     InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
 | |
|   else  // -fshort-wchar makes wchar_t be unsigned.
 | |
|     InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
 | |
|   if (LangOpts.CPlusPlus && LangOpts.WChar)
 | |
|     WideCharTy = WCharTy;
 | |
|   else {
 | |
|     // C99 (or C++ using -fno-wchar).
 | |
|     WideCharTy = getFromTargetType(Target.getWCharType());
 | |
|   }
 | |
| 
 | |
|   WIntTy = getFromTargetType(Target.getWIntType());
 | |
| 
 | |
|   // C++20 (proposed)
 | |
|   InitBuiltinType(Char8Ty,              BuiltinType::Char8);
 | |
| 
 | |
|   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
 | |
|     InitBuiltinType(Char16Ty,           BuiltinType::Char16);
 | |
|   else // C99
 | |
|     Char16Ty = getFromTargetType(Target.getChar16Type());
 | |
| 
 | |
|   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
 | |
|     InitBuiltinType(Char32Ty,           BuiltinType::Char32);
 | |
|   else // C99
 | |
|     Char32Ty = getFromTargetType(Target.getChar32Type());
 | |
| 
 | |
|   // Placeholder type for type-dependent expressions whose type is
 | |
|   // completely unknown. No code should ever check a type against
 | |
|   // DependentTy and users should never see it; however, it is here to
 | |
|   // help diagnose failures to properly check for type-dependent
 | |
|   // expressions.
 | |
|   InitBuiltinType(DependentTy,         BuiltinType::Dependent);
 | |
| 
 | |
|   // Placeholder type for functions.
 | |
|   InitBuiltinType(OverloadTy,          BuiltinType::Overload);
 | |
| 
 | |
|   // Placeholder type for bound members.
 | |
|   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
 | |
| 
 | |
|   // Placeholder type for pseudo-objects.
 | |
|   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
 | |
| 
 | |
|   // "any" type; useful for debugger-like clients.
 | |
|   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
 | |
| 
 | |
|   // Placeholder type for unbridged ARC casts.
 | |
|   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
 | |
| 
 | |
|   // Placeholder type for builtin functions.
 | |
|   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
 | |
| 
 | |
|   // Placeholder type for OMP array sections.
 | |
|   if (LangOpts.OpenMP)
 | |
|     InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
 | |
| 
 | |
|   // C99 6.2.5p11.
 | |
|   FloatComplexTy      = getComplexType(FloatTy);
 | |
|   DoubleComplexTy     = getComplexType(DoubleTy);
 | |
|   LongDoubleComplexTy = getComplexType(LongDoubleTy);
 | |
|   Float128ComplexTy   = getComplexType(Float128Ty);
 | |
| 
 | |
|   // Builtin types for 'id', 'Class', and 'SEL'.
 | |
|   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
 | |
|   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
 | |
|   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
 | |
| 
 | |
|   if (LangOpts.OpenCL) {
 | |
| #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
 | |
|     InitBuiltinType(SingletonId, BuiltinType::Id);
 | |
| #include "clang/Basic/OpenCLImageTypes.def"
 | |
| 
 | |
|     InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
 | |
|     InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
 | |
|     InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
 | |
|     InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
 | |
|     InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
 | |
| 
 | |
| #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
 | |
|     InitBuiltinType(Id##Ty, BuiltinType::Id);
 | |
| #include "clang/Basic/OpenCLExtensionTypes.def"
 | |
|   }
 | |
| 
 | |
|   if (Target.hasAArch64SVETypes()) {
 | |
| #define SVE_TYPE(Name, Id, SingletonId) \
 | |
|     InitBuiltinType(SingletonId, BuiltinType::Id);
 | |
| #include "clang/Basic/AArch64SVEACLETypes.def"
 | |
|   }
 | |
| 
 | |
|   // Builtin type for __objc_yes and __objc_no
 | |
|   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
 | |
|                        SignedCharTy : BoolTy);
 | |
| 
 | |
|   ObjCConstantStringType = QualType();
 | |
| 
 | |
|   ObjCSuperType = QualType();
 | |
| 
 | |
|   // void * type
 | |
|   if (LangOpts.OpenCLVersion >= 200) {
 | |
|     auto Q = VoidTy.getQualifiers();
 | |
|     Q.setAddressSpace(LangAS::opencl_generic);
 | |
|     VoidPtrTy = getPointerType(getCanonicalType(
 | |
|         getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
 | |
|   } else {
 | |
|     VoidPtrTy = getPointerType(VoidTy);
 | |
|   }
 | |
| 
 | |
|   // nullptr type (C++0x 2.14.7)
 | |
|   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
 | |
| 
 | |
|   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
 | |
|   InitBuiltinType(HalfTy, BuiltinType::Half);
 | |
| 
 | |
|   // Builtin type used to help define __builtin_va_list.
 | |
|   VaListTagDecl = nullptr;
 | |
| }
 | |
| 
 | |
| DiagnosticsEngine &ASTContext::getDiagnostics() const {
 | |
|   return SourceMgr.getDiagnostics();
 | |
| }
 | |
| 
 | |
| AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
 | |
|   AttrVec *&Result = DeclAttrs[D];
 | |
|   if (!Result) {
 | |
|     void *Mem = Allocate(sizeof(AttrVec));
 | |
|     Result = new (Mem) AttrVec;
 | |
|   }
 | |
| 
 | |
|   return *Result;
 | |
| }
 | |
| 
 | |
| /// Erase the attributes corresponding to the given declaration.
 | |
| void ASTContext::eraseDeclAttrs(const Decl *D) {
 | |
|   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
 | |
|   if (Pos != DeclAttrs.end()) {
 | |
|     Pos->second->~AttrVec();
 | |
|     DeclAttrs.erase(Pos);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // FIXME: Remove ?
 | |
| MemberSpecializationInfo *
 | |
| ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
 | |
|   assert(Var->isStaticDataMember() && "Not a static data member");
 | |
|   return getTemplateOrSpecializationInfo(Var)
 | |
|       .dyn_cast<MemberSpecializationInfo *>();
 | |
| }
 | |
| 
 | |
| ASTContext::TemplateOrSpecializationInfo
 | |
| ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
 | |
|   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
 | |
|       TemplateOrInstantiation.find(Var);
 | |
|   if (Pos == TemplateOrInstantiation.end())
 | |
|     return {};
 | |
| 
 | |
|   return Pos->second;
 | |
| }
 | |
| 
 | |
| void
 | |
| ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
 | |
|                                                 TemplateSpecializationKind TSK,
 | |
|                                           SourceLocation PointOfInstantiation) {
 | |
|   assert(Inst->isStaticDataMember() && "Not a static data member");
 | |
|   assert(Tmpl->isStaticDataMember() && "Not a static data member");
 | |
|   setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
 | |
|                                             Tmpl, TSK, PointOfInstantiation));
 | |
| }
 | |
| 
 | |
| void
 | |
| ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
 | |
|                                             TemplateOrSpecializationInfo TSI) {
 | |
|   assert(!TemplateOrInstantiation[Inst] &&
 | |
|          "Already noted what the variable was instantiated from");
 | |
|   TemplateOrInstantiation[Inst] = TSI;
 | |
| }
 | |
| 
 | |
| NamedDecl *
 | |
| ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
 | |
|   auto Pos = InstantiatedFromUsingDecl.find(UUD);
 | |
|   if (Pos == InstantiatedFromUsingDecl.end())
 | |
|     return nullptr;
 | |
| 
 | |
|   return Pos->second;
 | |
| }
 | |
| 
 | |
| void
 | |
| ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
 | |
|   assert((isa<UsingDecl>(Pattern) ||
 | |
|           isa<UnresolvedUsingValueDecl>(Pattern) ||
 | |
|           isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
 | |
|          "pattern decl is not a using decl");
 | |
|   assert((isa<UsingDecl>(Inst) ||
 | |
|           isa<UnresolvedUsingValueDecl>(Inst) ||
 | |
|           isa<UnresolvedUsingTypenameDecl>(Inst)) &&
 | |
|          "instantiation did not produce a using decl");
 | |
|   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
 | |
|   InstantiatedFromUsingDecl[Inst] = Pattern;
 | |
| }
 | |
| 
 | |
| UsingShadowDecl *
 | |
| ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
 | |
|   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
 | |
|     = InstantiatedFromUsingShadowDecl.find(Inst);
 | |
|   if (Pos == InstantiatedFromUsingShadowDecl.end())
 | |
|     return nullptr;
 | |
| 
 | |
|   return Pos->second;
 | |
| }
 | |
| 
 | |
| void
 | |
| ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
 | |
|                                                UsingShadowDecl *Pattern) {
 | |
|   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
 | |
|   InstantiatedFromUsingShadowDecl[Inst] = Pattern;
 | |
| }
 | |
| 
 | |
| FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
 | |
|   llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
 | |
|     = InstantiatedFromUnnamedFieldDecl.find(Field);
 | |
|   if (Pos == InstantiatedFromUnnamedFieldDecl.end())
 | |
|     return nullptr;
 | |
| 
 | |
|   return Pos->second;
 | |
| }
 | |
| 
 | |
| void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
 | |
|                                                      FieldDecl *Tmpl) {
 | |
|   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
 | |
|   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
 | |
|   assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
 | |
|          "Already noted what unnamed field was instantiated from");
 | |
| 
 | |
|   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
 | |
| }
 | |
| 
 | |
| ASTContext::overridden_cxx_method_iterator
 | |
| ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
 | |
|   return overridden_methods(Method).begin();
 | |
| }
 | |
| 
 | |
| ASTContext::overridden_cxx_method_iterator
 | |
| ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
 | |
|   return overridden_methods(Method).end();
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
 | |
|   auto Range = overridden_methods(Method);
 | |
|   return Range.end() - Range.begin();
 | |
| }
 | |
| 
 | |
| ASTContext::overridden_method_range
 | |
| ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
 | |
|   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
 | |
|       OverriddenMethods.find(Method->getCanonicalDecl());
 | |
|   if (Pos == OverriddenMethods.end())
 | |
|     return overridden_method_range(nullptr, nullptr);
 | |
|   return overridden_method_range(Pos->second.begin(), Pos->second.end());
 | |
| }
 | |
| 
 | |
| void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
 | |
|                                      const CXXMethodDecl *Overridden) {
 | |
|   assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
 | |
|   OverriddenMethods[Method].push_back(Overridden);
 | |
| }
 | |
| 
 | |
| void ASTContext::getOverriddenMethods(
 | |
|                       const NamedDecl *D,
 | |
|                       SmallVectorImpl<const NamedDecl *> &Overridden) const {
 | |
|   assert(D);
 | |
| 
 | |
|   if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
 | |
|     Overridden.append(overridden_methods_begin(CXXMethod),
 | |
|                       overridden_methods_end(CXXMethod));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const auto *Method = dyn_cast<ObjCMethodDecl>(D);
 | |
|   if (!Method)
 | |
|     return;
 | |
| 
 | |
|   SmallVector<const ObjCMethodDecl *, 8> OverDecls;
 | |
|   Method->getOverriddenMethods(OverDecls);
 | |
|   Overridden.append(OverDecls.begin(), OverDecls.end());
 | |
| }
 | |
| 
 | |
| void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
 | |
|   assert(!Import->getNextLocalImport() &&
 | |
|          "Import declaration already in the chain");
 | |
|   assert(!Import->isFromASTFile() && "Non-local import declaration");
 | |
|   if (!FirstLocalImport) {
 | |
|     FirstLocalImport = Import;
 | |
|     LastLocalImport = Import;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   LastLocalImport->setNextLocalImport(Import);
 | |
|   LastLocalImport = Import;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Type Sizing and Analysis
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
 | |
| /// scalar floating point type.
 | |
| const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
 | |
|   switch (T->castAs<BuiltinType>()->getKind()) {
 | |
|   default:
 | |
|     llvm_unreachable("Not a floating point type!");
 | |
|   case BuiltinType::Float16:
 | |
|   case BuiltinType::Half:
 | |
|     return Target->getHalfFormat();
 | |
|   case BuiltinType::Float:      return Target->getFloatFormat();
 | |
|   case BuiltinType::Double:     return Target->getDoubleFormat();
 | |
|   case BuiltinType::LongDouble:
 | |
|     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
 | |
|       return AuxTarget->getLongDoubleFormat();
 | |
|     return Target->getLongDoubleFormat();
 | |
|   case BuiltinType::Float128:
 | |
|     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
 | |
|       return AuxTarget->getFloat128Format();
 | |
|     return Target->getFloat128Format();
 | |
|   }
 | |
| }
 | |
| 
 | |
| CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
 | |
|   unsigned Align = Target->getCharWidth();
 | |
| 
 | |
|   bool UseAlignAttrOnly = false;
 | |
|   if (unsigned AlignFromAttr = D->getMaxAlignment()) {
 | |
|     Align = AlignFromAttr;
 | |
| 
 | |
|     // __attribute__((aligned)) can increase or decrease alignment
 | |
|     // *except* on a struct or struct member, where it only increases
 | |
|     // alignment unless 'packed' is also specified.
 | |
|     //
 | |
|     // It is an error for alignas to decrease alignment, so we can
 | |
|     // ignore that possibility;  Sema should diagnose it.
 | |
|     if (isa<FieldDecl>(D)) {
 | |
|       UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
 | |
|         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
 | |
|     } else {
 | |
|       UseAlignAttrOnly = true;
 | |
|     }
 | |
|   }
 | |
|   else if (isa<FieldDecl>(D))
 | |
|       UseAlignAttrOnly =
 | |
|         D->hasAttr<PackedAttr>() ||
 | |
|         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
 | |
| 
 | |
|   // If we're using the align attribute only, just ignore everything
 | |
|   // else about the declaration and its type.
 | |
|   if (UseAlignAttrOnly) {
 | |
|     // do nothing
 | |
|   } else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
 | |
|     QualType T = VD->getType();
 | |
|     if (const auto *RT = T->getAs<ReferenceType>()) {
 | |
|       if (ForAlignof)
 | |
|         T = RT->getPointeeType();
 | |
|       else
 | |
|         T = getPointerType(RT->getPointeeType());
 | |
|     }
 | |
|     QualType BaseT = getBaseElementType(T);
 | |
|     if (T->isFunctionType())
 | |
|       Align = getTypeInfoImpl(T.getTypePtr()).Align;
 | |
|     else if (!BaseT->isIncompleteType()) {
 | |
|       // Adjust alignments of declarations with array type by the
 | |
|       // large-array alignment on the target.
 | |
|       if (const ArrayType *arrayType = getAsArrayType(T)) {
 | |
|         unsigned MinWidth = Target->getLargeArrayMinWidth();
 | |
|         if (!ForAlignof && MinWidth) {
 | |
|           if (isa<VariableArrayType>(arrayType))
 | |
|             Align = std::max(Align, Target->getLargeArrayAlign());
 | |
|           else if (isa<ConstantArrayType>(arrayType) &&
 | |
|                    MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
 | |
|             Align = std::max(Align, Target->getLargeArrayAlign());
 | |
|         }
 | |
|       }
 | |
|       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
 | |
|       if (BaseT.getQualifiers().hasUnaligned())
 | |
|         Align = Target->getCharWidth();
 | |
|       if (const auto *VD = dyn_cast<VarDecl>(D)) {
 | |
|         if (VD->hasGlobalStorage() && !ForAlignof) {
 | |
|           uint64_t TypeSize = getTypeSize(T.getTypePtr());
 | |
|           Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Fields can be subject to extra alignment constraints, like if
 | |
|     // the field is packed, the struct is packed, or the struct has a
 | |
|     // a max-field-alignment constraint (#pragma pack).  So calculate
 | |
|     // the actual alignment of the field within the struct, and then
 | |
|     // (as we're expected to) constrain that by the alignment of the type.
 | |
|     if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
 | |
|       const RecordDecl *Parent = Field->getParent();
 | |
|       // We can only produce a sensible answer if the record is valid.
 | |
|       if (!Parent->isInvalidDecl()) {
 | |
|         const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
 | |
| 
 | |
|         // Start with the record's overall alignment.
 | |
|         unsigned FieldAlign = toBits(Layout.getAlignment());
 | |
| 
 | |
|         // Use the GCD of that and the offset within the record.
 | |
|         uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
 | |
|         if (Offset > 0) {
 | |
|           // Alignment is always a power of 2, so the GCD will be a power of 2,
 | |
|           // which means we get to do this crazy thing instead of Euclid's.
 | |
|           uint64_t LowBitOfOffset = Offset & (~Offset + 1);
 | |
|           if (LowBitOfOffset < FieldAlign)
 | |
|             FieldAlign = static_cast<unsigned>(LowBitOfOffset);
 | |
|         }
 | |
| 
 | |
|         Align = std::min(Align, FieldAlign);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return toCharUnitsFromBits(Align);
 | |
| }
 | |
| 
 | |
| CharUnits ASTContext::getExnObjectAlignment() const {
 | |
|   return toCharUnitsFromBits(Target->getExnObjectAlignment());
 | |
| }
 | |
| 
 | |
| // getTypeInfoDataSizeInChars - Return the size of a type, in
 | |
| // chars. If the type is a record, its data size is returned.  This is
 | |
| // the size of the memcpy that's performed when assigning this type
 | |
| // using a trivial copy/move assignment operator.
 | |
| std::pair<CharUnits, CharUnits>
 | |
| ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
 | |
|   std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
 | |
| 
 | |
|   // In C++, objects can sometimes be allocated into the tail padding
 | |
|   // of a base-class subobject.  We decide whether that's possible
 | |
|   // during class layout, so here we can just trust the layout results.
 | |
|   if (getLangOpts().CPlusPlus) {
 | |
|     if (const auto *RT = T->getAs<RecordType>()) {
 | |
|       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
 | |
|       sizeAndAlign.first = layout.getDataSize();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return sizeAndAlign;
 | |
| }
 | |
| 
 | |
| /// getConstantArrayInfoInChars - Performing the computation in CharUnits
 | |
| /// instead of in bits prevents overflowing the uint64_t for some large arrays.
 | |
| std::pair<CharUnits, CharUnits>
 | |
| static getConstantArrayInfoInChars(const ASTContext &Context,
 | |
|                                    const ConstantArrayType *CAT) {
 | |
|   std::pair<CharUnits, CharUnits> EltInfo =
 | |
|       Context.getTypeInfoInChars(CAT->getElementType());
 | |
|   uint64_t Size = CAT->getSize().getZExtValue();
 | |
|   assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
 | |
|               (uint64_t)(-1)/Size) &&
 | |
|          "Overflow in array type char size evaluation");
 | |
|   uint64_t Width = EltInfo.first.getQuantity() * Size;
 | |
|   unsigned Align = EltInfo.second.getQuantity();
 | |
|   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
 | |
|       Context.getTargetInfo().getPointerWidth(0) == 64)
 | |
|     Width = llvm::alignTo(Width, Align);
 | |
|   return std::make_pair(CharUnits::fromQuantity(Width),
 | |
|                         CharUnits::fromQuantity(Align));
 | |
| }
 | |
| 
 | |
| std::pair<CharUnits, CharUnits>
 | |
| ASTContext::getTypeInfoInChars(const Type *T) const {
 | |
|   if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
 | |
|     return getConstantArrayInfoInChars(*this, CAT);
 | |
|   TypeInfo Info = getTypeInfo(T);
 | |
|   return std::make_pair(toCharUnitsFromBits(Info.Width),
 | |
|                         toCharUnitsFromBits(Info.Align));
 | |
| }
 | |
| 
 | |
| std::pair<CharUnits, CharUnits>
 | |
| ASTContext::getTypeInfoInChars(QualType T) const {
 | |
|   return getTypeInfoInChars(T.getTypePtr());
 | |
| }
 | |
| 
 | |
| bool ASTContext::isAlignmentRequired(const Type *T) const {
 | |
|   return getTypeInfo(T).AlignIsRequired;
 | |
| }
 | |
| 
 | |
| bool ASTContext::isAlignmentRequired(QualType T) const {
 | |
|   return isAlignmentRequired(T.getTypePtr());
 | |
| }
 | |
| 
 | |
| unsigned ASTContext::getTypeAlignIfKnown(QualType T) const {
 | |
|   // An alignment on a typedef overrides anything else.
 | |
|   if (const auto *TT = T->getAs<TypedefType>())
 | |
|     if (unsigned Align = TT->getDecl()->getMaxAlignment())
 | |
|       return Align;
 | |
| 
 | |
|   // If we have an (array of) complete type, we're done.
 | |
|   T = getBaseElementType(T);
 | |
|   if (!T->isIncompleteType())
 | |
|     return getTypeAlign(T);
 | |
| 
 | |
|   // If we had an array type, its element type might be a typedef
 | |
|   // type with an alignment attribute.
 | |
|   if (const auto *TT = T->getAs<TypedefType>())
 | |
|     if (unsigned Align = TT->getDecl()->getMaxAlignment())
 | |
|       return Align;
 | |
| 
 | |
|   // Otherwise, see if the declaration of the type had an attribute.
 | |
|   if (const auto *TT = T->getAs<TagType>())
 | |
|     return TT->getDecl()->getMaxAlignment();
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| TypeInfo ASTContext::getTypeInfo(const Type *T) const {
 | |
|   TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
 | |
|   if (I != MemoizedTypeInfo.end())
 | |
|     return I->second;
 | |
| 
 | |
|   // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
 | |
|   TypeInfo TI = getTypeInfoImpl(T);
 | |
|   MemoizedTypeInfo[T] = TI;
 | |
|   return TI;
 | |
| }
 | |
| 
 | |
| /// getTypeInfoImpl - Return the size of the specified type, in bits.  This
 | |
| /// method does not work on incomplete types.
 | |
| ///
 | |
| /// FIXME: Pointers into different addr spaces could have different sizes and
 | |
| /// alignment requirements: getPointerInfo should take an AddrSpace, this
 | |
| /// should take a QualType, &c.
 | |
| TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
 | |
|   uint64_t Width = 0;
 | |
|   unsigned Align = 8;
 | |
|   bool AlignIsRequired = false;
 | |
|   unsigned AS = 0;
 | |
|   switch (T->getTypeClass()) {
 | |
| #define TYPE(Class, Base)
 | |
| #define ABSTRACT_TYPE(Class, Base)
 | |
| #define NON_CANONICAL_TYPE(Class, Base)
 | |
| #define DEPENDENT_TYPE(Class, Base) case Type::Class:
 | |
| #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
 | |
|   case Type::Class:                                                            \
 | |
|   assert(!T->isDependentType() && "should not see dependent types here");      \
 | |
|   return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
 | |
| #include "clang/AST/TypeNodes.inc"
 | |
|     llvm_unreachable("Should not see dependent types");
 | |
| 
 | |
|   case Type::FunctionNoProto:
 | |
|   case Type::FunctionProto:
 | |
|     // GCC extension: alignof(function) = 32 bits
 | |
|     Width = 0;
 | |
|     Align = 32;
 | |
|     break;
 | |
| 
 | |
|   case Type::IncompleteArray:
 | |
|   case Type::VariableArray:
 | |
|     Width = 0;
 | |
|     Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
 | |
|     break;
 | |
| 
 | |
|   case Type::ConstantArray: {
 | |
|     const auto *CAT = cast<ConstantArrayType>(T);
 | |
| 
 | |
|     TypeInfo EltInfo = getTypeInfo(CAT->getElementType());
 | |
|     uint64_t Size = CAT->getSize().getZExtValue();
 | |
|     assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
 | |
|            "Overflow in array type bit size evaluation");
 | |
|     Width = EltInfo.Width * Size;
 | |
|     Align = EltInfo.Align;
 | |
|     if (!getTargetInfo().getCXXABI().isMicrosoft() ||
 | |
|         getTargetInfo().getPointerWidth(0) == 64)
 | |
|       Width = llvm::alignTo(Width, Align);
 | |
|     break;
 | |
|   }
 | |
|   case Type::ExtVector:
 | |
|   case Type::Vector: {
 | |
|     const auto *VT = cast<VectorType>(T);
 | |
|     TypeInfo EltInfo = getTypeInfo(VT->getElementType());
 | |
|     Width = EltInfo.Width * VT->getNumElements();
 | |
|     Align = Width;
 | |
|     // If the alignment is not a power of 2, round up to the next power of 2.
 | |
|     // This happens for non-power-of-2 length vectors.
 | |
|     if (Align & (Align-1)) {
 | |
|       Align = llvm::NextPowerOf2(Align);
 | |
|       Width = llvm::alignTo(Width, Align);
 | |
|     }
 | |
|     // Adjust the alignment based on the target max.
 | |
|     uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
 | |
|     if (TargetVectorAlign && TargetVectorAlign < Align)
 | |
|       Align = TargetVectorAlign;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::Builtin:
 | |
|     switch (cast<BuiltinType>(T)->getKind()) {
 | |
|     default: llvm_unreachable("Unknown builtin type!");
 | |
|     case BuiltinType::Void:
 | |
|       // GCC extension: alignof(void) = 8 bits.
 | |
|       Width = 0;
 | |
|       Align = 8;
 | |
|       break;
 | |
|     case BuiltinType::Bool:
 | |
|       Width = Target->getBoolWidth();
 | |
|       Align = Target->getBoolAlign();
 | |
|       break;
 | |
|     case BuiltinType::Char_S:
 | |
|     case BuiltinType::Char_U:
 | |
|     case BuiltinType::UChar:
 | |
|     case BuiltinType::SChar:
 | |
|     case BuiltinType::Char8:
 | |
|       Width = Target->getCharWidth();
 | |
|       Align = Target->getCharAlign();
 | |
|       break;
 | |
|     case BuiltinType::WChar_S:
 | |
|     case BuiltinType::WChar_U:
 | |
|       Width = Target->getWCharWidth();
 | |
|       Align = Target->getWCharAlign();
 | |
|       break;
 | |
|     case BuiltinType::Char16:
 | |
|       Width = Target->getChar16Width();
 | |
|       Align = Target->getChar16Align();
 | |
|       break;
 | |
|     case BuiltinType::Char32:
 | |
|       Width = Target->getChar32Width();
 | |
|       Align = Target->getChar32Align();
 | |
|       break;
 | |
|     case BuiltinType::UShort:
 | |
|     case BuiltinType::Short:
 | |
|       Width = Target->getShortWidth();
 | |
|       Align = Target->getShortAlign();
 | |
|       break;
 | |
|     case BuiltinType::UInt:
 | |
|     case BuiltinType::Int:
 | |
|       Width = Target->getIntWidth();
 | |
|       Align = Target->getIntAlign();
 | |
|       break;
 | |
|     case BuiltinType::ULong:
 | |
|     case BuiltinType::Long:
 | |
|       Width = Target->getLongWidth();
 | |
|       Align = Target->getLongAlign();
 | |
|       break;
 | |
|     case BuiltinType::ULongLong:
 | |
|     case BuiltinType::LongLong:
 | |
|       Width = Target->getLongLongWidth();
 | |
|       Align = Target->getLongLongAlign();
 | |
|       break;
 | |
|     case BuiltinType::Int128:
 | |
|     case BuiltinType::UInt128:
 | |
|       Width = 128;
 | |
|       Align = 128; // int128_t is 128-bit aligned on all targets.
 | |
|       break;
 | |
|     case BuiltinType::ShortAccum:
 | |
|     case BuiltinType::UShortAccum:
 | |
|     case BuiltinType::SatShortAccum:
 | |
|     case BuiltinType::SatUShortAccum:
 | |
|       Width = Target->getShortAccumWidth();
 | |
|       Align = Target->getShortAccumAlign();
 | |
|       break;
 | |
|     case BuiltinType::Accum:
 | |
|     case BuiltinType::UAccum:
 | |
|     case BuiltinType::SatAccum:
 | |
|     case BuiltinType::SatUAccum:
 | |
|       Width = Target->getAccumWidth();
 | |
|       Align = Target->getAccumAlign();
 | |
|       break;
 | |
|     case BuiltinType::LongAccum:
 | |
|     case BuiltinType::ULongAccum:
 | |
|     case BuiltinType::SatLongAccum:
 | |
|     case BuiltinType::SatULongAccum:
 | |
|       Width = Target->getLongAccumWidth();
 | |
|       Align = Target->getLongAccumAlign();
 | |
|       break;
 | |
|     case BuiltinType::ShortFract:
 | |
|     case BuiltinType::UShortFract:
 | |
|     case BuiltinType::SatShortFract:
 | |
|     case BuiltinType::SatUShortFract:
 | |
|       Width = Target->getShortFractWidth();
 | |
|       Align = Target->getShortFractAlign();
 | |
|       break;
 | |
|     case BuiltinType::Fract:
 | |
|     case BuiltinType::UFract:
 | |
|     case BuiltinType::SatFract:
 | |
|     case BuiltinType::SatUFract:
 | |
|       Width = Target->getFractWidth();
 | |
|       Align = Target->getFractAlign();
 | |
|       break;
 | |
|     case BuiltinType::LongFract:
 | |
|     case BuiltinType::ULongFract:
 | |
|     case BuiltinType::SatLongFract:
 | |
|     case BuiltinType::SatULongFract:
 | |
|       Width = Target->getLongFractWidth();
 | |
|       Align = Target->getLongFractAlign();
 | |
|       break;
 | |
|     case BuiltinType::Float16:
 | |
|     case BuiltinType::Half:
 | |
|       if (Target->hasFloat16Type() || !getLangOpts().OpenMP ||
 | |
|           !getLangOpts().OpenMPIsDevice) {
 | |
|         Width = Target->getHalfWidth();
 | |
|         Align = Target->getHalfAlign();
 | |
|       } else {
 | |
|         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
 | |
|                "Expected OpenMP device compilation.");
 | |
|         Width = AuxTarget->getHalfWidth();
 | |
|         Align = AuxTarget->getHalfAlign();
 | |
|       }
 | |
|       break;
 | |
|     case BuiltinType::Float:
 | |
|       Width = Target->getFloatWidth();
 | |
|       Align = Target->getFloatAlign();
 | |
|       break;
 | |
|     case BuiltinType::Double:
 | |
|       Width = Target->getDoubleWidth();
 | |
|       Align = Target->getDoubleAlign();
 | |
|       break;
 | |
|     case BuiltinType::LongDouble:
 | |
|       if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
 | |
|           (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() ||
 | |
|            Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) {
 | |
|         Width = AuxTarget->getLongDoubleWidth();
 | |
|         Align = AuxTarget->getLongDoubleAlign();
 | |
|       } else {
 | |
|         Width = Target->getLongDoubleWidth();
 | |
|         Align = Target->getLongDoubleAlign();
 | |
|       }
 | |
|       break;
 | |
|     case BuiltinType::Float128:
 | |
|       if (Target->hasFloat128Type() || !getLangOpts().OpenMP ||
 | |
|           !getLangOpts().OpenMPIsDevice) {
 | |
|         Width = Target->getFloat128Width();
 | |
|         Align = Target->getFloat128Align();
 | |
|       } else {
 | |
|         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
 | |
|                "Expected OpenMP device compilation.");
 | |
|         Width = AuxTarget->getFloat128Width();
 | |
|         Align = AuxTarget->getFloat128Align();
 | |
|       }
 | |
|       break;
 | |
|     case BuiltinType::NullPtr:
 | |
|       Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
 | |
|       Align = Target->getPointerAlign(0); //   == sizeof(void*)
 | |
|       break;
 | |
|     case BuiltinType::ObjCId:
 | |
|     case BuiltinType::ObjCClass:
 | |
|     case BuiltinType::ObjCSel:
 | |
|       Width = Target->getPointerWidth(0);
 | |
|       Align = Target->getPointerAlign(0);
 | |
|       break;
 | |
|     case BuiltinType::OCLSampler:
 | |
|     case BuiltinType::OCLEvent:
 | |
|     case BuiltinType::OCLClkEvent:
 | |
|     case BuiltinType::OCLQueue:
 | |
|     case BuiltinType::OCLReserveID:
 | |
| #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
 | |
|     case BuiltinType::Id:
 | |
| #include "clang/Basic/OpenCLImageTypes.def"
 | |
| #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
 | |
|   case BuiltinType::Id:
 | |
| #include "clang/Basic/OpenCLExtensionTypes.def"
 | |
|       AS = getTargetAddressSpace(
 | |
|           Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)));
 | |
|       Width = Target->getPointerWidth(AS);
 | |
|       Align = Target->getPointerAlign(AS);
 | |
|       break;
 | |
|     // The SVE types are effectively target-specific.  The length of an
 | |
|     // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple
 | |
|     // of 128 bits.  There is one predicate bit for each vector byte, so the
 | |
|     // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits.
 | |
|     //
 | |
|     // Because the length is only known at runtime, we use a dummy value
 | |
|     // of 0 for the static length.  The alignment values are those defined
 | |
|     // by the Procedure Call Standard for the Arm Architecture.
 | |
| #define SVE_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, IsSigned, IsFP)\
 | |
|     case BuiltinType::Id: \
 | |
|       Width = 0; \
 | |
|       Align = 128; \
 | |
|       break;
 | |
| #define SVE_PREDICATE_TYPE(Name, Id, SingletonId, ElKind) \
 | |
|     case BuiltinType::Id: \
 | |
|       Width = 0; \
 | |
|       Align = 16; \
 | |
|       break;
 | |
| #include "clang/Basic/AArch64SVEACLETypes.def"
 | |
|     }
 | |
|     break;
 | |
|   case Type::ObjCObjectPointer:
 | |
|     Width = Target->getPointerWidth(0);
 | |
|     Align = Target->getPointerAlign(0);
 | |
|     break;
 | |
|   case Type::BlockPointer:
 | |
|     AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType());
 | |
|     Width = Target->getPointerWidth(AS);
 | |
|     Align = Target->getPointerAlign(AS);
 | |
|     break;
 | |
|   case Type::LValueReference:
 | |
|   case Type::RValueReference:
 | |
|     // alignof and sizeof should never enter this code path here, so we go
 | |
|     // the pointer route.
 | |
|     AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType());
 | |
|     Width = Target->getPointerWidth(AS);
 | |
|     Align = Target->getPointerAlign(AS);
 | |
|     break;
 | |
|   case Type::Pointer:
 | |
|     AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
 | |
|     Width = Target->getPointerWidth(AS);
 | |
|     Align = Target->getPointerAlign(AS);
 | |
|     break;
 | |
|   case Type::MemberPointer: {
 | |
|     const auto *MPT = cast<MemberPointerType>(T);
 | |
|     CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
 | |
|     Width = MPI.Width;
 | |
|     Align = MPI.Align;
 | |
|     break;
 | |
|   }
 | |
|   case Type::Complex: {
 | |
|     // Complex types have the same alignment as their elements, but twice the
 | |
|     // size.
 | |
|     TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
 | |
|     Width = EltInfo.Width * 2;
 | |
|     Align = EltInfo.Align;
 | |
|     break;
 | |
|   }
 | |
|   case Type::ObjCObject:
 | |
|     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
 | |
|   case Type::Adjusted:
 | |
|   case Type::Decayed:
 | |
|     return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
 | |
|   case Type::ObjCInterface: {
 | |
|     const auto *ObjCI = cast<ObjCInterfaceType>(T);
 | |
|     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
 | |
|     Width = toBits(Layout.getSize());
 | |
|     Align = toBits(Layout.getAlignment());
 | |
|     break;
 | |
|   }
 | |
|   case Type::Record:
 | |
|   case Type::Enum: {
 | |
|     const auto *TT = cast<TagType>(T);
 | |
| 
 | |
|     if (TT->getDecl()->isInvalidDecl()) {
 | |
|       Width = 8;
 | |
|       Align = 8;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (const auto *ET = dyn_cast<EnumType>(TT)) {
 | |
|       const EnumDecl *ED = ET->getDecl();
 | |
|       TypeInfo Info =
 | |
|           getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
 | |
|       if (unsigned AttrAlign = ED->getMaxAlignment()) {
 | |
|         Info.Align = AttrAlign;
 | |
|         Info.AlignIsRequired = true;
 | |
|       }
 | |
|       return Info;
 | |
|     }
 | |
| 
 | |
|     const auto *RT = cast<RecordType>(TT);
 | |
|     const RecordDecl *RD = RT->getDecl();
 | |
|     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
 | |
|     Width = toBits(Layout.getSize());
 | |
|     Align = toBits(Layout.getAlignment());
 | |
|     AlignIsRequired = RD->hasAttr<AlignedAttr>();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::SubstTemplateTypeParm:
 | |
|     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
 | |
|                        getReplacementType().getTypePtr());
 | |
| 
 | |
|   case Type::Auto:
 | |
|   case Type::DeducedTemplateSpecialization: {
 | |
|     const auto *A = cast<DeducedType>(T);
 | |
|     assert(!A->getDeducedType().isNull() &&
 | |
|            "cannot request the size of an undeduced or dependent auto type");
 | |
|     return getTypeInfo(A->getDeducedType().getTypePtr());
 | |
|   }
 | |
| 
 | |
|   case Type::Paren:
 | |
|     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
 | |
| 
 | |
|   case Type::MacroQualified:
 | |
|     return getTypeInfo(
 | |
|         cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr());
 | |
| 
 | |
|   case Type::ObjCTypeParam:
 | |
|     return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
 | |
| 
 | |
|   case Type::Typedef: {
 | |
|     const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
 | |
|     TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
 | |
|     // If the typedef has an aligned attribute on it, it overrides any computed
 | |
|     // alignment we have.  This violates the GCC documentation (which says that
 | |
|     // attribute(aligned) can only round up) but matches its implementation.
 | |
|     if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
 | |
|       Align = AttrAlign;
 | |
|       AlignIsRequired = true;
 | |
|     } else {
 | |
|       Align = Info.Align;
 | |
|       AlignIsRequired = Info.AlignIsRequired;
 | |
|     }
 | |
|     Width = Info.Width;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::Elaborated:
 | |
|     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
 | |
| 
 | |
|   case Type::Attributed:
 | |
|     return getTypeInfo(
 | |
|                   cast<AttributedType>(T)->getEquivalentType().getTypePtr());
 | |
| 
 | |
|   case Type::Atomic: {
 | |
|     // Start with the base type information.
 | |
|     TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
 | |
|     Width = Info.Width;
 | |
|     Align = Info.Align;
 | |
| 
 | |
|     if (!Width) {
 | |
|       // An otherwise zero-sized type should still generate an
 | |
|       // atomic operation.
 | |
|       Width = Target->getCharWidth();
 | |
|       assert(Align);
 | |
|     } else if (Width <= Target->getMaxAtomicPromoteWidth()) {
 | |
|       // If the size of the type doesn't exceed the platform's max
 | |
|       // atomic promotion width, make the size and alignment more
 | |
|       // favorable to atomic operations:
 | |
| 
 | |
|       // Round the size up to a power of 2.
 | |
|       if (!llvm::isPowerOf2_64(Width))
 | |
|         Width = llvm::NextPowerOf2(Width);
 | |
| 
 | |
|       // Set the alignment equal to the size.
 | |
|       Align = static_cast<unsigned>(Width);
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
| 
 | |
|   case Type::Pipe:
 | |
|     Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global));
 | |
|     Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
 | |
|   return TypeInfo(Width, Align, AlignIsRequired);
 | |
| }
 | |
| 
 | |
| unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
 | |
|   UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
 | |
|   if (I != MemoizedUnadjustedAlign.end())
 | |
|     return I->second;
 | |
| 
 | |
|   unsigned UnadjustedAlign;
 | |
|   if (const auto *RT = T->getAs<RecordType>()) {
 | |
|     const RecordDecl *RD = RT->getDecl();
 | |
|     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
 | |
|     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
 | |
|   } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
 | |
|     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
 | |
|     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
 | |
|   } else {
 | |
|     UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType());
 | |
|   }
 | |
| 
 | |
|   MemoizedUnadjustedAlign[T] = UnadjustedAlign;
 | |
|   return UnadjustedAlign;
 | |
| }
 | |
| 
 | |
| unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
 | |
|   unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
 | |
|   // Target ppc64 with QPX: simd default alignment for pointer to double is 32.
 | |
|   if ((getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64 ||
 | |
|        getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64le) &&
 | |
|       getTargetInfo().getABI() == "elfv1-qpx" &&
 | |
|       T->isSpecificBuiltinType(BuiltinType::Double))
 | |
|     SimdAlign = 256;
 | |
|   return SimdAlign;
 | |
| }
 | |
| 
 | |
| /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
 | |
| CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
 | |
|   return CharUnits::fromQuantity(BitSize / getCharWidth());
 | |
| }
 | |
| 
 | |
| /// toBits - Convert a size in characters to a size in characters.
 | |
| int64_t ASTContext::toBits(CharUnits CharSize) const {
 | |
|   return CharSize.getQuantity() * getCharWidth();
 | |
| }
 | |
| 
 | |
| /// getTypeSizeInChars - Return the size of the specified type, in characters.
 | |
| /// This method does not work on incomplete types.
 | |
| CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
 | |
|   return getTypeInfoInChars(T).first;
 | |
| }
 | |
| CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
 | |
|   return getTypeInfoInChars(T).first;
 | |
| }
 | |
| 
 | |
| /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
 | |
| /// characters. This method does not work on incomplete types.
 | |
| CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
 | |
|   return toCharUnitsFromBits(getTypeAlign(T));
 | |
| }
 | |
| CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
 | |
|   return toCharUnitsFromBits(getTypeAlign(T));
 | |
| }
 | |
| 
 | |
| /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
 | |
| /// type, in characters, before alignment adustments. This method does
 | |
| /// not work on incomplete types.
 | |
| CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
 | |
|   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
 | |
| }
 | |
| CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
 | |
|   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
 | |
| }
 | |
| 
 | |
| /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
 | |
| /// type for the current target in bits.  This can be different than the ABI
 | |
| /// alignment in cases where it is beneficial for performance to overalign
 | |
| /// a data type.
 | |
| unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
 | |
|   TypeInfo TI = getTypeInfo(T);
 | |
|   unsigned ABIAlign = TI.Align;
 | |
| 
 | |
|   T = T->getBaseElementTypeUnsafe();
 | |
| 
 | |
|   // The preferred alignment of member pointers is that of a pointer.
 | |
|   if (T->isMemberPointerType())
 | |
|     return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
 | |
| 
 | |
|   if (!Target->allowsLargerPreferedTypeAlignment())
 | |
|     return ABIAlign;
 | |
| 
 | |
|   // Double and long long should be naturally aligned if possible.
 | |
|   if (const auto *CT = T->getAs<ComplexType>())
 | |
|     T = CT->getElementType().getTypePtr();
 | |
|   if (const auto *ET = T->getAs<EnumType>())
 | |
|     T = ET->getDecl()->getIntegerType().getTypePtr();
 | |
|   if (T->isSpecificBuiltinType(BuiltinType::Double) ||
 | |
|       T->isSpecificBuiltinType(BuiltinType::LongLong) ||
 | |
|       T->isSpecificBuiltinType(BuiltinType::ULongLong))
 | |
|     // Don't increase the alignment if an alignment attribute was specified on a
 | |
|     // typedef declaration.
 | |
|     if (!TI.AlignIsRequired)
 | |
|       return std::max(ABIAlign, (unsigned)getTypeSize(T));
 | |
| 
 | |
|   return ABIAlign;
 | |
| }
 | |
| 
 | |
| /// getTargetDefaultAlignForAttributeAligned - Return the default alignment
 | |
| /// for __attribute__((aligned)) on this target, to be used if no alignment
 | |
| /// value is specified.
 | |
| unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
 | |
|   return getTargetInfo().getDefaultAlignForAttributeAligned();
 | |
| }
 | |
| 
 | |
| /// getAlignOfGlobalVar - Return the alignment in bits that should be given
 | |
| /// to a global variable of the specified type.
 | |
| unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
 | |
|   uint64_t TypeSize = getTypeSize(T.getTypePtr());
 | |
|   return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign(TypeSize));
 | |
| }
 | |
| 
 | |
| /// getAlignOfGlobalVarInChars - Return the alignment in characters that
 | |
| /// should be given to a global variable of the specified type.
 | |
| CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
 | |
|   return toCharUnitsFromBits(getAlignOfGlobalVar(T));
 | |
| }
 | |
| 
 | |
| CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
 | |
|   CharUnits Offset = CharUnits::Zero();
 | |
|   const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
 | |
|   while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
 | |
|     Offset += Layout->getBaseClassOffset(Base);
 | |
|     Layout = &getASTRecordLayout(Base);
 | |
|   }
 | |
|   return Offset;
 | |
| }
 | |
| 
 | |
| /// DeepCollectObjCIvars -
 | |
| /// This routine first collects all declared, but not synthesized, ivars in
 | |
| /// super class and then collects all ivars, including those synthesized for
 | |
| /// current class. This routine is used for implementation of current class
 | |
| /// when all ivars, declared and synthesized are known.
 | |
| void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
 | |
|                                       bool leafClass,
 | |
|                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
 | |
|   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
 | |
|     DeepCollectObjCIvars(SuperClass, false, Ivars);
 | |
|   if (!leafClass) {
 | |
|     for (const auto *I : OI->ivars())
 | |
|       Ivars.push_back(I);
 | |
|   } else {
 | |
|     auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
 | |
|     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
 | |
|          Iv= Iv->getNextIvar())
 | |
|       Ivars.push_back(Iv);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CollectInheritedProtocols - Collect all protocols in current class and
 | |
| /// those inherited by it.
 | |
| void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
 | |
|                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
 | |
|   if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
 | |
|     // We can use protocol_iterator here instead of
 | |
|     // all_referenced_protocol_iterator since we are walking all categories.
 | |
|     for (auto *Proto : OI->all_referenced_protocols()) {
 | |
|       CollectInheritedProtocols(Proto, Protocols);
 | |
|     }
 | |
| 
 | |
|     // Categories of this Interface.
 | |
|     for (const auto *Cat : OI->visible_categories())
 | |
|       CollectInheritedProtocols(Cat, Protocols);
 | |
| 
 | |
|     if (ObjCInterfaceDecl *SD = OI->getSuperClass())
 | |
|       while (SD) {
 | |
|         CollectInheritedProtocols(SD, Protocols);
 | |
|         SD = SD->getSuperClass();
 | |
|       }
 | |
|   } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
 | |
|     for (auto *Proto : OC->protocols()) {
 | |
|       CollectInheritedProtocols(Proto, Protocols);
 | |
|     }
 | |
|   } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
 | |
|     // Insert the protocol.
 | |
|     if (!Protocols.insert(
 | |
|           const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
 | |
|       return;
 | |
| 
 | |
|     for (auto *Proto : OP->protocols())
 | |
|       CollectInheritedProtocols(Proto, Protocols);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
 | |
|                                                 const RecordDecl *RD) {
 | |
|   assert(RD->isUnion() && "Must be union type");
 | |
|   CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
 | |
| 
 | |
|   for (const auto *Field : RD->fields()) {
 | |
|     if (!Context.hasUniqueObjectRepresentations(Field->getType()))
 | |
|       return false;
 | |
|     CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
 | |
|     if (FieldSize != UnionSize)
 | |
|       return false;
 | |
|   }
 | |
|   return !RD->field_empty();
 | |
| }
 | |
| 
 | |
| static bool isStructEmpty(QualType Ty) {
 | |
|   const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl();
 | |
| 
 | |
|   if (!RD->field_empty())
 | |
|     return false;
 | |
| 
 | |
|   if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD))
 | |
|     return ClassDecl->isEmpty();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static llvm::Optional<int64_t>
 | |
| structHasUniqueObjectRepresentations(const ASTContext &Context,
 | |
|                                      const RecordDecl *RD) {
 | |
|   assert(!RD->isUnion() && "Must be struct/class type");
 | |
|   const auto &Layout = Context.getASTRecordLayout(RD);
 | |
| 
 | |
|   int64_t CurOffsetInBits = 0;
 | |
|   if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
 | |
|     if (ClassDecl->isDynamicClass())
 | |
|       return llvm::None;
 | |
| 
 | |
|     SmallVector<std::pair<QualType, int64_t>, 4> Bases;
 | |
|     for (const auto &Base : ClassDecl->bases()) {
 | |
|       // Empty types can be inherited from, and non-empty types can potentially
 | |
|       // have tail padding, so just make sure there isn't an error.
 | |
|       if (!isStructEmpty(Base.getType())) {
 | |
|         llvm::Optional<int64_t> Size = structHasUniqueObjectRepresentations(
 | |
|             Context, Base.getType()->castAs<RecordType>()->getDecl());
 | |
|         if (!Size)
 | |
|           return llvm::None;
 | |
|         Bases.emplace_back(Base.getType(), Size.getValue());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     llvm::sort(Bases, [&](const std::pair<QualType, int64_t> &L,
 | |
|                           const std::pair<QualType, int64_t> &R) {
 | |
|       return Layout.getBaseClassOffset(L.first->getAsCXXRecordDecl()) <
 | |
|              Layout.getBaseClassOffset(R.first->getAsCXXRecordDecl());
 | |
|     });
 | |
| 
 | |
|     for (const auto &Base : Bases) {
 | |
|       int64_t BaseOffset = Context.toBits(
 | |
|           Layout.getBaseClassOffset(Base.first->getAsCXXRecordDecl()));
 | |
|       int64_t BaseSize = Base.second;
 | |
|       if (BaseOffset != CurOffsetInBits)
 | |
|         return llvm::None;
 | |
|       CurOffsetInBits = BaseOffset + BaseSize;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (const auto *Field : RD->fields()) {
 | |
|     if (!Field->getType()->isReferenceType() &&
 | |
|         !Context.hasUniqueObjectRepresentations(Field->getType()))
 | |
|       return llvm::None;
 | |
| 
 | |
|     int64_t FieldSizeInBits =
 | |
|         Context.toBits(Context.getTypeSizeInChars(Field->getType()));
 | |
|     if (Field->isBitField()) {
 | |
|       int64_t BitfieldSize = Field->getBitWidthValue(Context);
 | |
| 
 | |
|       if (BitfieldSize > FieldSizeInBits)
 | |
|         return llvm::None;
 | |
|       FieldSizeInBits = BitfieldSize;
 | |
|     }
 | |
| 
 | |
|     int64_t FieldOffsetInBits = Context.getFieldOffset(Field);
 | |
| 
 | |
|     if (FieldOffsetInBits != CurOffsetInBits)
 | |
|       return llvm::None;
 | |
| 
 | |
|     CurOffsetInBits = FieldSizeInBits + FieldOffsetInBits;
 | |
|   }
 | |
| 
 | |
|   return CurOffsetInBits;
 | |
| }
 | |
| 
 | |
| bool ASTContext::hasUniqueObjectRepresentations(QualType Ty) const {
 | |
|   // C++17 [meta.unary.prop]:
 | |
|   //   The predicate condition for a template specialization
 | |
|   //   has_unique_object_representations<T> shall be
 | |
|   //   satisfied if and only if:
 | |
|   //     (9.1) - T is trivially copyable, and
 | |
|   //     (9.2) - any two objects of type T with the same value have the same
 | |
|   //     object representation, where two objects
 | |
|   //   of array or non-union class type are considered to have the same value
 | |
|   //   if their respective sequences of
 | |
|   //   direct subobjects have the same values, and two objects of union type
 | |
|   //   are considered to have the same
 | |
|   //   value if they have the same active member and the corresponding members
 | |
|   //   have the same value.
 | |
|   //   The set of scalar types for which this condition holds is
 | |
|   //   implementation-defined. [ Note: If a type has padding
 | |
|   //   bits, the condition does not hold; otherwise, the condition holds true
 | |
|   //   for unsigned integral types. -- end note ]
 | |
|   assert(!Ty.isNull() && "Null QualType sent to unique object rep check");
 | |
| 
 | |
|   // Arrays are unique only if their element type is unique.
 | |
|   if (Ty->isArrayType())
 | |
|     return hasUniqueObjectRepresentations(getBaseElementType(Ty));
 | |
| 
 | |
|   // (9.1) - T is trivially copyable...
 | |
|   if (!Ty.isTriviallyCopyableType(*this))
 | |
|     return false;
 | |
| 
 | |
|   // All integrals and enums are unique.
 | |
|   if (Ty->isIntegralOrEnumerationType())
 | |
|     return true;
 | |
| 
 | |
|   // All other pointers are unique.
 | |
|   if (Ty->isPointerType())
 | |
|     return true;
 | |
| 
 | |
|   if (Ty->isMemberPointerType()) {
 | |
|     const auto *MPT = Ty->getAs<MemberPointerType>();
 | |
|     return !ABI->getMemberPointerInfo(MPT).HasPadding;
 | |
|   }
 | |
| 
 | |
|   if (Ty->isRecordType()) {
 | |
|     const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl();
 | |
| 
 | |
|     if (Record->isInvalidDecl())
 | |
|       return false;
 | |
| 
 | |
|     if (Record->isUnion())
 | |
|       return unionHasUniqueObjectRepresentations(*this, Record);
 | |
| 
 | |
|     Optional<int64_t> StructSize =
 | |
|         structHasUniqueObjectRepresentations(*this, Record);
 | |
| 
 | |
|     return StructSize &&
 | |
|            StructSize.getValue() == static_cast<int64_t>(getTypeSize(Ty));
 | |
|   }
 | |
| 
 | |
|   // FIXME: More cases to handle here (list by rsmith):
 | |
|   // vectors (careful about, eg, vector of 3 foo)
 | |
|   // _Complex int and friends
 | |
|   // _Atomic T
 | |
|   // Obj-C block pointers
 | |
|   // Obj-C object pointers
 | |
|   // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
 | |
|   // clk_event_t, queue_t, reserve_id_t)
 | |
|   // There're also Obj-C class types and the Obj-C selector type, but I think it
 | |
|   // makes sense for those to return false here.
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
 | |
|   unsigned count = 0;
 | |
|   // Count ivars declared in class extension.
 | |
|   for (const auto *Ext : OI->known_extensions())
 | |
|     count += Ext->ivar_size();
 | |
| 
 | |
|   // Count ivar defined in this class's implementation.  This
 | |
|   // includes synthesized ivars.
 | |
|   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
 | |
|     count += ImplDecl->ivar_size();
 | |
| 
 | |
|   return count;
 | |
| }
 | |
| 
 | |
| bool ASTContext::isSentinelNullExpr(const Expr *E) {
 | |
|   if (!E)
 | |
|     return false;
 | |
| 
 | |
|   // nullptr_t is always treated as null.
 | |
|   if (E->getType()->isNullPtrType()) return true;
 | |
| 
 | |
|   if (E->getType()->isAnyPointerType() &&
 | |
|       E->IgnoreParenCasts()->isNullPointerConstant(*this,
 | |
|                                                 Expr::NPC_ValueDependentIsNull))
 | |
|     return true;
 | |
| 
 | |
|   // Unfortunately, __null has type 'int'.
 | |
|   if (isa<GNUNullExpr>(E)) return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Get the implementation of ObjCInterfaceDecl, or nullptr if none
 | |
| /// exists.
 | |
| ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
 | |
|   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
 | |
|     I = ObjCImpls.find(D);
 | |
|   if (I != ObjCImpls.end())
 | |
|     return cast<ObjCImplementationDecl>(I->second);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Get the implementation of ObjCCategoryDecl, or nullptr if none
 | |
| /// exists.
 | |
| ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
 | |
|   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
 | |
|     I = ObjCImpls.find(D);
 | |
|   if (I != ObjCImpls.end())
 | |
|     return cast<ObjCCategoryImplDecl>(I->second);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Set the implementation of ObjCInterfaceDecl.
 | |
| void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
 | |
|                            ObjCImplementationDecl *ImplD) {
 | |
|   assert(IFaceD && ImplD && "Passed null params");
 | |
|   ObjCImpls[IFaceD] = ImplD;
 | |
| }
 | |
| 
 | |
| /// Set the implementation of ObjCCategoryDecl.
 | |
| void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
 | |
|                            ObjCCategoryImplDecl *ImplD) {
 | |
|   assert(CatD && ImplD && "Passed null params");
 | |
|   ObjCImpls[CatD] = ImplD;
 | |
| }
 | |
| 
 | |
| const ObjCMethodDecl *
 | |
| ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
 | |
|   return ObjCMethodRedecls.lookup(MD);
 | |
| }
 | |
| 
 | |
| void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
 | |
|                                             const ObjCMethodDecl *Redecl) {
 | |
|   assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
 | |
|   ObjCMethodRedecls[MD] = Redecl;
 | |
| }
 | |
| 
 | |
| const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
 | |
|                                               const NamedDecl *ND) const {
 | |
|   if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
 | |
|     return ID;
 | |
|   if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
 | |
|     return CD->getClassInterface();
 | |
|   if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
 | |
|     return IMD->getClassInterface();
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Get the copy initialization expression of VarDecl, or nullptr if
 | |
| /// none exists.
 | |
| BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const {
 | |
|   assert(VD && "Passed null params");
 | |
|   assert(VD->hasAttr<BlocksAttr>() &&
 | |
|          "getBlockVarCopyInits - not __block var");
 | |
|   auto I = BlockVarCopyInits.find(VD);
 | |
|   if (I != BlockVarCopyInits.end())
 | |
|     return I->second;
 | |
|   return {nullptr, false};
 | |
| }
 | |
| 
 | |
| /// Set the copy initialization expression of a block var decl.
 | |
| void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr,
 | |
|                                      bool CanThrow) {
 | |
|   assert(VD && CopyExpr && "Passed null params");
 | |
|   assert(VD->hasAttr<BlocksAttr>() &&
 | |
|          "setBlockVarCopyInits - not __block var");
 | |
|   BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
 | |
| }
 | |
| 
 | |
| TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
 | |
|                                                  unsigned DataSize) const {
 | |
|   if (!DataSize)
 | |
|     DataSize = TypeLoc::getFullDataSizeForType(T);
 | |
|   else
 | |
|     assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
 | |
|            "incorrect data size provided to CreateTypeSourceInfo!");
 | |
| 
 | |
|   auto *TInfo =
 | |
|     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
 | |
|   new (TInfo) TypeSourceInfo(T);
 | |
|   return TInfo;
 | |
| }
 | |
| 
 | |
| TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
 | |
|                                                      SourceLocation L) const {
 | |
|   TypeSourceInfo *DI = CreateTypeSourceInfo(T);
 | |
|   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
 | |
|   return DI;
 | |
| }
 | |
| 
 | |
| const ASTRecordLayout &
 | |
| ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
 | |
|   return getObjCLayout(D, nullptr);
 | |
| }
 | |
| 
 | |
| const ASTRecordLayout &
 | |
| ASTContext::getASTObjCImplementationLayout(
 | |
|                                         const ObjCImplementationDecl *D) const {
 | |
|   return getObjCLayout(D->getClassInterface(), D);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                   Type creation/memoization methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| QualType
 | |
| ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
 | |
|   unsigned fastQuals = quals.getFastQualifiers();
 | |
|   quals.removeFastQualifiers();
 | |
| 
 | |
|   // Check if we've already instantiated this type.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   ExtQuals::Profile(ID, baseType, quals);
 | |
|   void *insertPos = nullptr;
 | |
|   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
 | |
|     assert(eq->getQualifiers() == quals);
 | |
|     return QualType(eq, fastQuals);
 | |
|   }
 | |
| 
 | |
|   // If the base type is not canonical, make the appropriate canonical type.
 | |
|   QualType canon;
 | |
|   if (!baseType->isCanonicalUnqualified()) {
 | |
|     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
 | |
|     canonSplit.Quals.addConsistentQualifiers(quals);
 | |
|     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
 | |
| 
 | |
|     // Re-find the insert position.
 | |
|     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
 | |
|   }
 | |
| 
 | |
|   auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
 | |
|   ExtQualNodes.InsertNode(eq, insertPos);
 | |
|   return QualType(eq, fastQuals);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getAddrSpaceQualType(QualType T,
 | |
|                                           LangAS AddressSpace) const {
 | |
|   QualType CanT = getCanonicalType(T);
 | |
|   if (CanT.getAddressSpace() == AddressSpace)
 | |
|     return T;
 | |
| 
 | |
|   // If we are composing extended qualifiers together, merge together
 | |
|   // into one ExtQuals node.
 | |
|   QualifierCollector Quals;
 | |
|   const Type *TypeNode = Quals.strip(T);
 | |
| 
 | |
|   // If this type already has an address space specified, it cannot get
 | |
|   // another one.
 | |
|   assert(!Quals.hasAddressSpace() &&
 | |
|          "Type cannot be in multiple addr spaces!");
 | |
|   Quals.addAddressSpace(AddressSpace);
 | |
| 
 | |
|   return getExtQualType(TypeNode, Quals);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
 | |
|   // If we are composing extended qualifiers together, merge together
 | |
|   // into one ExtQuals node.
 | |
|   QualifierCollector Quals;
 | |
|   const Type *TypeNode = Quals.strip(T);
 | |
| 
 | |
|   // If the qualifier doesn't have an address space just return it.
 | |
|   if (!Quals.hasAddressSpace())
 | |
|     return T;
 | |
| 
 | |
|   Quals.removeAddressSpace();
 | |
| 
 | |
|   // Removal of the address space can mean there are no longer any
 | |
|   // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
 | |
|   // or required.
 | |
|   if (Quals.hasNonFastQualifiers())
 | |
|     return getExtQualType(TypeNode, Quals);
 | |
|   else
 | |
|     return QualType(TypeNode, Quals.getFastQualifiers());
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getObjCGCQualType(QualType T,
 | |
|                                        Qualifiers::GC GCAttr) const {
 | |
|   QualType CanT = getCanonicalType(T);
 | |
|   if (CanT.getObjCGCAttr() == GCAttr)
 | |
|     return T;
 | |
| 
 | |
|   if (const auto *ptr = T->getAs<PointerType>()) {
 | |
|     QualType Pointee = ptr->getPointeeType();
 | |
|     if (Pointee->isAnyPointerType()) {
 | |
|       QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
 | |
|       return getPointerType(ResultType);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we are composing extended qualifiers together, merge together
 | |
|   // into one ExtQuals node.
 | |
|   QualifierCollector Quals;
 | |
|   const Type *TypeNode = Quals.strip(T);
 | |
| 
 | |
|   // If this type already has an ObjCGC specified, it cannot get
 | |
|   // another one.
 | |
|   assert(!Quals.hasObjCGCAttr() &&
 | |
|          "Type cannot have multiple ObjCGCs!");
 | |
|   Quals.addObjCGCAttr(GCAttr);
 | |
| 
 | |
|   return getExtQualType(TypeNode, Quals);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::removePtrSizeAddrSpace(QualType T) const {
 | |
|   if (const PointerType *Ptr = T->getAs<PointerType>()) {
 | |
|     QualType Pointee = Ptr->getPointeeType();
 | |
|     if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) {
 | |
|       return getPointerType(removeAddrSpaceQualType(Pointee));
 | |
|     }
 | |
|   }
 | |
|   return T;
 | |
| }
 | |
| 
 | |
| const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
 | |
|                                                    FunctionType::ExtInfo Info) {
 | |
|   if (T->getExtInfo() == Info)
 | |
|     return T;
 | |
| 
 | |
|   QualType Result;
 | |
|   if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
 | |
|     Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
 | |
|   } else {
 | |
|     const auto *FPT = cast<FunctionProtoType>(T);
 | |
|     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
 | |
|     EPI.ExtInfo = Info;
 | |
|     Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
 | |
|   }
 | |
| 
 | |
|   return cast<FunctionType>(Result.getTypePtr());
 | |
| }
 | |
| 
 | |
| void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
 | |
|                                                  QualType ResultType) {
 | |
|   FD = FD->getMostRecentDecl();
 | |
|   while (true) {
 | |
|     const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
 | |
|     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
 | |
|     FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
 | |
|     if (FunctionDecl *Next = FD->getPreviousDecl())
 | |
|       FD = Next;
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
|   if (ASTMutationListener *L = getASTMutationListener())
 | |
|     L->DeducedReturnType(FD, ResultType);
 | |
| }
 | |
| 
 | |
| /// Get a function type and produce the equivalent function type with the
 | |
| /// specified exception specification. Type sugar that can be present on a
 | |
| /// declaration of a function with an exception specification is permitted
 | |
| /// and preserved. Other type sugar (for instance, typedefs) is not.
 | |
| QualType ASTContext::getFunctionTypeWithExceptionSpec(
 | |
|     QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) {
 | |
|   // Might have some parens.
 | |
|   if (const auto *PT = dyn_cast<ParenType>(Orig))
 | |
|     return getParenType(
 | |
|         getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
 | |
| 
 | |
|   // Might be wrapped in a macro qualified type.
 | |
|   if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig))
 | |
|     return getMacroQualifiedType(
 | |
|         getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI),
 | |
|         MQT->getMacroIdentifier());
 | |
| 
 | |
|   // Might have a calling-convention attribute.
 | |
|   if (const auto *AT = dyn_cast<AttributedType>(Orig))
 | |
|     return getAttributedType(
 | |
|         AT->getAttrKind(),
 | |
|         getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
 | |
|         getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
 | |
| 
 | |
|   // Anything else must be a function type. Rebuild it with the new exception
 | |
|   // specification.
 | |
|   const auto *Proto = Orig->castAs<FunctionProtoType>();
 | |
|   return getFunctionType(
 | |
|       Proto->getReturnType(), Proto->getParamTypes(),
 | |
|       Proto->getExtProtoInfo().withExceptionSpec(ESI));
 | |
| }
 | |
| 
 | |
| bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
 | |
|                                                           QualType U) {
 | |
|   return hasSameType(T, U) ||
 | |
|          (getLangOpts().CPlusPlus17 &&
 | |
|           hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None),
 | |
|                       getFunctionTypeWithExceptionSpec(U, EST_None)));
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) {
 | |
|   if (const auto *Proto = T->getAs<FunctionProtoType>()) {
 | |
|     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
 | |
|     SmallVector<QualType, 16> Args(Proto->param_types());
 | |
|     for (unsigned i = 0, n = Args.size(); i != n; ++i)
 | |
|       Args[i] = removePtrSizeAddrSpace(Args[i]);
 | |
|     return getFunctionType(RetTy, Args, Proto->getExtProtoInfo());
 | |
|   }
 | |
| 
 | |
|   if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) {
 | |
|     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
 | |
|     return getFunctionNoProtoType(RetTy, Proto->getExtInfo());
 | |
|   }
 | |
| 
 | |
|   return T;
 | |
| }
 | |
| 
 | |
| bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) {
 | |
|   return hasSameType(T, U) ||
 | |
|          hasSameType(getFunctionTypeWithoutPtrSizes(T),
 | |
|                      getFunctionTypeWithoutPtrSizes(U));
 | |
| }
 | |
| 
 | |
| void ASTContext::adjustExceptionSpec(
 | |
|     FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
 | |
|     bool AsWritten) {
 | |
|   // Update the type.
 | |
|   QualType Updated =
 | |
|       getFunctionTypeWithExceptionSpec(FD->getType(), ESI);
 | |
|   FD->setType(Updated);
 | |
| 
 | |
|   if (!AsWritten)
 | |
|     return;
 | |
| 
 | |
|   // Update the type in the type source information too.
 | |
|   if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
 | |
|     // If the type and the type-as-written differ, we may need to update
 | |
|     // the type-as-written too.
 | |
|     if (TSInfo->getType() != FD->getType())
 | |
|       Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
 | |
| 
 | |
|     // FIXME: When we get proper type location information for exceptions,
 | |
|     // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
 | |
|     // up the TypeSourceInfo;
 | |
|     assert(TypeLoc::getFullDataSizeForType(Updated) ==
 | |
|                TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
 | |
|            "TypeLoc size mismatch from updating exception specification");
 | |
|     TSInfo->overrideType(Updated);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getComplexType - Return the uniqued reference to the type for a complex
 | |
| /// number with the specified element type.
 | |
| QualType ASTContext::getComplexType(QualType T) const {
 | |
|   // Unique pointers, to guarantee there is only one pointer of a particular
 | |
|   // structure.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   ComplexType::Profile(ID, T);
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(CT, 0);
 | |
| 
 | |
|   // If the pointee type isn't canonical, this won't be a canonical type either,
 | |
|   // so fill in the canonical type field.
 | |
|   QualType Canonical;
 | |
|   if (!T.isCanonical()) {
 | |
|     Canonical = getComplexType(getCanonicalType(T));
 | |
| 
 | |
|     // Get the new insert position for the node we care about.
 | |
|     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
 | |
|   }
 | |
|   auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
 | |
|   Types.push_back(New);
 | |
|   ComplexTypes.InsertNode(New, InsertPos);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| /// getPointerType - Return the uniqued reference to the type for a pointer to
 | |
| /// the specified type.
 | |
| QualType ASTContext::getPointerType(QualType T) const {
 | |
|   // Unique pointers, to guarantee there is only one pointer of a particular
 | |
|   // structure.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   PointerType::Profile(ID, T);
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(PT, 0);
 | |
| 
 | |
|   // If the pointee type isn't canonical, this won't be a canonical type either,
 | |
|   // so fill in the canonical type field.
 | |
|   QualType Canonical;
 | |
|   if (!T.isCanonical()) {
 | |
|     Canonical = getPointerType(getCanonicalType(T));
 | |
| 
 | |
|     // Get the new insert position for the node we care about.
 | |
|     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
 | |
|   }
 | |
|   auto *New = new (*this, TypeAlignment) PointerType(T, Canonical);
 | |
|   Types.push_back(New);
 | |
|   PointerTypes.InsertNode(New, InsertPos);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   AdjustedType::Profile(ID, Orig, New);
 | |
|   void *InsertPos = nullptr;
 | |
|   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   if (AT)
 | |
|     return QualType(AT, 0);
 | |
| 
 | |
|   QualType Canonical = getCanonicalType(New);
 | |
| 
 | |
|   // Get the new insert position for the node we care about.
 | |
|   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   assert(!AT && "Shouldn't be in the map!");
 | |
| 
 | |
|   AT = new (*this, TypeAlignment)
 | |
|       AdjustedType(Type::Adjusted, Orig, New, Canonical);
 | |
|   Types.push_back(AT);
 | |
|   AdjustedTypes.InsertNode(AT, InsertPos);
 | |
|   return QualType(AT, 0);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getDecayedType(QualType T) const {
 | |
|   assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
 | |
| 
 | |
|   QualType Decayed;
 | |
| 
 | |
|   // C99 6.7.5.3p7:
 | |
|   //   A declaration of a parameter as "array of type" shall be
 | |
|   //   adjusted to "qualified pointer to type", where the type
 | |
|   //   qualifiers (if any) are those specified within the [ and ] of
 | |
|   //   the array type derivation.
 | |
|   if (T->isArrayType())
 | |
|     Decayed = getArrayDecayedType(T);
 | |
| 
 | |
|   // C99 6.7.5.3p8:
 | |
|   //   A declaration of a parameter as "function returning type"
 | |
|   //   shall be adjusted to "pointer to function returning type", as
 | |
|   //   in 6.3.2.1.
 | |
|   if (T->isFunctionType())
 | |
|     Decayed = getPointerType(T);
 | |
| 
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   AdjustedType::Profile(ID, T, Decayed);
 | |
|   void *InsertPos = nullptr;
 | |
|   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   if (AT)
 | |
|     return QualType(AT, 0);
 | |
| 
 | |
|   QualType Canonical = getCanonicalType(Decayed);
 | |
| 
 | |
|   // Get the new insert position for the node we care about.
 | |
|   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   assert(!AT && "Shouldn't be in the map!");
 | |
| 
 | |
|   AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
 | |
|   Types.push_back(AT);
 | |
|   AdjustedTypes.InsertNode(AT, InsertPos);
 | |
|   return QualType(AT, 0);
 | |
| }
 | |
| 
 | |
| /// getBlockPointerType - Return the uniqued reference to the type for
 | |
| /// a pointer to the specified block.
 | |
| QualType ASTContext::getBlockPointerType(QualType T) const {
 | |
|   assert(T->isFunctionType() && "block of function types only");
 | |
|   // Unique pointers, to guarantee there is only one block of a particular
 | |
|   // structure.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   BlockPointerType::Profile(ID, T);
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   if (BlockPointerType *PT =
 | |
|         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(PT, 0);
 | |
| 
 | |
|   // If the block pointee type isn't canonical, this won't be a canonical
 | |
|   // type either so fill in the canonical type field.
 | |
|   QualType Canonical;
 | |
|   if (!T.isCanonical()) {
 | |
|     Canonical = getBlockPointerType(getCanonicalType(T));
 | |
| 
 | |
|     // Get the new insert position for the node we care about.
 | |
|     BlockPointerType *NewIP =
 | |
|       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
 | |
|   }
 | |
|   auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
 | |
|   Types.push_back(New);
 | |
|   BlockPointerTypes.InsertNode(New, InsertPos);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| /// getLValueReferenceType - Return the uniqued reference to the type for an
 | |
| /// lvalue reference to the specified type.
 | |
| QualType
 | |
| ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
 | |
|   assert(getCanonicalType(T) != OverloadTy &&
 | |
|          "Unresolved overloaded function type");
 | |
| 
 | |
|   // Unique pointers, to guarantee there is only one pointer of a particular
 | |
|   // structure.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   ReferenceType::Profile(ID, T, SpelledAsLValue);
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   if (LValueReferenceType *RT =
 | |
|         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(RT, 0);
 | |
| 
 | |
|   const auto *InnerRef = T->getAs<ReferenceType>();
 | |
| 
 | |
|   // If the referencee type isn't canonical, this won't be a canonical type
 | |
|   // either, so fill in the canonical type field.
 | |
|   QualType Canonical;
 | |
|   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
 | |
|     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
 | |
|     Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
 | |
| 
 | |
|     // Get the new insert position for the node we care about.
 | |
|     LValueReferenceType *NewIP =
 | |
|       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
 | |
|   }
 | |
| 
 | |
|   auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
 | |
|                                                              SpelledAsLValue);
 | |
|   Types.push_back(New);
 | |
|   LValueReferenceTypes.InsertNode(New, InsertPos);
 | |
| 
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| /// getRValueReferenceType - Return the uniqued reference to the type for an
 | |
| /// rvalue reference to the specified type.
 | |
| QualType ASTContext::getRValueReferenceType(QualType T) const {
 | |
|   // Unique pointers, to guarantee there is only one pointer of a particular
 | |
|   // structure.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   ReferenceType::Profile(ID, T, false);
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   if (RValueReferenceType *RT =
 | |
|         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(RT, 0);
 | |
| 
 | |
|   const auto *InnerRef = T->getAs<ReferenceType>();
 | |
| 
 | |
|   // If the referencee type isn't canonical, this won't be a canonical type
 | |
|   // either, so fill in the canonical type field.
 | |
|   QualType Canonical;
 | |
|   if (InnerRef || !T.isCanonical()) {
 | |
|     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
 | |
|     Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
 | |
| 
 | |
|     // Get the new insert position for the node we care about.
 | |
|     RValueReferenceType *NewIP =
 | |
|       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
 | |
|   }
 | |
| 
 | |
|   auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
 | |
|   Types.push_back(New);
 | |
|   RValueReferenceTypes.InsertNode(New, InsertPos);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| /// getMemberPointerType - Return the uniqued reference to the type for a
 | |
| /// member pointer to the specified type, in the specified class.
 | |
| QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
 | |
|   // Unique pointers, to guarantee there is only one pointer of a particular
 | |
|   // structure.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   MemberPointerType::Profile(ID, T, Cls);
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   if (MemberPointerType *PT =
 | |
|       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(PT, 0);
 | |
| 
 | |
|   // If the pointee or class type isn't canonical, this won't be a canonical
 | |
|   // type either, so fill in the canonical type field.
 | |
|   QualType Canonical;
 | |
|   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
 | |
|     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
 | |
| 
 | |
|     // Get the new insert position for the node we care about.
 | |
|     MemberPointerType *NewIP =
 | |
|       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
 | |
|   }
 | |
|   auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
 | |
|   Types.push_back(New);
 | |
|   MemberPointerTypes.InsertNode(New, InsertPos);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| /// getConstantArrayType - Return the unique reference to the type for an
 | |
| /// array of the specified element type.
 | |
| QualType ASTContext::getConstantArrayType(QualType EltTy,
 | |
|                                           const llvm::APInt &ArySizeIn,
 | |
|                                           const Expr *SizeExpr,
 | |
|                                           ArrayType::ArraySizeModifier ASM,
 | |
|                                           unsigned IndexTypeQuals) const {
 | |
|   assert((EltTy->isDependentType() ||
 | |
|           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
 | |
|          "Constant array of VLAs is illegal!");
 | |
| 
 | |
|   // We only need the size as part of the type if it's instantiation-dependent.
 | |
|   if (SizeExpr && !SizeExpr->isInstantiationDependent())
 | |
|     SizeExpr = nullptr;
 | |
| 
 | |
|   // Convert the array size into a canonical width matching the pointer size for
 | |
|   // the target.
 | |
|   llvm::APInt ArySize(ArySizeIn);
 | |
|   ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
 | |
| 
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM,
 | |
|                              IndexTypeQuals);
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   if (ConstantArrayType *ATP =
 | |
|       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(ATP, 0);
 | |
| 
 | |
|   // If the element type isn't canonical or has qualifiers, or the array bound
 | |
|   // is instantiation-dependent, this won't be a canonical type either, so fill
 | |
|   // in the canonical type field.
 | |
|   QualType Canon;
 | |
|   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) {
 | |
|     SplitQualType canonSplit = getCanonicalType(EltTy).split();
 | |
|     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr,
 | |
|                                  ASM, IndexTypeQuals);
 | |
|     Canon = getQualifiedType(Canon, canonSplit.Quals);
 | |
| 
 | |
|     // Get the new insert position for the node we care about.
 | |
|     ConstantArrayType *NewIP =
 | |
|       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
 | |
|   }
 | |
| 
 | |
|   void *Mem = Allocate(
 | |
|       ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0),
 | |
|       TypeAlignment);
 | |
|   auto *New = new (Mem)
 | |
|     ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals);
 | |
|   ConstantArrayTypes.InsertNode(New, InsertPos);
 | |
|   Types.push_back(New);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| /// getVariableArrayDecayedType - Turns the given type, which may be
 | |
| /// variably-modified, into the corresponding type with all the known
 | |
| /// sizes replaced with [*].
 | |
| QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
 | |
|   // Vastly most common case.
 | |
|   if (!type->isVariablyModifiedType()) return type;
 | |
| 
 | |
|   QualType result;
 | |
| 
 | |
|   SplitQualType split = type.getSplitDesugaredType();
 | |
|   const Type *ty = split.Ty;
 | |
|   switch (ty->getTypeClass()) {
 | |
| #define TYPE(Class, Base)
 | |
| #define ABSTRACT_TYPE(Class, Base)
 | |
| #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
 | |
| #include "clang/AST/TypeNodes.inc"
 | |
|     llvm_unreachable("didn't desugar past all non-canonical types?");
 | |
| 
 | |
|   // These types should never be variably-modified.
 | |
|   case Type::Builtin:
 | |
|   case Type::Complex:
 | |
|   case Type::Vector:
 | |
|   case Type::DependentVector:
 | |
|   case Type::ExtVector:
 | |
|   case Type::DependentSizedExtVector:
 | |
|   case Type::DependentAddressSpace:
 | |
|   case Type::ObjCObject:
 | |
|   case Type::ObjCInterface:
 | |
|   case Type::ObjCObjectPointer:
 | |
|   case Type::Record:
 | |
|   case Type::Enum:
 | |
|   case Type::UnresolvedUsing:
 | |
|   case Type::TypeOfExpr:
 | |
|   case Type::TypeOf:
 | |
|   case Type::Decltype:
 | |
|   case Type::UnaryTransform:
 | |
|   case Type::DependentName:
 | |
|   case Type::InjectedClassName:
 | |
|   case Type::TemplateSpecialization:
 | |
|   case Type::DependentTemplateSpecialization:
 | |
|   case Type::TemplateTypeParm:
 | |
|   case Type::SubstTemplateTypeParmPack:
 | |
|   case Type::Auto:
 | |
|   case Type::DeducedTemplateSpecialization:
 | |
|   case Type::PackExpansion:
 | |
|     llvm_unreachable("type should never be variably-modified");
 | |
| 
 | |
|   // These types can be variably-modified but should never need to
 | |
|   // further decay.
 | |
|   case Type::FunctionNoProto:
 | |
|   case Type::FunctionProto:
 | |
|   case Type::BlockPointer:
 | |
|   case Type::MemberPointer:
 | |
|   case Type::Pipe:
 | |
|     return type;
 | |
| 
 | |
|   // These types can be variably-modified.  All these modifications
 | |
|   // preserve structure except as noted by comments.
 | |
|   // TODO: if we ever care about optimizing VLAs, there are no-op
 | |
|   // optimizations available here.
 | |
|   case Type::Pointer:
 | |
|     result = getPointerType(getVariableArrayDecayedType(
 | |
|                               cast<PointerType>(ty)->getPointeeType()));
 | |
|     break;
 | |
| 
 | |
|   case Type::LValueReference: {
 | |
|     const auto *lv = cast<LValueReferenceType>(ty);
 | |
|     result = getLValueReferenceType(
 | |
|                  getVariableArrayDecayedType(lv->getPointeeType()),
 | |
|                                     lv->isSpelledAsLValue());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::RValueReference: {
 | |
|     const auto *lv = cast<RValueReferenceType>(ty);
 | |
|     result = getRValueReferenceType(
 | |
|                  getVariableArrayDecayedType(lv->getPointeeType()));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::Atomic: {
 | |
|     const auto *at = cast<AtomicType>(ty);
 | |
|     result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::ConstantArray: {
 | |
|     const auto *cat = cast<ConstantArrayType>(ty);
 | |
|     result = getConstantArrayType(
 | |
|                  getVariableArrayDecayedType(cat->getElementType()),
 | |
|                                   cat->getSize(),
 | |
|                                   cat->getSizeExpr(),
 | |
|                                   cat->getSizeModifier(),
 | |
|                                   cat->getIndexTypeCVRQualifiers());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::DependentSizedArray: {
 | |
|     const auto *dat = cast<DependentSizedArrayType>(ty);
 | |
|     result = getDependentSizedArrayType(
 | |
|                  getVariableArrayDecayedType(dat->getElementType()),
 | |
|                                         dat->getSizeExpr(),
 | |
|                                         dat->getSizeModifier(),
 | |
|                                         dat->getIndexTypeCVRQualifiers(),
 | |
|                                         dat->getBracketsRange());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Turn incomplete types into [*] types.
 | |
|   case Type::IncompleteArray: {
 | |
|     const auto *iat = cast<IncompleteArrayType>(ty);
 | |
|     result = getVariableArrayType(
 | |
|                  getVariableArrayDecayedType(iat->getElementType()),
 | |
|                                   /*size*/ nullptr,
 | |
|                                   ArrayType::Normal,
 | |
|                                   iat->getIndexTypeCVRQualifiers(),
 | |
|                                   SourceRange());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Turn VLA types into [*] types.
 | |
|   case Type::VariableArray: {
 | |
|     const auto *vat = cast<VariableArrayType>(ty);
 | |
|     result = getVariableArrayType(
 | |
|                  getVariableArrayDecayedType(vat->getElementType()),
 | |
|                                   /*size*/ nullptr,
 | |
|                                   ArrayType::Star,
 | |
|                                   vat->getIndexTypeCVRQualifiers(),
 | |
|                                   vat->getBracketsRange());
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   // Apply the top-level qualifiers from the original.
 | |
|   return getQualifiedType(result, split.Quals);
 | |
| }
 | |
| 
 | |
| /// getVariableArrayType - Returns a non-unique reference to the type for a
 | |
| /// variable array of the specified element type.
 | |
| QualType ASTContext::getVariableArrayType(QualType EltTy,
 | |
|                                           Expr *NumElts,
 | |
|                                           ArrayType::ArraySizeModifier ASM,
 | |
|                                           unsigned IndexTypeQuals,
 | |
|                                           SourceRange Brackets) const {
 | |
|   // Since we don't unique expressions, it isn't possible to unique VLA's
 | |
|   // that have an expression provided for their size.
 | |
|   QualType Canon;
 | |
| 
 | |
|   // Be sure to pull qualifiers off the element type.
 | |
|   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
 | |
|     SplitQualType canonSplit = getCanonicalType(EltTy).split();
 | |
|     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
 | |
|                                  IndexTypeQuals, Brackets);
 | |
|     Canon = getQualifiedType(Canon, canonSplit.Quals);
 | |
|   }
 | |
| 
 | |
|   auto *New = new (*this, TypeAlignment)
 | |
|     VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
 | |
| 
 | |
|   VariableArrayTypes.push_back(New);
 | |
|   Types.push_back(New);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| /// getDependentSizedArrayType - Returns a non-unique reference to
 | |
| /// the type for a dependently-sized array of the specified element
 | |
| /// type.
 | |
| QualType ASTContext::getDependentSizedArrayType(QualType elementType,
 | |
|                                                 Expr *numElements,
 | |
|                                                 ArrayType::ArraySizeModifier ASM,
 | |
|                                                 unsigned elementTypeQuals,
 | |
|                                                 SourceRange brackets) const {
 | |
|   assert((!numElements || numElements->isTypeDependent() ||
 | |
|           numElements->isValueDependent()) &&
 | |
|          "Size must be type- or value-dependent!");
 | |
| 
 | |
|   // Dependently-sized array types that do not have a specified number
 | |
|   // of elements will have their sizes deduced from a dependent
 | |
|   // initializer.  We do no canonicalization here at all, which is okay
 | |
|   // because they can't be used in most locations.
 | |
|   if (!numElements) {
 | |
|     auto *newType
 | |
|       = new (*this, TypeAlignment)
 | |
|           DependentSizedArrayType(*this, elementType, QualType(),
 | |
|                                   numElements, ASM, elementTypeQuals,
 | |
|                                   brackets);
 | |
|     Types.push_back(newType);
 | |
|     return QualType(newType, 0);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we actually build a new type every time, but we
 | |
|   // also build a canonical type.
 | |
| 
 | |
|   SplitQualType canonElementType = getCanonicalType(elementType).split();
 | |
| 
 | |
|   void *insertPos = nullptr;
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   DependentSizedArrayType::Profile(ID, *this,
 | |
|                                    QualType(canonElementType.Ty, 0),
 | |
|                                    ASM, elementTypeQuals, numElements);
 | |
| 
 | |
|   // Look for an existing type with these properties.
 | |
|   DependentSizedArrayType *canonTy =
 | |
|     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
 | |
| 
 | |
|   // If we don't have one, build one.
 | |
|   if (!canonTy) {
 | |
|     canonTy = new (*this, TypeAlignment)
 | |
|       DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
 | |
|                               QualType(), numElements, ASM, elementTypeQuals,
 | |
|                               brackets);
 | |
|     DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
 | |
|     Types.push_back(canonTy);
 | |
|   }
 | |
| 
 | |
|   // Apply qualifiers from the element type to the array.
 | |
|   QualType canon = getQualifiedType(QualType(canonTy,0),
 | |
|                                     canonElementType.Quals);
 | |
| 
 | |
|   // If we didn't need extra canonicalization for the element type or the size
 | |
|   // expression, then just use that as our result.
 | |
|   if (QualType(canonElementType.Ty, 0) == elementType &&
 | |
|       canonTy->getSizeExpr() == numElements)
 | |
|     return canon;
 | |
| 
 | |
|   // Otherwise, we need to build a type which follows the spelling
 | |
|   // of the element type.
 | |
|   auto *sugaredType
 | |
|     = new (*this, TypeAlignment)
 | |
|         DependentSizedArrayType(*this, elementType, canon, numElements,
 | |
|                                 ASM, elementTypeQuals, brackets);
 | |
|   Types.push_back(sugaredType);
 | |
|   return QualType(sugaredType, 0);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getIncompleteArrayType(QualType elementType,
 | |
|                                             ArrayType::ArraySizeModifier ASM,
 | |
|                                             unsigned elementTypeQuals) const {
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
 | |
| 
 | |
|   void *insertPos = nullptr;
 | |
|   if (IncompleteArrayType *iat =
 | |
|        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
 | |
|     return QualType(iat, 0);
 | |
| 
 | |
|   // If the element type isn't canonical, this won't be a canonical type
 | |
|   // either, so fill in the canonical type field.  We also have to pull
 | |
|   // qualifiers off the element type.
 | |
|   QualType canon;
 | |
| 
 | |
|   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
 | |
|     SplitQualType canonSplit = getCanonicalType(elementType).split();
 | |
|     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
 | |
|                                    ASM, elementTypeQuals);
 | |
|     canon = getQualifiedType(canon, canonSplit.Quals);
 | |
| 
 | |
|     // Get the new insert position for the node we care about.
 | |
|     IncompleteArrayType *existing =
 | |
|       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
 | |
|     assert(!existing && "Shouldn't be in the map!"); (void) existing;
 | |
|   }
 | |
| 
 | |
|   auto *newType = new (*this, TypeAlignment)
 | |
|     IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
 | |
| 
 | |
|   IncompleteArrayTypes.InsertNode(newType, insertPos);
 | |
|   Types.push_back(newType);
 | |
|   return QualType(newType, 0);
 | |
| }
 | |
| 
 | |
| /// getVectorType - Return the unique reference to a vector type of
 | |
| /// the specified element type and size. VectorType must be a built-in type.
 | |
| QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
 | |
|                                    VectorType::VectorKind VecKind) const {
 | |
|   assert(vecType->isBuiltinType());
 | |
| 
 | |
|   // Check if we've already instantiated a vector of this type.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(VTP, 0);
 | |
| 
 | |
|   // If the element type isn't canonical, this won't be a canonical type either,
 | |
|   // so fill in the canonical type field.
 | |
|   QualType Canonical;
 | |
|   if (!vecType.isCanonical()) {
 | |
|     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
 | |
| 
 | |
|     // Get the new insert position for the node we care about.
 | |
|     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
 | |
|   }
 | |
|   auto *New = new (*this, TypeAlignment)
 | |
|     VectorType(vecType, NumElts, Canonical, VecKind);
 | |
|   VectorTypes.InsertNode(New, InsertPos);
 | |
|   Types.push_back(New);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| QualType
 | |
| ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr,
 | |
|                                    SourceLocation AttrLoc,
 | |
|                                    VectorType::VectorKind VecKind) const {
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
 | |
|                                VecKind);
 | |
|   void *InsertPos = nullptr;
 | |
|   DependentVectorType *Canon =
 | |
|       DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   DependentVectorType *New;
 | |
| 
 | |
|   if (Canon) {
 | |
|     New = new (*this, TypeAlignment) DependentVectorType(
 | |
|         *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
 | |
|   } else {
 | |
|     QualType CanonVecTy = getCanonicalType(VecType);
 | |
|     if (CanonVecTy == VecType) {
 | |
|       New = new (*this, TypeAlignment) DependentVectorType(
 | |
|           *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind);
 | |
| 
 | |
|       DependentVectorType *CanonCheck =
 | |
|           DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|       assert(!CanonCheck &&
 | |
|              "Dependent-sized vector_size canonical type broken");
 | |
|       (void)CanonCheck;
 | |
|       DependentVectorTypes.InsertNode(New, InsertPos);
 | |
|     } else {
 | |
|       QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
 | |
|                                                            SourceLocation());
 | |
|       New = new (*this, TypeAlignment) DependentVectorType(
 | |
|           *this, VecType, CanonExtTy, SizeExpr, AttrLoc, VecKind);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Types.push_back(New);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| /// getExtVectorType - Return the unique reference to an extended vector type of
 | |
| /// the specified element type and size. VectorType must be a built-in type.
 | |
| QualType
 | |
| ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
 | |
|   assert(vecType->isBuiltinType() || vecType->isDependentType());
 | |
| 
 | |
|   // Check if we've already instantiated a vector of this type.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
 | |
|                       VectorType::GenericVector);
 | |
|   void *InsertPos = nullptr;
 | |
|   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(VTP, 0);
 | |
| 
 | |
|   // If the element type isn't canonical, this won't be a canonical type either,
 | |
|   // so fill in the canonical type field.
 | |
|   QualType Canonical;
 | |
|   if (!vecType.isCanonical()) {
 | |
|     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
 | |
| 
 | |
|     // Get the new insert position for the node we care about.
 | |
|     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
 | |
|   }
 | |
|   auto *New = new (*this, TypeAlignment)
 | |
|     ExtVectorType(vecType, NumElts, Canonical);
 | |
|   VectorTypes.InsertNode(New, InsertPos);
 | |
|   Types.push_back(New);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| QualType
 | |
| ASTContext::getDependentSizedExtVectorType(QualType vecType,
 | |
|                                            Expr *SizeExpr,
 | |
|                                            SourceLocation AttrLoc) const {
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
 | |
|                                        SizeExpr);
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   DependentSizedExtVectorType *Canon
 | |
|     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   DependentSizedExtVectorType *New;
 | |
|   if (Canon) {
 | |
|     // We already have a canonical version of this array type; use it as
 | |
|     // the canonical type for a newly-built type.
 | |
|     New = new (*this, TypeAlignment)
 | |
|       DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
 | |
|                                   SizeExpr, AttrLoc);
 | |
|   } else {
 | |
|     QualType CanonVecTy = getCanonicalType(vecType);
 | |
|     if (CanonVecTy == vecType) {
 | |
|       New = new (*this, TypeAlignment)
 | |
|         DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
 | |
|                                     AttrLoc);
 | |
| 
 | |
|       DependentSizedExtVectorType *CanonCheck
 | |
|         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
 | |
|       (void)CanonCheck;
 | |
|       DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
 | |
|     } else {
 | |
|       QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
 | |
|                                                            SourceLocation());
 | |
|       New = new (*this, TypeAlignment) DependentSizedExtVectorType(
 | |
|           *this, vecType, CanonExtTy, SizeExpr, AttrLoc);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Types.push_back(New);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
 | |
|                                                   Expr *AddrSpaceExpr,
 | |
|                                                   SourceLocation AttrLoc) const {
 | |
|   assert(AddrSpaceExpr->isInstantiationDependent());
 | |
| 
 | |
|   QualType canonPointeeType = getCanonicalType(PointeeType);
 | |
| 
 | |
|   void *insertPos = nullptr;
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
 | |
|                                      AddrSpaceExpr);
 | |
| 
 | |
|   DependentAddressSpaceType *canonTy =
 | |
|     DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
 | |
| 
 | |
|   if (!canonTy) {
 | |
|     canonTy = new (*this, TypeAlignment)
 | |
|       DependentAddressSpaceType(*this, canonPointeeType,
 | |
|                                 QualType(), AddrSpaceExpr, AttrLoc);
 | |
|     DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
 | |
|     Types.push_back(canonTy);
 | |
|   }
 | |
| 
 | |
|   if (canonPointeeType == PointeeType &&
 | |
|       canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
 | |
|     return QualType(canonTy, 0);
 | |
| 
 | |
|   auto *sugaredType
 | |
|     = new (*this, TypeAlignment)
 | |
|         DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
 | |
|                                   AddrSpaceExpr, AttrLoc);
 | |
|   Types.push_back(sugaredType);
 | |
|   return QualType(sugaredType, 0);
 | |
| }
 | |
| 
 | |
| /// Determine whether \p T is canonical as the result type of a function.
 | |
| static bool isCanonicalResultType(QualType T) {
 | |
|   return T.isCanonical() &&
 | |
|          (T.getObjCLifetime() == Qualifiers::OCL_None ||
 | |
|           T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
 | |
| }
 | |
| 
 | |
| /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
 | |
| QualType
 | |
| ASTContext::getFunctionNoProtoType(QualType ResultTy,
 | |
|                                    const FunctionType::ExtInfo &Info) const {
 | |
|   // Unique functions, to guarantee there is only one function of a particular
 | |
|   // structure.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   FunctionNoProtoType::Profile(ID, ResultTy, Info);
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   if (FunctionNoProtoType *FT =
 | |
|         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(FT, 0);
 | |
| 
 | |
|   QualType Canonical;
 | |
|   if (!isCanonicalResultType(ResultTy)) {
 | |
|     Canonical =
 | |
|       getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);
 | |
| 
 | |
|     // Get the new insert position for the node we care about.
 | |
|     FunctionNoProtoType *NewIP =
 | |
|       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
 | |
|   }
 | |
| 
 | |
|   auto *New = new (*this, TypeAlignment)
 | |
|     FunctionNoProtoType(ResultTy, Canonical, Info);
 | |
|   Types.push_back(New);
 | |
|   FunctionNoProtoTypes.InsertNode(New, InsertPos);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| CanQualType
 | |
| ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
 | |
|   CanQualType CanResultType = getCanonicalType(ResultType);
 | |
| 
 | |
|   // Canonical result types do not have ARC lifetime qualifiers.
 | |
|   if (CanResultType.getQualifiers().hasObjCLifetime()) {
 | |
|     Qualifiers Qs = CanResultType.getQualifiers();
 | |
|     Qs.removeObjCLifetime();
 | |
|     return CanQualType::CreateUnsafe(
 | |
|              getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
 | |
|   }
 | |
| 
 | |
|   return CanResultType;
 | |
| }
 | |
| 
 | |
| static bool isCanonicalExceptionSpecification(
 | |
|     const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
 | |
|   if (ESI.Type == EST_None)
 | |
|     return true;
 | |
|   if (!NoexceptInType)
 | |
|     return false;
 | |
| 
 | |
|   // C++17 onwards: exception specification is part of the type, as a simple
 | |
|   // boolean "can this function type throw".
 | |
|   if (ESI.Type == EST_BasicNoexcept)
 | |
|     return true;
 | |
| 
 | |
|   // A noexcept(expr) specification is (possibly) canonical if expr is
 | |
|   // value-dependent.
 | |
|   if (ESI.Type == EST_DependentNoexcept)
 | |
|     return true;
 | |
| 
 | |
|   // A dynamic exception specification is canonical if it only contains pack
 | |
|   // expansions (so we can't tell whether it's non-throwing) and all its
 | |
|   // contained types are canonical.
 | |
|   if (ESI.Type == EST_Dynamic) {
 | |
|     bool AnyPackExpansions = false;
 | |
|     for (QualType ET : ESI.Exceptions) {
 | |
|       if (!ET.isCanonical())
 | |
|         return false;
 | |
|       if (ET->getAs<PackExpansionType>())
 | |
|         AnyPackExpansions = true;
 | |
|     }
 | |
|     return AnyPackExpansions;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getFunctionTypeInternal(
 | |
|     QualType ResultTy, ArrayRef<QualType> ArgArray,
 | |
|     const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
 | |
|   size_t NumArgs = ArgArray.size();
 | |
| 
 | |
|   // Unique functions, to guarantee there is only one function of a particular
 | |
|   // structure.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
 | |
|                              *this, true);
 | |
| 
 | |
|   QualType Canonical;
 | |
|   bool Unique = false;
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   if (FunctionProtoType *FPT =
 | |
|         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
 | |
|     QualType Existing = QualType(FPT, 0);
 | |
| 
 | |
|     // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
 | |
|     // it so long as our exception specification doesn't contain a dependent
 | |
|     // noexcept expression, or we're just looking for a canonical type.
 | |
|     // Otherwise, we're going to need to create a type
 | |
|     // sugar node to hold the concrete expression.
 | |
|     if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
 | |
|         EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
 | |
|       return Existing;
 | |
| 
 | |
|     // We need a new type sugar node for this one, to hold the new noexcept
 | |
|     // expression. We do no canonicalization here, but that's OK since we don't
 | |
|     // expect to see the same noexcept expression much more than once.
 | |
|     Canonical = getCanonicalType(Existing);
 | |
|     Unique = true;
 | |
|   }
 | |
| 
 | |
|   bool NoexceptInType = getLangOpts().CPlusPlus17;
 | |
|   bool IsCanonicalExceptionSpec =
 | |
|       isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
 | |
| 
 | |
|   // Determine whether the type being created is already canonical or not.
 | |
|   bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
 | |
|                      isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
 | |
|   for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
 | |
|     if (!ArgArray[i].isCanonicalAsParam())
 | |
|       isCanonical = false;
 | |
| 
 | |
|   if (OnlyWantCanonical)
 | |
|     assert(isCanonical &&
 | |
|            "given non-canonical parameters constructing canonical type");
 | |
| 
 | |
|   // If this type isn't canonical, get the canonical version of it if we don't
 | |
|   // already have it. The exception spec is only partially part of the
 | |
|   // canonical type, and only in C++17 onwards.
 | |
|   if (!isCanonical && Canonical.isNull()) {
 | |
|     SmallVector<QualType, 16> CanonicalArgs;
 | |
|     CanonicalArgs.reserve(NumArgs);
 | |
|     for (unsigned i = 0; i != NumArgs; ++i)
 | |
|       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
 | |
| 
 | |
|     llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
 | |
|     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
 | |
|     CanonicalEPI.HasTrailingReturn = false;
 | |
| 
 | |
|     if (IsCanonicalExceptionSpec) {
 | |
|       // Exception spec is already OK.
 | |
|     } else if (NoexceptInType) {
 | |
|       switch (EPI.ExceptionSpec.Type) {
 | |
|       case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
 | |
|         // We don't know yet. It shouldn't matter what we pick here; no-one
 | |
|         // should ever look at this.
 | |
|         LLVM_FALLTHROUGH;
 | |
|       case EST_None: case EST_MSAny: case EST_NoexceptFalse:
 | |
|         CanonicalEPI.ExceptionSpec.Type = EST_None;
 | |
|         break;
 | |
| 
 | |
|         // A dynamic exception specification is almost always "not noexcept",
 | |
|         // with the exception that a pack expansion might expand to no types.
 | |
|       case EST_Dynamic: {
 | |
|         bool AnyPacks = false;
 | |
|         for (QualType ET : EPI.ExceptionSpec.Exceptions) {
 | |
|           if (ET->getAs<PackExpansionType>())
 | |
|             AnyPacks = true;
 | |
|           ExceptionTypeStorage.push_back(getCanonicalType(ET));
 | |
|         }
 | |
|         if (!AnyPacks)
 | |
|           CanonicalEPI.ExceptionSpec.Type = EST_None;
 | |
|         else {
 | |
|           CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
 | |
|           CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       case EST_DynamicNone:
 | |
|       case EST_BasicNoexcept:
 | |
|       case EST_NoexceptTrue:
 | |
|       case EST_NoThrow:
 | |
|         CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
 | |
|         break;
 | |
| 
 | |
|       case EST_DependentNoexcept:
 | |
|         llvm_unreachable("dependent noexcept is already canonical");
 | |
|       }
 | |
|     } else {
 | |
|       CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
 | |
|     }
 | |
| 
 | |
|     // Adjust the canonical function result type.
 | |
|     CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
 | |
|     Canonical =
 | |
|         getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
 | |
| 
 | |
|     // Get the new insert position for the node we care about.
 | |
|     FunctionProtoType *NewIP =
 | |
|       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
 | |
|   }
 | |
| 
 | |
|   // Compute the needed size to hold this FunctionProtoType and the
 | |
|   // various trailing objects.
 | |
|   auto ESH = FunctionProtoType::getExceptionSpecSize(
 | |
|       EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
 | |
|   size_t Size = FunctionProtoType::totalSizeToAlloc<
 | |
|       QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields,
 | |
|       FunctionType::ExceptionType, Expr *, FunctionDecl *,
 | |
|       FunctionProtoType::ExtParameterInfo, Qualifiers>(
 | |
|       NumArgs, EPI.Variadic,
 | |
|       FunctionProtoType::hasExtraBitfields(EPI.ExceptionSpec.Type),
 | |
|       ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
 | |
|       EPI.ExtParameterInfos ? NumArgs : 0,
 | |
|       EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0);
 | |
| 
 | |
|   auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment);
 | |
|   FunctionProtoType::ExtProtoInfo newEPI = EPI;
 | |
|   new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
 | |
|   Types.push_back(FTP);
 | |
|   if (!Unique)
 | |
|     FunctionProtoTypes.InsertNode(FTP, InsertPos);
 | |
|   return QualType(FTP, 0);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   PipeType::Profile(ID, T, ReadOnly);
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(PT, 0);
 | |
| 
 | |
|   // If the pipe element type isn't canonical, this won't be a canonical type
 | |
|   // either, so fill in the canonical type field.
 | |
|   QualType Canonical;
 | |
|   if (!T.isCanonical()) {
 | |
|     Canonical = getPipeType(getCanonicalType(T), ReadOnly);
 | |
| 
 | |
|     // Get the new insert position for the node we care about.
 | |
|     PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(!NewIP && "Shouldn't be in the map!");
 | |
|     (void)NewIP;
 | |
|   }
 | |
|   auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
 | |
|   Types.push_back(New);
 | |
|   PipeTypes.InsertNode(New, InsertPos);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const {
 | |
|   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
 | |
|   return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
 | |
|                          : Ty;
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getReadPipeType(QualType T) const {
 | |
|   return getPipeType(T, true);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getWritePipeType(QualType T) const {
 | |
|   return getPipeType(T, false);
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static bool NeedsInjectedClassNameType(const RecordDecl *D) {
 | |
|   if (!isa<CXXRecordDecl>(D)) return false;
 | |
|   const auto *RD = cast<CXXRecordDecl>(D);
 | |
|   if (isa<ClassTemplatePartialSpecializationDecl>(RD))
 | |
|     return true;
 | |
|   if (RD->getDescribedClassTemplate() &&
 | |
|       !isa<ClassTemplateSpecializationDecl>(RD))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /// getInjectedClassNameType - Return the unique reference to the
 | |
| /// injected class name type for the specified templated declaration.
 | |
| QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
 | |
|                                               QualType TST) const {
 | |
|   assert(NeedsInjectedClassNameType(Decl));
 | |
|   if (Decl->TypeForDecl) {
 | |
|     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
 | |
|   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
 | |
|     assert(PrevDecl->TypeForDecl && "previous declaration has no type");
 | |
|     Decl->TypeForDecl = PrevDecl->TypeForDecl;
 | |
|     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
 | |
|   } else {
 | |
|     Type *newType =
 | |
|       new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
 | |
|     Decl->TypeForDecl = newType;
 | |
|     Types.push_back(newType);
 | |
|   }
 | |
|   return QualType(Decl->TypeForDecl, 0);
 | |
| }
 | |
| 
 | |
| /// getTypeDeclType - Return the unique reference to the type for the
 | |
| /// specified type declaration.
 | |
| QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
 | |
|   assert(Decl && "Passed null for Decl param");
 | |
|   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
 | |
| 
 | |
|   if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
 | |
|     return getTypedefType(Typedef);
 | |
| 
 | |
|   assert(!isa<TemplateTypeParmDecl>(Decl) &&
 | |
|          "Template type parameter types are always available.");
 | |
| 
 | |
|   if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
 | |
|     assert(Record->isFirstDecl() && "struct/union has previous declaration");
 | |
|     assert(!NeedsInjectedClassNameType(Record));
 | |
|     return getRecordType(Record);
 | |
|   } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
 | |
|     assert(Enum->isFirstDecl() && "enum has previous declaration");
 | |
|     return getEnumType(Enum);
 | |
|   } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
 | |
|     Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
 | |
|     Decl->TypeForDecl = newType;
 | |
|     Types.push_back(newType);
 | |
|   } else
 | |
|     llvm_unreachable("TypeDecl without a type?");
 | |
| 
 | |
|   return QualType(Decl->TypeForDecl, 0);
 | |
| }
 | |
| 
 | |
| /// getTypedefType - Return the unique reference to the type for the
 | |
| /// specified typedef name decl.
 | |
| QualType
 | |
| ASTContext::getTypedefType(const TypedefNameDecl *Decl,
 | |
|                            QualType Canonical) const {
 | |
|   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
 | |
| 
 | |
|   if (Canonical.isNull())
 | |
|     Canonical = getCanonicalType(Decl->getUnderlyingType());
 | |
|   auto *newType = new (*this, TypeAlignment)
 | |
|     TypedefType(Type::Typedef, Decl, Canonical);
 | |
|   Decl->TypeForDecl = newType;
 | |
|   Types.push_back(newType);
 | |
|   return QualType(newType, 0);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
 | |
|   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
 | |
| 
 | |
|   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
 | |
|     if (PrevDecl->TypeForDecl)
 | |
|       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
 | |
| 
 | |
|   auto *newType = new (*this, TypeAlignment) RecordType(Decl);
 | |
|   Decl->TypeForDecl = newType;
 | |
|   Types.push_back(newType);
 | |
|   return QualType(newType, 0);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
 | |
|   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
 | |
| 
 | |
|   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
 | |
|     if (PrevDecl->TypeForDecl)
 | |
|       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
 | |
| 
 | |
|   auto *newType = new (*this, TypeAlignment) EnumType(Decl);
 | |
|   Decl->TypeForDecl = newType;
 | |
|   Types.push_back(newType);
 | |
|   return QualType(newType, 0);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getAttributedType(attr::Kind attrKind,
 | |
|                                        QualType modifiedType,
 | |
|                                        QualType equivalentType) {
 | |
|   llvm::FoldingSetNodeID id;
 | |
|   AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
 | |
| 
 | |
|   void *insertPos = nullptr;
 | |
|   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
 | |
|   if (type) return QualType(type, 0);
 | |
| 
 | |
|   QualType canon = getCanonicalType(equivalentType);
 | |
|   type = new (*this, TypeAlignment)
 | |
|       AttributedType(canon, attrKind, modifiedType, equivalentType);
 | |
| 
 | |
|   Types.push_back(type);
 | |
|   AttributedTypes.InsertNode(type, insertPos);
 | |
| 
 | |
|   return QualType(type, 0);
 | |
| }
 | |
| 
 | |
| /// Retrieve a substitution-result type.
 | |
| QualType
 | |
| ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
 | |
|                                          QualType Replacement) const {
 | |
|   assert(Replacement.isCanonical()
 | |
|          && "replacement types must always be canonical");
 | |
| 
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
 | |
|   void *InsertPos = nullptr;
 | |
|   SubstTemplateTypeParmType *SubstParm
 | |
|     = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
| 
 | |
|   if (!SubstParm) {
 | |
|     SubstParm = new (*this, TypeAlignment)
 | |
|       SubstTemplateTypeParmType(Parm, Replacement);
 | |
|     Types.push_back(SubstParm);
 | |
|     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
 | |
|   }
 | |
| 
 | |
|   return QualType(SubstParm, 0);
 | |
| }
 | |
| 
 | |
| /// Retrieve a
 | |
| QualType ASTContext::getSubstTemplateTypeParmPackType(
 | |
|                                           const TemplateTypeParmType *Parm,
 | |
|                                               const TemplateArgument &ArgPack) {
 | |
| #ifndef NDEBUG
 | |
|   for (const auto &P : ArgPack.pack_elements()) {
 | |
|     assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
 | |
|     assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
 | |
|   void *InsertPos = nullptr;
 | |
|   if (SubstTemplateTypeParmPackType *SubstParm
 | |
|         = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(SubstParm, 0);
 | |
| 
 | |
|   QualType Canon;
 | |
|   if (!Parm->isCanonicalUnqualified()) {
 | |
|     Canon = getCanonicalType(QualType(Parm, 0));
 | |
|     Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
 | |
|                                              ArgPack);
 | |
|     SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   }
 | |
| 
 | |
|   auto *SubstParm
 | |
|     = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
 | |
|                                                                ArgPack);
 | |
|   Types.push_back(SubstParm);
 | |
|   SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
 | |
|   return QualType(SubstParm, 0);
 | |
| }
 | |
| 
 | |
| /// Retrieve the template type parameter type for a template
 | |
| /// parameter or parameter pack with the given depth, index, and (optionally)
 | |
| /// name.
 | |
| QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
 | |
|                                              bool ParameterPack,
 | |
|                                              TemplateTypeParmDecl *TTPDecl) const {
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
 | |
|   void *InsertPos = nullptr;
 | |
|   TemplateTypeParmType *TypeParm
 | |
|     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
| 
 | |
|   if (TypeParm)
 | |
|     return QualType(TypeParm, 0);
 | |
| 
 | |
|   if (TTPDecl) {
 | |
|     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
 | |
|     TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
 | |
| 
 | |
|     TemplateTypeParmType *TypeCheck
 | |
|       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(!TypeCheck && "Template type parameter canonical type broken");
 | |
|     (void)TypeCheck;
 | |
|   } else
 | |
|     TypeParm = new (*this, TypeAlignment)
 | |
|       TemplateTypeParmType(Depth, Index, ParameterPack);
 | |
| 
 | |
|   Types.push_back(TypeParm);
 | |
|   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
 | |
| 
 | |
|   return QualType(TypeParm, 0);
 | |
| }
 | |
| 
 | |
| TypeSourceInfo *
 | |
| ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
 | |
|                                               SourceLocation NameLoc,
 | |
|                                         const TemplateArgumentListInfo &Args,
 | |
|                                               QualType Underlying) const {
 | |
|   assert(!Name.getAsDependentTemplateName() &&
 | |
|          "No dependent template names here!");
 | |
|   QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
 | |
| 
 | |
|   TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
 | |
|   TemplateSpecializationTypeLoc TL =
 | |
|       DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
 | |
|   TL.setTemplateKeywordLoc(SourceLocation());
 | |
|   TL.setTemplateNameLoc(NameLoc);
 | |
|   TL.setLAngleLoc(Args.getLAngleLoc());
 | |
|   TL.setRAngleLoc(Args.getRAngleLoc());
 | |
|   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
 | |
|     TL.setArgLocInfo(i, Args[i].getLocInfo());
 | |
|   return DI;
 | |
| }
 | |
| 
 | |
| QualType
 | |
| ASTContext::getTemplateSpecializationType(TemplateName Template,
 | |
|                                           const TemplateArgumentListInfo &Args,
 | |
|                                           QualType Underlying) const {
 | |
|   assert(!Template.getAsDependentTemplateName() &&
 | |
|          "No dependent template names here!");
 | |
| 
 | |
|   SmallVector<TemplateArgument, 4> ArgVec;
 | |
|   ArgVec.reserve(Args.size());
 | |
|   for (const TemplateArgumentLoc &Arg : Args.arguments())
 | |
|     ArgVec.push_back(Arg.getArgument());
 | |
| 
 | |
|   return getTemplateSpecializationType(Template, ArgVec, Underlying);
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
 | |
|   for (const TemplateArgument &Arg : Args)
 | |
|     if (Arg.isPackExpansion())
 | |
|       return true;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| QualType
 | |
| ASTContext::getTemplateSpecializationType(TemplateName Template,
 | |
|                                           ArrayRef<TemplateArgument> Args,
 | |
|                                           QualType Underlying) const {
 | |
|   assert(!Template.getAsDependentTemplateName() &&
 | |
|          "No dependent template names here!");
 | |
|   // Look through qualified template names.
 | |
|   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
 | |
|     Template = TemplateName(QTN->getTemplateDecl());
 | |
| 
 | |
|   bool IsTypeAlias =
 | |
|     Template.getAsTemplateDecl() &&
 | |
|     isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
 | |
|   QualType CanonType;
 | |
|   if (!Underlying.isNull())
 | |
|     CanonType = getCanonicalType(Underlying);
 | |
|   else {
 | |
|     // We can get here with an alias template when the specialization contains
 | |
|     // a pack expansion that does not match up with a parameter pack.
 | |
|     assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
 | |
|            "Caller must compute aliased type");
 | |
|     IsTypeAlias = false;
 | |
|     CanonType = getCanonicalTemplateSpecializationType(Template, Args);
 | |
|   }
 | |
| 
 | |
|   // Allocate the (non-canonical) template specialization type, but don't
 | |
|   // try to unique it: these types typically have location information that
 | |
|   // we don't unique and don't want to lose.
 | |
|   void *Mem = Allocate(sizeof(TemplateSpecializationType) +
 | |
|                        sizeof(TemplateArgument) * Args.size() +
 | |
|                        (IsTypeAlias? sizeof(QualType) : 0),
 | |
|                        TypeAlignment);
 | |
|   auto *Spec
 | |
|     = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
 | |
|                                          IsTypeAlias ? Underlying : QualType());
 | |
| 
 | |
|   Types.push_back(Spec);
 | |
|   return QualType(Spec, 0);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getCanonicalTemplateSpecializationType(
 | |
|     TemplateName Template, ArrayRef<TemplateArgument> Args) const {
 | |
|   assert(!Template.getAsDependentTemplateName() &&
 | |
|          "No dependent template names here!");
 | |
| 
 | |
|   // Look through qualified template names.
 | |
|   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
 | |
|     Template = TemplateName(QTN->getTemplateDecl());
 | |
| 
 | |
|   // Build the canonical template specialization type.
 | |
|   TemplateName CanonTemplate = getCanonicalTemplateName(Template);
 | |
|   SmallVector<TemplateArgument, 4> CanonArgs;
 | |
|   unsigned NumArgs = Args.size();
 | |
|   CanonArgs.reserve(NumArgs);
 | |
|   for (const TemplateArgument &Arg : Args)
 | |
|     CanonArgs.push_back(getCanonicalTemplateArgument(Arg));
 | |
| 
 | |
|   // Determine whether this canonical template specialization type already
 | |
|   // exists.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   TemplateSpecializationType::Profile(ID, CanonTemplate,
 | |
|                                       CanonArgs, *this);
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   TemplateSpecializationType *Spec
 | |
|     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
| 
 | |
|   if (!Spec) {
 | |
|     // Allocate a new canonical template specialization type.
 | |
|     void *Mem = Allocate((sizeof(TemplateSpecializationType) +
 | |
|                           sizeof(TemplateArgument) * NumArgs),
 | |
|                          TypeAlignment);
 | |
|     Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
 | |
|                                                 CanonArgs,
 | |
|                                                 QualType(), QualType());
 | |
|     Types.push_back(Spec);
 | |
|     TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
 | |
|   }
 | |
| 
 | |
|   assert(Spec->isDependentType() &&
 | |
|          "Non-dependent template-id type must have a canonical type");
 | |
|   return QualType(Spec, 0);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
 | |
|                                        NestedNameSpecifier *NNS,
 | |
|                                        QualType NamedType,
 | |
|                                        TagDecl *OwnedTagDecl) const {
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   if (T)
 | |
|     return QualType(T, 0);
 | |
| 
 | |
|   QualType Canon = NamedType;
 | |
|   if (!Canon.isCanonical()) {
 | |
|     Canon = getCanonicalType(NamedType);
 | |
|     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(!CheckT && "Elaborated canonical type broken");
 | |
|     (void)CheckT;
 | |
|   }
 | |
| 
 | |
|   void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
 | |
|                        TypeAlignment);
 | |
|   T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
 | |
| 
 | |
|   Types.push_back(T);
 | |
|   ElaboratedTypes.InsertNode(T, InsertPos);
 | |
|   return QualType(T, 0);
 | |
| }
 | |
| 
 | |
| QualType
 | |
| ASTContext::getParenType(QualType InnerType) const {
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   ParenType::Profile(ID, InnerType);
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   if (T)
 | |
|     return QualType(T, 0);
 | |
| 
 | |
|   QualType Canon = InnerType;
 | |
|   if (!Canon.isCanonical()) {
 | |
|     Canon = getCanonicalType(InnerType);
 | |
|     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(!CheckT && "Paren canonical type broken");
 | |
|     (void)CheckT;
 | |
|   }
 | |
| 
 | |
|   T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
 | |
|   Types.push_back(T);
 | |
|   ParenTypes.InsertNode(T, InsertPos);
 | |
|   return QualType(T, 0);
 | |
| }
 | |
| 
 | |
| QualType
 | |
| ASTContext::getMacroQualifiedType(QualType UnderlyingTy,
 | |
|                                   const IdentifierInfo *MacroII) const {
 | |
|   QualType Canon = UnderlyingTy;
 | |
|   if (!Canon.isCanonical())
 | |
|     Canon = getCanonicalType(UnderlyingTy);
 | |
| 
 | |
|   auto *newType = new (*this, TypeAlignment)
 | |
|       MacroQualifiedType(UnderlyingTy, Canon, MacroII);
 | |
|   Types.push_back(newType);
 | |
|   return QualType(newType, 0);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
 | |
|                                           NestedNameSpecifier *NNS,
 | |
|                                           const IdentifierInfo *Name,
 | |
|                                           QualType Canon) const {
 | |
|   if (Canon.isNull()) {
 | |
|     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
 | |
|     if (CanonNNS != NNS)
 | |
|       Canon = getDependentNameType(Keyword, CanonNNS, Name);
 | |
|   }
 | |
| 
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   DependentNameType::Profile(ID, Keyword, NNS, Name);
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   DependentNameType *T
 | |
|     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   if (T)
 | |
|     return QualType(T, 0);
 | |
| 
 | |
|   T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
 | |
|   Types.push_back(T);
 | |
|   DependentNameTypes.InsertNode(T, InsertPos);
 | |
|   return QualType(T, 0);
 | |
| }
 | |
| 
 | |
| QualType
 | |
| ASTContext::getDependentTemplateSpecializationType(
 | |
|                                  ElaboratedTypeKeyword Keyword,
 | |
|                                  NestedNameSpecifier *NNS,
 | |
|                                  const IdentifierInfo *Name,
 | |
|                                  const TemplateArgumentListInfo &Args) const {
 | |
|   // TODO: avoid this copy
 | |
|   SmallVector<TemplateArgument, 16> ArgCopy;
 | |
|   for (unsigned I = 0, E = Args.size(); I != E; ++I)
 | |
|     ArgCopy.push_back(Args[I].getArgument());
 | |
|   return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
 | |
| }
 | |
| 
 | |
| QualType
 | |
| ASTContext::getDependentTemplateSpecializationType(
 | |
|                                  ElaboratedTypeKeyword Keyword,
 | |
|                                  NestedNameSpecifier *NNS,
 | |
|                                  const IdentifierInfo *Name,
 | |
|                                  ArrayRef<TemplateArgument> Args) const {
 | |
|   assert((!NNS || NNS->isDependent()) &&
 | |
|          "nested-name-specifier must be dependent");
 | |
| 
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
 | |
|                                                Name, Args);
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   DependentTemplateSpecializationType *T
 | |
|     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   if (T)
 | |
|     return QualType(T, 0);
 | |
| 
 | |
|   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
 | |
| 
 | |
|   ElaboratedTypeKeyword CanonKeyword = Keyword;
 | |
|   if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
 | |
| 
 | |
|   bool AnyNonCanonArgs = false;
 | |
|   unsigned NumArgs = Args.size();
 | |
|   SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
 | |
|   for (unsigned I = 0; I != NumArgs; ++I) {
 | |
|     CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
 | |
|     if (!CanonArgs[I].structurallyEquals(Args[I]))
 | |
|       AnyNonCanonArgs = true;
 | |
|   }
 | |
| 
 | |
|   QualType Canon;
 | |
|   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
 | |
|     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
 | |
|                                                    Name,
 | |
|                                                    CanonArgs);
 | |
| 
 | |
|     // Find the insert position again.
 | |
|     DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   }
 | |
| 
 | |
|   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
 | |
|                         sizeof(TemplateArgument) * NumArgs),
 | |
|                        TypeAlignment);
 | |
|   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
 | |
|                                                     Name, Args, Canon);
 | |
|   Types.push_back(T);
 | |
|   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
 | |
|   return QualType(T, 0);
 | |
| }
 | |
| 
 | |
| TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
 | |
|   TemplateArgument Arg;
 | |
|   if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
 | |
|     QualType ArgType = getTypeDeclType(TTP);
 | |
|     if (TTP->isParameterPack())
 | |
|       ArgType = getPackExpansionType(ArgType, None);
 | |
| 
 | |
|     Arg = TemplateArgument(ArgType);
 | |
|   } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
 | |
|     Expr *E = new (*this) DeclRefExpr(
 | |
|         *this, NTTP, /*enclosing*/ false,
 | |
|         NTTP->getType().getNonLValueExprType(*this),
 | |
|         Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
 | |
| 
 | |
|     if (NTTP->isParameterPack())
 | |
|       E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(),
 | |
|                                         None);
 | |
|     Arg = TemplateArgument(E);
 | |
|   } else {
 | |
|     auto *TTP = cast<TemplateTemplateParmDecl>(Param);
 | |
|     if (TTP->isParameterPack())
 | |
|       Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>());
 | |
|     else
 | |
|       Arg = TemplateArgument(TemplateName(TTP));
 | |
|   }
 | |
| 
 | |
|   if (Param->isTemplateParameterPack())
 | |
|     Arg = TemplateArgument::CreatePackCopy(*this, Arg);
 | |
| 
 | |
|   return Arg;
 | |
| }
 | |
| 
 | |
| void
 | |
| ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
 | |
|                                     SmallVectorImpl<TemplateArgument> &Args) {
 | |
|   Args.reserve(Args.size() + Params->size());
 | |
| 
 | |
|   for (NamedDecl *Param : *Params)
 | |
|     Args.push_back(getInjectedTemplateArg(Param));
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getPackExpansionType(QualType Pattern,
 | |
|                                           Optional<unsigned> NumExpansions) {
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   PackExpansionType::Profile(ID, Pattern, NumExpansions);
 | |
| 
 | |
|   // A deduced type can deduce to a pack, eg
 | |
|   //   auto ...x = some_pack;
 | |
|   // That declaration isn't (yet) valid, but is created as part of building an
 | |
|   // init-capture pack:
 | |
|   //   [...x = some_pack] {}
 | |
|   assert((Pattern->containsUnexpandedParameterPack() ||
 | |
|           Pattern->getContainedDeducedType()) &&
 | |
|          "Pack expansions must expand one or more parameter packs");
 | |
|   void *InsertPos = nullptr;
 | |
|   PackExpansionType *T
 | |
|     = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   if (T)
 | |
|     return QualType(T, 0);
 | |
| 
 | |
|   QualType Canon;
 | |
|   if (!Pattern.isCanonical()) {
 | |
|     Canon = getCanonicalType(Pattern);
 | |
|     // The canonical type might not contain an unexpanded parameter pack, if it
 | |
|     // contains an alias template specialization which ignores one of its
 | |
|     // parameters.
 | |
|     if (Canon->containsUnexpandedParameterPack()) {
 | |
|       Canon = getPackExpansionType(Canon, NumExpansions);
 | |
| 
 | |
|       // Find the insert position again, in case we inserted an element into
 | |
|       // PackExpansionTypes and invalidated our insert position.
 | |
|       PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   T = new (*this, TypeAlignment)
 | |
|       PackExpansionType(Pattern, Canon, NumExpansions);
 | |
|   Types.push_back(T);
 | |
|   PackExpansionTypes.InsertNode(T, InsertPos);
 | |
|   return QualType(T, 0);
 | |
| }
 | |
| 
 | |
| /// CmpProtocolNames - Comparison predicate for sorting protocols
 | |
| /// alphabetically.
 | |
| static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
 | |
|                             ObjCProtocolDecl *const *RHS) {
 | |
|   return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
 | |
| }
 | |
| 
 | |
| static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
 | |
|   if (Protocols.empty()) return true;
 | |
| 
 | |
|   if (Protocols[0]->getCanonicalDecl() != Protocols[0])
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 1; i != Protocols.size(); ++i)
 | |
|     if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
 | |
|         Protocols[i]->getCanonicalDecl() != Protocols[i])
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void
 | |
| SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
 | |
|   // Sort protocols, keyed by name.
 | |
|   llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
 | |
| 
 | |
|   // Canonicalize.
 | |
|   for (ObjCProtocolDecl *&P : Protocols)
 | |
|     P = P->getCanonicalDecl();
 | |
| 
 | |
|   // Remove duplicates.
 | |
|   auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
 | |
|   Protocols.erase(ProtocolsEnd, Protocols.end());
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getObjCObjectType(QualType BaseType,
 | |
|                                        ObjCProtocolDecl * const *Protocols,
 | |
|                                        unsigned NumProtocols) const {
 | |
|   return getObjCObjectType(BaseType, {},
 | |
|                            llvm::makeArrayRef(Protocols, NumProtocols),
 | |
|                            /*isKindOf=*/false);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getObjCObjectType(
 | |
|            QualType baseType,
 | |
|            ArrayRef<QualType> typeArgs,
 | |
|            ArrayRef<ObjCProtocolDecl *> protocols,
 | |
|            bool isKindOf) const {
 | |
|   // If the base type is an interface and there aren't any protocols or
 | |
|   // type arguments to add, then the interface type will do just fine.
 | |
|   if (typeArgs.empty() && protocols.empty() && !isKindOf &&
 | |
|       isa<ObjCInterfaceType>(baseType))
 | |
|     return baseType;
 | |
| 
 | |
|   // Look in the folding set for an existing type.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
 | |
|   void *InsertPos = nullptr;
 | |
|   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(QT, 0);
 | |
| 
 | |
|   // Determine the type arguments to be used for canonicalization,
 | |
|   // which may be explicitly specified here or written on the base
 | |
|   // type.
 | |
|   ArrayRef<QualType> effectiveTypeArgs = typeArgs;
 | |
|   if (effectiveTypeArgs.empty()) {
 | |
|     if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
 | |
|       effectiveTypeArgs = baseObject->getTypeArgs();
 | |
|   }
 | |
| 
 | |
|   // Build the canonical type, which has the canonical base type and a
 | |
|   // sorted-and-uniqued list of protocols and the type arguments
 | |
|   // canonicalized.
 | |
|   QualType canonical;
 | |
|   bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(),
 | |
|                                           effectiveTypeArgs.end(),
 | |
|                                           [&](QualType type) {
 | |
|                                             return type.isCanonical();
 | |
|                                           });
 | |
|   bool protocolsSorted = areSortedAndUniqued(protocols);
 | |
|   if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
 | |
|     // Determine the canonical type arguments.
 | |
|     ArrayRef<QualType> canonTypeArgs;
 | |
|     SmallVector<QualType, 4> canonTypeArgsVec;
 | |
|     if (!typeArgsAreCanonical) {
 | |
|       canonTypeArgsVec.reserve(effectiveTypeArgs.size());
 | |
|       for (auto typeArg : effectiveTypeArgs)
 | |
|         canonTypeArgsVec.push_back(getCanonicalType(typeArg));
 | |
|       canonTypeArgs = canonTypeArgsVec;
 | |
|     } else {
 | |
|       canonTypeArgs = effectiveTypeArgs;
 | |
|     }
 | |
| 
 | |
|     ArrayRef<ObjCProtocolDecl *> canonProtocols;
 | |
|     SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
 | |
|     if (!protocolsSorted) {
 | |
|       canonProtocolsVec.append(protocols.begin(), protocols.end());
 | |
|       SortAndUniqueProtocols(canonProtocolsVec);
 | |
|       canonProtocols = canonProtocolsVec;
 | |
|     } else {
 | |
|       canonProtocols = protocols;
 | |
|     }
 | |
| 
 | |
|     canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
 | |
|                                   canonProtocols, isKindOf);
 | |
| 
 | |
|     // Regenerate InsertPos.
 | |
|     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   }
 | |
| 
 | |
|   unsigned size = sizeof(ObjCObjectTypeImpl);
 | |
|   size += typeArgs.size() * sizeof(QualType);
 | |
|   size += protocols.size() * sizeof(ObjCProtocolDecl *);
 | |
|   void *mem = Allocate(size, TypeAlignment);
 | |
|   auto *T =
 | |
|     new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
 | |
|                                  isKindOf);
 | |
| 
 | |
|   Types.push_back(T);
 | |
|   ObjCObjectTypes.InsertNode(T, InsertPos);
 | |
|   return QualType(T, 0);
 | |
| }
 | |
| 
 | |
| /// Apply Objective-C protocol qualifiers to the given type.
 | |
| /// If this is for the canonical type of a type parameter, we can apply
 | |
| /// protocol qualifiers on the ObjCObjectPointerType.
 | |
| QualType
 | |
| ASTContext::applyObjCProtocolQualifiers(QualType type,
 | |
|                   ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
 | |
|                   bool allowOnPointerType) const {
 | |
|   hasError = false;
 | |
| 
 | |
|   if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
 | |
|     return getObjCTypeParamType(objT->getDecl(), protocols);
 | |
|   }
 | |
| 
 | |
|   // Apply protocol qualifiers to ObjCObjectPointerType.
 | |
|   if (allowOnPointerType) {
 | |
|     if (const auto *objPtr =
 | |
|             dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
 | |
|       const ObjCObjectType *objT = objPtr->getObjectType();
 | |
|       // Merge protocol lists and construct ObjCObjectType.
 | |
|       SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
 | |
|       protocolsVec.append(objT->qual_begin(),
 | |
|                           objT->qual_end());
 | |
|       protocolsVec.append(protocols.begin(), protocols.end());
 | |
|       ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
 | |
|       type = getObjCObjectType(
 | |
|              objT->getBaseType(),
 | |
|              objT->getTypeArgsAsWritten(),
 | |
|              protocols,
 | |
|              objT->isKindOfTypeAsWritten());
 | |
|       return getObjCObjectPointerType(type);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Apply protocol qualifiers to ObjCObjectType.
 | |
|   if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
 | |
|     // FIXME: Check for protocols to which the class type is already
 | |
|     // known to conform.
 | |
| 
 | |
|     return getObjCObjectType(objT->getBaseType(),
 | |
|                              objT->getTypeArgsAsWritten(),
 | |
|                              protocols,
 | |
|                              objT->isKindOfTypeAsWritten());
 | |
|   }
 | |
| 
 | |
|   // If the canonical type is ObjCObjectType, ...
 | |
|   if (type->isObjCObjectType()) {
 | |
|     // Silently overwrite any existing protocol qualifiers.
 | |
|     // TODO: determine whether that's the right thing to do.
 | |
| 
 | |
|     // FIXME: Check for protocols to which the class type is already
 | |
|     // known to conform.
 | |
|     return getObjCObjectType(type, {}, protocols, false);
 | |
|   }
 | |
| 
 | |
|   // id<protocol-list>
 | |
|   if (type->isObjCIdType()) {
 | |
|     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
 | |
|     type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
 | |
|                                  objPtr->isKindOfType());
 | |
|     return getObjCObjectPointerType(type);
 | |
|   }
 | |
| 
 | |
|   // Class<protocol-list>
 | |
|   if (type->isObjCClassType()) {
 | |
|     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
 | |
|     type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
 | |
|                                  objPtr->isKindOfType());
 | |
|     return getObjCObjectPointerType(type);
 | |
|   }
 | |
| 
 | |
|   hasError = true;
 | |
|   return type;
 | |
| }
 | |
| 
 | |
| QualType
 | |
| ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
 | |
|                                  ArrayRef<ObjCProtocolDecl *> protocols) const {
 | |
|   // Look in the folding set for an existing type.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   ObjCTypeParamType::Profile(ID, Decl, protocols);
 | |
|   void *InsertPos = nullptr;
 | |
|   if (ObjCTypeParamType *TypeParam =
 | |
|       ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(TypeParam, 0);
 | |
| 
 | |
|   // We canonicalize to the underlying type.
 | |
|   QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
 | |
|   if (!protocols.empty()) {
 | |
|     // Apply the protocol qualifers.
 | |
|     bool hasError;
 | |
|     Canonical = getCanonicalType(applyObjCProtocolQualifiers(
 | |
|         Canonical, protocols, hasError, true /*allowOnPointerType*/));
 | |
|     assert(!hasError && "Error when apply protocol qualifier to bound type");
 | |
|   }
 | |
| 
 | |
|   unsigned size = sizeof(ObjCTypeParamType);
 | |
|   size += protocols.size() * sizeof(ObjCProtocolDecl *);
 | |
|   void *mem = Allocate(size, TypeAlignment);
 | |
|   auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
 | |
| 
 | |
|   Types.push_back(newType);
 | |
|   ObjCTypeParamTypes.InsertNode(newType, InsertPos);
 | |
|   return QualType(newType, 0);
 | |
| }
 | |
| 
 | |
| /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
 | |
| /// protocol list adopt all protocols in QT's qualified-id protocol
 | |
| /// list.
 | |
| bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
 | |
|                                                 ObjCInterfaceDecl *IC) {
 | |
|   if (!QT->isObjCQualifiedIdType())
 | |
|     return false;
 | |
| 
 | |
|   if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
 | |
|     // If both the right and left sides have qualifiers.
 | |
|     for (auto *Proto : OPT->quals()) {
 | |
|       if (!IC->ClassImplementsProtocol(Proto, false))
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
 | |
| /// QT's qualified-id protocol list adopt all protocols in IDecl's list
 | |
| /// of protocols.
 | |
| bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
 | |
|                                                 ObjCInterfaceDecl *IDecl) {
 | |
|   if (!QT->isObjCQualifiedIdType())
 | |
|     return false;
 | |
|   const auto *OPT = QT->getAs<ObjCObjectPointerType>();
 | |
|   if (!OPT)
 | |
|     return false;
 | |
|   if (!IDecl->hasDefinition())
 | |
|     return false;
 | |
|   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
 | |
|   CollectInheritedProtocols(IDecl, InheritedProtocols);
 | |
|   if (InheritedProtocols.empty())
 | |
|     return false;
 | |
|   // Check that if every protocol in list of id<plist> conforms to a protocol
 | |
|   // of IDecl's, then bridge casting is ok.
 | |
|   bool Conforms = false;
 | |
|   for (auto *Proto : OPT->quals()) {
 | |
|     Conforms = false;
 | |
|     for (auto *PI : InheritedProtocols) {
 | |
|       if (ProtocolCompatibleWithProtocol(Proto, PI)) {
 | |
|         Conforms = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (!Conforms)
 | |
|       break;
 | |
|   }
 | |
|   if (Conforms)
 | |
|     return true;
 | |
| 
 | |
|   for (auto *PI : InheritedProtocols) {
 | |
|     // If both the right and left sides have qualifiers.
 | |
|     bool Adopts = false;
 | |
|     for (auto *Proto : OPT->quals()) {
 | |
|       // return 'true' if 'PI' is in the inheritance hierarchy of Proto
 | |
|       if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
 | |
|         break;
 | |
|     }
 | |
|     if (!Adopts)
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
 | |
| /// the given object type.
 | |
| QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   ObjCObjectPointerType::Profile(ID, ObjectT);
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   if (ObjCObjectPointerType *QT =
 | |
|               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(QT, 0);
 | |
| 
 | |
|   // Find the canonical object type.
 | |
|   QualType Canonical;
 | |
|   if (!ObjectT.isCanonical()) {
 | |
|     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
 | |
| 
 | |
|     // Regenerate InsertPos.
 | |
|     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   }
 | |
| 
 | |
|   // No match.
 | |
|   void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
 | |
|   auto *QType =
 | |
|     new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
 | |
| 
 | |
|   Types.push_back(QType);
 | |
|   ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
 | |
|   return QualType(QType, 0);
 | |
| }
 | |
| 
 | |
| /// getObjCInterfaceType - Return the unique reference to the type for the
 | |
| /// specified ObjC interface decl. The list of protocols is optional.
 | |
| QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
 | |
|                                           ObjCInterfaceDecl *PrevDecl) const {
 | |
|   if (Decl->TypeForDecl)
 | |
|     return QualType(Decl->TypeForDecl, 0);
 | |
| 
 | |
|   if (PrevDecl) {
 | |
|     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
 | |
|     Decl->TypeForDecl = PrevDecl->TypeForDecl;
 | |
|     return QualType(PrevDecl->TypeForDecl, 0);
 | |
|   }
 | |
| 
 | |
|   // Prefer the definition, if there is one.
 | |
|   if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
 | |
|     Decl = Def;
 | |
| 
 | |
|   void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
 | |
|   auto *T = new (Mem) ObjCInterfaceType(Decl);
 | |
|   Decl->TypeForDecl = T;
 | |
|   Types.push_back(T);
 | |
|   return QualType(T, 0);
 | |
| }
 | |
| 
 | |
| /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
 | |
| /// TypeOfExprType AST's (since expression's are never shared). For example,
 | |
| /// multiple declarations that refer to "typeof(x)" all contain different
 | |
| /// DeclRefExpr's. This doesn't effect the type checker, since it operates
 | |
| /// on canonical type's (which are always unique).
 | |
| QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
 | |
|   TypeOfExprType *toe;
 | |
|   if (tofExpr->isTypeDependent()) {
 | |
|     llvm::FoldingSetNodeID ID;
 | |
|     DependentTypeOfExprType::Profile(ID, *this, tofExpr);
 | |
| 
 | |
|     void *InsertPos = nullptr;
 | |
|     DependentTypeOfExprType *Canon
 | |
|       = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     if (Canon) {
 | |
|       // We already have a "canonical" version of an identical, dependent
 | |
|       // typeof(expr) type. Use that as our canonical type.
 | |
|       toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
 | |
|                                           QualType((TypeOfExprType*)Canon, 0));
 | |
|     } else {
 | |
|       // Build a new, canonical typeof(expr) type.
 | |
|       Canon
 | |
|         = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
 | |
|       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
 | |
|       toe = Canon;
 | |
|     }
 | |
|   } else {
 | |
|     QualType Canonical = getCanonicalType(tofExpr->getType());
 | |
|     toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
 | |
|   }
 | |
|   Types.push_back(toe);
 | |
|   return QualType(toe, 0);
 | |
| }
 | |
| 
 | |
| /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
 | |
| /// TypeOfType nodes. The only motivation to unique these nodes would be
 | |
| /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
 | |
| /// an issue. This doesn't affect the type checker, since it operates
 | |
| /// on canonical types (which are always unique).
 | |
| QualType ASTContext::getTypeOfType(QualType tofType) const {
 | |
|   QualType Canonical = getCanonicalType(tofType);
 | |
|   auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
 | |
|   Types.push_back(tot);
 | |
|   return QualType(tot, 0);
 | |
| }
 | |
| 
 | |
| /// Unlike many "get<Type>" functions, we don't unique DecltypeType
 | |
| /// nodes. This would never be helpful, since each such type has its own
 | |
| /// expression, and would not give a significant memory saving, since there
 | |
| /// is an Expr tree under each such type.
 | |
| QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
 | |
|   DecltypeType *dt;
 | |
| 
 | |
|   // C++11 [temp.type]p2:
 | |
|   //   If an expression e involves a template parameter, decltype(e) denotes a
 | |
|   //   unique dependent type. Two such decltype-specifiers refer to the same
 | |
|   //   type only if their expressions are equivalent (14.5.6.1).
 | |
|   if (e->isInstantiationDependent()) {
 | |
|     llvm::FoldingSetNodeID ID;
 | |
|     DependentDecltypeType::Profile(ID, *this, e);
 | |
| 
 | |
|     void *InsertPos = nullptr;
 | |
|     DependentDecltypeType *Canon
 | |
|       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     if (!Canon) {
 | |
|       // Build a new, canonical decltype(expr) type.
 | |
|       Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
 | |
|       DependentDecltypeTypes.InsertNode(Canon, InsertPos);
 | |
|     }
 | |
|     dt = new (*this, TypeAlignment)
 | |
|         DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
 | |
|   } else {
 | |
|     dt = new (*this, TypeAlignment)
 | |
|         DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
 | |
|   }
 | |
|   Types.push_back(dt);
 | |
|   return QualType(dt, 0);
 | |
| }
 | |
| 
 | |
| /// getUnaryTransformationType - We don't unique these, since the memory
 | |
| /// savings are minimal and these are rare.
 | |
| QualType ASTContext::getUnaryTransformType(QualType BaseType,
 | |
|                                            QualType UnderlyingType,
 | |
|                                            UnaryTransformType::UTTKind Kind)
 | |
|     const {
 | |
|   UnaryTransformType *ut = nullptr;
 | |
| 
 | |
|   if (BaseType->isDependentType()) {
 | |
|     // Look in the folding set for an existing type.
 | |
|     llvm::FoldingSetNodeID ID;
 | |
|     DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);
 | |
| 
 | |
|     void *InsertPos = nullptr;
 | |
|     DependentUnaryTransformType *Canon
 | |
|       = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
| 
 | |
|     if (!Canon) {
 | |
|       // Build a new, canonical __underlying_type(type) type.
 | |
|       Canon = new (*this, TypeAlignment)
 | |
|              DependentUnaryTransformType(*this, getCanonicalType(BaseType),
 | |
|                                          Kind);
 | |
|       DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
 | |
|     }
 | |
|     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
 | |
|                                                         QualType(), Kind,
 | |
|                                                         QualType(Canon, 0));
 | |
|   } else {
 | |
|     QualType CanonType = getCanonicalType(UnderlyingType);
 | |
|     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
 | |
|                                                         UnderlyingType, Kind,
 | |
|                                                         CanonType);
 | |
|   }
 | |
|   Types.push_back(ut);
 | |
|   return QualType(ut, 0);
 | |
| }
 | |
| 
 | |
| /// getAutoType - Return the uniqued reference to the 'auto' type which has been
 | |
| /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
 | |
| /// canonical deduced-but-dependent 'auto' type.
 | |
| QualType
 | |
| ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
 | |
|                         bool IsDependent, bool IsPack,
 | |
|                         ConceptDecl *TypeConstraintConcept,
 | |
|                         ArrayRef<TemplateArgument> TypeConstraintArgs) const {
 | |
|   assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack");
 | |
|   if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto &&
 | |
|       !TypeConstraintConcept && !IsDependent)
 | |
|     return getAutoDeductType();
 | |
| 
 | |
|   // Look in the folding set for an existing type.
 | |
|   void *InsertPos = nullptr;
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent,
 | |
|                     TypeConstraintConcept, TypeConstraintArgs);
 | |
|   if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(AT, 0);
 | |
| 
 | |
|   void *Mem = Allocate(sizeof(AutoType) +
 | |
|                        sizeof(TemplateArgument) * TypeConstraintArgs.size(),
 | |
|                        TypeAlignment);
 | |
|   auto *AT = new (Mem) AutoType(DeducedType, Keyword, IsDependent, IsPack,
 | |
|                                 TypeConstraintConcept, TypeConstraintArgs);
 | |
|   Types.push_back(AT);
 | |
|   if (InsertPos)
 | |
|     AutoTypes.InsertNode(AT, InsertPos);
 | |
|   return QualType(AT, 0);
 | |
| }
 | |
| 
 | |
| /// Return the uniqued reference to the deduced template specialization type
 | |
| /// which has been deduced to the given type, or to the canonical undeduced
 | |
| /// such type, or the canonical deduced-but-dependent such type.
 | |
| QualType ASTContext::getDeducedTemplateSpecializationType(
 | |
|     TemplateName Template, QualType DeducedType, bool IsDependent) const {
 | |
|   // Look in the folding set for an existing type.
 | |
|   void *InsertPos = nullptr;
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
 | |
|                                              IsDependent);
 | |
|   if (DeducedTemplateSpecializationType *DTST =
 | |
|           DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(DTST, 0);
 | |
| 
 | |
|   auto *DTST = new (*this, TypeAlignment)
 | |
|       DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
 | |
|   Types.push_back(DTST);
 | |
|   if (InsertPos)
 | |
|     DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
 | |
|   return QualType(DTST, 0);
 | |
| }
 | |
| 
 | |
| /// getAtomicType - Return the uniqued reference to the atomic type for
 | |
| /// the given value type.
 | |
| QualType ASTContext::getAtomicType(QualType T) const {
 | |
|   // Unique pointers, to guarantee there is only one pointer of a particular
 | |
|   // structure.
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   AtomicType::Profile(ID, T);
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
 | |
|     return QualType(AT, 0);
 | |
| 
 | |
|   // If the atomic value type isn't canonical, this won't be a canonical type
 | |
|   // either, so fill in the canonical type field.
 | |
|   QualType Canonical;
 | |
|   if (!T.isCanonical()) {
 | |
|     Canonical = getAtomicType(getCanonicalType(T));
 | |
| 
 | |
|     // Get the new insert position for the node we care about.
 | |
|     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
 | |
|   }
 | |
|   auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
 | |
|   Types.push_back(New);
 | |
|   AtomicTypes.InsertNode(New, InsertPos);
 | |
|   return QualType(New, 0);
 | |
| }
 | |
| 
 | |
| /// getAutoDeductType - Get type pattern for deducing against 'auto'.
 | |
| QualType ASTContext::getAutoDeductType() const {
 | |
|   if (AutoDeductTy.isNull())
 | |
|     AutoDeductTy = QualType(
 | |
|       new (*this, TypeAlignment) AutoType(QualType(), AutoTypeKeyword::Auto,
 | |
|                                           /*dependent*/false, /*pack*/false,
 | |
|                                           /*concept*/nullptr, /*args*/{}),
 | |
|       0);
 | |
|   return AutoDeductTy;
 | |
| }
 | |
| 
 | |
| /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
 | |
| QualType ASTContext::getAutoRRefDeductType() const {
 | |
|   if (AutoRRefDeductTy.isNull())
 | |
|     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
 | |
|   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
 | |
|   return AutoRRefDeductTy;
 | |
| }
 | |
| 
 | |
| /// getTagDeclType - Return the unique reference to the type for the
 | |
| /// specified TagDecl (struct/union/class/enum) decl.
 | |
| QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
 | |
|   assert(Decl);
 | |
|   // FIXME: What is the design on getTagDeclType when it requires casting
 | |
|   // away const?  mutable?
 | |
|   return getTypeDeclType(const_cast<TagDecl*>(Decl));
 | |
| }
 | |
| 
 | |
| /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
 | |
| /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
 | |
| /// needs to agree with the definition in <stddef.h>.
 | |
| CanQualType ASTContext::getSizeType() const {
 | |
|   return getFromTargetType(Target->getSizeType());
 | |
| }
 | |
| 
 | |
| /// Return the unique signed counterpart of the integer type
 | |
| /// corresponding to size_t.
 | |
| CanQualType ASTContext::getSignedSizeType() const {
 | |
|   return getFromTargetType(Target->getSignedSizeType());
 | |
| }
 | |
| 
 | |
| /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
 | |
| CanQualType ASTContext::getIntMaxType() const {
 | |
|   return getFromTargetType(Target->getIntMaxType());
 | |
| }
 | |
| 
 | |
| /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
 | |
| CanQualType ASTContext::getUIntMaxType() const {
 | |
|   return getFromTargetType(Target->getUIntMaxType());
 | |
| }
 | |
| 
 | |
| /// getSignedWCharType - Return the type of "signed wchar_t".
 | |
| /// Used when in C++, as a GCC extension.
 | |
| QualType ASTContext::getSignedWCharType() const {
 | |
|   // FIXME: derive from "Target" ?
 | |
|   return WCharTy;
 | |
| }
 | |
| 
 | |
| /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
 | |
| /// Used when in C++, as a GCC extension.
 | |
| QualType ASTContext::getUnsignedWCharType() const {
 | |
|   // FIXME: derive from "Target" ?
 | |
|   return UnsignedIntTy;
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getIntPtrType() const {
 | |
|   return getFromTargetType(Target->getIntPtrType());
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getUIntPtrType() const {
 | |
|   return getCorrespondingUnsignedType(getIntPtrType());
 | |
| }
 | |
| 
 | |
| /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
 | |
| /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
 | |
| QualType ASTContext::getPointerDiffType() const {
 | |
|   return getFromTargetType(Target->getPtrDiffType(0));
 | |
| }
 | |
| 
 | |
| /// Return the unique unsigned counterpart of "ptrdiff_t"
 | |
| /// integer type. The standard (C11 7.21.6.1p7) refers to this type
 | |
| /// in the definition of %tu format specifier.
 | |
| QualType ASTContext::getUnsignedPointerDiffType() const {
 | |
|   return getFromTargetType(Target->getUnsignedPtrDiffType(0));
 | |
| }
 | |
| 
 | |
| /// Return the unique type for "pid_t" defined in
 | |
| /// <sys/types.h>. We need this to compute the correct type for vfork().
 | |
| QualType ASTContext::getProcessIDType() const {
 | |
|   return getFromTargetType(Target->getProcessIDType());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              Type Operators
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| CanQualType ASTContext::getCanonicalParamType(QualType T) const {
 | |
|   // Push qualifiers into arrays, and then discard any remaining
 | |
|   // qualifiers.
 | |
|   T = getCanonicalType(T);
 | |
|   T = getVariableArrayDecayedType(T);
 | |
|   const Type *Ty = T.getTypePtr();
 | |
|   QualType Result;
 | |
|   if (isa<ArrayType>(Ty)) {
 | |
|     Result = getArrayDecayedType(QualType(Ty,0));
 | |
|   } else if (isa<FunctionType>(Ty)) {
 | |
|     Result = getPointerType(QualType(Ty, 0));
 | |
|   } else {
 | |
|     Result = QualType(Ty, 0);
 | |
|   }
 | |
| 
 | |
|   return CanQualType::CreateUnsafe(Result);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getUnqualifiedArrayType(QualType type,
 | |
|                                              Qualifiers &quals) {
 | |
|   SplitQualType splitType = type.getSplitUnqualifiedType();
 | |
| 
 | |
|   // FIXME: getSplitUnqualifiedType() actually walks all the way to
 | |
|   // the unqualified desugared type and then drops it on the floor.
 | |
|   // We then have to strip that sugar back off with
 | |
|   // getUnqualifiedDesugaredType(), which is silly.
 | |
|   const auto *AT =
 | |
|       dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
 | |
| 
 | |
|   // If we don't have an array, just use the results in splitType.
 | |
|   if (!AT) {
 | |
|     quals = splitType.Quals;
 | |
|     return QualType(splitType.Ty, 0);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, recurse on the array's element type.
 | |
|   QualType elementType = AT->getElementType();
 | |
|   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
 | |
| 
 | |
|   // If that didn't change the element type, AT has no qualifiers, so we
 | |
|   // can just use the results in splitType.
 | |
|   if (elementType == unqualElementType) {
 | |
|     assert(quals.empty()); // from the recursive call
 | |
|     quals = splitType.Quals;
 | |
|     return QualType(splitType.Ty, 0);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, add in the qualifiers from the outermost type, then
 | |
|   // build the type back up.
 | |
|   quals.addConsistentQualifiers(splitType.Quals);
 | |
| 
 | |
|   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
 | |
|     return getConstantArrayType(unqualElementType, CAT->getSize(),
 | |
|                                 CAT->getSizeExpr(), CAT->getSizeModifier(), 0);
 | |
|   }
 | |
| 
 | |
|   if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
 | |
|     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
 | |
|   }
 | |
| 
 | |
|   if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
 | |
|     return getVariableArrayType(unqualElementType,
 | |
|                                 VAT->getSizeExpr(),
 | |
|                                 VAT->getSizeModifier(),
 | |
|                                 VAT->getIndexTypeCVRQualifiers(),
 | |
|                                 VAT->getBracketsRange());
 | |
|   }
 | |
| 
 | |
|   const auto *DSAT = cast<DependentSizedArrayType>(AT);
 | |
|   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
 | |
|                                     DSAT->getSizeModifier(), 0,
 | |
|                                     SourceRange());
 | |
| }
 | |
| 
 | |
| /// Attempt to unwrap two types that may both be array types with the same bound
 | |
| /// (or both be array types of unknown bound) for the purpose of comparing the
 | |
| /// cv-decomposition of two types per C++ [conv.qual].
 | |
| bool ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2) {
 | |
|   bool UnwrappedAny = false;
 | |
|   while (true) {
 | |
|     auto *AT1 = getAsArrayType(T1);
 | |
|     if (!AT1) return UnwrappedAny;
 | |
| 
 | |
|     auto *AT2 = getAsArrayType(T2);
 | |
|     if (!AT2) return UnwrappedAny;
 | |
| 
 | |
|     // If we don't have two array types with the same constant bound nor two
 | |
|     // incomplete array types, we've unwrapped everything we can.
 | |
|     if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
 | |
|       auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
 | |
|       if (!CAT2 || CAT1->getSize() != CAT2->getSize())
 | |
|         return UnwrappedAny;
 | |
|     } else if (!isa<IncompleteArrayType>(AT1) ||
 | |
|                !isa<IncompleteArrayType>(AT2)) {
 | |
|       return UnwrappedAny;
 | |
|     }
 | |
| 
 | |
|     T1 = AT1->getElementType();
 | |
|     T2 = AT2->getElementType();
 | |
|     UnwrappedAny = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
 | |
| ///
 | |
| /// If T1 and T2 are both pointer types of the same kind, or both array types
 | |
| /// with the same bound, unwraps layers from T1 and T2 until a pointer type is
 | |
| /// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
 | |
| ///
 | |
| /// This function will typically be called in a loop that successively
 | |
| /// "unwraps" pointer and pointer-to-member types to compare them at each
 | |
| /// level.
 | |
| ///
 | |
| /// \return \c true if a pointer type was unwrapped, \c false if we reached a
 | |
| /// pair of types that can't be unwrapped further.
 | |
| bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2) {
 | |
|   UnwrapSimilarArrayTypes(T1, T2);
 | |
| 
 | |
|   const auto *T1PtrType = T1->getAs<PointerType>();
 | |
|   const auto *T2PtrType = T2->getAs<PointerType>();
 | |
|   if (T1PtrType && T2PtrType) {
 | |
|     T1 = T1PtrType->getPointeeType();
 | |
|     T2 = T2PtrType->getPointeeType();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   const auto *T1MPType = T1->getAs<MemberPointerType>();
 | |
|   const auto *T2MPType = T2->getAs<MemberPointerType>();
 | |
|   if (T1MPType && T2MPType &&
 | |
|       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
 | |
|                              QualType(T2MPType->getClass(), 0))) {
 | |
|     T1 = T1MPType->getPointeeType();
 | |
|     T2 = T2MPType->getPointeeType();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (getLangOpts().ObjC) {
 | |
|     const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
 | |
|     const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
 | |
|     if (T1OPType && T2OPType) {
 | |
|       T1 = T1OPType->getPointeeType();
 | |
|       T2 = T2OPType->getPointeeType();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: Block pointers, too?
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ASTContext::hasSimilarType(QualType T1, QualType T2) {
 | |
|   while (true) {
 | |
|     Qualifiers Quals;
 | |
|     T1 = getUnqualifiedArrayType(T1, Quals);
 | |
|     T2 = getUnqualifiedArrayType(T2, Quals);
 | |
|     if (hasSameType(T1, T2))
 | |
|       return true;
 | |
|     if (!UnwrapSimilarTypes(T1, T2))
 | |
|       return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) {
 | |
|   while (true) {
 | |
|     Qualifiers Quals1, Quals2;
 | |
|     T1 = getUnqualifiedArrayType(T1, Quals1);
 | |
|     T2 = getUnqualifiedArrayType(T2, Quals2);
 | |
| 
 | |
|     Quals1.removeCVRQualifiers();
 | |
|     Quals2.removeCVRQualifiers();
 | |
|     if (Quals1 != Quals2)
 | |
|       return false;
 | |
| 
 | |
|     if (hasSameType(T1, T2))
 | |
|       return true;
 | |
| 
 | |
|     if (!UnwrapSimilarTypes(T1, T2))
 | |
|       return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| DeclarationNameInfo
 | |
| ASTContext::getNameForTemplate(TemplateName Name,
 | |
|                                SourceLocation NameLoc) const {
 | |
|   switch (Name.getKind()) {
 | |
|   case TemplateName::QualifiedTemplate:
 | |
|   case TemplateName::Template:
 | |
|     // DNInfo work in progress: CHECKME: what about DNLoc?
 | |
|     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
 | |
|                                NameLoc);
 | |
| 
 | |
|   case TemplateName::OverloadedTemplate: {
 | |
|     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
 | |
|     // DNInfo work in progress: CHECKME: what about DNLoc?
 | |
|     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
 | |
|   }
 | |
| 
 | |
|   case TemplateName::AssumedTemplate: {
 | |
|     AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName();
 | |
|     return DeclarationNameInfo(Storage->getDeclName(), NameLoc);
 | |
|   }
 | |
| 
 | |
|   case TemplateName::DependentTemplate: {
 | |
|     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
 | |
|     DeclarationName DName;
 | |
|     if (DTN->isIdentifier()) {
 | |
|       DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
 | |
|       return DeclarationNameInfo(DName, NameLoc);
 | |
|     } else {
 | |
|       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
 | |
|       // DNInfo work in progress: FIXME: source locations?
 | |
|       DeclarationNameLoc DNLoc;
 | |
|       DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
 | |
|       DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
 | |
|       return DeclarationNameInfo(DName, NameLoc, DNLoc);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   case TemplateName::SubstTemplateTemplateParm: {
 | |
|     SubstTemplateTemplateParmStorage *subst
 | |
|       = Name.getAsSubstTemplateTemplateParm();
 | |
|     return DeclarationNameInfo(subst->getParameter()->getDeclName(),
 | |
|                                NameLoc);
 | |
|   }
 | |
| 
 | |
|   case TemplateName::SubstTemplateTemplateParmPack: {
 | |
|     SubstTemplateTemplateParmPackStorage *subst
 | |
|       = Name.getAsSubstTemplateTemplateParmPack();
 | |
|     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
 | |
|                                NameLoc);
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("bad template name kind!");
 | |
| }
 | |
| 
 | |
| TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
 | |
|   switch (Name.getKind()) {
 | |
|   case TemplateName::QualifiedTemplate:
 | |
|   case TemplateName::Template: {
 | |
|     TemplateDecl *Template = Name.getAsTemplateDecl();
 | |
|     if (auto *TTP  = dyn_cast<TemplateTemplateParmDecl>(Template))
 | |
|       Template = getCanonicalTemplateTemplateParmDecl(TTP);
 | |
| 
 | |
|     // The canonical template name is the canonical template declaration.
 | |
|     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
 | |
|   }
 | |
| 
 | |
|   case TemplateName::OverloadedTemplate:
 | |
|   case TemplateName::AssumedTemplate:
 | |
|     llvm_unreachable("cannot canonicalize unresolved template");
 | |
| 
 | |
|   case TemplateName::DependentTemplate: {
 | |
|     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
 | |
|     assert(DTN && "Non-dependent template names must refer to template decls.");
 | |
|     return DTN->CanonicalTemplateName;
 | |
|   }
 | |
| 
 | |
|   case TemplateName::SubstTemplateTemplateParm: {
 | |
|     SubstTemplateTemplateParmStorage *subst
 | |
|       = Name.getAsSubstTemplateTemplateParm();
 | |
|     return getCanonicalTemplateName(subst->getReplacement());
 | |
|   }
 | |
| 
 | |
|   case TemplateName::SubstTemplateTemplateParmPack: {
 | |
|     SubstTemplateTemplateParmPackStorage *subst
 | |
|                                   = Name.getAsSubstTemplateTemplateParmPack();
 | |
|     TemplateTemplateParmDecl *canonParameter
 | |
|       = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
 | |
|     TemplateArgument canonArgPack
 | |
|       = getCanonicalTemplateArgument(subst->getArgumentPack());
 | |
|     return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("bad template name!");
 | |
| }
 | |
| 
 | |
| bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
 | |
|   X = getCanonicalTemplateName(X);
 | |
|   Y = getCanonicalTemplateName(Y);
 | |
|   return X.getAsVoidPointer() == Y.getAsVoidPointer();
 | |
| }
 | |
| 
 | |
| TemplateArgument
 | |
| ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
 | |
|   switch (Arg.getKind()) {
 | |
|     case TemplateArgument::Null:
 | |
|       return Arg;
 | |
| 
 | |
|     case TemplateArgument::Expression:
 | |
|       return Arg;
 | |
| 
 | |
|     case TemplateArgument::Declaration: {
 | |
|       auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
 | |
|       return TemplateArgument(D, Arg.getParamTypeForDecl());
 | |
|     }
 | |
| 
 | |
|     case TemplateArgument::NullPtr:
 | |
|       return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
 | |
|                               /*isNullPtr*/true);
 | |
| 
 | |
|     case TemplateArgument::Template:
 | |
|       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
 | |
| 
 | |
|     case TemplateArgument::TemplateExpansion:
 | |
|       return TemplateArgument(getCanonicalTemplateName(
 | |
|                                          Arg.getAsTemplateOrTemplatePattern()),
 | |
|                               Arg.getNumTemplateExpansions());
 | |
| 
 | |
|     case TemplateArgument::Integral:
 | |
|       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
 | |
| 
 | |
|     case TemplateArgument::Type:
 | |
|       return TemplateArgument(getCanonicalType(Arg.getAsType()));
 | |
| 
 | |
|     case TemplateArgument::Pack: {
 | |
|       if (Arg.pack_size() == 0)
 | |
|         return Arg;
 | |
| 
 | |
|       auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()];
 | |
|       unsigned Idx = 0;
 | |
|       for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
 | |
|                                         AEnd = Arg.pack_end();
 | |
|            A != AEnd; (void)++A, ++Idx)
 | |
|         CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
 | |
| 
 | |
|       return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Silence GCC warning
 | |
|   llvm_unreachable("Unhandled template argument kind");
 | |
| }
 | |
| 
 | |
| NestedNameSpecifier *
 | |
| ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
 | |
|   if (!NNS)
 | |
|     return nullptr;
 | |
| 
 | |
|   switch (NNS->getKind()) {
 | |
|   case NestedNameSpecifier::Identifier:
 | |
|     // Canonicalize the prefix but keep the identifier the same.
 | |
|     return NestedNameSpecifier::Create(*this,
 | |
|                          getCanonicalNestedNameSpecifier(NNS->getPrefix()),
 | |
|                                        NNS->getAsIdentifier());
 | |
| 
 | |
|   case NestedNameSpecifier::Namespace:
 | |
|     // A namespace is canonical; build a nested-name-specifier with
 | |
|     // this namespace and no prefix.
 | |
|     return NestedNameSpecifier::Create(*this, nullptr,
 | |
|                                  NNS->getAsNamespace()->getOriginalNamespace());
 | |
| 
 | |
|   case NestedNameSpecifier::NamespaceAlias:
 | |
|     // A namespace is canonical; build a nested-name-specifier with
 | |
|     // this namespace and no prefix.
 | |
|     return NestedNameSpecifier::Create(*this, nullptr,
 | |
|                                     NNS->getAsNamespaceAlias()->getNamespace()
 | |
|                                                       ->getOriginalNamespace());
 | |
| 
 | |
|   case NestedNameSpecifier::TypeSpec:
 | |
|   case NestedNameSpecifier::TypeSpecWithTemplate: {
 | |
|     QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
 | |
| 
 | |
|     // If we have some kind of dependent-named type (e.g., "typename T::type"),
 | |
|     // break it apart into its prefix and identifier, then reconsititute those
 | |
|     // as the canonical nested-name-specifier. This is required to canonicalize
 | |
|     // a dependent nested-name-specifier involving typedefs of dependent-name
 | |
|     // types, e.g.,
 | |
|     //   typedef typename T::type T1;
 | |
|     //   typedef typename T1::type T2;
 | |
|     if (const auto *DNT = T->getAs<DependentNameType>())
 | |
|       return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
 | |
|                            const_cast<IdentifierInfo *>(DNT->getIdentifier()));
 | |
| 
 | |
|     // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
 | |
|     // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
 | |
|     // first place?
 | |
|     return NestedNameSpecifier::Create(*this, nullptr, false,
 | |
|                                        const_cast<Type *>(T.getTypePtr()));
 | |
|   }
 | |
| 
 | |
|   case NestedNameSpecifier::Global:
 | |
|   case NestedNameSpecifier::Super:
 | |
|     // The global specifier and __super specifer are canonical and unique.
 | |
|     return NNS;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
 | |
| }
 | |
| 
 | |
| const ArrayType *ASTContext::getAsArrayType(QualType T) const {
 | |
|   // Handle the non-qualified case efficiently.
 | |
|   if (!T.hasLocalQualifiers()) {
 | |
|     // Handle the common positive case fast.
 | |
|     if (const auto *AT = dyn_cast<ArrayType>(T))
 | |
|       return AT;
 | |
|   }
 | |
| 
 | |
|   // Handle the common negative case fast.
 | |
|   if (!isa<ArrayType>(T.getCanonicalType()))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Apply any qualifiers from the array type to the element type.  This
 | |
|   // implements C99 6.7.3p8: "If the specification of an array type includes
 | |
|   // any type qualifiers, the element type is so qualified, not the array type."
 | |
| 
 | |
|   // If we get here, we either have type qualifiers on the type, or we have
 | |
|   // sugar such as a typedef in the way.  If we have type qualifiers on the type
 | |
|   // we must propagate them down into the element type.
 | |
| 
 | |
|   SplitQualType split = T.getSplitDesugaredType();
 | |
|   Qualifiers qs = split.Quals;
 | |
| 
 | |
|   // If we have a simple case, just return now.
 | |
|   const auto *ATy = dyn_cast<ArrayType>(split.Ty);
 | |
|   if (!ATy || qs.empty())
 | |
|     return ATy;
 | |
| 
 | |
|   // Otherwise, we have an array and we have qualifiers on it.  Push the
 | |
|   // qualifiers into the array element type and return a new array type.
 | |
|   QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
 | |
| 
 | |
|   if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
 | |
|     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
 | |
|                                                 CAT->getSizeExpr(),
 | |
|                                                 CAT->getSizeModifier(),
 | |
|                                            CAT->getIndexTypeCVRQualifiers()));
 | |
|   if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
 | |
|     return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
 | |
|                                                   IAT->getSizeModifier(),
 | |
|                                            IAT->getIndexTypeCVRQualifiers()));
 | |
| 
 | |
|   if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
 | |
|     return cast<ArrayType>(
 | |
|                      getDependentSizedArrayType(NewEltTy,
 | |
|                                                 DSAT->getSizeExpr(),
 | |
|                                                 DSAT->getSizeModifier(),
 | |
|                                               DSAT->getIndexTypeCVRQualifiers(),
 | |
|                                                 DSAT->getBracketsRange()));
 | |
| 
 | |
|   const auto *VAT = cast<VariableArrayType>(ATy);
 | |
|   return cast<ArrayType>(getVariableArrayType(NewEltTy,
 | |
|                                               VAT->getSizeExpr(),
 | |
|                                               VAT->getSizeModifier(),
 | |
|                                               VAT->getIndexTypeCVRQualifiers(),
 | |
|                                               VAT->getBracketsRange()));
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getAdjustedParameterType(QualType T) const {
 | |
|   if (T->isArrayType() || T->isFunctionType())
 | |
|     return getDecayedType(T);
 | |
|   return T;
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getSignatureParameterType(QualType T) const {
 | |
|   T = getVariableArrayDecayedType(T);
 | |
|   T = getAdjustedParameterType(T);
 | |
|   return T.getUnqualifiedType();
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getExceptionObjectType(QualType T) const {
 | |
|   // C++ [except.throw]p3:
 | |
|   //   A throw-expression initializes a temporary object, called the exception
 | |
|   //   object, the type of which is determined by removing any top-level
 | |
|   //   cv-qualifiers from the static type of the operand of throw and adjusting
 | |
|   //   the type from "array of T" or "function returning T" to "pointer to T"
 | |
|   //   or "pointer to function returning T", [...]
 | |
|   T = getVariableArrayDecayedType(T);
 | |
|   if (T->isArrayType() || T->isFunctionType())
 | |
|     T = getDecayedType(T);
 | |
|   return T.getUnqualifiedType();
 | |
| }
 | |
| 
 | |
| /// getArrayDecayedType - Return the properly qualified result of decaying the
 | |
| /// specified array type to a pointer.  This operation is non-trivial when
 | |
| /// handling typedefs etc.  The canonical type of "T" must be an array type,
 | |
| /// this returns a pointer to a properly qualified element of the array.
 | |
| ///
 | |
| /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
 | |
| QualType ASTContext::getArrayDecayedType(QualType Ty) const {
 | |
|   // Get the element type with 'getAsArrayType' so that we don't lose any
 | |
|   // typedefs in the element type of the array.  This also handles propagation
 | |
|   // of type qualifiers from the array type into the element type if present
 | |
|   // (C99 6.7.3p8).
 | |
|   const ArrayType *PrettyArrayType = getAsArrayType(Ty);
 | |
|   assert(PrettyArrayType && "Not an array type!");
 | |
| 
 | |
|   QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
 | |
| 
 | |
|   // int x[restrict 4] ->  int *restrict
 | |
|   QualType Result = getQualifiedType(PtrTy,
 | |
|                                      PrettyArrayType->getIndexTypeQualifiers());
 | |
| 
 | |
|   // int x[_Nullable] -> int * _Nullable
 | |
|   if (auto Nullability = Ty->getNullability(*this)) {
 | |
|     Result = const_cast<ASTContext *>(this)->getAttributedType(
 | |
|         AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getBaseElementType(const ArrayType *array) const {
 | |
|   return getBaseElementType(array->getElementType());
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getBaseElementType(QualType type) const {
 | |
|   Qualifiers qs;
 | |
|   while (true) {
 | |
|     SplitQualType split = type.getSplitDesugaredType();
 | |
|     const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
 | |
|     if (!array) break;
 | |
| 
 | |
|     type = array->getElementType();
 | |
|     qs.addConsistentQualifiers(split.Quals);
 | |
|   }
 | |
| 
 | |
|   return getQualifiedType(type, qs);
 | |
| }
 | |
| 
 | |
| /// getConstantArrayElementCount - Returns number of constant array elements.
 | |
| uint64_t
 | |
| ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
 | |
|   uint64_t ElementCount = 1;
 | |
|   do {
 | |
|     ElementCount *= CA->getSize().getZExtValue();
 | |
|     CA = dyn_cast_or_null<ConstantArrayType>(
 | |
|       CA->getElementType()->getAsArrayTypeUnsafe());
 | |
|   } while (CA);
 | |
|   return ElementCount;
 | |
| }
 | |
| 
 | |
| /// getFloatingRank - Return a relative rank for floating point types.
 | |
| /// This routine will assert if passed a built-in type that isn't a float.
 | |
| static FloatingRank getFloatingRank(QualType T) {
 | |
|   if (const auto *CT = T->getAs<ComplexType>())
 | |
|     return getFloatingRank(CT->getElementType());
 | |
| 
 | |
|   switch (T->castAs<BuiltinType>()->getKind()) {
 | |
|   default: llvm_unreachable("getFloatingRank(): not a floating type");
 | |
|   case BuiltinType::Float16:    return Float16Rank;
 | |
|   case BuiltinType::Half:       return HalfRank;
 | |
|   case BuiltinType::Float:      return FloatRank;
 | |
|   case BuiltinType::Double:     return DoubleRank;
 | |
|   case BuiltinType::LongDouble: return LongDoubleRank;
 | |
|   case BuiltinType::Float128:   return Float128Rank;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
 | |
| /// point or a complex type (based on typeDomain/typeSize).
 | |
| /// 'typeDomain' is a real floating point or complex type.
 | |
| /// 'typeSize' is a real floating point or complex type.
 | |
| QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
 | |
|                                                        QualType Domain) const {
 | |
|   FloatingRank EltRank = getFloatingRank(Size);
 | |
|   if (Domain->isComplexType()) {
 | |
|     switch (EltRank) {
 | |
|     case Float16Rank:
 | |
|     case HalfRank: llvm_unreachable("Complex half is not supported");
 | |
|     case FloatRank:      return FloatComplexTy;
 | |
|     case DoubleRank:     return DoubleComplexTy;
 | |
|     case LongDoubleRank: return LongDoubleComplexTy;
 | |
|     case Float128Rank:   return Float128ComplexTy;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(Domain->isRealFloatingType() && "Unknown domain!");
 | |
|   switch (EltRank) {
 | |
|   case Float16Rank:    return HalfTy;
 | |
|   case HalfRank:       return HalfTy;
 | |
|   case FloatRank:      return FloatTy;
 | |
|   case DoubleRank:     return DoubleTy;
 | |
|   case LongDoubleRank: return LongDoubleTy;
 | |
|   case Float128Rank:   return Float128Ty;
 | |
|   }
 | |
|   llvm_unreachable("getFloatingRank(): illegal value for rank");
 | |
| }
 | |
| 
 | |
| /// getFloatingTypeOrder - Compare the rank of the two specified floating
 | |
| /// point types, ignoring the domain of the type (i.e. 'double' ==
 | |
| /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
 | |
| /// LHS < RHS, return -1.
 | |
| int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
 | |
|   FloatingRank LHSR = getFloatingRank(LHS);
 | |
|   FloatingRank RHSR = getFloatingRank(RHS);
 | |
| 
 | |
|   if (LHSR == RHSR)
 | |
|     return 0;
 | |
|   if (LHSR > RHSR)
 | |
|     return 1;
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const {
 | |
|   if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS))
 | |
|     return 0;
 | |
|   return getFloatingTypeOrder(LHS, RHS);
 | |
| }
 | |
| 
 | |
| /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
 | |
| /// routine will assert if passed a built-in type that isn't an integer or enum,
 | |
| /// or if it is not canonicalized.
 | |
| unsigned ASTContext::getIntegerRank(const Type *T) const {
 | |
|   assert(T->isCanonicalUnqualified() && "T should be canonicalized");
 | |
| 
 | |
|   switch (cast<BuiltinType>(T)->getKind()) {
 | |
|   default: llvm_unreachable("getIntegerRank(): not a built-in integer");
 | |
|   case BuiltinType::Bool:
 | |
|     return 1 + (getIntWidth(BoolTy) << 3);
 | |
|   case BuiltinType::Char_S:
 | |
|   case BuiltinType::Char_U:
 | |
|   case BuiltinType::SChar:
 | |
|   case BuiltinType::UChar:
 | |
|     return 2 + (getIntWidth(CharTy) << 3);
 | |
|   case BuiltinType::Short:
 | |
|   case BuiltinType::UShort:
 | |
|     return 3 + (getIntWidth(ShortTy) << 3);
 | |
|   case BuiltinType::Int:
 | |
|   case BuiltinType::UInt:
 | |
|     return 4 + (getIntWidth(IntTy) << 3);
 | |
|   case BuiltinType::Long:
 | |
|   case BuiltinType::ULong:
 | |
|     return 5 + (getIntWidth(LongTy) << 3);
 | |
|   case BuiltinType::LongLong:
 | |
|   case BuiltinType::ULongLong:
 | |
|     return 6 + (getIntWidth(LongLongTy) << 3);
 | |
|   case BuiltinType::Int128:
 | |
|   case BuiltinType::UInt128:
 | |
|     return 7 + (getIntWidth(Int128Ty) << 3);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Whether this is a promotable bitfield reference according
 | |
| /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
 | |
| ///
 | |
| /// \returns the type this bit-field will promote to, or NULL if no
 | |
| /// promotion occurs.
 | |
| QualType ASTContext::isPromotableBitField(Expr *E) const {
 | |
|   if (E->isTypeDependent() || E->isValueDependent())
 | |
|     return {};
 | |
| 
 | |
|   // C++ [conv.prom]p5:
 | |
|   //    If the bit-field has an enumerated type, it is treated as any other
 | |
|   //    value of that type for promotion purposes.
 | |
|   if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType())
 | |
|     return {};
 | |
| 
 | |
|   // FIXME: We should not do this unless E->refersToBitField() is true. This
 | |
|   // matters in C where getSourceBitField() will find bit-fields for various
 | |
|   // cases where the source expression is not a bit-field designator.
 | |
| 
 | |
|   FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
 | |
|   if (!Field)
 | |
|     return {};
 | |
| 
 | |
|   QualType FT = Field->getType();
 | |
| 
 | |
|   uint64_t BitWidth = Field->getBitWidthValue(*this);
 | |
|   uint64_t IntSize = getTypeSize(IntTy);
 | |
|   // C++ [conv.prom]p5:
 | |
|   //   A prvalue for an integral bit-field can be converted to a prvalue of type
 | |
|   //   int if int can represent all the values of the bit-field; otherwise, it
 | |
|   //   can be converted to unsigned int if unsigned int can represent all the
 | |
|   //   values of the bit-field. If the bit-field is larger yet, no integral
 | |
|   //   promotion applies to it.
 | |
|   // C11 6.3.1.1/2:
 | |
|   //   [For a bit-field of type _Bool, int, signed int, or unsigned int:]
 | |
|   //   If an int can represent all values of the original type (as restricted by
 | |
|   //   the width, for a bit-field), the value is converted to an int; otherwise,
 | |
|   //   it is converted to an unsigned int.
 | |
|   //
 | |
|   // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
 | |
|   //        We perform that promotion here to match GCC and C++.
 | |
|   // FIXME: C does not permit promotion of an enum bit-field whose rank is
 | |
|   //        greater than that of 'int'. We perform that promotion to match GCC.
 | |
|   if (BitWidth < IntSize)
 | |
|     return IntTy;
 | |
| 
 | |
|   if (BitWidth == IntSize)
 | |
|     return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
 | |
| 
 | |
|   // Bit-fields wider than int are not subject to promotions, and therefore act
 | |
|   // like the base type. GCC has some weird bugs in this area that we
 | |
|   // deliberately do not follow (GCC follows a pre-standard resolution to
 | |
|   // C's DR315 which treats bit-width as being part of the type, and this leaks
 | |
|   // into their semantics in some cases).
 | |
|   return {};
 | |
| }
 | |
| 
 | |
| /// getPromotedIntegerType - Returns the type that Promotable will
 | |
| /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
 | |
| /// integer type.
 | |
| QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
 | |
|   assert(!Promotable.isNull());
 | |
|   assert(Promotable->isPromotableIntegerType());
 | |
|   if (const auto *ET = Promotable->getAs<EnumType>())
 | |
|     return ET->getDecl()->getPromotionType();
 | |
| 
 | |
|   if (const auto *BT = Promotable->getAs<BuiltinType>()) {
 | |
|     // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
 | |
|     // (3.9.1) can be converted to a prvalue of the first of the following
 | |
|     // types that can represent all the values of its underlying type:
 | |
|     // int, unsigned int, long int, unsigned long int, long long int, or
 | |
|     // unsigned long long int [...]
 | |
|     // FIXME: Is there some better way to compute this?
 | |
|     if (BT->getKind() == BuiltinType::WChar_S ||
 | |
|         BT->getKind() == BuiltinType::WChar_U ||
 | |
|         BT->getKind() == BuiltinType::Char8 ||
 | |
|         BT->getKind() == BuiltinType::Char16 ||
 | |
|         BT->getKind() == BuiltinType::Char32) {
 | |
|       bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
 | |
|       uint64_t FromSize = getTypeSize(BT);
 | |
|       QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
 | |
|                                   LongLongTy, UnsignedLongLongTy };
 | |
|       for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
 | |
|         uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
 | |
|         if (FromSize < ToSize ||
 | |
|             (FromSize == ToSize &&
 | |
|              FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
 | |
|           return PromoteTypes[Idx];
 | |
|       }
 | |
|       llvm_unreachable("char type should fit into long long");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // At this point, we should have a signed or unsigned integer type.
 | |
|   if (Promotable->isSignedIntegerType())
 | |
|     return IntTy;
 | |
|   uint64_t PromotableSize = getIntWidth(Promotable);
 | |
|   uint64_t IntSize = getIntWidth(IntTy);
 | |
|   assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
 | |
|   return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
 | |
| }
 | |
| 
 | |
| /// Recurses in pointer/array types until it finds an objc retainable
 | |
| /// type and returns its ownership.
 | |
| Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
 | |
|   while (!T.isNull()) {
 | |
|     if (T.getObjCLifetime() != Qualifiers::OCL_None)
 | |
|       return T.getObjCLifetime();
 | |
|     if (T->isArrayType())
 | |
|       T = getBaseElementType(T);
 | |
|     else if (const auto *PT = T->getAs<PointerType>())
 | |
|       T = PT->getPointeeType();
 | |
|     else if (const auto *RT = T->getAs<ReferenceType>())
 | |
|       T = RT->getPointeeType();
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   return Qualifiers::OCL_None;
 | |
| }
 | |
| 
 | |
| static const Type *getIntegerTypeForEnum(const EnumType *ET) {
 | |
|   // Incomplete enum types are not treated as integer types.
 | |
|   // FIXME: In C++, enum types are never integer types.
 | |
|   if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
 | |
|     return ET->getDecl()->getIntegerType().getTypePtr();
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// getIntegerTypeOrder - Returns the highest ranked integer type:
 | |
| /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
 | |
| /// LHS < RHS, return -1.
 | |
| int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
 | |
|   const Type *LHSC = getCanonicalType(LHS).getTypePtr();
 | |
|   const Type *RHSC = getCanonicalType(RHS).getTypePtr();
 | |
| 
 | |
|   // Unwrap enums to their underlying type.
 | |
|   if (const auto *ET = dyn_cast<EnumType>(LHSC))
 | |
|     LHSC = getIntegerTypeForEnum(ET);
 | |
|   if (const auto *ET = dyn_cast<EnumType>(RHSC))
 | |
|     RHSC = getIntegerTypeForEnum(ET);
 | |
| 
 | |
|   if (LHSC == RHSC) return 0;
 | |
| 
 | |
|   bool LHSUnsigned = LHSC->isUnsignedIntegerType();
 | |
|   bool RHSUnsigned = RHSC->isUnsignedIntegerType();
 | |
| 
 | |
|   unsigned LHSRank = getIntegerRank(LHSC);
 | |
|   unsigned RHSRank = getIntegerRank(RHSC);
 | |
| 
 | |
|   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
 | |
|     if (LHSRank == RHSRank) return 0;
 | |
|     return LHSRank > RHSRank ? 1 : -1;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
 | |
|   if (LHSUnsigned) {
 | |
|     // If the unsigned [LHS] type is larger, return it.
 | |
|     if (LHSRank >= RHSRank)
 | |
|       return 1;
 | |
| 
 | |
|     // If the signed type can represent all values of the unsigned type, it
 | |
|     // wins.  Because we are dealing with 2's complement and types that are
 | |
|     // powers of two larger than each other, this is always safe.
 | |
|     return -1;
 | |
|   }
 | |
| 
 | |
|   // If the unsigned [RHS] type is larger, return it.
 | |
|   if (RHSRank >= LHSRank)
 | |
|     return -1;
 | |
| 
 | |
|   // If the signed type can represent all values of the unsigned type, it
 | |
|   // wins.  Because we are dealing with 2's complement and types that are
 | |
|   // powers of two larger than each other, this is always safe.
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| TypedefDecl *ASTContext::getCFConstantStringDecl() const {
 | |
|   if (CFConstantStringTypeDecl)
 | |
|     return CFConstantStringTypeDecl;
 | |
| 
 | |
|   assert(!CFConstantStringTagDecl &&
 | |
|          "tag and typedef should be initialized together");
 | |
|   CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
 | |
|   CFConstantStringTagDecl->startDefinition();
 | |
| 
 | |
|   struct {
 | |
|     QualType Type;
 | |
|     const char *Name;
 | |
|   } Fields[5];
 | |
|   unsigned Count = 0;
 | |
| 
 | |
|   /// Objective-C ABI
 | |
|   ///
 | |
|   ///    typedef struct __NSConstantString_tag {
 | |
|   ///      const int *isa;
 | |
|   ///      int flags;
 | |
|   ///      const char *str;
 | |
|   ///      long length;
 | |
|   ///    } __NSConstantString;
 | |
|   ///
 | |
|   /// Swift ABI (4.1, 4.2)
 | |
|   ///
 | |
|   ///    typedef struct __NSConstantString_tag {
 | |
|   ///      uintptr_t _cfisa;
 | |
|   ///      uintptr_t _swift_rc;
 | |
|   ///      _Atomic(uint64_t) _cfinfoa;
 | |
|   ///      const char *_ptr;
 | |
|   ///      uint32_t _length;
 | |
|   ///    } __NSConstantString;
 | |
|   ///
 | |
|   /// Swift ABI (5.0)
 | |
|   ///
 | |
|   ///    typedef struct __NSConstantString_tag {
 | |
|   ///      uintptr_t _cfisa;
 | |
|   ///      uintptr_t _swift_rc;
 | |
|   ///      _Atomic(uint64_t) _cfinfoa;
 | |
|   ///      const char *_ptr;
 | |
|   ///      uintptr_t _length;
 | |
|   ///    } __NSConstantString;
 | |
| 
 | |
|   const auto CFRuntime = getLangOpts().CFRuntime;
 | |
|   if (static_cast<unsigned>(CFRuntime) <
 | |
|       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) {
 | |
|     Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" };
 | |
|     Fields[Count++] = { IntTy, "flags" };
 | |
|     Fields[Count++] = { getPointerType(CharTy.withConst()), "str" };
 | |
|     Fields[Count++] = { LongTy, "length" };
 | |
|   } else {
 | |
|     Fields[Count++] = { getUIntPtrType(), "_cfisa" };
 | |
|     Fields[Count++] = { getUIntPtrType(), "_swift_rc" };
 | |
|     Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" };
 | |
|     Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" };
 | |
|     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
 | |
|         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
 | |
|       Fields[Count++] = { IntTy, "_ptr" };
 | |
|     else
 | |
|       Fields[Count++] = { getUIntPtrType(), "_ptr" };
 | |
|   }
 | |
| 
 | |
|   // Create fields
 | |
|   for (unsigned i = 0; i < Count; ++i) {
 | |
|     FieldDecl *Field =
 | |
|         FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(),
 | |
|                           SourceLocation(), &Idents.get(Fields[i].Name),
 | |
|                           Fields[i].Type, /*TInfo=*/nullptr,
 | |
|                           /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
 | |
|     Field->setAccess(AS_public);
 | |
|     CFConstantStringTagDecl->addDecl(Field);
 | |
|   }
 | |
| 
 | |
|   CFConstantStringTagDecl->completeDefinition();
 | |
|   // This type is designed to be compatible with NSConstantString, but cannot
 | |
|   // use the same name, since NSConstantString is an interface.
 | |
|   auto tagType = getTagDeclType(CFConstantStringTagDecl);
 | |
|   CFConstantStringTypeDecl =
 | |
|       buildImplicitTypedef(tagType, "__NSConstantString");
 | |
| 
 | |
|   return CFConstantStringTypeDecl;
 | |
| }
 | |
| 
 | |
| RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
 | |
|   if (!CFConstantStringTagDecl)
 | |
|     getCFConstantStringDecl(); // Build the tag and the typedef.
 | |
|   return CFConstantStringTagDecl;
 | |
| }
 | |
| 
 | |
| // getCFConstantStringType - Return the type used for constant CFStrings.
 | |
| QualType ASTContext::getCFConstantStringType() const {
 | |
|   return getTypedefType(getCFConstantStringDecl());
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getObjCSuperType() const {
 | |
|   if (ObjCSuperType.isNull()) {
 | |
|     RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
 | |
|     TUDecl->addDecl(ObjCSuperTypeDecl);
 | |
|     ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
 | |
|   }
 | |
|   return ObjCSuperType;
 | |
| }
 | |
| 
 | |
| void ASTContext::setCFConstantStringType(QualType T) {
 | |
|   const auto *TD = T->castAs<TypedefType>();
 | |
|   CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
 | |
|   const auto *TagType =
 | |
|       CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>();
 | |
|   CFConstantStringTagDecl = TagType->getDecl();
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getBlockDescriptorType() const {
 | |
|   if (BlockDescriptorType)
 | |
|     return getTagDeclType(BlockDescriptorType);
 | |
| 
 | |
|   RecordDecl *RD;
 | |
|   // FIXME: Needs the FlagAppleBlock bit.
 | |
|   RD = buildImplicitRecord("__block_descriptor");
 | |
|   RD->startDefinition();
 | |
| 
 | |
|   QualType FieldTypes[] = {
 | |
|     UnsignedLongTy,
 | |
|     UnsignedLongTy,
 | |
|   };
 | |
| 
 | |
|   static const char *const FieldNames[] = {
 | |
|     "reserved",
 | |
|     "Size"
 | |
|   };
 | |
| 
 | |
|   for (size_t i = 0; i < 2; ++i) {
 | |
|     FieldDecl *Field = FieldDecl::Create(
 | |
|         *this, RD, SourceLocation(), SourceLocation(),
 | |
|         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
 | |
|         /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
 | |
|     Field->setAccess(AS_public);
 | |
|     RD->addDecl(Field);
 | |
|   }
 | |
| 
 | |
|   RD->completeDefinition();
 | |
| 
 | |
|   BlockDescriptorType = RD;
 | |
| 
 | |
|   return getTagDeclType(BlockDescriptorType);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getBlockDescriptorExtendedType() const {
 | |
|   if (BlockDescriptorExtendedType)
 | |
|     return getTagDeclType(BlockDescriptorExtendedType);
 | |
| 
 | |
|   RecordDecl *RD;
 | |
|   // FIXME: Needs the FlagAppleBlock bit.
 | |
|   RD = buildImplicitRecord("__block_descriptor_withcopydispose");
 | |
|   RD->startDefinition();
 | |
| 
 | |
|   QualType FieldTypes[] = {
 | |
|     UnsignedLongTy,
 | |
|     UnsignedLongTy,
 | |
|     getPointerType(VoidPtrTy),
 | |
|     getPointerType(VoidPtrTy)
 | |
|   };
 | |
| 
 | |
|   static const char *const FieldNames[] = {
 | |
|     "reserved",
 | |
|     "Size",
 | |
|     "CopyFuncPtr",
 | |
|     "DestroyFuncPtr"
 | |
|   };
 | |
| 
 | |
|   for (size_t i = 0; i < 4; ++i) {
 | |
|     FieldDecl *Field = FieldDecl::Create(
 | |
|         *this, RD, SourceLocation(), SourceLocation(),
 | |
|         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
 | |
|         /*BitWidth=*/nullptr,
 | |
|         /*Mutable=*/false, ICIS_NoInit);
 | |
|     Field->setAccess(AS_public);
 | |
|     RD->addDecl(Field);
 | |
|   }
 | |
| 
 | |
|   RD->completeDefinition();
 | |
| 
 | |
|   BlockDescriptorExtendedType = RD;
 | |
|   return getTagDeclType(BlockDescriptorExtendedType);
 | |
| }
 | |
| 
 | |
| OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const {
 | |
|   const auto *BT = dyn_cast<BuiltinType>(T);
 | |
| 
 | |
|   if (!BT) {
 | |
|     if (isa<PipeType>(T))
 | |
|       return OCLTK_Pipe;
 | |
| 
 | |
|     return OCLTK_Default;
 | |
|   }
 | |
| 
 | |
|   switch (BT->getKind()) {
 | |
| #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \
 | |
|   case BuiltinType::Id:                                                        \
 | |
|     return OCLTK_Image;
 | |
| #include "clang/Basic/OpenCLImageTypes.def"
 | |
| 
 | |
|   case BuiltinType::OCLClkEvent:
 | |
|     return OCLTK_ClkEvent;
 | |
| 
 | |
|   case BuiltinType::OCLEvent:
 | |
|     return OCLTK_Event;
 | |
| 
 | |
|   case BuiltinType::OCLQueue:
 | |
|     return OCLTK_Queue;
 | |
| 
 | |
|   case BuiltinType::OCLReserveID:
 | |
|     return OCLTK_ReserveID;
 | |
| 
 | |
|   case BuiltinType::OCLSampler:
 | |
|     return OCLTK_Sampler;
 | |
| 
 | |
|   default:
 | |
|     return OCLTK_Default;
 | |
|   }
 | |
| }
 | |
| 
 | |
| LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const {
 | |
|   return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
 | |
| }
 | |
| 
 | |
| /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
 | |
| /// requires copy/dispose. Note that this must match the logic
 | |
| /// in buildByrefHelpers.
 | |
| bool ASTContext::BlockRequiresCopying(QualType Ty,
 | |
|                                       const VarDecl *D) {
 | |
|   if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
 | |
|     const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr();
 | |
|     if (!copyExpr && record->hasTrivialDestructor()) return false;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // The block needs copy/destroy helpers if Ty is non-trivial to destructively
 | |
|   // move or destroy.
 | |
|   if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType())
 | |
|     return true;
 | |
| 
 | |
|   if (!Ty->isObjCRetainableType()) return false;
 | |
| 
 | |
|   Qualifiers qs = Ty.getQualifiers();
 | |
| 
 | |
|   // If we have lifetime, that dominates.
 | |
|   if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
 | |
|     switch (lifetime) {
 | |
|       case Qualifiers::OCL_None: llvm_unreachable("impossible");
 | |
| 
 | |
|       // These are just bits as far as the runtime is concerned.
 | |
|       case Qualifiers::OCL_ExplicitNone:
 | |
|       case Qualifiers::OCL_Autoreleasing:
 | |
|         return false;
 | |
| 
 | |
|       // These cases should have been taken care of when checking the type's
 | |
|       // non-triviality.
 | |
|       case Qualifiers::OCL_Weak:
 | |
|       case Qualifiers::OCL_Strong:
 | |
|         llvm_unreachable("impossible");
 | |
|     }
 | |
|     llvm_unreachable("fell out of lifetime switch!");
 | |
|   }
 | |
|   return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
 | |
|           Ty->isObjCObjectPointerType());
 | |
| }
 | |
| 
 | |
| bool ASTContext::getByrefLifetime(QualType Ty,
 | |
|                               Qualifiers::ObjCLifetime &LifeTime,
 | |
|                               bool &HasByrefExtendedLayout) const {
 | |
|   if (!getLangOpts().ObjC ||
 | |
|       getLangOpts().getGC() != LangOptions::NonGC)
 | |
|     return false;
 | |
| 
 | |
|   HasByrefExtendedLayout = false;
 | |
|   if (Ty->isRecordType()) {
 | |
|     HasByrefExtendedLayout = true;
 | |
|     LifeTime = Qualifiers::OCL_None;
 | |
|   } else if ((LifeTime = Ty.getObjCLifetime())) {
 | |
|     // Honor the ARC qualifiers.
 | |
|   } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
 | |
|     // The MRR rule.
 | |
|     LifeTime = Qualifiers::OCL_ExplicitNone;
 | |
|   } else {
 | |
|     LifeTime = Qualifiers::OCL_None;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| CanQualType ASTContext::getNSUIntegerType() const {
 | |
|   assert(Target && "Expected target to be initialized");
 | |
|   const llvm::Triple &T = Target->getTriple();
 | |
|   // Windows is LLP64 rather than LP64
 | |
|   if (T.isOSWindows() && T.isArch64Bit())
 | |
|     return UnsignedLongLongTy;
 | |
|   return UnsignedLongTy;
 | |
| }
 | |
| 
 | |
| CanQualType ASTContext::getNSIntegerType() const {
 | |
|   assert(Target && "Expected target to be initialized");
 | |
|   const llvm::Triple &T = Target->getTriple();
 | |
|   // Windows is LLP64 rather than LP64
 | |
|   if (T.isOSWindows() && T.isArch64Bit())
 | |
|     return LongLongTy;
 | |
|   return LongTy;
 | |
| }
 | |
| 
 | |
| TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
 | |
|   if (!ObjCInstanceTypeDecl)
 | |
|     ObjCInstanceTypeDecl =
 | |
|         buildImplicitTypedef(getObjCIdType(), "instancetype");
 | |
|   return ObjCInstanceTypeDecl;
 | |
| }
 | |
| 
 | |
| // This returns true if a type has been typedefed to BOOL:
 | |
| // typedef <type> BOOL;
 | |
| static bool isTypeTypedefedAsBOOL(QualType T) {
 | |
|   if (const auto *TT = dyn_cast<TypedefType>(T))
 | |
|     if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
 | |
|       return II->isStr("BOOL");
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getObjCEncodingTypeSize returns size of type for objective-c encoding
 | |
| /// purpose.
 | |
| CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
 | |
|   if (!type->isIncompleteArrayType() && type->isIncompleteType())
 | |
|     return CharUnits::Zero();
 | |
| 
 | |
|   CharUnits sz = getTypeSizeInChars(type);
 | |
| 
 | |
|   // Make all integer and enum types at least as large as an int
 | |
|   if (sz.isPositive() && type->isIntegralOrEnumerationType())
 | |
|     sz = std::max(sz, getTypeSizeInChars(IntTy));
 | |
|   // Treat arrays as pointers, since that's how they're passed in.
 | |
|   else if (type->isArrayType())
 | |
|     sz = getTypeSizeInChars(VoidPtrTy);
 | |
|   return sz;
 | |
| }
 | |
| 
 | |
| bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
 | |
|   return getTargetInfo().getCXXABI().isMicrosoft() &&
 | |
|          VD->isStaticDataMember() &&
 | |
|          VD->getType()->isIntegralOrEnumerationType() &&
 | |
|          !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
 | |
| }
 | |
| 
 | |
| ASTContext::InlineVariableDefinitionKind
 | |
| ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
 | |
|   if (!VD->isInline())
 | |
|     return InlineVariableDefinitionKind::None;
 | |
| 
 | |
|   // In almost all cases, it's a weak definition.
 | |
|   auto *First = VD->getFirstDecl();
 | |
|   if (First->isInlineSpecified() || !First->isStaticDataMember())
 | |
|     return InlineVariableDefinitionKind::Weak;
 | |
| 
 | |
|   // If there's a file-context declaration in this translation unit, it's a
 | |
|   // non-discardable definition.
 | |
|   for (auto *D : VD->redecls())
 | |
|     if (D->getLexicalDeclContext()->isFileContext() &&
 | |
|         !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr()))
 | |
|       return InlineVariableDefinitionKind::Strong;
 | |
| 
 | |
|   // If we've not seen one yet, we don't know.
 | |
|   return InlineVariableDefinitionKind::WeakUnknown;
 | |
| }
 | |
| 
 | |
| static std::string charUnitsToString(const CharUnits &CU) {
 | |
|   return llvm::itostr(CU.getQuantity());
 | |
| }
 | |
| 
 | |
| /// getObjCEncodingForBlock - Return the encoded type for this block
 | |
| /// declaration.
 | |
| std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
 | |
|   std::string S;
 | |
| 
 | |
|   const BlockDecl *Decl = Expr->getBlockDecl();
 | |
|   QualType BlockTy =
 | |
|       Expr->getType()->castAs<BlockPointerType>()->getPointeeType();
 | |
|   QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType();
 | |
|   // Encode result type.
 | |
|   if (getLangOpts().EncodeExtendedBlockSig)
 | |
|     getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S,
 | |
|                                       true /*Extended*/);
 | |
|   else
 | |
|     getObjCEncodingForType(BlockReturnTy, S);
 | |
|   // Compute size of all parameters.
 | |
|   // Start with computing size of a pointer in number of bytes.
 | |
|   // FIXME: There might(should) be a better way of doing this computation!
 | |
|   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
 | |
|   CharUnits ParmOffset = PtrSize;
 | |
|   for (auto PI : Decl->parameters()) {
 | |
|     QualType PType = PI->getType();
 | |
|     CharUnits sz = getObjCEncodingTypeSize(PType);
 | |
|     if (sz.isZero())
 | |
|       continue;
 | |
|     assert(sz.isPositive() && "BlockExpr - Incomplete param type");
 | |
|     ParmOffset += sz;
 | |
|   }
 | |
|   // Size of the argument frame
 | |
|   S += charUnitsToString(ParmOffset);
 | |
|   // Block pointer and offset.
 | |
|   S += "@?0";
 | |
| 
 | |
|   // Argument types.
 | |
|   ParmOffset = PtrSize;
 | |
|   for (auto PVDecl : Decl->parameters()) {
 | |
|     QualType PType = PVDecl->getOriginalType();
 | |
|     if (const auto *AT =
 | |
|             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
 | |
|       // Use array's original type only if it has known number of
 | |
|       // elements.
 | |
|       if (!isa<ConstantArrayType>(AT))
 | |
|         PType = PVDecl->getType();
 | |
|     } else if (PType->isFunctionType())
 | |
|       PType = PVDecl->getType();
 | |
|     if (getLangOpts().EncodeExtendedBlockSig)
 | |
|       getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
 | |
|                                       S, true /*Extended*/);
 | |
|     else
 | |
|       getObjCEncodingForType(PType, S);
 | |
|     S += charUnitsToString(ParmOffset);
 | |
|     ParmOffset += getObjCEncodingTypeSize(PType);
 | |
|   }
 | |
| 
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| std::string
 | |
| ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
 | |
|   std::string S;
 | |
|   // Encode result type.
 | |
|   getObjCEncodingForType(Decl->getReturnType(), S);
 | |
|   CharUnits ParmOffset;
 | |
|   // Compute size of all parameters.
 | |
|   for (auto PI : Decl->parameters()) {
 | |
|     QualType PType = PI->getType();
 | |
|     CharUnits sz = getObjCEncodingTypeSize(PType);
 | |
|     if (sz.isZero())
 | |
|       continue;
 | |
| 
 | |
|     assert(sz.isPositive() &&
 | |
|            "getObjCEncodingForFunctionDecl - Incomplete param type");
 | |
|     ParmOffset += sz;
 | |
|   }
 | |
|   S += charUnitsToString(ParmOffset);
 | |
|   ParmOffset = CharUnits::Zero();
 | |
| 
 | |
|   // Argument types.
 | |
|   for (auto PVDecl : Decl->parameters()) {
 | |
|     QualType PType = PVDecl->getOriginalType();
 | |
|     if (const auto *AT =
 | |
|             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
 | |
|       // Use array's original type only if it has known number of
 | |
|       // elements.
 | |
|       if (!isa<ConstantArrayType>(AT))
 | |
|         PType = PVDecl->getType();
 | |
|     } else if (PType->isFunctionType())
 | |
|       PType = PVDecl->getType();
 | |
|     getObjCEncodingForType(PType, S);
 | |
|     S += charUnitsToString(ParmOffset);
 | |
|     ParmOffset += getObjCEncodingTypeSize(PType);
 | |
|   }
 | |
| 
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| /// getObjCEncodingForMethodParameter - Return the encoded type for a single
 | |
| /// method parameter or return type. If Extended, include class names and
 | |
| /// block object types.
 | |
| void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
 | |
|                                                    QualType T, std::string& S,
 | |
|                                                    bool Extended) const {
 | |
|   // Encode type qualifer, 'in', 'inout', etc. for the parameter.
 | |
|   getObjCEncodingForTypeQualifier(QT, S);
 | |
|   // Encode parameter type.
 | |
|   ObjCEncOptions Options = ObjCEncOptions()
 | |
|                                .setExpandPointedToStructures()
 | |
|                                .setExpandStructures()
 | |
|                                .setIsOutermostType();
 | |
|   if (Extended)
 | |
|     Options.setEncodeBlockParameters().setEncodeClassNames();
 | |
|   getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr);
 | |
| }
 | |
| 
 | |
| /// getObjCEncodingForMethodDecl - Return the encoded type for this method
 | |
| /// declaration.
 | |
| std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
 | |
|                                                      bool Extended) const {
 | |
|   // FIXME: This is not very efficient.
 | |
|   // Encode return type.
 | |
|   std::string S;
 | |
|   getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
 | |
|                                     Decl->getReturnType(), S, Extended);
 | |
|   // Compute size of all parameters.
 | |
|   // Start with computing size of a pointer in number of bytes.
 | |
|   // FIXME: There might(should) be a better way of doing this computation!
 | |
|   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
 | |
|   // The first two arguments (self and _cmd) are pointers; account for
 | |
|   // their size.
 | |
|   CharUnits ParmOffset = 2 * PtrSize;
 | |
|   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
 | |
|        E = Decl->sel_param_end(); PI != E; ++PI) {
 | |
|     QualType PType = (*PI)->getType();
 | |
|     CharUnits sz = getObjCEncodingTypeSize(PType);
 | |
|     if (sz.isZero())
 | |
|       continue;
 | |
| 
 | |
|     assert(sz.isPositive() &&
 | |
|            "getObjCEncodingForMethodDecl - Incomplete param type");
 | |
|     ParmOffset += sz;
 | |
|   }
 | |
|   S += charUnitsToString(ParmOffset);
 | |
|   S += "@0:";
 | |
|   S += charUnitsToString(PtrSize);
 | |
| 
 | |
|   // Argument types.
 | |
|   ParmOffset = 2 * PtrSize;
 | |
|   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
 | |
|        E = Decl->sel_param_end(); PI != E; ++PI) {
 | |
|     const ParmVarDecl *PVDecl = *PI;
 | |
|     QualType PType = PVDecl->getOriginalType();
 | |
|     if (const auto *AT =
 | |
|             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
 | |
|       // Use array's original type only if it has known number of
 | |
|       // elements.
 | |
|       if (!isa<ConstantArrayType>(AT))
 | |
|         PType = PVDecl->getType();
 | |
|     } else if (PType->isFunctionType())
 | |
|       PType = PVDecl->getType();
 | |
|     getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
 | |
|                                       PType, S, Extended);
 | |
|     S += charUnitsToString(ParmOffset);
 | |
|     ParmOffset += getObjCEncodingTypeSize(PType);
 | |
|   }
 | |
| 
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| ObjCPropertyImplDecl *
 | |
| ASTContext::getObjCPropertyImplDeclForPropertyDecl(
 | |
|                                       const ObjCPropertyDecl *PD,
 | |
|                                       const Decl *Container) const {
 | |
|   if (!Container)
 | |
|     return nullptr;
 | |
|   if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) {
 | |
|     for (auto *PID : CID->property_impls())
 | |
|       if (PID->getPropertyDecl() == PD)
 | |
|         return PID;
 | |
|   } else {
 | |
|     const auto *OID = cast<ObjCImplementationDecl>(Container);
 | |
|     for (auto *PID : OID->property_impls())
 | |
|       if (PID->getPropertyDecl() == PD)
 | |
|         return PID;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// getObjCEncodingForPropertyDecl - Return the encoded type for this
 | |
| /// property declaration. If non-NULL, Container must be either an
 | |
| /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
 | |
| /// NULL when getting encodings for protocol properties.
 | |
| /// Property attributes are stored as a comma-delimited C string. The simple
 | |
| /// attributes readonly and bycopy are encoded as single characters. The
 | |
| /// parametrized attributes, getter=name, setter=name, and ivar=name, are
 | |
| /// encoded as single characters, followed by an identifier. Property types
 | |
| /// are also encoded as a parametrized attribute. The characters used to encode
 | |
| /// these attributes are defined by the following enumeration:
 | |
| /// @code
 | |
| /// enum PropertyAttributes {
 | |
| /// kPropertyReadOnly = 'R',   // property is read-only.
 | |
| /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
 | |
| /// kPropertyByref = '&',  // property is a reference to the value last assigned
 | |
| /// kPropertyDynamic = 'D',    // property is dynamic
 | |
| /// kPropertyGetter = 'G',     // followed by getter selector name
 | |
| /// kPropertySetter = 'S',     // followed by setter selector name
 | |
| /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
 | |
| /// kPropertyType = 'T'              // followed by old-style type encoding.
 | |
| /// kPropertyWeak = 'W'              // 'weak' property
 | |
| /// kPropertyStrong = 'P'            // property GC'able
 | |
| /// kPropertyNonAtomic = 'N'         // property non-atomic
 | |
| /// };
 | |
| /// @endcode
 | |
| std::string
 | |
| ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
 | |
|                                            const Decl *Container) const {
 | |
|   // Collect information from the property implementation decl(s).
 | |
|   bool Dynamic = false;
 | |
|   ObjCPropertyImplDecl *SynthesizePID = nullptr;
 | |
| 
 | |
|   if (ObjCPropertyImplDecl *PropertyImpDecl =
 | |
|       getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
 | |
|     if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
 | |
|       Dynamic = true;
 | |
|     else
 | |
|       SynthesizePID = PropertyImpDecl;
 | |
|   }
 | |
| 
 | |
|   // FIXME: This is not very efficient.
 | |
|   std::string S = "T";
 | |
| 
 | |
|   // Encode result type.
 | |
|   // GCC has some special rules regarding encoding of properties which
 | |
|   // closely resembles encoding of ivars.
 | |
|   getObjCEncodingForPropertyType(PD->getType(), S);
 | |
| 
 | |
|   if (PD->isReadOnly()) {
 | |
|     S += ",R";
 | |
|     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
 | |
|       S += ",C";
 | |
|     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
 | |
|       S += ",&";
 | |
|     if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
 | |
|       S += ",W";
 | |
|   } else {
 | |
|     switch (PD->getSetterKind()) {
 | |
|     case ObjCPropertyDecl::Assign: break;
 | |
|     case ObjCPropertyDecl::Copy:   S += ",C"; break;
 | |
|     case ObjCPropertyDecl::Retain: S += ",&"; break;
 | |
|     case ObjCPropertyDecl::Weak:   S += ",W"; break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // It really isn't clear at all what this means, since properties
 | |
|   // are "dynamic by default".
 | |
|   if (Dynamic)
 | |
|     S += ",D";
 | |
| 
 | |
|   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
 | |
|     S += ",N";
 | |
| 
 | |
|   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
 | |
|     S += ",G";
 | |
|     S += PD->getGetterName().getAsString();
 | |
|   }
 | |
| 
 | |
|   if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
 | |
|     S += ",S";
 | |
|     S += PD->getSetterName().getAsString();
 | |
|   }
 | |
| 
 | |
|   if (SynthesizePID) {
 | |
|     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
 | |
|     S += ",V";
 | |
|     S += OID->getNameAsString();
 | |
|   }
 | |
| 
 | |
|   // FIXME: OBJCGC: weak & strong
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| /// getLegacyIntegralTypeEncoding -
 | |
| /// Another legacy compatibility encoding: 32-bit longs are encoded as
 | |
| /// 'l' or 'L' , but not always.  For typedefs, we need to use
 | |
| /// 'i' or 'I' instead if encoding a struct field, or a pointer!
 | |
| void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
 | |
|   if (isa<TypedefType>(PointeeTy.getTypePtr())) {
 | |
|     if (const auto *BT = PointeeTy->getAs<BuiltinType>()) {
 | |
|       if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
 | |
|         PointeeTy = UnsignedIntTy;
 | |
|       else
 | |
|         if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
 | |
|           PointeeTy = IntTy;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
 | |
|                                         const FieldDecl *Field,
 | |
|                                         QualType *NotEncodedT) const {
 | |
|   // We follow the behavior of gcc, expanding structures which are
 | |
|   // directly pointed to, and expanding embedded structures. Note that
 | |
|   // these rules are sufficient to prevent recursive encoding of the
 | |
|   // same type.
 | |
|   getObjCEncodingForTypeImpl(T, S,
 | |
|                              ObjCEncOptions()
 | |
|                                  .setExpandPointedToStructures()
 | |
|                                  .setExpandStructures()
 | |
|                                  .setIsOutermostType(),
 | |
|                              Field, NotEncodedT);
 | |
| }
 | |
| 
 | |
| void ASTContext::getObjCEncodingForPropertyType(QualType T,
 | |
|                                                 std::string& S) const {
 | |
|   // Encode result type.
 | |
|   // GCC has some special rules regarding encoding of properties which
 | |
|   // closely resembles encoding of ivars.
 | |
|   getObjCEncodingForTypeImpl(T, S,
 | |
|                              ObjCEncOptions()
 | |
|                                  .setExpandPointedToStructures()
 | |
|                                  .setExpandStructures()
 | |
|                                  .setIsOutermostType()
 | |
|                                  .setEncodingProperty(),
 | |
|                              /*Field=*/nullptr);
 | |
| }
 | |
| 
 | |
| static char getObjCEncodingForPrimitiveType(const ASTContext *C,
 | |
|                                             const BuiltinType *BT) {
 | |
|     BuiltinType::Kind kind = BT->getKind();
 | |
|     switch (kind) {
 | |
|     case BuiltinType::Void:       return 'v';
 | |
|     case BuiltinType::Bool:       return 'B';
 | |
|     case BuiltinType::Char8:
 | |
|     case BuiltinType::Char_U:
 | |
|     case BuiltinType::UChar:      return 'C';
 | |
|     case BuiltinType::Char16:
 | |
|     case BuiltinType::UShort:     return 'S';
 | |
|     case BuiltinType::Char32:
 | |
|     case BuiltinType::UInt:       return 'I';
 | |
|     case BuiltinType::ULong:
 | |
|         return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
 | |
|     case BuiltinType::UInt128:    return 'T';
 | |
|     case BuiltinType::ULongLong:  return 'Q';
 | |
|     case BuiltinType::Char_S:
 | |
|     case BuiltinType::SChar:      return 'c';
 | |
|     case BuiltinType::Short:      return 's';
 | |
|     case BuiltinType::WChar_S:
 | |
|     case BuiltinType::WChar_U:
 | |
|     case BuiltinType::Int:        return 'i';
 | |
|     case BuiltinType::Long:
 | |
|       return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
 | |
|     case BuiltinType::LongLong:   return 'q';
 | |
|     case BuiltinType::Int128:     return 't';
 | |
|     case BuiltinType::Float:      return 'f';
 | |
|     case BuiltinType::Double:     return 'd';
 | |
|     case BuiltinType::LongDouble: return 'D';
 | |
|     case BuiltinType::NullPtr:    return '*'; // like char*
 | |
| 
 | |
|     case BuiltinType::Float16:
 | |
|     case BuiltinType::Float128:
 | |
|     case BuiltinType::Half:
 | |
|     case BuiltinType::ShortAccum:
 | |
|     case BuiltinType::Accum:
 | |
|     case BuiltinType::LongAccum:
 | |
|     case BuiltinType::UShortAccum:
 | |
|     case BuiltinType::UAccum:
 | |
|     case BuiltinType::ULongAccum:
 | |
|     case BuiltinType::ShortFract:
 | |
|     case BuiltinType::Fract:
 | |
|     case BuiltinType::LongFract:
 | |
|     case BuiltinType::UShortFract:
 | |
|     case BuiltinType::UFract:
 | |
|     case BuiltinType::ULongFract:
 | |
|     case BuiltinType::SatShortAccum:
 | |
|     case BuiltinType::SatAccum:
 | |
|     case BuiltinType::SatLongAccum:
 | |
|     case BuiltinType::SatUShortAccum:
 | |
|     case BuiltinType::SatUAccum:
 | |
|     case BuiltinType::SatULongAccum:
 | |
|     case BuiltinType::SatShortFract:
 | |
|     case BuiltinType::SatFract:
 | |
|     case BuiltinType::SatLongFract:
 | |
|     case BuiltinType::SatUShortFract:
 | |
|     case BuiltinType::SatUFract:
 | |
|     case BuiltinType::SatULongFract:
 | |
|       // FIXME: potentially need @encodes for these!
 | |
|       return ' ';
 | |
| 
 | |
| #define SVE_TYPE(Name, Id, SingletonId) \
 | |
|     case BuiltinType::Id:
 | |
| #include "clang/Basic/AArch64SVEACLETypes.def"
 | |
|     {
 | |
|       DiagnosticsEngine &Diags = C->getDiagnostics();
 | |
|       unsigned DiagID = Diags.getCustomDiagID(
 | |
|           DiagnosticsEngine::Error, "cannot yet @encode type %0");
 | |
|       Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy());
 | |
|       return ' ';
 | |
|     }
 | |
| 
 | |
|     case BuiltinType::ObjCId:
 | |
|     case BuiltinType::ObjCClass:
 | |
|     case BuiltinType::ObjCSel:
 | |
|       llvm_unreachable("@encoding ObjC primitive type");
 | |
| 
 | |
|     // OpenCL and placeholder types don't need @encodings.
 | |
| #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
 | |
|     case BuiltinType::Id:
 | |
| #include "clang/Basic/OpenCLImageTypes.def"
 | |
| #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
 | |
|     case BuiltinType::Id:
 | |
| #include "clang/Basic/OpenCLExtensionTypes.def"
 | |
|     case BuiltinType::OCLEvent:
 | |
|     case BuiltinType::OCLClkEvent:
 | |
|     case BuiltinType::OCLQueue:
 | |
|     case BuiltinType::OCLReserveID:
 | |
|     case BuiltinType::OCLSampler:
 | |
|     case BuiltinType::Dependent:
 | |
| #define BUILTIN_TYPE(KIND, ID)
 | |
| #define PLACEHOLDER_TYPE(KIND, ID) \
 | |
|     case BuiltinType::KIND:
 | |
| #include "clang/AST/BuiltinTypes.def"
 | |
|       llvm_unreachable("invalid builtin type for @encode");
 | |
|     }
 | |
|     llvm_unreachable("invalid BuiltinType::Kind value");
 | |
| }
 | |
| 
 | |
| static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
 | |
|   EnumDecl *Enum = ET->getDecl();
 | |
| 
 | |
|   // The encoding of an non-fixed enum type is always 'i', regardless of size.
 | |
|   if (!Enum->isFixed())
 | |
|     return 'i';
 | |
| 
 | |
|   // The encoding of a fixed enum type matches its fixed underlying type.
 | |
|   const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>();
 | |
|   return getObjCEncodingForPrimitiveType(C, BT);
 | |
| }
 | |
| 
 | |
| static void EncodeBitField(const ASTContext *Ctx, std::string& S,
 | |
|                            QualType T, const FieldDecl *FD) {
 | |
|   assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
 | |
|   S += 'b';
 | |
|   // The NeXT runtime encodes bit fields as b followed by the number of bits.
 | |
|   // The GNU runtime requires more information; bitfields are encoded as b,
 | |
|   // then the offset (in bits) of the first element, then the type of the
 | |
|   // bitfield, then the size in bits.  For example, in this structure:
 | |
|   //
 | |
|   // struct
 | |
|   // {
 | |
|   //    int integer;
 | |
|   //    int flags:2;
 | |
|   // };
 | |
|   // On a 32-bit system, the encoding for flags would be b2 for the NeXT
 | |
|   // runtime, but b32i2 for the GNU runtime.  The reason for this extra
 | |
|   // information is not especially sensible, but we're stuck with it for
 | |
|   // compatibility with GCC, although providing it breaks anything that
 | |
|   // actually uses runtime introspection and wants to work on both runtimes...
 | |
|   if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
 | |
|     uint64_t Offset;
 | |
| 
 | |
|     if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
 | |
|       Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
 | |
|                                          IVD);
 | |
|     } else {
 | |
|       const RecordDecl *RD = FD->getParent();
 | |
|       const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
 | |
|       Offset = RL.getFieldOffset(FD->getFieldIndex());
 | |
|     }
 | |
| 
 | |
|     S += llvm::utostr(Offset);
 | |
| 
 | |
|     if (const auto *ET = T->getAs<EnumType>())
 | |
|       S += ObjCEncodingForEnumType(Ctx, ET);
 | |
|     else {
 | |
|       const auto *BT = T->castAs<BuiltinType>();
 | |
|       S += getObjCEncodingForPrimitiveType(Ctx, BT);
 | |
|     }
 | |
|   }
 | |
|   S += llvm::utostr(FD->getBitWidthValue(*Ctx));
 | |
| }
 | |
| 
 | |
| // FIXME: Use SmallString for accumulating string.
 | |
| void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S,
 | |
|                                             const ObjCEncOptions Options,
 | |
|                                             const FieldDecl *FD,
 | |
|                                             QualType *NotEncodedT) const {
 | |
|   CanQualType CT = getCanonicalType(T);
 | |
|   switch (CT->getTypeClass()) {
 | |
|   case Type::Builtin:
 | |
|   case Type::Enum:
 | |
|     if (FD && FD->isBitField())
 | |
|       return EncodeBitField(this, S, T, FD);
 | |
|     if (const auto *BT = dyn_cast<BuiltinType>(CT))
 | |
|       S += getObjCEncodingForPrimitiveType(this, BT);
 | |
|     else
 | |
|       S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
 | |
|     return;
 | |
| 
 | |
|   case Type::Complex:
 | |
|     S += 'j';
 | |
|     getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S,
 | |
|                                ObjCEncOptions(),
 | |
|                                /*Field=*/nullptr);
 | |
|     return;
 | |
| 
 | |
|   case Type::Atomic:
 | |
|     S += 'A';
 | |
|     getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S,
 | |
|                                ObjCEncOptions(),
 | |
|                                /*Field=*/nullptr);
 | |
|     return;
 | |
| 
 | |
|   // encoding for pointer or reference types.
 | |
|   case Type::Pointer:
 | |
|   case Type::LValueReference:
 | |
|   case Type::RValueReference: {
 | |
|     QualType PointeeTy;
 | |
|     if (isa<PointerType>(CT)) {
 | |
|       const auto *PT = T->castAs<PointerType>();
 | |
|       if (PT->isObjCSelType()) {
 | |
|         S += ':';
 | |
|         return;
 | |
|       }
 | |
|       PointeeTy = PT->getPointeeType();
 | |
|     } else {
 | |
|       PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
 | |
|     }
 | |
| 
 | |
|     bool isReadOnly = false;
 | |
|     // For historical/compatibility reasons, the read-only qualifier of the
 | |
|     // pointee gets emitted _before_ the '^'.  The read-only qualifier of
 | |
|     // the pointer itself gets ignored, _unless_ we are looking at a typedef!
 | |
|     // Also, do not emit the 'r' for anything but the outermost type!
 | |
|     if (isa<TypedefType>(T.getTypePtr())) {
 | |
|       if (Options.IsOutermostType() && T.isConstQualified()) {
 | |
|         isReadOnly = true;
 | |
|         S += 'r';
 | |
|       }
 | |
|     } else if (Options.IsOutermostType()) {
 | |
|       QualType P = PointeeTy;
 | |
|       while (auto PT = P->getAs<PointerType>())
 | |
|         P = PT->getPointeeType();
 | |
|       if (P.isConstQualified()) {
 | |
|         isReadOnly = true;
 | |
|         S += 'r';
 | |
|       }
 | |
|     }
 | |
|     if (isReadOnly) {
 | |
|       // Another legacy compatibility encoding. Some ObjC qualifier and type
 | |
|       // combinations need to be rearranged.
 | |
|       // Rewrite "in const" from "nr" to "rn"
 | |
|       if (StringRef(S).endswith("nr"))
 | |
|         S.replace(S.end()-2, S.end(), "rn");
 | |
|     }
 | |
| 
 | |
|     if (PointeeTy->isCharType()) {
 | |
|       // char pointer types should be encoded as '*' unless it is a
 | |
|       // type that has been typedef'd to 'BOOL'.
 | |
|       if (!isTypeTypedefedAsBOOL(PointeeTy)) {
 | |
|         S += '*';
 | |
|         return;
 | |
|       }
 | |
|     } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) {
 | |
|       // GCC binary compat: Need to convert "struct objc_class *" to "#".
 | |
|       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
 | |
|         S += '#';
 | |
|         return;
 | |
|       }
 | |
|       // GCC binary compat: Need to convert "struct objc_object *" to "@".
 | |
|       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
 | |
|         S += '@';
 | |
|         return;
 | |
|       }
 | |
|       // fall through...
 | |
|     }
 | |
|     S += '^';
 | |
|     getLegacyIntegralTypeEncoding(PointeeTy);
 | |
| 
 | |
|     ObjCEncOptions NewOptions;
 | |
|     if (Options.ExpandPointedToStructures())
 | |
|       NewOptions.setExpandStructures();
 | |
|     getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions,
 | |
|                                /*Field=*/nullptr, NotEncodedT);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case Type::ConstantArray:
 | |
|   case Type::IncompleteArray:
 | |
|   case Type::VariableArray: {
 | |
|     const auto *AT = cast<ArrayType>(CT);
 | |
| 
 | |
|     if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) {
 | |
|       // Incomplete arrays are encoded as a pointer to the array element.
 | |
|       S += '^';
 | |
| 
 | |
|       getObjCEncodingForTypeImpl(
 | |
|           AT->getElementType(), S,
 | |
|           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD);
 | |
|     } else {
 | |
|       S += '[';
 | |
| 
 | |
|       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
 | |
|         S += llvm::utostr(CAT->getSize().getZExtValue());
 | |
|       else {
 | |
|         //Variable length arrays are encoded as a regular array with 0 elements.
 | |
|         assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
 | |
|                "Unknown array type!");
 | |
|         S += '0';
 | |
|       }
 | |
| 
 | |
|       getObjCEncodingForTypeImpl(
 | |
|           AT->getElementType(), S,
 | |
|           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD,
 | |
|           NotEncodedT);
 | |
|       S += ']';
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case Type::FunctionNoProto:
 | |
|   case Type::FunctionProto:
 | |
|     S += '?';
 | |
|     return;
 | |
| 
 | |
|   case Type::Record: {
 | |
|     RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
 | |
|     S += RDecl->isUnion() ? '(' : '{';
 | |
|     // Anonymous structures print as '?'
 | |
|     if (const IdentifierInfo *II = RDecl->getIdentifier()) {
 | |
|       S += II->getName();
 | |
|       if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
 | |
|         const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
 | |
|         llvm::raw_string_ostream OS(S);
 | |
|         printTemplateArgumentList(OS, TemplateArgs.asArray(),
 | |
|                                   getPrintingPolicy());
 | |
|       }
 | |
|     } else {
 | |
|       S += '?';
 | |
|     }
 | |
|     if (Options.ExpandStructures()) {
 | |
|       S += '=';
 | |
|       if (!RDecl->isUnion()) {
 | |
|         getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
 | |
|       } else {
 | |
|         for (const auto *Field : RDecl->fields()) {
 | |
|           if (FD) {
 | |
|             S += '"';
 | |
|             S += Field->getNameAsString();
 | |
|             S += '"';
 | |
|           }
 | |
| 
 | |
|           // Special case bit-fields.
 | |
|           if (Field->isBitField()) {
 | |
|             getObjCEncodingForTypeImpl(Field->getType(), S,
 | |
|                                        ObjCEncOptions().setExpandStructures(),
 | |
|                                        Field);
 | |
|           } else {
 | |
|             QualType qt = Field->getType();
 | |
|             getLegacyIntegralTypeEncoding(qt);
 | |
|             getObjCEncodingForTypeImpl(
 | |
|                 qt, S,
 | |
|                 ObjCEncOptions().setExpandStructures().setIsStructField(), FD,
 | |
|                 NotEncodedT);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     S += RDecl->isUnion() ? ')' : '}';
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case Type::BlockPointer: {
 | |
|     const auto *BT = T->castAs<BlockPointerType>();
 | |
|     S += "@?"; // Unlike a pointer-to-function, which is "^?".
 | |
|     if (Options.EncodeBlockParameters()) {
 | |
|       const auto *FT = BT->getPointeeType()->castAs<FunctionType>();
 | |
| 
 | |
|       S += '<';
 | |
|       // Block return type
 | |
|       getObjCEncodingForTypeImpl(FT->getReturnType(), S,
 | |
|                                  Options.forComponentType(), FD, NotEncodedT);
 | |
|       // Block self
 | |
|       S += "@?";
 | |
|       // Block parameters
 | |
|       if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) {
 | |
|         for (const auto &I : FPT->param_types())
 | |
|           getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD,
 | |
|                                      NotEncodedT);
 | |
|       }
 | |
|       S += '>';
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case Type::ObjCObject: {
 | |
|     // hack to match legacy encoding of *id and *Class
 | |
|     QualType Ty = getObjCObjectPointerType(CT);
 | |
|     if (Ty->isObjCIdType()) {
 | |
|       S += "{objc_object=}";
 | |
|       return;
 | |
|     }
 | |
|     else if (Ty->isObjCClassType()) {
 | |
|       S += "{objc_class=}";
 | |
|       return;
 | |
|     }
 | |
|     // TODO: Double check to make sure this intentionally falls through.
 | |
|     LLVM_FALLTHROUGH;
 | |
|   }
 | |
| 
 | |
|   case Type::ObjCInterface: {
 | |
|     // Ignore protocol qualifiers when mangling at this level.
 | |
|     // @encode(class_name)
 | |
|     ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
 | |
|     S += '{';
 | |
|     S += OI->getObjCRuntimeNameAsString();
 | |
|     if (Options.ExpandStructures()) {
 | |
|       S += '=';
 | |
|       SmallVector<const ObjCIvarDecl*, 32> Ivars;
 | |
|       DeepCollectObjCIvars(OI, true, Ivars);
 | |
|       for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
 | |
|         const FieldDecl *Field = Ivars[i];
 | |
|         if (Field->isBitField())
 | |
|           getObjCEncodingForTypeImpl(Field->getType(), S,
 | |
|                                      ObjCEncOptions().setExpandStructures(),
 | |
|                                      Field);
 | |
|         else
 | |
|           getObjCEncodingForTypeImpl(Field->getType(), S,
 | |
|                                      ObjCEncOptions().setExpandStructures(), FD,
 | |
|                                      NotEncodedT);
 | |
|       }
 | |
|     }
 | |
|     S += '}';
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case Type::ObjCObjectPointer: {
 | |
|     const auto *OPT = T->castAs<ObjCObjectPointerType>();
 | |
|     if (OPT->isObjCIdType()) {
 | |
|       S += '@';
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
 | |
|       // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
 | |
|       // Since this is a binary compatibility issue, need to consult with
 | |
|       // runtime folks. Fortunately, this is a *very* obscure construct.
 | |
|       S += '#';
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (OPT->isObjCQualifiedIdType()) {
 | |
|       getObjCEncodingForTypeImpl(
 | |
|           getObjCIdType(), S,
 | |
|           Options.keepingOnly(ObjCEncOptions()
 | |
|                                   .setExpandPointedToStructures()
 | |
|                                   .setExpandStructures()),
 | |
|           FD);
 | |
|       if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) {
 | |
|         // Note that we do extended encoding of protocol qualifer list
 | |
|         // Only when doing ivar or property encoding.
 | |
|         S += '"';
 | |
|         for (const auto *I : OPT->quals()) {
 | |
|           S += '<';
 | |
|           S += I->getObjCRuntimeNameAsString();
 | |
|           S += '>';
 | |
|         }
 | |
|         S += '"';
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     S += '@';
 | |
|     if (OPT->getInterfaceDecl() &&
 | |
|         (FD || Options.EncodingProperty() || Options.EncodeClassNames())) {
 | |
|       S += '"';
 | |
|       S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
 | |
|       for (const auto *I : OPT->quals()) {
 | |
|         S += '<';
 | |
|         S += I->getObjCRuntimeNameAsString();
 | |
|         S += '>';
 | |
|       }
 | |
|       S += '"';
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // gcc just blithely ignores member pointers.
 | |
|   // FIXME: we should do better than that.  'M' is available.
 | |
|   case Type::MemberPointer:
 | |
|   // This matches gcc's encoding, even though technically it is insufficient.
 | |
|   //FIXME. We should do a better job than gcc.
 | |
|   case Type::Vector:
 | |
|   case Type::ExtVector:
 | |
|   // Until we have a coherent encoding of these three types, issue warning.
 | |
|     if (NotEncodedT)
 | |
|       *NotEncodedT = T;
 | |
|     return;
 | |
| 
 | |
|   // We could see an undeduced auto type here during error recovery.
 | |
|   // Just ignore it.
 | |
|   case Type::Auto:
 | |
|   case Type::DeducedTemplateSpecialization:
 | |
|     return;
 | |
| 
 | |
|   case Type::Pipe:
 | |
| #define ABSTRACT_TYPE(KIND, BASE)
 | |
| #define TYPE(KIND, BASE)
 | |
| #define DEPENDENT_TYPE(KIND, BASE) \
 | |
|   case Type::KIND:
 | |
| #define NON_CANONICAL_TYPE(KIND, BASE) \
 | |
|   case Type::KIND:
 | |
| #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
 | |
|   case Type::KIND:
 | |
| #include "clang/AST/TypeNodes.inc"
 | |
|     llvm_unreachable("@encode for dependent type!");
 | |
|   }
 | |
|   llvm_unreachable("bad type kind!");
 | |
| }
 | |
| 
 | |
| void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
 | |
|                                                  std::string &S,
 | |
|                                                  const FieldDecl *FD,
 | |
|                                                  bool includeVBases,
 | |
|                                                  QualType *NotEncodedT) const {
 | |
|   assert(RDecl && "Expected non-null RecordDecl");
 | |
|   assert(!RDecl->isUnion() && "Should not be called for unions");
 | |
|   if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
 | |
|     return;
 | |
| 
 | |
|   const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
 | |
|   std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
 | |
|   const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
 | |
| 
 | |
|   if (CXXRec) {
 | |
|     for (const auto &BI : CXXRec->bases()) {
 | |
|       if (!BI.isVirtual()) {
 | |
|         CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
 | |
|         if (base->isEmpty())
 | |
|           continue;
 | |
|         uint64_t offs = toBits(layout.getBaseClassOffset(base));
 | |
|         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
 | |
|                                   std::make_pair(offs, base));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned i = 0;
 | |
|   for (auto *Field : RDecl->fields()) {
 | |
|     uint64_t offs = layout.getFieldOffset(i);
 | |
|     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
 | |
|                               std::make_pair(offs, Field));
 | |
|     ++i;
 | |
|   }
 | |
| 
 | |
|   if (CXXRec && includeVBases) {
 | |
|     for (const auto &BI : CXXRec->vbases()) {
 | |
|       CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
 | |
|       if (base->isEmpty())
 | |
|         continue;
 | |
|       uint64_t offs = toBits(layout.getVBaseClassOffset(base));
 | |
|       if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
 | |
|           FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
 | |
|         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
 | |
|                                   std::make_pair(offs, base));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   CharUnits size;
 | |
|   if (CXXRec) {
 | |
|     size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
 | |
|   } else {
 | |
|     size = layout.getSize();
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   uint64_t CurOffs = 0;
 | |
| #endif
 | |
|   std::multimap<uint64_t, NamedDecl *>::iterator
 | |
|     CurLayObj = FieldOrBaseOffsets.begin();
 | |
| 
 | |
|   if (CXXRec && CXXRec->isDynamicClass() &&
 | |
|       (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
 | |
|     if (FD) {
 | |
|       S += "\"_vptr$";
 | |
|       std::string recname = CXXRec->getNameAsString();
 | |
|       if (recname.empty()) recname = "?";
 | |
|       S += recname;
 | |
|       S += '"';
 | |
|     }
 | |
|     S += "^^?";
 | |
| #ifndef NDEBUG
 | |
|     CurOffs += getTypeSize(VoidPtrTy);
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   if (!RDecl->hasFlexibleArrayMember()) {
 | |
|     // Mark the end of the structure.
 | |
|     uint64_t offs = toBits(size);
 | |
|     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
 | |
|                               std::make_pair(offs, nullptr));
 | |
|   }
 | |
| 
 | |
|   for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
 | |
| #ifndef NDEBUG
 | |
|     assert(CurOffs <= CurLayObj->first);
 | |
|     if (CurOffs < CurLayObj->first) {
 | |
|       uint64_t padding = CurLayObj->first - CurOffs;
 | |
|       // FIXME: There doesn't seem to be a way to indicate in the encoding that
 | |
|       // packing/alignment of members is different that normal, in which case
 | |
|       // the encoding will be out-of-sync with the real layout.
 | |
|       // If the runtime switches to just consider the size of types without
 | |
|       // taking into account alignment, we could make padding explicit in the
 | |
|       // encoding (e.g. using arrays of chars). The encoding strings would be
 | |
|       // longer then though.
 | |
|       CurOffs += padding;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     NamedDecl *dcl = CurLayObj->second;
 | |
|     if (!dcl)
 | |
|       break; // reached end of structure.
 | |
| 
 | |
|     if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) {
 | |
|       // We expand the bases without their virtual bases since those are going
 | |
|       // in the initial structure. Note that this differs from gcc which
 | |
|       // expands virtual bases each time one is encountered in the hierarchy,
 | |
|       // making the encoding type bigger than it really is.
 | |
|       getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
 | |
|                                       NotEncodedT);
 | |
|       assert(!base->isEmpty());
 | |
| #ifndef NDEBUG
 | |
|       CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
 | |
| #endif
 | |
|     } else {
 | |
|       const auto *field = cast<FieldDecl>(dcl);
 | |
|       if (FD) {
 | |
|         S += '"';
 | |
|         S += field->getNameAsString();
 | |
|         S += '"';
 | |
|       }
 | |
| 
 | |
|       if (field->isBitField()) {
 | |
|         EncodeBitField(this, S, field->getType(), field);
 | |
| #ifndef NDEBUG
 | |
|         CurOffs += field->getBitWidthValue(*this);
 | |
| #endif
 | |
|       } else {
 | |
|         QualType qt = field->getType();
 | |
|         getLegacyIntegralTypeEncoding(qt);
 | |
|         getObjCEncodingForTypeImpl(
 | |
|             qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(),
 | |
|             FD, NotEncodedT);
 | |
| #ifndef NDEBUG
 | |
|         CurOffs += getTypeSize(field->getType());
 | |
| #endif
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
 | |
|                                                  std::string& S) const {
 | |
|   if (QT & Decl::OBJC_TQ_In)
 | |
|     S += 'n';
 | |
|   if (QT & Decl::OBJC_TQ_Inout)
 | |
|     S += 'N';
 | |
|   if (QT & Decl::OBJC_TQ_Out)
 | |
|     S += 'o';
 | |
|   if (QT & Decl::OBJC_TQ_Bycopy)
 | |
|     S += 'O';
 | |
|   if (QT & Decl::OBJC_TQ_Byref)
 | |
|     S += 'R';
 | |
|   if (QT & Decl::OBJC_TQ_Oneway)
 | |
|     S += 'V';
 | |
| }
 | |
| 
 | |
| TypedefDecl *ASTContext::getObjCIdDecl() const {
 | |
|   if (!ObjCIdDecl) {
 | |
|     QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {});
 | |
|     T = getObjCObjectPointerType(T);
 | |
|     ObjCIdDecl = buildImplicitTypedef(T, "id");
 | |
|   }
 | |
|   return ObjCIdDecl;
 | |
| }
 | |
| 
 | |
| TypedefDecl *ASTContext::getObjCSelDecl() const {
 | |
|   if (!ObjCSelDecl) {
 | |
|     QualType T = getPointerType(ObjCBuiltinSelTy);
 | |
|     ObjCSelDecl = buildImplicitTypedef(T, "SEL");
 | |
|   }
 | |
|   return ObjCSelDecl;
 | |
| }
 | |
| 
 | |
| TypedefDecl *ASTContext::getObjCClassDecl() const {
 | |
|   if (!ObjCClassDecl) {
 | |
|     QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {});
 | |
|     T = getObjCObjectPointerType(T);
 | |
|     ObjCClassDecl = buildImplicitTypedef(T, "Class");
 | |
|   }
 | |
|   return ObjCClassDecl;
 | |
| }
 | |
| 
 | |
| ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
 | |
|   if (!ObjCProtocolClassDecl) {
 | |
|     ObjCProtocolClassDecl
 | |
|       = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
 | |
|                                   SourceLocation(),
 | |
|                                   &Idents.get("Protocol"),
 | |
|                                   /*typeParamList=*/nullptr,
 | |
|                                   /*PrevDecl=*/nullptr,
 | |
|                                   SourceLocation(), true);
 | |
|   }
 | |
| 
 | |
|   return ObjCProtocolClassDecl;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // __builtin_va_list Construction Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
 | |
|                                                  StringRef Name) {
 | |
|   // typedef char* __builtin[_ms]_va_list;
 | |
|   QualType T = Context->getPointerType(Context->CharTy);
 | |
|   return Context->buildImplicitTypedef(T, Name);
 | |
| }
 | |
| 
 | |
| static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
 | |
|   return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
 | |
| }
 | |
| 
 | |
| static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
 | |
|   return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
 | |
| }
 | |
| 
 | |
| static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
 | |
|   // typedef void* __builtin_va_list;
 | |
|   QualType T = Context->getPointerType(Context->VoidTy);
 | |
|   return Context->buildImplicitTypedef(T, "__builtin_va_list");
 | |
| }
 | |
| 
 | |
| static TypedefDecl *
 | |
| CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
 | |
|   // struct __va_list
 | |
|   RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
 | |
|   if (Context->getLangOpts().CPlusPlus) {
 | |
|     // namespace std { struct __va_list {
 | |
|     NamespaceDecl *NS;
 | |
|     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
 | |
|                                Context->getTranslationUnitDecl(),
 | |
|                                /*Inline*/ false, SourceLocation(),
 | |
|                                SourceLocation(), &Context->Idents.get("std"),
 | |
|                                /*PrevDecl*/ nullptr);
 | |
|     NS->setImplicit();
 | |
|     VaListTagDecl->setDeclContext(NS);
 | |
|   }
 | |
| 
 | |
|   VaListTagDecl->startDefinition();
 | |
| 
 | |
|   const size_t NumFields = 5;
 | |
|   QualType FieldTypes[NumFields];
 | |
|   const char *FieldNames[NumFields];
 | |
| 
 | |
|   // void *__stack;
 | |
|   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
 | |
|   FieldNames[0] = "__stack";
 | |
| 
 | |
|   // void *__gr_top;
 | |
|   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
 | |
|   FieldNames[1] = "__gr_top";
 | |
| 
 | |
|   // void *__vr_top;
 | |
|   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
 | |
|   FieldNames[2] = "__vr_top";
 | |
| 
 | |
|   // int __gr_offs;
 | |
|   FieldTypes[3] = Context->IntTy;
 | |
|   FieldNames[3] = "__gr_offs";
 | |
| 
 | |
|   // int __vr_offs;
 | |
|   FieldTypes[4] = Context->IntTy;
 | |
|   FieldNames[4] = "__vr_offs";
 | |
| 
 | |
|   // Create fields
 | |
|   for (unsigned i = 0; i < NumFields; ++i) {
 | |
|     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
 | |
|                                          VaListTagDecl,
 | |
|                                          SourceLocation(),
 | |
|                                          SourceLocation(),
 | |
|                                          &Context->Idents.get(FieldNames[i]),
 | |
|                                          FieldTypes[i], /*TInfo=*/nullptr,
 | |
|                                          /*BitWidth=*/nullptr,
 | |
|                                          /*Mutable=*/false,
 | |
|                                          ICIS_NoInit);
 | |
|     Field->setAccess(AS_public);
 | |
|     VaListTagDecl->addDecl(Field);
 | |
|   }
 | |
|   VaListTagDecl->completeDefinition();
 | |
|   Context->VaListTagDecl = VaListTagDecl;
 | |
|   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
 | |
| 
 | |
|   // } __builtin_va_list;
 | |
|   return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
 | |
| }
 | |
| 
 | |
| static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
 | |
|   // typedef struct __va_list_tag {
 | |
|   RecordDecl *VaListTagDecl;
 | |
| 
 | |
|   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
 | |
|   VaListTagDecl->startDefinition();
 | |
| 
 | |
|   const size_t NumFields = 5;
 | |
|   QualType FieldTypes[NumFields];
 | |
|   const char *FieldNames[NumFields];
 | |
| 
 | |
|   //   unsigned char gpr;
 | |
|   FieldTypes[0] = Context->UnsignedCharTy;
 | |
|   FieldNames[0] = "gpr";
 | |
| 
 | |
|   //   unsigned char fpr;
 | |
|   FieldTypes[1] = Context->UnsignedCharTy;
 | |
|   FieldNames[1] = "fpr";
 | |
| 
 | |
|   //   unsigned short reserved;
 | |
|   FieldTypes[2] = Context->UnsignedShortTy;
 | |
|   FieldNames[2] = "reserved";
 | |
| 
 | |
|   //   void* overflow_arg_area;
 | |
|   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
 | |
|   FieldNames[3] = "overflow_arg_area";
 | |
| 
 | |
|   //   void* reg_save_area;
 | |
|   FieldTypes[4] = Context->getPointerType(Context->VoidTy);
 | |
|   FieldNames[4] = "reg_save_area";
 | |
| 
 | |
|   // Create fields
 | |
|   for (unsigned i = 0; i < NumFields; ++i) {
 | |
|     FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
 | |
|                                          SourceLocation(),
 | |
|                                          SourceLocation(),
 | |
|                                          &Context->Idents.get(FieldNames[i]),
 | |
|                                          FieldTypes[i], /*TInfo=*/nullptr,
 | |
|                                          /*BitWidth=*/nullptr,
 | |
|                                          /*Mutable=*/false,
 | |
|                                          ICIS_NoInit);
 | |
|     Field->setAccess(AS_public);
 | |
|     VaListTagDecl->addDecl(Field);
 | |
|   }
 | |
|   VaListTagDecl->completeDefinition();
 | |
|   Context->VaListTagDecl = VaListTagDecl;
 | |
|   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
 | |
| 
 | |
|   // } __va_list_tag;
 | |
|   TypedefDecl *VaListTagTypedefDecl =
 | |
|       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
 | |
| 
 | |
|   QualType VaListTagTypedefType =
 | |
|     Context->getTypedefType(VaListTagTypedefDecl);
 | |
| 
 | |
|   // typedef __va_list_tag __builtin_va_list[1];
 | |
|   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
 | |
|   QualType VaListTagArrayType
 | |
|     = Context->getConstantArrayType(VaListTagTypedefType,
 | |
|                                     Size, nullptr, ArrayType::Normal, 0);
 | |
|   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
 | |
| }
 | |
| 
 | |
| static TypedefDecl *
 | |
| CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
 | |
|   // struct __va_list_tag {
 | |
|   RecordDecl *VaListTagDecl;
 | |
|   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
 | |
|   VaListTagDecl->startDefinition();
 | |
| 
 | |
|   const size_t NumFields = 4;
 | |
|   QualType FieldTypes[NumFields];
 | |
|   const char *FieldNames[NumFields];
 | |
| 
 | |
|   //   unsigned gp_offset;
 | |
|   FieldTypes[0] = Context->UnsignedIntTy;
 | |
|   FieldNames[0] = "gp_offset";
 | |
| 
 | |
|   //   unsigned fp_offset;
 | |
|   FieldTypes[1] = Context->UnsignedIntTy;
 | |
|   FieldNames[1] = "fp_offset";
 | |
| 
 | |
|   //   void* overflow_arg_area;
 | |
|   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
 | |
|   FieldNames[2] = "overflow_arg_area";
 | |
| 
 | |
|   //   void* reg_save_area;
 | |
|   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
 | |
|   FieldNames[3] = "reg_save_area";
 | |
| 
 | |
|   // Create fields
 | |
|   for (unsigned i = 0; i < NumFields; ++i) {
 | |
|     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
 | |
|                                          VaListTagDecl,
 | |
|                                          SourceLocation(),
 | |
|                                          SourceLocation(),
 | |
|                                          &Context->Idents.get(FieldNames[i]),
 | |
|                                          FieldTypes[i], /*TInfo=*/nullptr,
 | |
|                                          /*BitWidth=*/nullptr,
 | |
|                                          /*Mutable=*/false,
 | |
|                                          ICIS_NoInit);
 | |
|     Field->setAccess(AS_public);
 | |
|     VaListTagDecl->addDecl(Field);
 | |
|   }
 | |
|   VaListTagDecl->completeDefinition();
 | |
|   Context->VaListTagDecl = VaListTagDecl;
 | |
|   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
 | |
| 
 | |
|   // };
 | |
| 
 | |
|   // typedef struct __va_list_tag __builtin_va_list[1];
 | |
|   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
 | |
|   QualType VaListTagArrayType = Context->getConstantArrayType(
 | |
|       VaListTagType, Size, nullptr, ArrayType::Normal, 0);
 | |
|   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
 | |
| }
 | |
| 
 | |
| static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
 | |
|   // typedef int __builtin_va_list[4];
 | |
|   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
 | |
|   QualType IntArrayType = Context->getConstantArrayType(
 | |
|       Context->IntTy, Size, nullptr, ArrayType::Normal, 0);
 | |
|   return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
 | |
| }
 | |
| 
 | |
| static TypedefDecl *
 | |
| CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
 | |
|   // struct __va_list
 | |
|   RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
 | |
|   if (Context->getLangOpts().CPlusPlus) {
 | |
|     // namespace std { struct __va_list {
 | |
|     NamespaceDecl *NS;
 | |
|     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
 | |
|                                Context->getTranslationUnitDecl(),
 | |
|                                /*Inline*/false, SourceLocation(),
 | |
|                                SourceLocation(), &Context->Idents.get("std"),
 | |
|                                /*PrevDecl*/ nullptr);
 | |
|     NS->setImplicit();
 | |
|     VaListDecl->setDeclContext(NS);
 | |
|   }
 | |
| 
 | |
|   VaListDecl->startDefinition();
 | |
| 
 | |
|   // void * __ap;
 | |
|   FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
 | |
|                                        VaListDecl,
 | |
|                                        SourceLocation(),
 | |
|                                        SourceLocation(),
 | |
|                                        &Context->Idents.get("__ap"),
 | |
|                                        Context->getPointerType(Context->VoidTy),
 | |
|                                        /*TInfo=*/nullptr,
 | |
|                                        /*BitWidth=*/nullptr,
 | |
|                                        /*Mutable=*/false,
 | |
|                                        ICIS_NoInit);
 | |
|   Field->setAccess(AS_public);
 | |
|   VaListDecl->addDecl(Field);
 | |
| 
 | |
|   // };
 | |
|   VaListDecl->completeDefinition();
 | |
|   Context->VaListTagDecl = VaListDecl;
 | |
| 
 | |
|   // typedef struct __va_list __builtin_va_list;
 | |
|   QualType T = Context->getRecordType(VaListDecl);
 | |
|   return Context->buildImplicitTypedef(T, "__builtin_va_list");
 | |
| }
 | |
| 
 | |
| static TypedefDecl *
 | |
| CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
 | |
|   // struct __va_list_tag {
 | |
|   RecordDecl *VaListTagDecl;
 | |
|   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
 | |
|   VaListTagDecl->startDefinition();
 | |
| 
 | |
|   const size_t NumFields = 4;
 | |
|   QualType FieldTypes[NumFields];
 | |
|   const char *FieldNames[NumFields];
 | |
| 
 | |
|   //   long __gpr;
 | |
|   FieldTypes[0] = Context->LongTy;
 | |
|   FieldNames[0] = "__gpr";
 | |
| 
 | |
|   //   long __fpr;
 | |
|   FieldTypes[1] = Context->LongTy;
 | |
|   FieldNames[1] = "__fpr";
 | |
| 
 | |
|   //   void *__overflow_arg_area;
 | |
|   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
 | |
|   FieldNames[2] = "__overflow_arg_area";
 | |
| 
 | |
|   //   void *__reg_save_area;
 | |
|   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
 | |
|   FieldNames[3] = "__reg_save_area";
 | |
| 
 | |
|   // Create fields
 | |
|   for (unsigned i = 0; i < NumFields; ++i) {
 | |
|     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
 | |
|                                          VaListTagDecl,
 | |
|                                          SourceLocation(),
 | |
|                                          SourceLocation(),
 | |
|                                          &Context->Idents.get(FieldNames[i]),
 | |
|                                          FieldTypes[i], /*TInfo=*/nullptr,
 | |
|                                          /*BitWidth=*/nullptr,
 | |
|                                          /*Mutable=*/false,
 | |
|                                          ICIS_NoInit);
 | |
|     Field->setAccess(AS_public);
 | |
|     VaListTagDecl->addDecl(Field);
 | |
|   }
 | |
|   VaListTagDecl->completeDefinition();
 | |
|   Context->VaListTagDecl = VaListTagDecl;
 | |
|   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
 | |
| 
 | |
|   // };
 | |
| 
 | |
|   // typedef __va_list_tag __builtin_va_list[1];
 | |
|   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
 | |
|   QualType VaListTagArrayType = Context->getConstantArrayType(
 | |
|       VaListTagType, Size, nullptr, ArrayType::Normal, 0);
 | |
| 
 | |
|   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
 | |
| }
 | |
| 
 | |
| static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
 | |
|                                      TargetInfo::BuiltinVaListKind Kind) {
 | |
|   switch (Kind) {
 | |
|   case TargetInfo::CharPtrBuiltinVaList:
 | |
|     return CreateCharPtrBuiltinVaListDecl(Context);
 | |
|   case TargetInfo::VoidPtrBuiltinVaList:
 | |
|     return CreateVoidPtrBuiltinVaListDecl(Context);
 | |
|   case TargetInfo::AArch64ABIBuiltinVaList:
 | |
|     return CreateAArch64ABIBuiltinVaListDecl(Context);
 | |
|   case TargetInfo::PowerABIBuiltinVaList:
 | |
|     return CreatePowerABIBuiltinVaListDecl(Context);
 | |
|   case TargetInfo::X86_64ABIBuiltinVaList:
 | |
|     return CreateX86_64ABIBuiltinVaListDecl(Context);
 | |
|   case TargetInfo::PNaClABIBuiltinVaList:
 | |
|     return CreatePNaClABIBuiltinVaListDecl(Context);
 | |
|   case TargetInfo::AAPCSABIBuiltinVaList:
 | |
|     return CreateAAPCSABIBuiltinVaListDecl(Context);
 | |
|   case TargetInfo::SystemZBuiltinVaList:
 | |
|     return CreateSystemZBuiltinVaListDecl(Context);
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unhandled __builtin_va_list type kind");
 | |
| }
 | |
| 
 | |
| TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
 | |
|   if (!BuiltinVaListDecl) {
 | |
|     BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
 | |
|     assert(BuiltinVaListDecl->isImplicit());
 | |
|   }
 | |
| 
 | |
|   return BuiltinVaListDecl;
 | |
| }
 | |
| 
 | |
| Decl *ASTContext::getVaListTagDecl() const {
 | |
|   // Force the creation of VaListTagDecl by building the __builtin_va_list
 | |
|   // declaration.
 | |
|   if (!VaListTagDecl)
 | |
|     (void)getBuiltinVaListDecl();
 | |
| 
 | |
|   return VaListTagDecl;
 | |
| }
 | |
| 
 | |
| TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
 | |
|   if (!BuiltinMSVaListDecl)
 | |
|     BuiltinMSVaListDecl = CreateMSVaListDecl(this);
 | |
| 
 | |
|   return BuiltinMSVaListDecl;
 | |
| }
 | |
| 
 | |
| bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const {
 | |
|   return BuiltinInfo.canBeRedeclared(FD->getBuiltinID());
 | |
| }
 | |
| 
 | |
| void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
 | |
|   assert(ObjCConstantStringType.isNull() &&
 | |
|          "'NSConstantString' type already set!");
 | |
| 
 | |
|   ObjCConstantStringType = getObjCInterfaceType(Decl);
 | |
| }
 | |
| 
 | |
| /// Retrieve the template name that corresponds to a non-empty
 | |
| /// lookup.
 | |
| TemplateName
 | |
| ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
 | |
|                                       UnresolvedSetIterator End) const {
 | |
|   unsigned size = End - Begin;
 | |
|   assert(size > 1 && "set is not overloaded!");
 | |
| 
 | |
|   void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
 | |
|                           size * sizeof(FunctionTemplateDecl*));
 | |
|   auto *OT = new (memory) OverloadedTemplateStorage(size);
 | |
| 
 | |
|   NamedDecl **Storage = OT->getStorage();
 | |
|   for (UnresolvedSetIterator I = Begin; I != End; ++I) {
 | |
|     NamedDecl *D = *I;
 | |
|     assert(isa<FunctionTemplateDecl>(D) ||
 | |
|            isa<UnresolvedUsingValueDecl>(D) ||
 | |
|            (isa<UsingShadowDecl>(D) &&
 | |
|             isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
 | |
|     *Storage++ = D;
 | |
|   }
 | |
| 
 | |
|   return TemplateName(OT);
 | |
| }
 | |
| 
 | |
| /// Retrieve a template name representing an unqualified-id that has been
 | |
| /// assumed to name a template for ADL purposes.
 | |
| TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const {
 | |
|   auto *OT = new (*this) AssumedTemplateStorage(Name);
 | |
|   return TemplateName(OT);
 | |
| }
 | |
| 
 | |
| /// Retrieve the template name that represents a qualified
 | |
| /// template name such as \c std::vector.
 | |
| TemplateName
 | |
| ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
 | |
|                                      bool TemplateKeyword,
 | |
|                                      TemplateDecl *Template) const {
 | |
|   assert(NNS && "Missing nested-name-specifier in qualified template name");
 | |
| 
 | |
|   // FIXME: Canonicalization?
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   QualifiedTemplateName *QTN =
 | |
|     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   if (!QTN) {
 | |
|     QTN = new (*this, alignof(QualifiedTemplateName))
 | |
|         QualifiedTemplateName(NNS, TemplateKeyword, Template);
 | |
|     QualifiedTemplateNames.InsertNode(QTN, InsertPos);
 | |
|   }
 | |
| 
 | |
|   return TemplateName(QTN);
 | |
| }
 | |
| 
 | |
| /// Retrieve the template name that represents a dependent
 | |
| /// template name such as \c MetaFun::template apply.
 | |
| TemplateName
 | |
| ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
 | |
|                                      const IdentifierInfo *Name) const {
 | |
|   assert((!NNS || NNS->isDependent()) &&
 | |
|          "Nested name specifier must be dependent");
 | |
| 
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   DependentTemplateName::Profile(ID, NNS, Name);
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   DependentTemplateName *QTN =
 | |
|     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
 | |
| 
 | |
|   if (QTN)
 | |
|     return TemplateName(QTN);
 | |
| 
 | |
|   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
 | |
|   if (CanonNNS == NNS) {
 | |
|     QTN = new (*this, alignof(DependentTemplateName))
 | |
|         DependentTemplateName(NNS, Name);
 | |
|   } else {
 | |
|     TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
 | |
|     QTN = new (*this, alignof(DependentTemplateName))
 | |
|         DependentTemplateName(NNS, Name, Canon);
 | |
|     DependentTemplateName *CheckQTN =
 | |
|       DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(!CheckQTN && "Dependent type name canonicalization broken");
 | |
|     (void)CheckQTN;
 | |
|   }
 | |
| 
 | |
|   DependentTemplateNames.InsertNode(QTN, InsertPos);
 | |
|   return TemplateName(QTN);
 | |
| }
 | |
| 
 | |
| /// Retrieve the template name that represents a dependent
 | |
| /// template name such as \c MetaFun::template operator+.
 | |
| TemplateName
 | |
| ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
 | |
|                                      OverloadedOperatorKind Operator) const {
 | |
|   assert((!NNS || NNS->isDependent()) &&
 | |
|          "Nested name specifier must be dependent");
 | |
| 
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   DependentTemplateName::Profile(ID, NNS, Operator);
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   DependentTemplateName *QTN
 | |
|     = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
 | |
| 
 | |
|   if (QTN)
 | |
|     return TemplateName(QTN);
 | |
| 
 | |
|   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
 | |
|   if (CanonNNS == NNS) {
 | |
|     QTN = new (*this, alignof(DependentTemplateName))
 | |
|         DependentTemplateName(NNS, Operator);
 | |
|   } else {
 | |
|     TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
 | |
|     QTN = new (*this, alignof(DependentTemplateName))
 | |
|         DependentTemplateName(NNS, Operator, Canon);
 | |
| 
 | |
|     DependentTemplateName *CheckQTN
 | |
|       = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
 | |
|     assert(!CheckQTN && "Dependent template name canonicalization broken");
 | |
|     (void)CheckQTN;
 | |
|   }
 | |
| 
 | |
|   DependentTemplateNames.InsertNode(QTN, InsertPos);
 | |
|   return TemplateName(QTN);
 | |
| }
 | |
| 
 | |
| TemplateName
 | |
| ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
 | |
|                                          TemplateName replacement) const {
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
 | |
| 
 | |
|   void *insertPos = nullptr;
 | |
|   SubstTemplateTemplateParmStorage *subst
 | |
|     = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
 | |
| 
 | |
|   if (!subst) {
 | |
|     subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
 | |
|     SubstTemplateTemplateParms.InsertNode(subst, insertPos);
 | |
|   }
 | |
| 
 | |
|   return TemplateName(subst);
 | |
| }
 | |
| 
 | |
| TemplateName
 | |
| ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
 | |
|                                        const TemplateArgument &ArgPack) const {
 | |
|   auto &Self = const_cast<ASTContext &>(*this);
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
 | |
| 
 | |
|   void *InsertPos = nullptr;
 | |
|   SubstTemplateTemplateParmPackStorage *Subst
 | |
|     = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
 | |
| 
 | |
|   if (!Subst) {
 | |
|     Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
 | |
|                                                            ArgPack.pack_size(),
 | |
|                                                          ArgPack.pack_begin());
 | |
|     SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
 | |
|   }
 | |
| 
 | |
|   return TemplateName(Subst);
 | |
| }
 | |
| 
 | |
| /// getFromTargetType - Given one of the integer types provided by
 | |
| /// TargetInfo, produce the corresponding type. The unsigned @p Type
 | |
| /// is actually a value of type @c TargetInfo::IntType.
 | |
| CanQualType ASTContext::getFromTargetType(unsigned Type) const {
 | |
|   switch (Type) {
 | |
|   case TargetInfo::NoInt: return {};
 | |
|   case TargetInfo::SignedChar: return SignedCharTy;
 | |
|   case TargetInfo::UnsignedChar: return UnsignedCharTy;
 | |
|   case TargetInfo::SignedShort: return ShortTy;
 | |
|   case TargetInfo::UnsignedShort: return UnsignedShortTy;
 | |
|   case TargetInfo::SignedInt: return IntTy;
 | |
|   case TargetInfo::UnsignedInt: return UnsignedIntTy;
 | |
|   case TargetInfo::SignedLong: return LongTy;
 | |
|   case TargetInfo::UnsignedLong: return UnsignedLongTy;
 | |
|   case TargetInfo::SignedLongLong: return LongLongTy;
 | |
|   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unhandled TargetInfo::IntType value");
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        Type Predicates.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
 | |
| /// garbage collection attribute.
 | |
| ///
 | |
| Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
 | |
|   if (getLangOpts().getGC() == LangOptions::NonGC)
 | |
|     return Qualifiers::GCNone;
 | |
| 
 | |
|   assert(getLangOpts().ObjC);
 | |
|   Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
 | |
| 
 | |
|   // Default behaviour under objective-C's gc is for ObjC pointers
 | |
|   // (or pointers to them) be treated as though they were declared
 | |
|   // as __strong.
 | |
|   if (GCAttrs == Qualifiers::GCNone) {
 | |
|     if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
 | |
|       return Qualifiers::Strong;
 | |
|     else if (Ty->isPointerType())
 | |
|       return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType());
 | |
|   } else {
 | |
|     // It's not valid to set GC attributes on anything that isn't a
 | |
|     // pointer.
 | |
| #ifndef NDEBUG
 | |
|     QualType CT = Ty->getCanonicalTypeInternal();
 | |
|     while (const auto *AT = dyn_cast<ArrayType>(CT))
 | |
|       CT = AT->getElementType();
 | |
|     assert(CT->isAnyPointerType() || CT->isBlockPointerType());
 | |
| #endif
 | |
|   }
 | |
|   return GCAttrs;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        Type Compatibility Testing
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// areCompatVectorTypes - Return true if the two specified vector types are
 | |
| /// compatible.
 | |
| static bool areCompatVectorTypes(const VectorType *LHS,
 | |
|                                  const VectorType *RHS) {
 | |
|   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
 | |
|   return LHS->getElementType() == RHS->getElementType() &&
 | |
|          LHS->getNumElements() == RHS->getNumElements();
 | |
| }
 | |
| 
 | |
| bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
 | |
|                                           QualType SecondVec) {
 | |
|   assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
 | |
|   assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
 | |
| 
 | |
|   if (hasSameUnqualifiedType(FirstVec, SecondVec))
 | |
|     return true;
 | |
| 
 | |
|   // Treat Neon vector types and most AltiVec vector types as if they are the
 | |
|   // equivalent GCC vector types.
 | |
|   const auto *First = FirstVec->castAs<VectorType>();
 | |
|   const auto *Second = SecondVec->castAs<VectorType>();
 | |
|   if (First->getNumElements() == Second->getNumElements() &&
 | |
|       hasSameType(First->getElementType(), Second->getElementType()) &&
 | |
|       First->getVectorKind() != VectorType::AltiVecPixel &&
 | |
|       First->getVectorKind() != VectorType::AltiVecBool &&
 | |
|       Second->getVectorKind() != VectorType::AltiVecPixel &&
 | |
|       Second->getVectorKind() != VectorType::AltiVecBool)
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const {
 | |
|   while (true) {
 | |
|     // __strong id
 | |
|     if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) {
 | |
|       if (Attr->getAttrKind() == attr::ObjCOwnership)
 | |
|         return true;
 | |
| 
 | |
|       Ty = Attr->getModifiedType();
 | |
| 
 | |
|     // X *__strong (...)
 | |
|     } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) {
 | |
|       Ty = Paren->getInnerType();
 | |
| 
 | |
|     // We do not want to look through typedefs, typeof(expr),
 | |
|     // typeof(type), or any other way that the type is somehow
 | |
|     // abstracted.
 | |
|     } else {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
 | |
| /// inheritance hierarchy of 'rProto'.
 | |
| bool
 | |
| ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
 | |
|                                            ObjCProtocolDecl *rProto) const {
 | |
|   if (declaresSameEntity(lProto, rProto))
 | |
|     return true;
 | |
|   for (auto *PI : rProto->protocols())
 | |
|     if (ProtocolCompatibleWithProtocol(lProto, PI))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
 | |
| /// Class<pr1, ...>.
 | |
| bool ASTContext::ObjCQualifiedClassTypesAreCompatible(
 | |
|     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) {
 | |
|   for (auto *lhsProto : lhs->quals()) {
 | |
|     bool match = false;
 | |
|     for (auto *rhsProto : rhs->quals()) {
 | |
|       if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
 | |
|         match = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (!match)
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
 | |
| /// ObjCQualifiedIDType.
 | |
| bool ASTContext::ObjCQualifiedIdTypesAreCompatible(
 | |
|     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs,
 | |
|     bool compare) {
 | |
|   // Allow id<P..> and an 'id' in all cases.
 | |
|   if (lhs->isObjCIdType() || rhs->isObjCIdType())
 | |
|     return true;
 | |
| 
 | |
|   // Don't allow id<P..> to convert to Class or Class<P..> in either direction.
 | |
|   if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() ||
 | |
|       rhs->isObjCClassType() || rhs->isObjCQualifiedClassType())
 | |
|     return false;
 | |
| 
 | |
|   if (lhs->isObjCQualifiedIdType()) {
 | |
|     if (rhs->qual_empty()) {
 | |
|       // If the RHS is a unqualified interface pointer "NSString*",
 | |
|       // make sure we check the class hierarchy.
 | |
|       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
 | |
|         for (auto *I : lhs->quals()) {
 | |
|           // when comparing an id<P> on lhs with a static type on rhs,
 | |
|           // see if static class implements all of id's protocols, directly or
 | |
|           // through its super class and categories.
 | |
|           if (!rhsID->ClassImplementsProtocol(I, true))
 | |
|             return false;
 | |
|         }
 | |
|       }
 | |
|       // If there are no qualifiers and no interface, we have an 'id'.
 | |
|       return true;
 | |
|     }
 | |
|     // Both the right and left sides have qualifiers.
 | |
|     for (auto *lhsProto : lhs->quals()) {
 | |
|       bool match = false;
 | |
| 
 | |
|       // when comparing an id<P> on lhs with a static type on rhs,
 | |
|       // see if static class implements all of id's protocols, directly or
 | |
|       // through its super class and categories.
 | |
|       for (auto *rhsProto : rhs->quals()) {
 | |
|         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
 | |
|             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
 | |
|           match = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       // If the RHS is a qualified interface pointer "NSString<P>*",
 | |
|       // make sure we check the class hierarchy.
 | |
|       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
 | |
|         for (auto *I : lhs->quals()) {
 | |
|           // when comparing an id<P> on lhs with a static type on rhs,
 | |
|           // see if static class implements all of id's protocols, directly or
 | |
|           // through its super class and categories.
 | |
|           if (rhsID->ClassImplementsProtocol(I, true)) {
 | |
|             match = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       if (!match)
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>");
 | |
| 
 | |
|   if (lhs->getInterfaceType()) {
 | |
|     // If both the right and left sides have qualifiers.
 | |
|     for (auto *lhsProto : lhs->quals()) {
 | |
|       bool match = false;
 | |
| 
 | |
|       // when comparing an id<P> on rhs with a static type on lhs,
 | |
|       // see if static class implements all of id's protocols, directly or
 | |
|       // through its super class and categories.
 | |
|       // First, lhs protocols in the qualifier list must be found, direct
 | |
|       // or indirect in rhs's qualifier list or it is a mismatch.
 | |
|       for (auto *rhsProto : rhs->quals()) {
 | |
|         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
 | |
|             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
 | |
|           match = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (!match)
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Static class's protocols, or its super class or category protocols
 | |
|     // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
 | |
|     if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) {
 | |
|       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
 | |
|       CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
 | |
|       // This is rather dubious but matches gcc's behavior. If lhs has
 | |
|       // no type qualifier and its class has no static protocol(s)
 | |
|       // assume that it is mismatch.
 | |
|       if (LHSInheritedProtocols.empty() && lhs->qual_empty())
 | |
|         return false;
 | |
|       for (auto *lhsProto : LHSInheritedProtocols) {
 | |
|         bool match = false;
 | |
|         for (auto *rhsProto : rhs->quals()) {
 | |
|           if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
 | |
|               (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
 | |
|             match = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         if (!match)
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// canAssignObjCInterfaces - Return true if the two interface types are
 | |
| /// compatible for assignment from RHS to LHS.  This handles validation of any
 | |
| /// protocol qualifiers on the LHS or RHS.
 | |
| bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
 | |
|                                          const ObjCObjectPointerType *RHSOPT) {
 | |
|   const ObjCObjectType* LHS = LHSOPT->getObjectType();
 | |
|   const ObjCObjectType* RHS = RHSOPT->getObjectType();
 | |
| 
 | |
|   // If either type represents the built-in 'id' type, return true.
 | |
|   if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId())
 | |
|     return true;
 | |
| 
 | |
|   // Function object that propagates a successful result or handles
 | |
|   // __kindof types.
 | |
|   auto finish = [&](bool succeeded) -> bool {
 | |
|     if (succeeded)
 | |
|       return true;
 | |
| 
 | |
|     if (!RHS->isKindOfType())
 | |
|       return false;
 | |
| 
 | |
|     // Strip off __kindof and protocol qualifiers, then check whether
 | |
|     // we can assign the other way.
 | |
|     return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
 | |
|                                    LHSOPT->stripObjCKindOfTypeAndQuals(*this));
 | |
|   };
 | |
| 
 | |
|   // Casts from or to id<P> are allowed when the other side has compatible
 | |
|   // protocols.
 | |
|   if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
 | |
|     return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false));
 | |
|   }
 | |
| 
 | |
|   // Verify protocol compatibility for casts from Class<P1> to Class<P2>.
 | |
|   if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
 | |
|     return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT));
 | |
|   }
 | |
| 
 | |
|   // Casts from Class to Class<Foo>, or vice-versa, are allowed.
 | |
|   if (LHS->isObjCClass() && RHS->isObjCClass()) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If we have 2 user-defined types, fall into that path.
 | |
|   if (LHS->getInterface() && RHS->getInterface()) {
 | |
|     return finish(canAssignObjCInterfaces(LHS, RHS));
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
 | |
| /// for providing type-safety for objective-c pointers used to pass/return
 | |
| /// arguments in block literals. When passed as arguments, passing 'A*' where
 | |
| /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
 | |
| /// not OK. For the return type, the opposite is not OK.
 | |
| bool ASTContext::canAssignObjCInterfacesInBlockPointer(
 | |
|                                          const ObjCObjectPointerType *LHSOPT,
 | |
|                                          const ObjCObjectPointerType *RHSOPT,
 | |
|                                          bool BlockReturnType) {
 | |
| 
 | |
|   // Function object that propagates a successful result or handles
 | |
|   // __kindof types.
 | |
|   auto finish = [&](bool succeeded) -> bool {
 | |
|     if (succeeded)
 | |
|       return true;
 | |
| 
 | |
|     const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
 | |
|     if (!Expected->isKindOfType())
 | |
|       return false;
 | |
| 
 | |
|     // Strip off __kindof and protocol qualifiers, then check whether
 | |
|     // we can assign the other way.
 | |
|     return canAssignObjCInterfacesInBlockPointer(
 | |
|              RHSOPT->stripObjCKindOfTypeAndQuals(*this),
 | |
|              LHSOPT->stripObjCKindOfTypeAndQuals(*this),
 | |
|              BlockReturnType);
 | |
|   };
 | |
| 
 | |
|   if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
 | |
|     return true;
 | |
| 
 | |
|   if (LHSOPT->isObjCBuiltinType()) {
 | |
|     return finish(RHSOPT->isObjCBuiltinType() ||
 | |
|                   RHSOPT->isObjCQualifiedIdType());
 | |
|   }
 | |
| 
 | |
|   if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
 | |
|     return finish(ObjCQualifiedIdTypesAreCompatible(
 | |
|         (BlockReturnType ? LHSOPT : RHSOPT),
 | |
|         (BlockReturnType ? RHSOPT : LHSOPT), false));
 | |
| 
 | |
|   const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
 | |
|   const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
 | |
|   if (LHS && RHS)  { // We have 2 user-defined types.
 | |
|     if (LHS != RHS) {
 | |
|       if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
 | |
|         return finish(BlockReturnType);
 | |
|       if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
 | |
|         return finish(!BlockReturnType);
 | |
|     }
 | |
|     else
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Comparison routine for Objective-C protocols to be used with
 | |
| /// llvm::array_pod_sort.
 | |
| static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
 | |
|                                       ObjCProtocolDecl * const *rhs) {
 | |
|   return (*lhs)->getName().compare((*rhs)->getName());
 | |
| }
 | |
| 
 | |
| /// getIntersectionOfProtocols - This routine finds the intersection of set
 | |
| /// of protocols inherited from two distinct objective-c pointer objects with
 | |
| /// the given common base.
 | |
| /// It is used to build composite qualifier list of the composite type of
 | |
| /// the conditional expression involving two objective-c pointer objects.
 | |
| static
 | |
| void getIntersectionOfProtocols(ASTContext &Context,
 | |
|                                 const ObjCInterfaceDecl *CommonBase,
 | |
|                                 const ObjCObjectPointerType *LHSOPT,
 | |
|                                 const ObjCObjectPointerType *RHSOPT,
 | |
|       SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
 | |
| 
 | |
|   const ObjCObjectType* LHS = LHSOPT->getObjectType();
 | |
|   const ObjCObjectType* RHS = RHSOPT->getObjectType();
 | |
|   assert(LHS->getInterface() && "LHS must have an interface base");
 | |
|   assert(RHS->getInterface() && "RHS must have an interface base");
 | |
| 
 | |
|   // Add all of the protocols for the LHS.
 | |
|   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
 | |
| 
 | |
|   // Start with the protocol qualifiers.
 | |
|   for (auto proto : LHS->quals()) {
 | |
|     Context.CollectInheritedProtocols(proto, LHSProtocolSet);
 | |
|   }
 | |
| 
 | |
|   // Also add the protocols associated with the LHS interface.
 | |
|   Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
 | |
| 
 | |
|   // Add all of the protocols for the RHS.
 | |
|   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
 | |
| 
 | |
|   // Start with the protocol qualifiers.
 | |
|   for (auto proto : RHS->quals()) {
 | |
|     Context.CollectInheritedProtocols(proto, RHSProtocolSet);
 | |
|   }
 | |
| 
 | |
|   // Also add the protocols associated with the RHS interface.
 | |
|   Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
 | |
| 
 | |
|   // Compute the intersection of the collected protocol sets.
 | |
|   for (auto proto : LHSProtocolSet) {
 | |
|     if (RHSProtocolSet.count(proto))
 | |
|       IntersectionSet.push_back(proto);
 | |
|   }
 | |
| 
 | |
|   // Compute the set of protocols that is implied by either the common type or
 | |
|   // the protocols within the intersection.
 | |
|   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
 | |
|   Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
 | |
| 
 | |
|   // Remove any implied protocols from the list of inherited protocols.
 | |
|   if (!ImpliedProtocols.empty()) {
 | |
|     IntersectionSet.erase(
 | |
|       std::remove_if(IntersectionSet.begin(),
 | |
|                      IntersectionSet.end(),
 | |
|                      [&](ObjCProtocolDecl *proto) -> bool {
 | |
|                        return ImpliedProtocols.count(proto) > 0;
 | |
|                      }),
 | |
|       IntersectionSet.end());
 | |
|   }
 | |
| 
 | |
|   // Sort the remaining protocols by name.
 | |
|   llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
 | |
|                        compareObjCProtocolsByName);
 | |
| }
 | |
| 
 | |
| /// Determine whether the first type is a subtype of the second.
 | |
| static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
 | |
|                                      QualType rhs) {
 | |
|   // Common case: two object pointers.
 | |
|   const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
 | |
|   const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
 | |
|   if (lhsOPT && rhsOPT)
 | |
|     return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
 | |
| 
 | |
|   // Two block pointers.
 | |
|   const auto *lhsBlock = lhs->getAs<BlockPointerType>();
 | |
|   const auto *rhsBlock = rhs->getAs<BlockPointerType>();
 | |
|   if (lhsBlock && rhsBlock)
 | |
|     return ctx.typesAreBlockPointerCompatible(lhs, rhs);
 | |
| 
 | |
|   // If either is an unqualified 'id' and the other is a block, it's
 | |
|   // acceptable.
 | |
|   if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
 | |
|       (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Check that the given Objective-C type argument lists are equivalent.
 | |
| static bool sameObjCTypeArgs(ASTContext &ctx,
 | |
|                              const ObjCInterfaceDecl *iface,
 | |
|                              ArrayRef<QualType> lhsArgs,
 | |
|                              ArrayRef<QualType> rhsArgs,
 | |
|                              bool stripKindOf) {
 | |
|   if (lhsArgs.size() != rhsArgs.size())
 | |
|     return false;
 | |
| 
 | |
|   ObjCTypeParamList *typeParams = iface->getTypeParamList();
 | |
|   for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
 | |
|     if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
 | |
|       continue;
 | |
| 
 | |
|     switch (typeParams->begin()[i]->getVariance()) {
 | |
|     case ObjCTypeParamVariance::Invariant:
 | |
|       if (!stripKindOf ||
 | |
|           !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
 | |
|                            rhsArgs[i].stripObjCKindOfType(ctx))) {
 | |
|         return false;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case ObjCTypeParamVariance::Covariant:
 | |
|       if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
 | |
|         return false;
 | |
|       break;
 | |
| 
 | |
|     case ObjCTypeParamVariance::Contravariant:
 | |
|       if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
 | |
|         return false;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| QualType ASTContext::areCommonBaseCompatible(
 | |
|            const ObjCObjectPointerType *Lptr,
 | |
|            const ObjCObjectPointerType *Rptr) {
 | |
|   const ObjCObjectType *LHS = Lptr->getObjectType();
 | |
|   const ObjCObjectType *RHS = Rptr->getObjectType();
 | |
|   const ObjCInterfaceDecl* LDecl = LHS->getInterface();
 | |
|   const ObjCInterfaceDecl* RDecl = RHS->getInterface();
 | |
| 
 | |
|   if (!LDecl || !RDecl)
 | |
|     return {};
 | |
| 
 | |
|   // When either LHS or RHS is a kindof type, we should return a kindof type.
 | |
|   // For example, for common base of kindof(ASub1) and kindof(ASub2), we return
 | |
|   // kindof(A).
 | |
|   bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType();
 | |
| 
 | |
|   // Follow the left-hand side up the class hierarchy until we either hit a
 | |
|   // root or find the RHS. Record the ancestors in case we don't find it.
 | |
|   llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
 | |
|     LHSAncestors;
 | |
|   while (true) {
 | |
|     // Record this ancestor. We'll need this if the common type isn't in the
 | |
|     // path from the LHS to the root.
 | |
|     LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
 | |
| 
 | |
|     if (declaresSameEntity(LHS->getInterface(), RDecl)) {
 | |
|       // Get the type arguments.
 | |
|       ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
 | |
|       bool anyChanges = false;
 | |
|       if (LHS->isSpecialized() && RHS->isSpecialized()) {
 | |
|         // Both have type arguments, compare them.
 | |
|         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
 | |
|                               LHS->getTypeArgs(), RHS->getTypeArgs(),
 | |
|                               /*stripKindOf=*/true))
 | |
|           return {};
 | |
|       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
 | |
|         // If only one has type arguments, the result will not have type
 | |
|         // arguments.
 | |
|         LHSTypeArgs = {};
 | |
|         anyChanges = true;
 | |
|       }
 | |
| 
 | |
|       // Compute the intersection of protocols.
 | |
|       SmallVector<ObjCProtocolDecl *, 8> Protocols;
 | |
|       getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
 | |
|                                  Protocols);
 | |
|       if (!Protocols.empty())
 | |
|         anyChanges = true;
 | |
| 
 | |
|       // If anything in the LHS will have changed, build a new result type.
 | |
|       // If we need to return a kindof type but LHS is not a kindof type, we
 | |
|       // build a new result type.
 | |
|       if (anyChanges || LHS->isKindOfType() != anyKindOf) {
 | |
|         QualType Result = getObjCInterfaceType(LHS->getInterface());
 | |
|         Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
 | |
|                                    anyKindOf || LHS->isKindOfType());
 | |
|         return getObjCObjectPointerType(Result);
 | |
|       }
 | |
| 
 | |
|       return getObjCObjectPointerType(QualType(LHS, 0));
 | |
|     }
 | |
| 
 | |
|     // Find the superclass.
 | |
|     QualType LHSSuperType = LHS->getSuperClassType();
 | |
|     if (LHSSuperType.isNull())
 | |
|       break;
 | |
| 
 | |
|     LHS = LHSSuperType->castAs<ObjCObjectType>();
 | |
|   }
 | |
| 
 | |
|   // We didn't find anything by following the LHS to its root; now check
 | |
|   // the RHS against the cached set of ancestors.
 | |
|   while (true) {
 | |
|     auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
 | |
|     if (KnownLHS != LHSAncestors.end()) {
 | |
|       LHS = KnownLHS->second;
 | |
| 
 | |
|       // Get the type arguments.
 | |
|       ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
 | |
|       bool anyChanges = false;
 | |
|       if (LHS->isSpecialized() && RHS->isSpecialized()) {
 | |
|         // Both have type arguments, compare them.
 | |
|         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
 | |
|                               LHS->getTypeArgs(), RHS->getTypeArgs(),
 | |
|                               /*stripKindOf=*/true))
 | |
|           return {};
 | |
|       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
 | |
|         // If only one has type arguments, the result will not have type
 | |
|         // arguments.
 | |
|         RHSTypeArgs = {};
 | |
|         anyChanges = true;
 | |
|       }
 | |
| 
 | |
|       // Compute the intersection of protocols.
 | |
|       SmallVector<ObjCProtocolDecl *, 8> Protocols;
 | |
|       getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
 | |
|                                  Protocols);
 | |
|       if (!Protocols.empty())
 | |
|         anyChanges = true;
 | |
| 
 | |
|       // If we need to return a kindof type but RHS is not a kindof type, we
 | |
|       // build a new result type.
 | |
|       if (anyChanges || RHS->isKindOfType() != anyKindOf) {
 | |
|         QualType Result = getObjCInterfaceType(RHS->getInterface());
 | |
|         Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
 | |
|                                    anyKindOf || RHS->isKindOfType());
 | |
|         return getObjCObjectPointerType(Result);
 | |
|       }
 | |
| 
 | |
|       return getObjCObjectPointerType(QualType(RHS, 0));
 | |
|     }
 | |
| 
 | |
|     // Find the superclass of the RHS.
 | |
|     QualType RHSSuperType = RHS->getSuperClassType();
 | |
|     if (RHSSuperType.isNull())
 | |
|       break;
 | |
| 
 | |
|     RHS = RHSSuperType->castAs<ObjCObjectType>();
 | |
|   }
 | |
| 
 | |
|   return {};
 | |
| }
 | |
| 
 | |
| bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
 | |
|                                          const ObjCObjectType *RHS) {
 | |
|   assert(LHS->getInterface() && "LHS is not an interface type");
 | |
|   assert(RHS->getInterface() && "RHS is not an interface type");
 | |
| 
 | |
|   // Verify that the base decls are compatible: the RHS must be a subclass of
 | |
|   // the LHS.
 | |
|   ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
 | |
|   bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
 | |
|   if (!IsSuperClass)
 | |
|     return false;
 | |
| 
 | |
|   // If the LHS has protocol qualifiers, determine whether all of them are
 | |
|   // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
 | |
|   // LHS).
 | |
|   if (LHS->getNumProtocols() > 0) {
 | |
|     // OK if conversion of LHS to SuperClass results in narrowing of types
 | |
|     // ; i.e., SuperClass may implement at least one of the protocols
 | |
|     // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
 | |
|     // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
 | |
|     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
 | |
|     CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
 | |
|     // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
 | |
|     // qualifiers.
 | |
|     for (auto *RHSPI : RHS->quals())
 | |
|       CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
 | |
|     // If there is no protocols associated with RHS, it is not a match.
 | |
|     if (SuperClassInheritedProtocols.empty())
 | |
|       return false;
 | |
| 
 | |
|     for (const auto *LHSProto : LHS->quals()) {
 | |
|       bool SuperImplementsProtocol = false;
 | |
|       for (auto *SuperClassProto : SuperClassInheritedProtocols)
 | |
|         if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
 | |
|           SuperImplementsProtocol = true;
 | |
|           break;
 | |
|         }
 | |
|       if (!SuperImplementsProtocol)
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the LHS is specialized, we may need to check type arguments.
 | |
|   if (LHS->isSpecialized()) {
 | |
|     // Follow the superclass chain until we've matched the LHS class in the
 | |
|     // hierarchy. This substitutes type arguments through.
 | |
|     const ObjCObjectType *RHSSuper = RHS;
 | |
|     while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
 | |
|       RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
 | |
| 
 | |
|     // If the RHS is specializd, compare type arguments.
 | |
|     if (RHSSuper->isSpecialized() &&
 | |
|         !sameObjCTypeArgs(*this, LHS->getInterface(),
 | |
|                           LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
 | |
|                           /*stripKindOf=*/true)) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
 | |
|   // get the "pointed to" types
 | |
|   const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
 | |
|   const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
 | |
| 
 | |
|   if (!LHSOPT || !RHSOPT)
 | |
|     return false;
 | |
| 
 | |
|   return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
 | |
|          canAssignObjCInterfaces(RHSOPT, LHSOPT);
 | |
| }
 | |
| 
 | |
| bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
 | |
|   return canAssignObjCInterfaces(
 | |
|       getObjCObjectPointerType(To)->castAs<ObjCObjectPointerType>(),
 | |
|       getObjCObjectPointerType(From)->castAs<ObjCObjectPointerType>());
 | |
| }
 | |
| 
 | |
| /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
 | |
| /// both shall have the identically qualified version of a compatible type.
 | |
| /// C99 6.2.7p1: Two types have compatible types if their types are the
 | |
| /// same. See 6.7.[2,3,5] for additional rules.
 | |
| bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
 | |
|                                     bool CompareUnqualified) {
 | |
|   if (getLangOpts().CPlusPlus)
 | |
|     return hasSameType(LHS, RHS);
 | |
| 
 | |
|   return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
 | |
| }
 | |
| 
 | |
| bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
 | |
|   return typesAreCompatible(LHS, RHS);
 | |
| }
 | |
| 
 | |
| bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
 | |
|   return !mergeTypes(LHS, RHS, true).isNull();
 | |
| }
 | |
| 
 | |
| /// mergeTransparentUnionType - if T is a transparent union type and a member
 | |
| /// of T is compatible with SubType, return the merged type, else return
 | |
| /// QualType()
 | |
| QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
 | |
|                                                bool OfBlockPointer,
 | |
|                                                bool Unqualified) {
 | |
|   if (const RecordType *UT = T->getAsUnionType()) {
 | |
|     RecordDecl *UD = UT->getDecl();
 | |
|     if (UD->hasAttr<TransparentUnionAttr>()) {
 | |
|       for (const auto *I : UD->fields()) {
 | |
|         QualType ET = I->getType().getUnqualifiedType();
 | |
|         QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
 | |
|         if (!MT.isNull())
 | |
|           return MT;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return {};
 | |
| }
 | |
| 
 | |
| /// mergeFunctionParameterTypes - merge two types which appear as function
 | |
| /// parameter types
 | |
| QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
 | |
|                                                  bool OfBlockPointer,
 | |
|                                                  bool Unqualified) {
 | |
|   // GNU extension: two types are compatible if they appear as a function
 | |
|   // argument, one of the types is a transparent union type and the other
 | |
|   // type is compatible with a union member
 | |
|   QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
 | |
|                                               Unqualified);
 | |
|   if (!lmerge.isNull())
 | |
|     return lmerge;
 | |
| 
 | |
|   QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
 | |
|                                               Unqualified);
 | |
|   if (!rmerge.isNull())
 | |
|     return rmerge;
 | |
| 
 | |
|   return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
 | |
|                                         bool OfBlockPointer,
 | |
|                                         bool Unqualified) {
 | |
|   const auto *lbase = lhs->castAs<FunctionType>();
 | |
|   const auto *rbase = rhs->castAs<FunctionType>();
 | |
|   const auto *lproto = dyn_cast<FunctionProtoType>(lbase);
 | |
|   const auto *rproto = dyn_cast<FunctionProtoType>(rbase);
 | |
|   bool allLTypes = true;
 | |
|   bool allRTypes = true;
 | |
| 
 | |
|   // Check return type
 | |
|   QualType retType;
 | |
|   if (OfBlockPointer) {
 | |
|     QualType RHS = rbase->getReturnType();
 | |
|     QualType LHS = lbase->getReturnType();
 | |
|     bool UnqualifiedResult = Unqualified;
 | |
|     if (!UnqualifiedResult)
 | |
|       UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
 | |
|     retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
 | |
|   }
 | |
|   else
 | |
|     retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
 | |
|                          Unqualified);
 | |
|   if (retType.isNull())
 | |
|     return {};
 | |
| 
 | |
|   if (Unqualified)
 | |
|     retType = retType.getUnqualifiedType();
 | |
| 
 | |
|   CanQualType LRetType = getCanonicalType(lbase->getReturnType());
 | |
|   CanQualType RRetType = getCanonicalType(rbase->getReturnType());
 | |
|   if (Unqualified) {
 | |
|     LRetType = LRetType.getUnqualifiedType();
 | |
|     RRetType = RRetType.getUnqualifiedType();
 | |
|   }
 | |
| 
 | |
|   if (getCanonicalType(retType) != LRetType)
 | |
|     allLTypes = false;
 | |
|   if (getCanonicalType(retType) != RRetType)
 | |
|     allRTypes = false;
 | |
| 
 | |
|   // FIXME: double check this
 | |
|   // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
 | |
|   //                           rbase->getRegParmAttr() != 0 &&
 | |
|   //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
 | |
|   FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
 | |
|   FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
 | |
| 
 | |
|   // Compatible functions must have compatible calling conventions
 | |
|   if (lbaseInfo.getCC() != rbaseInfo.getCC())
 | |
|     return {};
 | |
| 
 | |
|   // Regparm is part of the calling convention.
 | |
|   if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
 | |
|     return {};
 | |
|   if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
 | |
|     return {};
 | |
| 
 | |
|   if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
 | |
|     return {};
 | |
|   if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs())
 | |
|     return {};
 | |
|   if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck())
 | |
|     return {};
 | |
| 
 | |
|   // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
 | |
|   bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
 | |
| 
 | |
|   if (lbaseInfo.getNoReturn() != NoReturn)
 | |
|     allLTypes = false;
 | |
|   if (rbaseInfo.getNoReturn() != NoReturn)
 | |
|     allRTypes = false;
 | |
| 
 | |
|   FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
 | |
| 
 | |
|   if (lproto && rproto) { // two C99 style function prototypes
 | |
|     assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
 | |
|            "C++ shouldn't be here");
 | |
|     // Compatible functions must have the same number of parameters
 | |
|     if (lproto->getNumParams() != rproto->getNumParams())
 | |
|       return {};
 | |
| 
 | |
|     // Variadic and non-variadic functions aren't compatible
 | |
|     if (lproto->isVariadic() != rproto->isVariadic())
 | |
|       return {};
 | |
| 
 | |
|     if (lproto->getMethodQuals() != rproto->getMethodQuals())
 | |
|       return {};
 | |
| 
 | |
|     SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos;
 | |
|     bool canUseLeft, canUseRight;
 | |
|     if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight,
 | |
|                                newParamInfos))
 | |
|       return {};
 | |
| 
 | |
|     if (!canUseLeft)
 | |
|       allLTypes = false;
 | |
|     if (!canUseRight)
 | |
|       allRTypes = false;
 | |
| 
 | |
|     // Check parameter type compatibility
 | |
|     SmallVector<QualType, 10> types;
 | |
|     for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
 | |
|       QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
 | |
|       QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
 | |
|       QualType paramType = mergeFunctionParameterTypes(
 | |
|           lParamType, rParamType, OfBlockPointer, Unqualified);
 | |
|       if (paramType.isNull())
 | |
|         return {};
 | |
| 
 | |
|       if (Unqualified)
 | |
|         paramType = paramType.getUnqualifiedType();
 | |
| 
 | |
|       types.push_back(paramType);
 | |
|       if (Unqualified) {
 | |
|         lParamType = lParamType.getUnqualifiedType();
 | |
|         rParamType = rParamType.getUnqualifiedType();
 | |
|       }
 | |
| 
 | |
|       if (getCanonicalType(paramType) != getCanonicalType(lParamType))
 | |
|         allLTypes = false;
 | |
|       if (getCanonicalType(paramType) != getCanonicalType(rParamType))
 | |
|         allRTypes = false;
 | |
|     }
 | |
| 
 | |
|     if (allLTypes) return lhs;
 | |
|     if (allRTypes) return rhs;
 | |
| 
 | |
|     FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
 | |
|     EPI.ExtInfo = einfo;
 | |
|     EPI.ExtParameterInfos =
 | |
|         newParamInfos.empty() ? nullptr : newParamInfos.data();
 | |
|     return getFunctionType(retType, types, EPI);
 | |
|   }
 | |
| 
 | |
|   if (lproto) allRTypes = false;
 | |
|   if (rproto) allLTypes = false;
 | |
| 
 | |
|   const FunctionProtoType *proto = lproto ? lproto : rproto;
 | |
|   if (proto) {
 | |
|     assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
 | |
|     if (proto->isVariadic())
 | |
|       return {};
 | |
|     // Check that the types are compatible with the types that
 | |
|     // would result from default argument promotions (C99 6.7.5.3p15).
 | |
|     // The only types actually affected are promotable integer
 | |
|     // types and floats, which would be passed as a different
 | |
|     // type depending on whether the prototype is visible.
 | |
|     for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
 | |
|       QualType paramTy = proto->getParamType(i);
 | |
| 
 | |
|       // Look at the converted type of enum types, since that is the type used
 | |
|       // to pass enum values.
 | |
|       if (const auto *Enum = paramTy->getAs<EnumType>()) {
 | |
|         paramTy = Enum->getDecl()->getIntegerType();
 | |
|         if (paramTy.isNull())
 | |
|           return {};
 | |
|       }
 | |
| 
 | |
|       if (paramTy->isPromotableIntegerType() ||
 | |
|           getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
 | |
|         return {};
 | |
|     }
 | |
| 
 | |
|     if (allLTypes) return lhs;
 | |
|     if (allRTypes) return rhs;
 | |
| 
 | |
|     FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
 | |
|     EPI.ExtInfo = einfo;
 | |
|     return getFunctionType(retType, proto->getParamTypes(), EPI);
 | |
|   }
 | |
| 
 | |
|   if (allLTypes) return lhs;
 | |
|   if (allRTypes) return rhs;
 | |
|   return getFunctionNoProtoType(retType, einfo);
 | |
| }
 | |
| 
 | |
| /// Given that we have an enum type and a non-enum type, try to merge them.
 | |
| static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
 | |
|                                      QualType other, bool isBlockReturnType) {
 | |
|   // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
 | |
|   // a signed integer type, or an unsigned integer type.
 | |
|   // Compatibility is based on the underlying type, not the promotion
 | |
|   // type.
 | |
|   QualType underlyingType = ET->getDecl()->getIntegerType();
 | |
|   if (underlyingType.isNull())
 | |
|     return {};
 | |
|   if (Context.hasSameType(underlyingType, other))
 | |
|     return other;
 | |
| 
 | |
|   // In block return types, we're more permissive and accept any
 | |
|   // integral type of the same size.
 | |
|   if (isBlockReturnType && other->isIntegerType() &&
 | |
|       Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
 | |
|     return other;
 | |
| 
 | |
|   return {};
 | |
| }
 | |
| 
 | |
| QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
 | |
|                                 bool OfBlockPointer,
 | |
|                                 bool Unqualified, bool BlockReturnType) {
 | |
|   // C++ [expr]: If an expression initially has the type "reference to T", the
 | |
|   // type is adjusted to "T" prior to any further analysis, the expression
 | |
|   // designates the object or function denoted by the reference, and the
 | |
|   // expression is an lvalue unless the reference is an rvalue reference and
 | |
|   // the expression is a function call (possibly inside parentheses).
 | |
|   assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
 | |
|   assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
 | |
| 
 | |
|   if (Unqualified) {
 | |
|     LHS = LHS.getUnqualifiedType();
 | |
|     RHS = RHS.getUnqualifiedType();
 | |
|   }
 | |
| 
 | |
|   QualType LHSCan = getCanonicalType(LHS),
 | |
|            RHSCan = getCanonicalType(RHS);
 | |
| 
 | |
|   // If two types are identical, they are compatible.
 | |
|   if (LHSCan == RHSCan)
 | |
|     return LHS;
 | |
| 
 | |
|   // If the qualifiers are different, the types aren't compatible... mostly.
 | |
|   Qualifiers LQuals = LHSCan.getLocalQualifiers();
 | |
|   Qualifiers RQuals = RHSCan.getLocalQualifiers();
 | |
|   if (LQuals != RQuals) {
 | |
|     // If any of these qualifiers are different, we have a type
 | |
|     // mismatch.
 | |
|     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
 | |
|         LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
 | |
|         LQuals.getObjCLifetime() != RQuals.getObjCLifetime() ||
 | |
|         LQuals.hasUnaligned() != RQuals.hasUnaligned())
 | |
|       return {};
 | |
| 
 | |
|     // Exactly one GC qualifier difference is allowed: __strong is
 | |
|     // okay if the other type has no GC qualifier but is an Objective
 | |
|     // C object pointer (i.e. implicitly strong by default).  We fix
 | |
|     // this by pretending that the unqualified type was actually
 | |
|     // qualified __strong.
 | |
|     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
 | |
|     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
 | |
|     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
 | |
| 
 | |
|     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
 | |
|       return {};
 | |
| 
 | |
|     if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
 | |
|       return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
 | |
|     }
 | |
|     if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
 | |
|       return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
 | |
|     }
 | |
|     return {};
 | |
|   }
 | |
| 
 | |
|   // Okay, qualifiers are equal.
 | |
| 
 | |
|   Type::TypeClass LHSClass = LHSCan->getTypeClass();
 | |
|   Type::TypeClass RHSClass = RHSCan->getTypeClass();
 | |
| 
 | |
|   // We want to consider the two function types to be the same for these
 | |
|   // comparisons, just force one to the other.
 | |
|   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
 | |
|   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
 | |
| 
 | |
|   // Same as above for arrays
 | |
|   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
 | |
|     LHSClass = Type::ConstantArray;
 | |
|   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
 | |
|     RHSClass = Type::ConstantArray;
 | |
| 
 | |
|   // ObjCInterfaces are just specialized ObjCObjects.
 | |
|   if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
 | |
|   if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
 | |
| 
 | |
|   // Canonicalize ExtVector -> Vector.
 | |
|   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
 | |
|   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
 | |
| 
 | |
|   // If the canonical type classes don't match.
 | |
|   if (LHSClass != RHSClass) {
 | |
|     // Note that we only have special rules for turning block enum
 | |
|     // returns into block int returns, not vice-versa.
 | |
|     if (const auto *ETy = LHS->getAs<EnumType>()) {
 | |
|       return mergeEnumWithInteger(*this, ETy, RHS, false);
 | |
|     }
 | |
|     if (const EnumType* ETy = RHS->getAs<EnumType>()) {
 | |
|       return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
 | |
|     }
 | |
|     // allow block pointer type to match an 'id' type.
 | |
|     if (OfBlockPointer && !BlockReturnType) {
 | |
|        if (LHS->isObjCIdType() && RHS->isBlockPointerType())
 | |
|          return LHS;
 | |
|       if (RHS->isObjCIdType() && LHS->isBlockPointerType())
 | |
|         return RHS;
 | |
|     }
 | |
| 
 | |
|     return {};
 | |
|   }
 | |
| 
 | |
|   // The canonical type classes match.
 | |
|   switch (LHSClass) {
 | |
| #define TYPE(Class, Base)
 | |
| #define ABSTRACT_TYPE(Class, Base)
 | |
| #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
 | |
| #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
 | |
| #define DEPENDENT_TYPE(Class, Base) case Type::Class:
 | |
| #include "clang/AST/TypeNodes.inc"
 | |
|     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
 | |
| 
 | |
|   case Type::Auto:
 | |
|   case Type::DeducedTemplateSpecialization:
 | |
|   case Type::LValueReference:
 | |
|   case Type::RValueReference:
 | |
|   case Type::MemberPointer:
 | |
|     llvm_unreachable("C++ should never be in mergeTypes");
 | |
| 
 | |
|   case Type::ObjCInterface:
 | |
|   case Type::IncompleteArray:
 | |
|   case Type::VariableArray:
 | |
|   case Type::FunctionProto:
 | |
|   case Type::ExtVector:
 | |
|     llvm_unreachable("Types are eliminated above");
 | |
| 
 | |
|   case Type::Pointer:
 | |
|   {
 | |
|     // Merge two pointer types, while trying to preserve typedef info
 | |
|     QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType();
 | |
|     QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType();
 | |
|     if (Unqualified) {
 | |
|       LHSPointee = LHSPointee.getUnqualifiedType();
 | |
|       RHSPointee = RHSPointee.getUnqualifiedType();
 | |
|     }
 | |
|     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
 | |
|                                      Unqualified);
 | |
|     if (ResultType.isNull())
 | |
|       return {};
 | |
|     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
 | |
|       return LHS;
 | |
|     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
 | |
|       return RHS;
 | |
|     return getPointerType(ResultType);
 | |
|   }
 | |
|   case Type::BlockPointer:
 | |
|   {
 | |
|     // Merge two block pointer types, while trying to preserve typedef info
 | |
|     QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType();
 | |
|     QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType();
 | |
|     if (Unqualified) {
 | |
|       LHSPointee = LHSPointee.getUnqualifiedType();
 | |
|       RHSPointee = RHSPointee.getUnqualifiedType();
 | |
|     }
 | |
|     if (getLangOpts().OpenCL) {
 | |
|       Qualifiers LHSPteeQual = LHSPointee.getQualifiers();
 | |
|       Qualifiers RHSPteeQual = RHSPointee.getQualifiers();
 | |
|       // Blocks can't be an expression in a ternary operator (OpenCL v2.0
 | |
|       // 6.12.5) thus the following check is asymmetric.
 | |
|       if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual))
 | |
|         return {};
 | |
|       LHSPteeQual.removeAddressSpace();
 | |
|       RHSPteeQual.removeAddressSpace();
 | |
|       LHSPointee =
 | |
|           QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue());
 | |
|       RHSPointee =
 | |
|           QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue());
 | |
|     }
 | |
|     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
 | |
|                                      Unqualified);
 | |
|     if (ResultType.isNull())
 | |
|       return {};
 | |
|     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
 | |
|       return LHS;
 | |
|     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
 | |
|       return RHS;
 | |
|     return getBlockPointerType(ResultType);
 | |
|   }
 | |
|   case Type::Atomic:
 | |
|   {
 | |
|     // Merge two pointer types, while trying to preserve typedef info
 | |
|     QualType LHSValue = LHS->castAs<AtomicType>()->getValueType();
 | |
|     QualType RHSValue = RHS->castAs<AtomicType>()->getValueType();
 | |
|     if (Unqualified) {
 | |
|       LHSValue = LHSValue.getUnqualifiedType();
 | |
|       RHSValue = RHSValue.getUnqualifiedType();
 | |
|     }
 | |
|     QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
 | |
|                                      Unqualified);
 | |
|     if (ResultType.isNull())
 | |
|       return {};
 | |
|     if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
 | |
|       return LHS;
 | |
|     if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
 | |
|       return RHS;
 | |
|     return getAtomicType(ResultType);
 | |
|   }
 | |
|   case Type::ConstantArray:
 | |
|   {
 | |
|     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
 | |
|     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
 | |
|     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
 | |
|       return {};
 | |
| 
 | |
|     QualType LHSElem = getAsArrayType(LHS)->getElementType();
 | |
|     QualType RHSElem = getAsArrayType(RHS)->getElementType();
 | |
|     if (Unqualified) {
 | |
|       LHSElem = LHSElem.getUnqualifiedType();
 | |
|       RHSElem = RHSElem.getUnqualifiedType();
 | |
|     }
 | |
| 
 | |
|     QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
 | |
|     if (ResultType.isNull())
 | |
|       return {};
 | |
| 
 | |
|     const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
 | |
|     const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
 | |
| 
 | |
|     // If either side is a variable array, and both are complete, check whether
 | |
|     // the current dimension is definite.
 | |
|     if (LVAT || RVAT) {
 | |
|       auto SizeFetch = [this](const VariableArrayType* VAT,
 | |
|           const ConstantArrayType* CAT)
 | |
|           -> std::pair<bool,llvm::APInt> {
 | |
|         if (VAT) {
 | |
|           llvm::APSInt TheInt;
 | |
|           Expr *E = VAT->getSizeExpr();
 | |
|           if (E && E->isIntegerConstantExpr(TheInt, *this))
 | |
|             return std::make_pair(true, TheInt);
 | |
|           else
 | |
|             return std::make_pair(false, TheInt);
 | |
|         } else if (CAT) {
 | |
|             return std::make_pair(true, CAT->getSize());
 | |
|         } else {
 | |
|             return std::make_pair(false, llvm::APInt());
 | |
|         }
 | |
|       };
 | |
| 
 | |
|       bool HaveLSize, HaveRSize;
 | |
|       llvm::APInt LSize, RSize;
 | |
|       std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
 | |
|       std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
 | |
|       if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
 | |
|         return {}; // Definite, but unequal, array dimension
 | |
|     }
 | |
| 
 | |
|     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
 | |
|       return LHS;
 | |
|     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
 | |
|       return RHS;
 | |
|     if (LCAT)
 | |
|       return getConstantArrayType(ResultType, LCAT->getSize(),
 | |
|                                   LCAT->getSizeExpr(),
 | |
|                                   ArrayType::ArraySizeModifier(), 0);
 | |
|     if (RCAT)
 | |
|       return getConstantArrayType(ResultType, RCAT->getSize(),
 | |
|                                   RCAT->getSizeExpr(),
 | |
|                                   ArrayType::ArraySizeModifier(), 0);
 | |
|     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
 | |
|       return LHS;
 | |
|     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
 | |
|       return RHS;
 | |
|     if (LVAT) {
 | |
|       // FIXME: This isn't correct! But tricky to implement because
 | |
|       // the array's size has to be the size of LHS, but the type
 | |
|       // has to be different.
 | |
|       return LHS;
 | |
|     }
 | |
|     if (RVAT) {
 | |
|       // FIXME: This isn't correct! But tricky to implement because
 | |
|       // the array's size has to be the size of RHS, but the type
 | |
|       // has to be different.
 | |
|       return RHS;
 | |
|     }
 | |
|     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
 | |
|     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
 | |
|     return getIncompleteArrayType(ResultType,
 | |
|                                   ArrayType::ArraySizeModifier(), 0);
 | |
|   }
 | |
|   case Type::FunctionNoProto:
 | |
|     return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
 | |
|   case Type::Record:
 | |
|   case Type::Enum:
 | |
|     return {};
 | |
|   case Type::Builtin:
 | |
|     // Only exactly equal builtin types are compatible, which is tested above.
 | |
|     return {};
 | |
|   case Type::Complex:
 | |
|     // Distinct complex types are incompatible.
 | |
|     return {};
 | |
|   case Type::Vector:
 | |
|     // FIXME: The merged type should be an ExtVector!
 | |
|     if (areCompatVectorTypes(LHSCan->castAs<VectorType>(),
 | |
|                              RHSCan->castAs<VectorType>()))
 | |
|       return LHS;
 | |
|     return {};
 | |
|   case Type::ObjCObject: {
 | |
|     // Check if the types are assignment compatible.
 | |
|     // FIXME: This should be type compatibility, e.g. whether
 | |
|     // "LHS x; RHS x;" at global scope is legal.
 | |
|     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(),
 | |
|                                 RHS->castAs<ObjCObjectType>()))
 | |
|       return LHS;
 | |
|     return {};
 | |
|   }
 | |
|   case Type::ObjCObjectPointer:
 | |
|     if (OfBlockPointer) {
 | |
|       if (canAssignObjCInterfacesInBlockPointer(
 | |
|               LHS->castAs<ObjCObjectPointerType>(),
 | |
|               RHS->castAs<ObjCObjectPointerType>(), BlockReturnType))
 | |
|         return LHS;
 | |
|       return {};
 | |
|     }
 | |
|     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(),
 | |
|                                 RHS->castAs<ObjCObjectPointerType>()))
 | |
|       return LHS;
 | |
|     return {};
 | |
|   case Type::Pipe:
 | |
|     assert(LHS != RHS &&
 | |
|            "Equivalent pipe types should have already been handled!");
 | |
|     return {};
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid Type::Class!");
 | |
| }
 | |
| 
 | |
| bool ASTContext::mergeExtParameterInfo(
 | |
|     const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType,
 | |
|     bool &CanUseFirst, bool &CanUseSecond,
 | |
|     SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) {
 | |
|   assert(NewParamInfos.empty() && "param info list not empty");
 | |
|   CanUseFirst = CanUseSecond = true;
 | |
|   bool FirstHasInfo = FirstFnType->hasExtParameterInfos();
 | |
|   bool SecondHasInfo = SecondFnType->hasExtParameterInfos();
 | |
| 
 | |
|   // Fast path: if the first type doesn't have ext parameter infos,
 | |
|   // we match if and only if the second type also doesn't have them.
 | |
|   if (!FirstHasInfo && !SecondHasInfo)
 | |
|     return true;
 | |
| 
 | |
|   bool NeedParamInfo = false;
 | |
|   size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size()
 | |
|                           : SecondFnType->getExtParameterInfos().size();
 | |
| 
 | |
|   for (size_t I = 0; I < E; ++I) {
 | |
|     FunctionProtoType::ExtParameterInfo FirstParam, SecondParam;
 | |
|     if (FirstHasInfo)
 | |
|       FirstParam = FirstFnType->getExtParameterInfo(I);
 | |
|     if (SecondHasInfo)
 | |
|       SecondParam = SecondFnType->getExtParameterInfo(I);
 | |
| 
 | |
|     // Cannot merge unless everything except the noescape flag matches.
 | |
|     if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false))
 | |
|       return false;
 | |
| 
 | |
|     bool FirstNoEscape = FirstParam.isNoEscape();
 | |
|     bool SecondNoEscape = SecondParam.isNoEscape();
 | |
|     bool IsNoEscape = FirstNoEscape && SecondNoEscape;
 | |
|     NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape));
 | |
|     if (NewParamInfos.back().getOpaqueValue())
 | |
|       NeedParamInfo = true;
 | |
|     if (FirstNoEscape != IsNoEscape)
 | |
|       CanUseFirst = false;
 | |
|     if (SecondNoEscape != IsNoEscape)
 | |
|       CanUseSecond = false;
 | |
|   }
 | |
| 
 | |
|   if (!NeedParamInfo)
 | |
|     NewParamInfos.clear();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) {
 | |
|   ObjCLayouts[CD] = nullptr;
 | |
| }
 | |
| 
 | |
| /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
 | |
| /// 'RHS' attributes and returns the merged version; including for function
 | |
| /// return types.
 | |
| QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
 | |
|   QualType LHSCan = getCanonicalType(LHS),
 | |
|   RHSCan = getCanonicalType(RHS);
 | |
|   // If two types are identical, they are compatible.
 | |
|   if (LHSCan == RHSCan)
 | |
|     return LHS;
 | |
|   if (RHSCan->isFunctionType()) {
 | |
|     if (!LHSCan->isFunctionType())
 | |
|       return {};
 | |
|     QualType OldReturnType =
 | |
|         cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
 | |
|     QualType NewReturnType =
 | |
|         cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
 | |
|     QualType ResReturnType =
 | |
|       mergeObjCGCQualifiers(NewReturnType, OldReturnType);
 | |
|     if (ResReturnType.isNull())
 | |
|       return {};
 | |
|     if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
 | |
|       // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
 | |
|       // In either case, use OldReturnType to build the new function type.
 | |
|       const auto *F = LHS->castAs<FunctionType>();
 | |
|       if (const auto *FPT = cast<FunctionProtoType>(F)) {
 | |
|         FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
 | |
|         EPI.ExtInfo = getFunctionExtInfo(LHS);
 | |
|         QualType ResultType =
 | |
|             getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
 | |
|         return ResultType;
 | |
|       }
 | |
|     }
 | |
|     return {};
 | |
|   }
 | |
| 
 | |
|   // If the qualifiers are different, the types can still be merged.
 | |
|   Qualifiers LQuals = LHSCan.getLocalQualifiers();
 | |
|   Qualifiers RQuals = RHSCan.getLocalQualifiers();
 | |
|   if (LQuals != RQuals) {
 | |
|     // If any of these qualifiers are different, we have a type mismatch.
 | |
|     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
 | |
|         LQuals.getAddressSpace() != RQuals.getAddressSpace())
 | |
|       return {};
 | |
| 
 | |
|     // Exactly one GC qualifier difference is allowed: __strong is
 | |
|     // okay if the other type has no GC qualifier but is an Objective
 | |
|     // C object pointer (i.e. implicitly strong by default).  We fix
 | |
|     // this by pretending that the unqualified type was actually
 | |
|     // qualified __strong.
 | |
|     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
 | |
|     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
 | |
|     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
 | |
| 
 | |
|     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
 | |
|       return {};
 | |
| 
 | |
|     if (GC_L == Qualifiers::Strong)
 | |
|       return LHS;
 | |
|     if (GC_R == Qualifiers::Strong)
 | |
|       return RHS;
 | |
|     return {};
 | |
|   }
 | |
| 
 | |
|   if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
 | |
|     QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType();
 | |
|     QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType();
 | |
|     QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
 | |
|     if (ResQT == LHSBaseQT)
 | |
|       return LHS;
 | |
|     if (ResQT == RHSBaseQT)
 | |
|       return RHS;
 | |
|   }
 | |
|   return {};
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Integer Predicates
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| unsigned ASTContext::getIntWidth(QualType T) const {
 | |
|   if (const auto *ET = T->getAs<EnumType>())
 | |
|     T = ET->getDecl()->getIntegerType();
 | |
|   if (T->isBooleanType())
 | |
|     return 1;
 | |
|   // For builtin types, just use the standard type sizing method
 | |
|   return (unsigned)getTypeSize(T);
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
 | |
|   assert((T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&
 | |
|          "Unexpected type");
 | |
| 
 | |
|   // Turn <4 x signed int> -> <4 x unsigned int>
 | |
|   if (const auto *VTy = T->getAs<VectorType>())
 | |
|     return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
 | |
|                          VTy->getNumElements(), VTy->getVectorKind());
 | |
| 
 | |
|   // For enums, we return the unsigned version of the base type.
 | |
|   if (const auto *ETy = T->getAs<EnumType>())
 | |
|     T = ETy->getDecl()->getIntegerType();
 | |
| 
 | |
|   switch (T->castAs<BuiltinType>()->getKind()) {
 | |
|   case BuiltinType::Char_S:
 | |
|   case BuiltinType::SChar:
 | |
|     return UnsignedCharTy;
 | |
|   case BuiltinType::Short:
 | |
|     return UnsignedShortTy;
 | |
|   case BuiltinType::Int:
 | |
|     return UnsignedIntTy;
 | |
|   case BuiltinType::Long:
 | |
|     return UnsignedLongTy;
 | |
|   case BuiltinType::LongLong:
 | |
|     return UnsignedLongLongTy;
 | |
|   case BuiltinType::Int128:
 | |
|     return UnsignedInt128Ty;
 | |
| 
 | |
|   case BuiltinType::ShortAccum:
 | |
|     return UnsignedShortAccumTy;
 | |
|   case BuiltinType::Accum:
 | |
|     return UnsignedAccumTy;
 | |
|   case BuiltinType::LongAccum:
 | |
|     return UnsignedLongAccumTy;
 | |
|   case BuiltinType::SatShortAccum:
 | |
|     return SatUnsignedShortAccumTy;
 | |
|   case BuiltinType::SatAccum:
 | |
|     return SatUnsignedAccumTy;
 | |
|   case BuiltinType::SatLongAccum:
 | |
|     return SatUnsignedLongAccumTy;
 | |
|   case BuiltinType::ShortFract:
 | |
|     return UnsignedShortFractTy;
 | |
|   case BuiltinType::Fract:
 | |
|     return UnsignedFractTy;
 | |
|   case BuiltinType::LongFract:
 | |
|     return UnsignedLongFractTy;
 | |
|   case BuiltinType::SatShortFract:
 | |
|     return SatUnsignedShortFractTy;
 | |
|   case BuiltinType::SatFract:
 | |
|     return SatUnsignedFractTy;
 | |
|   case BuiltinType::SatLongFract:
 | |
|     return SatUnsignedLongFractTy;
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected signed integer or fixed point type");
 | |
|   }
 | |
| }
 | |
| 
 | |
| ASTMutationListener::~ASTMutationListener() = default;
 | |
| 
 | |
| void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
 | |
|                                             QualType ReturnType) {}
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                          Builtin Type Computation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
 | |
| /// pointer over the consumed characters.  This returns the resultant type.  If
 | |
| /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
 | |
| /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
 | |
| /// a vector of "i*".
 | |
| ///
 | |
| /// RequiresICE is filled in on return to indicate whether the value is required
 | |
| /// to be an Integer Constant Expression.
 | |
| static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
 | |
|                                   ASTContext::GetBuiltinTypeError &Error,
 | |
|                                   bool &RequiresICE,
 | |
|                                   bool AllowTypeModifiers) {
 | |
|   // Modifiers.
 | |
|   int HowLong = 0;
 | |
|   bool Signed = false, Unsigned = false;
 | |
|   RequiresICE = false;
 | |
| 
 | |
|   // Read the prefixed modifiers first.
 | |
|   bool Done = false;
 | |
|   #ifndef NDEBUG
 | |
|   bool IsSpecial = false;
 | |
|   #endif
 | |
|   while (!Done) {
 | |
|     switch (*Str++) {
 | |
|     default: Done = true; --Str; break;
 | |
|     case 'I':
 | |
|       RequiresICE = true;
 | |
|       break;
 | |
|     case 'S':
 | |
|       assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
 | |
|       assert(!Signed && "Can't use 'S' modifier multiple times!");
 | |
|       Signed = true;
 | |
|       break;
 | |
|     case 'U':
 | |
|       assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
 | |
|       assert(!Unsigned && "Can't use 'U' modifier multiple times!");
 | |
|       Unsigned = true;
 | |
|       break;
 | |
|     case 'L':
 | |
|       assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers");
 | |
|       assert(HowLong <= 2 && "Can't have LLLL modifier");
 | |
|       ++HowLong;
 | |
|       break;
 | |
|     case 'N':
 | |
|       // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise.
 | |
|       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
 | |
|       assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!");
 | |
|       #ifndef NDEBUG
 | |
|       IsSpecial = true;
 | |
|       #endif
 | |
|       if (Context.getTargetInfo().getLongWidth() == 32)
 | |
|         ++HowLong;
 | |
|       break;
 | |
|     case 'W':
 | |
|       // This modifier represents int64 type.
 | |
|       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
 | |
|       assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
 | |
|       #ifndef NDEBUG
 | |
|       IsSpecial = true;
 | |
|       #endif
 | |
|       switch (Context.getTargetInfo().getInt64Type()) {
 | |
|       default:
 | |
|         llvm_unreachable("Unexpected integer type");
 | |
|       case TargetInfo::SignedLong:
 | |
|         HowLong = 1;
 | |
|         break;
 | |
|       case TargetInfo::SignedLongLong:
 | |
|         HowLong = 2;
 | |
|         break;
 | |
|       }
 | |
|       break;
 | |
|     case 'Z':
 | |
|       // This modifier represents int32 type.
 | |
|       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
 | |
|       assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!");
 | |
|       #ifndef NDEBUG
 | |
|       IsSpecial = true;
 | |
|       #endif
 | |
|       switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) {
 | |
|       default:
 | |
|         llvm_unreachable("Unexpected integer type");
 | |
|       case TargetInfo::SignedInt:
 | |
|         HowLong = 0;
 | |
|         break;
 | |
|       case TargetInfo::SignedLong:
 | |
|         HowLong = 1;
 | |
|         break;
 | |
|       case TargetInfo::SignedLongLong:
 | |
|         HowLong = 2;
 | |
|         break;
 | |
|       }
 | |
|       break;
 | |
|     case 'O':
 | |
|       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
 | |
|       assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!");
 | |
|       #ifndef NDEBUG
 | |
|       IsSpecial = true;
 | |
|       #endif
 | |
|       if (Context.getLangOpts().OpenCL)
 | |
|         HowLong = 1;
 | |
|       else
 | |
|         HowLong = 2;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   QualType Type;
 | |
| 
 | |
|   // Read the base type.
 | |
|   switch (*Str++) {
 | |
|   default: llvm_unreachable("Unknown builtin type letter!");
 | |
|   case 'v':
 | |
|     assert(HowLong == 0 && !Signed && !Unsigned &&
 | |
|            "Bad modifiers used with 'v'!");
 | |
|     Type = Context.VoidTy;
 | |
|     break;
 | |
|   case 'h':
 | |
|     assert(HowLong == 0 && !Signed && !Unsigned &&
 | |
|            "Bad modifiers used with 'h'!");
 | |
|     Type = Context.HalfTy;
 | |
|     break;
 | |
|   case 'f':
 | |
|     assert(HowLong == 0 && !Signed && !Unsigned &&
 | |
|            "Bad modifiers used with 'f'!");
 | |
|     Type = Context.FloatTy;
 | |
|     break;
 | |
|   case 'd':
 | |
|     assert(HowLong < 3 && !Signed && !Unsigned &&
 | |
|            "Bad modifiers used with 'd'!");
 | |
|     if (HowLong == 1)
 | |
|       Type = Context.LongDoubleTy;
 | |
|     else if (HowLong == 2)
 | |
|       Type = Context.Float128Ty;
 | |
|     else
 | |
|       Type = Context.DoubleTy;
 | |
|     break;
 | |
|   case 's':
 | |
|     assert(HowLong == 0 && "Bad modifiers used with 's'!");
 | |
|     if (Unsigned)
 | |
|       Type = Context.UnsignedShortTy;
 | |
|     else
 | |
|       Type = Context.ShortTy;
 | |
|     break;
 | |
|   case 'i':
 | |
|     if (HowLong == 3)
 | |
|       Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
 | |
|     else if (HowLong == 2)
 | |
|       Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
 | |
|     else if (HowLong == 1)
 | |
|       Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
 | |
|     else
 | |
|       Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
 | |
|     break;
 | |
|   case 'c':
 | |
|     assert(HowLong == 0 && "Bad modifiers used with 'c'!");
 | |
|     if (Signed)
 | |
|       Type = Context.SignedCharTy;
 | |
|     else if (Unsigned)
 | |
|       Type = Context.UnsignedCharTy;
 | |
|     else
 | |
|       Type = Context.CharTy;
 | |
|     break;
 | |
|   case 'b': // boolean
 | |
|     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
 | |
|     Type = Context.BoolTy;
 | |
|     break;
 | |
|   case 'z':  // size_t.
 | |
|     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
 | |
|     Type = Context.getSizeType();
 | |
|     break;
 | |
|   case 'w':  // wchar_t.
 | |
|     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!");
 | |
|     Type = Context.getWideCharType();
 | |
|     break;
 | |
|   case 'F':
 | |
|     Type = Context.getCFConstantStringType();
 | |
|     break;
 | |
|   case 'G':
 | |
|     Type = Context.getObjCIdType();
 | |
|     break;
 | |
|   case 'H':
 | |
|     Type = Context.getObjCSelType();
 | |
|     break;
 | |
|   case 'M':
 | |
|     Type = Context.getObjCSuperType();
 | |
|     break;
 | |
|   case 'a':
 | |
|     Type = Context.getBuiltinVaListType();
 | |
|     assert(!Type.isNull() && "builtin va list type not initialized!");
 | |
|     break;
 | |
|   case 'A':
 | |
|     // This is a "reference" to a va_list; however, what exactly
 | |
|     // this means depends on how va_list is defined. There are two
 | |
|     // different kinds of va_list: ones passed by value, and ones
 | |
|     // passed by reference.  An example of a by-value va_list is
 | |
|     // x86, where va_list is a char*. An example of by-ref va_list
 | |
|     // is x86-64, where va_list is a __va_list_tag[1]. For x86,
 | |
|     // we want this argument to be a char*&; for x86-64, we want
 | |
|     // it to be a __va_list_tag*.
 | |
|     Type = Context.getBuiltinVaListType();
 | |
|     assert(!Type.isNull() && "builtin va list type not initialized!");
 | |
|     if (Type->isArrayType())
 | |
|       Type = Context.getArrayDecayedType(Type);
 | |
|     else
 | |
|       Type = Context.getLValueReferenceType(Type);
 | |
|     break;
 | |
|   case 'V': {
 | |
|     char *End;
 | |
|     unsigned NumElements = strtoul(Str, &End, 10);
 | |
|     assert(End != Str && "Missing vector size");
 | |
|     Str = End;
 | |
| 
 | |
|     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
 | |
|                                              RequiresICE, false);
 | |
|     assert(!RequiresICE && "Can't require vector ICE");
 | |
| 
 | |
|     // TODO: No way to make AltiVec vectors in builtins yet.
 | |
|     Type = Context.getVectorType(ElementType, NumElements,
 | |
|                                  VectorType::GenericVector);
 | |
|     break;
 | |
|   }
 | |
|   case 'E': {
 | |
|     char *End;
 | |
| 
 | |
|     unsigned NumElements = strtoul(Str, &End, 10);
 | |
|     assert(End != Str && "Missing vector size");
 | |
| 
 | |
|     Str = End;
 | |
| 
 | |
|     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
 | |
|                                              false);
 | |
|     Type = Context.getExtVectorType(ElementType, NumElements);
 | |
|     break;
 | |
|   }
 | |
|   case 'X': {
 | |
|     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
 | |
|                                              false);
 | |
|     assert(!RequiresICE && "Can't require complex ICE");
 | |
|     Type = Context.getComplexType(ElementType);
 | |
|     break;
 | |
|   }
 | |
|   case 'Y':
 | |
|     Type = Context.getPointerDiffType();
 | |
|     break;
 | |
|   case 'P':
 | |
|     Type = Context.getFILEType();
 | |
|     if (Type.isNull()) {
 | |
|       Error = ASTContext::GE_Missing_stdio;
 | |
|       return {};
 | |
|     }
 | |
|     break;
 | |
|   case 'J':
 | |
|     if (Signed)
 | |
|       Type = Context.getsigjmp_bufType();
 | |
|     else
 | |
|       Type = Context.getjmp_bufType();
 | |
| 
 | |
|     if (Type.isNull()) {
 | |
|       Error = ASTContext::GE_Missing_setjmp;
 | |
|       return {};
 | |
|     }
 | |
|     break;
 | |
|   case 'K':
 | |
|     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
 | |
|     Type = Context.getucontext_tType();
 | |
| 
 | |
|     if (Type.isNull()) {
 | |
|       Error = ASTContext::GE_Missing_ucontext;
 | |
|       return {};
 | |
|     }
 | |
|     break;
 | |
|   case 'p':
 | |
|     Type = Context.getProcessIDType();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // If there are modifiers and if we're allowed to parse them, go for it.
 | |
|   Done = !AllowTypeModifiers;
 | |
|   while (!Done) {
 | |
|     switch (char c = *Str++) {
 | |
|     default: Done = true; --Str; break;
 | |
|     case '*':
 | |
|     case '&': {
 | |
|       // Both pointers and references can have their pointee types
 | |
|       // qualified with an address space.
 | |
|       char *End;
 | |
|       unsigned AddrSpace = strtoul(Str, &End, 10);
 | |
|       if (End != Str) {
 | |
|         // Note AddrSpace == 0 is not the same as an unspecified address space.
 | |
|         Type = Context.getAddrSpaceQualType(
 | |
|           Type,
 | |
|           Context.getLangASForBuiltinAddressSpace(AddrSpace));
 | |
|         Str = End;
 | |
|       }
 | |
|       if (c == '*')
 | |
|         Type = Context.getPointerType(Type);
 | |
|       else
 | |
|         Type = Context.getLValueReferenceType(Type);
 | |
|       break;
 | |
|     }
 | |
|     // FIXME: There's no way to have a built-in with an rvalue ref arg.
 | |
|     case 'C':
 | |
|       Type = Type.withConst();
 | |
|       break;
 | |
|     case 'D':
 | |
|       Type = Context.getVolatileType(Type);
 | |
|       break;
 | |
|     case 'R':
 | |
|       Type = Type.withRestrict();
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
 | |
|          "Integer constant 'I' type must be an integer");
 | |
| 
 | |
|   return Type;
 | |
| }
 | |
| 
 | |
| /// GetBuiltinType - Return the type for the specified builtin.
 | |
| QualType ASTContext::GetBuiltinType(unsigned Id,
 | |
|                                     GetBuiltinTypeError &Error,
 | |
|                                     unsigned *IntegerConstantArgs) const {
 | |
|   const char *TypeStr = BuiltinInfo.getTypeString(Id);
 | |
|   if (TypeStr[0] == '\0') {
 | |
|     Error = GE_Missing_type;
 | |
|     return {};
 | |
|   }
 | |
| 
 | |
|   SmallVector<QualType, 8> ArgTypes;
 | |
| 
 | |
|   bool RequiresICE = false;
 | |
|   Error = GE_None;
 | |
|   QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
 | |
|                                        RequiresICE, true);
 | |
|   if (Error != GE_None)
 | |
|     return {};
 | |
| 
 | |
|   assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
 | |
| 
 | |
|   while (TypeStr[0] && TypeStr[0] != '.') {
 | |
|     QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
 | |
|     if (Error != GE_None)
 | |
|       return {};
 | |
| 
 | |
|     // If this argument is required to be an IntegerConstantExpression and the
 | |
|     // caller cares, fill in the bitmask we return.
 | |
|     if (RequiresICE && IntegerConstantArgs)
 | |
|       *IntegerConstantArgs |= 1 << ArgTypes.size();
 | |
| 
 | |
|     // Do array -> pointer decay.  The builtin should use the decayed type.
 | |
|     if (Ty->isArrayType())
 | |
|       Ty = getArrayDecayedType(Ty);
 | |
| 
 | |
|     ArgTypes.push_back(Ty);
 | |
|   }
 | |
| 
 | |
|   if (Id == Builtin::BI__GetExceptionInfo)
 | |
|     return {};
 | |
| 
 | |
|   assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
 | |
|          "'.' should only occur at end of builtin type list!");
 | |
| 
 | |
|   bool Variadic = (TypeStr[0] == '.');
 | |
| 
 | |
|   FunctionType::ExtInfo EI(getDefaultCallingConvention(
 | |
|       Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
 | |
|   if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
 | |
| 
 | |
| 
 | |
|   // We really shouldn't be making a no-proto type here.
 | |
|   if (ArgTypes.empty() && Variadic && !getLangOpts().CPlusPlus)
 | |
|     return getFunctionNoProtoType(ResType, EI);
 | |
| 
 | |
|   FunctionProtoType::ExtProtoInfo EPI;
 | |
|   EPI.ExtInfo = EI;
 | |
|   EPI.Variadic = Variadic;
 | |
|   if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id))
 | |
|     EPI.ExceptionSpec.Type =
 | |
|         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
 | |
| 
 | |
|   return getFunctionType(ResType, ArgTypes, EPI);
 | |
| }
 | |
| 
 | |
| static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
 | |
|                                              const FunctionDecl *FD) {
 | |
|   if (!FD->isExternallyVisible())
 | |
|     return GVA_Internal;
 | |
| 
 | |
|   // Non-user-provided functions get emitted as weak definitions with every
 | |
|   // use, no matter whether they've been explicitly instantiated etc.
 | |
|   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
 | |
|     if (!MD->isUserProvided())
 | |
|       return GVA_DiscardableODR;
 | |
| 
 | |
|   GVALinkage External;
 | |
|   switch (FD->getTemplateSpecializationKind()) {
 | |
|   case TSK_Undeclared:
 | |
|   case TSK_ExplicitSpecialization:
 | |
|     External = GVA_StrongExternal;
 | |
|     break;
 | |
| 
 | |
|   case TSK_ExplicitInstantiationDefinition:
 | |
|     return GVA_StrongODR;
 | |
| 
 | |
|   // C++11 [temp.explicit]p10:
 | |
|   //   [ Note: The intent is that an inline function that is the subject of
 | |
|   //   an explicit instantiation declaration will still be implicitly
 | |
|   //   instantiated when used so that the body can be considered for
 | |
|   //   inlining, but that no out-of-line copy of the inline function would be
 | |
|   //   generated in the translation unit. -- end note ]
 | |
|   case TSK_ExplicitInstantiationDeclaration:
 | |
|     return GVA_AvailableExternally;
 | |
| 
 | |
|   case TSK_ImplicitInstantiation:
 | |
|     External = GVA_DiscardableODR;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (!FD->isInlined())
 | |
|     return External;
 | |
| 
 | |
|   if ((!Context.getLangOpts().CPlusPlus &&
 | |
|        !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
 | |
|        !FD->hasAttr<DLLExportAttr>()) ||
 | |
|       FD->hasAttr<GNUInlineAttr>()) {
 | |
|     // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
 | |
| 
 | |
|     // GNU or C99 inline semantics. Determine whether this symbol should be
 | |
|     // externally visible.
 | |
|     if (FD->isInlineDefinitionExternallyVisible())
 | |
|       return External;
 | |
| 
 | |
|     // C99 inline semantics, where the symbol is not externally visible.
 | |
|     return GVA_AvailableExternally;
 | |
|   }
 | |
| 
 | |
|   // Functions specified with extern and inline in -fms-compatibility mode
 | |
|   // forcibly get emitted.  While the body of the function cannot be later
 | |
|   // replaced, the function definition cannot be discarded.
 | |
|   if (FD->isMSExternInline())
 | |
|     return GVA_StrongODR;
 | |
| 
 | |
|   return GVA_DiscardableODR;
 | |
| }
 | |
| 
 | |
| static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context,
 | |
|                                                 const Decl *D, GVALinkage L) {
 | |
|   // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
 | |
|   // dllexport/dllimport on inline functions.
 | |
|   if (D->hasAttr<DLLImportAttr>()) {
 | |
|     if (L == GVA_DiscardableODR || L == GVA_StrongODR)
 | |
|       return GVA_AvailableExternally;
 | |
|   } else if (D->hasAttr<DLLExportAttr>()) {
 | |
|     if (L == GVA_DiscardableODR)
 | |
|       return GVA_StrongODR;
 | |
|   } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice &&
 | |
|              D->hasAttr<CUDAGlobalAttr>()) {
 | |
|     // Device-side functions with __global__ attribute must always be
 | |
|     // visible externally so they can be launched from host.
 | |
|     if (L == GVA_DiscardableODR || L == GVA_Internal)
 | |
|       return GVA_StrongODR;
 | |
|   }
 | |
|   return L;
 | |
| }
 | |
| 
 | |
| /// Adjust the GVALinkage for a declaration based on what an external AST source
 | |
| /// knows about whether there can be other definitions of this declaration.
 | |
| static GVALinkage
 | |
| adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D,
 | |
|                                           GVALinkage L) {
 | |
|   ExternalASTSource *Source = Ctx.getExternalSource();
 | |
|   if (!Source)
 | |
|     return L;
 | |
| 
 | |
|   switch (Source->hasExternalDefinitions(D)) {
 | |
|   case ExternalASTSource::EK_Never:
 | |
|     // Other translation units rely on us to provide the definition.
 | |
|     if (L == GVA_DiscardableODR)
 | |
|       return GVA_StrongODR;
 | |
|     break;
 | |
| 
 | |
|   case ExternalASTSource::EK_Always:
 | |
|     return GVA_AvailableExternally;
 | |
| 
 | |
|   case ExternalASTSource::EK_ReplyHazy:
 | |
|     break;
 | |
|   }
 | |
|   return L;
 | |
| }
 | |
| 
 | |
| GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
 | |
|   return adjustGVALinkageForExternalDefinitionKind(*this, FD,
 | |
|            adjustGVALinkageForAttributes(*this, FD,
 | |
|              basicGVALinkageForFunction(*this, FD)));
 | |
| }
 | |
| 
 | |
| static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
 | |
|                                              const VarDecl *VD) {
 | |
|   if (!VD->isExternallyVisible())
 | |
|     return GVA_Internal;
 | |
| 
 | |
|   if (VD->isStaticLocal()) {
 | |
|     const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
 | |
|     while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
 | |
|       LexicalContext = LexicalContext->getLexicalParent();
 | |
| 
 | |
|     // ObjC Blocks can create local variables that don't have a FunctionDecl
 | |
|     // LexicalContext.
 | |
|     if (!LexicalContext)
 | |
|       return GVA_DiscardableODR;
 | |
| 
 | |
|     // Otherwise, let the static local variable inherit its linkage from the
 | |
|     // nearest enclosing function.
 | |
|     auto StaticLocalLinkage =
 | |
|         Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
 | |
| 
 | |
|     // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must
 | |
|     // be emitted in any object with references to the symbol for the object it
 | |
|     // contains, whether inline or out-of-line."
 | |
|     // Similar behavior is observed with MSVC. An alternative ABI could use
 | |
|     // StrongODR/AvailableExternally to match the function, but none are
 | |
|     // known/supported currently.
 | |
|     if (StaticLocalLinkage == GVA_StrongODR ||
 | |
|         StaticLocalLinkage == GVA_AvailableExternally)
 | |
|       return GVA_DiscardableODR;
 | |
|     return StaticLocalLinkage;
 | |
|   }
 | |
| 
 | |
|   // MSVC treats in-class initialized static data members as definitions.
 | |
|   // By giving them non-strong linkage, out-of-line definitions won't
 | |
|   // cause link errors.
 | |
|   if (Context.isMSStaticDataMemberInlineDefinition(VD))
 | |
|     return GVA_DiscardableODR;
 | |
| 
 | |
|   // Most non-template variables have strong linkage; inline variables are
 | |
|   // linkonce_odr or (occasionally, for compatibility) weak_odr.
 | |
|   GVALinkage StrongLinkage;
 | |
|   switch (Context.getInlineVariableDefinitionKind(VD)) {
 | |
|   case ASTContext::InlineVariableDefinitionKind::None:
 | |
|     StrongLinkage = GVA_StrongExternal;
 | |
|     break;
 | |
|   case ASTContext::InlineVariableDefinitionKind::Weak:
 | |
|   case ASTContext::InlineVariableDefinitionKind::WeakUnknown:
 | |
|     StrongLinkage = GVA_DiscardableODR;
 | |
|     break;
 | |
|   case ASTContext::InlineVariableDefinitionKind::Strong:
 | |
|     StrongLinkage = GVA_StrongODR;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   switch (VD->getTemplateSpecializationKind()) {
 | |
|   case TSK_Undeclared:
 | |
|     return StrongLinkage;
 | |
| 
 | |
|   case TSK_ExplicitSpecialization:
 | |
|     return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
 | |
|                    VD->isStaticDataMember()
 | |
|                ? GVA_StrongODR
 | |
|                : StrongLinkage;
 | |
| 
 | |
|   case TSK_ExplicitInstantiationDefinition:
 | |
|     return GVA_StrongODR;
 | |
| 
 | |
|   case TSK_ExplicitInstantiationDeclaration:
 | |
|     return GVA_AvailableExternally;
 | |
| 
 | |
|   case TSK_ImplicitInstantiation:
 | |
|     return GVA_DiscardableODR;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid Linkage!");
 | |
| }
 | |
| 
 | |
| GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
 | |
|   return adjustGVALinkageForExternalDefinitionKind(*this, VD,
 | |
|            adjustGVALinkageForAttributes(*this, VD,
 | |
|              basicGVALinkageForVariable(*this, VD)));
 | |
| }
 | |
| 
 | |
| bool ASTContext::DeclMustBeEmitted(const Decl *D) {
 | |
|   if (const auto *VD = dyn_cast<VarDecl>(D)) {
 | |
|     if (!VD->isFileVarDecl())
 | |
|       return false;
 | |
|     // Global named register variables (GNU extension) are never emitted.
 | |
|     if (VD->getStorageClass() == SC_Register)
 | |
|       return false;
 | |
|     if (VD->getDescribedVarTemplate() ||
 | |
|         isa<VarTemplatePartialSpecializationDecl>(VD))
 | |
|       return false;
 | |
|   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
 | |
|     // We never need to emit an uninstantiated function template.
 | |
|     if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
 | |
|       return false;
 | |
|   } else if (isa<PragmaCommentDecl>(D))
 | |
|     return true;
 | |
|   else if (isa<PragmaDetectMismatchDecl>(D))
 | |
|     return true;
 | |
|   else if (isa<OMPRequiresDecl>(D))
 | |
|     return true;
 | |
|   else if (isa<OMPThreadPrivateDecl>(D))
 | |
|     return !D->getDeclContext()->isDependentContext();
 | |
|   else if (isa<OMPAllocateDecl>(D))
 | |
|     return !D->getDeclContext()->isDependentContext();
 | |
|   else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D))
 | |
|     return !D->getDeclContext()->isDependentContext();
 | |
|   else if (isa<ImportDecl>(D))
 | |
|     return true;
 | |
|   else
 | |
|     return false;
 | |
| 
 | |
|   if (D->isFromASTFile() && !LangOpts.BuildingPCHWithObjectFile) {
 | |
|     assert(getExternalSource() && "It's from an AST file; must have a source.");
 | |
|     // On Windows, PCH files are built together with an object file. If this
 | |
|     // declaration comes from such a PCH and DeclMustBeEmitted would return
 | |
|     // true, it would have returned true and the decl would have been emitted
 | |
|     // into that object file, so it doesn't need to be emitted here.
 | |
|     // Note that decls are still emitted if they're referenced, as usual;
 | |
|     // DeclMustBeEmitted is used to decide whether a decl must be emitted even
 | |
|     // if it's not referenced.
 | |
|     //
 | |
|     // Explicit template instantiation definitions are tricky. If there was an
 | |
|     // explicit template instantiation decl in the PCH before, it will look like
 | |
|     // the definition comes from there, even if that was just the declaration.
 | |
|     // (Explicit instantiation defs of variable templates always get emitted.)
 | |
|     bool IsExpInstDef =
 | |
|         isa<FunctionDecl>(D) &&
 | |
|         cast<FunctionDecl>(D)->getTemplateSpecializationKind() ==
 | |
|             TSK_ExplicitInstantiationDefinition;
 | |
| 
 | |
|     // Implicit member function definitions, such as operator= might not be
 | |
|     // marked as template specializations, since they're not coming from a
 | |
|     // template but synthesized directly on the class.
 | |
|     IsExpInstDef |=
 | |
|         isa<CXXMethodDecl>(D) &&
 | |
|         cast<CXXMethodDecl>(D)->getParent()->getTemplateSpecializationKind() ==
 | |
|             TSK_ExplicitInstantiationDefinition;
 | |
| 
 | |
|     if (getExternalSource()->DeclIsFromPCHWithObjectFile(D) && !IsExpInstDef)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // If this is a member of a class template, we do not need to emit it.
 | |
|   if (D->getDeclContext()->isDependentContext())
 | |
|     return false;
 | |
| 
 | |
|   // Weak references don't produce any output by themselves.
 | |
|   if (D->hasAttr<WeakRefAttr>())
 | |
|     return false;
 | |
| 
 | |
|   // Aliases and used decls are required.
 | |
|   if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
 | |
|     return true;
 | |
| 
 | |
|   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
 | |
|     // Forward declarations aren't required.
 | |
|     if (!FD->doesThisDeclarationHaveABody())
 | |
|       return FD->doesDeclarationForceExternallyVisibleDefinition();
 | |
| 
 | |
|     // Constructors and destructors are required.
 | |
|     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
 | |
|       return true;
 | |
| 
 | |
|     // The key function for a class is required.  This rule only comes
 | |
|     // into play when inline functions can be key functions, though.
 | |
|     if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
 | |
|       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
 | |
|         const CXXRecordDecl *RD = MD->getParent();
 | |
|         if (MD->isOutOfLine() && RD->isDynamicClass()) {
 | |
|           const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
 | |
|           if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
 | |
|             return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     GVALinkage Linkage = GetGVALinkageForFunction(FD);
 | |
| 
 | |
|     // static, static inline, always_inline, and extern inline functions can
 | |
|     // always be deferred.  Normal inline functions can be deferred in C99/C++.
 | |
|     // Implicit template instantiations can also be deferred in C++.
 | |
|     return !isDiscardableGVALinkage(Linkage);
 | |
|   }
 | |
| 
 | |
|   const auto *VD = cast<VarDecl>(D);
 | |
|   assert(VD->isFileVarDecl() && "Expected file scoped var");
 | |
| 
 | |
|   // If the decl is marked as `declare target to`, it should be emitted for the
 | |
|   // host and for the device.
 | |
|   if (LangOpts.OpenMP &&
 | |
|       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
 | |
|     return true;
 | |
| 
 | |
|   if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
 | |
|       !isMSStaticDataMemberInlineDefinition(VD))
 | |
|     return false;
 | |
| 
 | |
|   // Variables that can be needed in other TUs are required.
 | |
|   auto Linkage = GetGVALinkageForVariable(VD);
 | |
|   if (!isDiscardableGVALinkage(Linkage))
 | |
|     return true;
 | |
| 
 | |
|   // We never need to emit a variable that is available in another TU.
 | |
|   if (Linkage == GVA_AvailableExternally)
 | |
|     return false;
 | |
| 
 | |
|   // Variables that have destruction with side-effects are required.
 | |
|   if (VD->needsDestruction(*this))
 | |
|     return true;
 | |
| 
 | |
|   // Variables that have initialization with side-effects are required.
 | |
|   if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
 | |
|       // We can get a value-dependent initializer during error recovery.
 | |
|       (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
 | |
|     return true;
 | |
| 
 | |
|   // Likewise, variables with tuple-like bindings are required if their
 | |
|   // bindings have side-effects.
 | |
|   if (const auto *DD = dyn_cast<DecompositionDecl>(VD))
 | |
|     for (const auto *BD : DD->bindings())
 | |
|       if (const auto *BindingVD = BD->getHoldingVar())
 | |
|         if (DeclMustBeEmitted(BindingVD))
 | |
|           return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void ASTContext::forEachMultiversionedFunctionVersion(
 | |
|     const FunctionDecl *FD,
 | |
|     llvm::function_ref<void(FunctionDecl *)> Pred) const {
 | |
|   assert(FD->isMultiVersion() && "Only valid for multiversioned functions");
 | |
|   llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls;
 | |
|   FD = FD->getMostRecentDecl();
 | |
|   for (auto *CurDecl :
 | |
|        FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) {
 | |
|     FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl();
 | |
|     if (CurFD && hasSameType(CurFD->getType(), FD->getType()) &&
 | |
|         std::end(SeenDecls) == llvm::find(SeenDecls, CurFD)) {
 | |
|       SeenDecls.insert(CurFD);
 | |
|       Pred(CurFD);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
 | |
|                                                     bool IsCXXMethod,
 | |
|                                                     bool IsBuiltin) const {
 | |
|   // Pass through to the C++ ABI object
 | |
|   if (IsCXXMethod)
 | |
|     return ABI->getDefaultMethodCallConv(IsVariadic);
 | |
| 
 | |
|   // Builtins ignore user-specified default calling convention and remain the
 | |
|   // Target's default calling convention.
 | |
|   if (!IsBuiltin) {
 | |
|     switch (LangOpts.getDefaultCallingConv()) {
 | |
|     case LangOptions::DCC_None:
 | |
|       break;
 | |
|     case LangOptions::DCC_CDecl:
 | |
|       return CC_C;
 | |
|     case LangOptions::DCC_FastCall:
 | |
|       if (getTargetInfo().hasFeature("sse2") && !IsVariadic)
 | |
|         return CC_X86FastCall;
 | |
|       break;
 | |
|     case LangOptions::DCC_StdCall:
 | |
|       if (!IsVariadic)
 | |
|         return CC_X86StdCall;
 | |
|       break;
 | |
|     case LangOptions::DCC_VectorCall:
 | |
|       // __vectorcall cannot be applied to variadic functions.
 | |
|       if (!IsVariadic)
 | |
|         return CC_X86VectorCall;
 | |
|       break;
 | |
|     case LangOptions::DCC_RegCall:
 | |
|       // __regcall cannot be applied to variadic functions.
 | |
|       if (!IsVariadic)
 | |
|         return CC_X86RegCall;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return Target->getDefaultCallingConv();
 | |
| }
 | |
| 
 | |
| bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
 | |
|   // Pass through to the C++ ABI object
 | |
|   return ABI->isNearlyEmpty(RD);
 | |
| }
 | |
| 
 | |
| VTableContextBase *ASTContext::getVTableContext() {
 | |
|   if (!VTContext.get()) {
 | |
|     if (Target->getCXXABI().isMicrosoft())
 | |
|       VTContext.reset(new MicrosoftVTableContext(*this));
 | |
|     else
 | |
|       VTContext.reset(new ItaniumVTableContext(*this));
 | |
|   }
 | |
|   return VTContext.get();
 | |
| }
 | |
| 
 | |
| MangleContext *ASTContext::createMangleContext(const TargetInfo *T) {
 | |
|   if (!T)
 | |
|     T = Target;
 | |
|   switch (T->getCXXABI().getKind()) {
 | |
|   case TargetCXXABI::Fuchsia:
 | |
|   case TargetCXXABI::GenericAArch64:
 | |
|   case TargetCXXABI::GenericItanium:
 | |
|   case TargetCXXABI::GenericARM:
 | |
|   case TargetCXXABI::GenericMIPS:
 | |
|   case TargetCXXABI::iOS:
 | |
|   case TargetCXXABI::iOS64:
 | |
|   case TargetCXXABI::WebAssembly:
 | |
|   case TargetCXXABI::WatchOS:
 | |
|   case TargetCXXABI::XL:
 | |
|     return ItaniumMangleContext::create(*this, getDiagnostics());
 | |
|   case TargetCXXABI::Microsoft:
 | |
|     return MicrosoftMangleContext::create(*this, getDiagnostics());
 | |
|   }
 | |
|   llvm_unreachable("Unsupported ABI");
 | |
| }
 | |
| 
 | |
| CXXABI::~CXXABI() = default;
 | |
| 
 | |
| size_t ASTContext::getSideTableAllocatedMemory() const {
 | |
|   return ASTRecordLayouts.getMemorySize() +
 | |
|          llvm::capacity_in_bytes(ObjCLayouts) +
 | |
|          llvm::capacity_in_bytes(KeyFunctions) +
 | |
|          llvm::capacity_in_bytes(ObjCImpls) +
 | |
|          llvm::capacity_in_bytes(BlockVarCopyInits) +
 | |
|          llvm::capacity_in_bytes(DeclAttrs) +
 | |
|          llvm::capacity_in_bytes(TemplateOrInstantiation) +
 | |
|          llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
 | |
|          llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
 | |
|          llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
 | |
|          llvm::capacity_in_bytes(OverriddenMethods) +
 | |
|          llvm::capacity_in_bytes(Types) +
 | |
|          llvm::capacity_in_bytes(VariableArrayTypes);
 | |
| }
 | |
| 
 | |
| /// getIntTypeForBitwidth -
 | |
| /// sets integer QualTy according to specified details:
 | |
| /// bitwidth, signed/unsigned.
 | |
| /// Returns empty type if there is no appropriate target types.
 | |
| QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
 | |
|                                            unsigned Signed) const {
 | |
|   TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
 | |
|   CanQualType QualTy = getFromTargetType(Ty);
 | |
|   if (!QualTy && DestWidth == 128)
 | |
|     return Signed ? Int128Ty : UnsignedInt128Ty;
 | |
|   return QualTy;
 | |
| }
 | |
| 
 | |
| /// getRealTypeForBitwidth -
 | |
| /// sets floating point QualTy according to specified bitwidth.
 | |
| /// Returns empty type if there is no appropriate target types.
 | |
| QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const {
 | |
|   TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth);
 | |
|   switch (Ty) {
 | |
|   case TargetInfo::Float:
 | |
|     return FloatTy;
 | |
|   case TargetInfo::Double:
 | |
|     return DoubleTy;
 | |
|   case TargetInfo::LongDouble:
 | |
|     return LongDoubleTy;
 | |
|   case TargetInfo::Float128:
 | |
|     return Float128Ty;
 | |
|   case TargetInfo::NoFloat:
 | |
|     return {};
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unhandled TargetInfo::RealType value");
 | |
| }
 | |
| 
 | |
| void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
 | |
|   if (Number > 1)
 | |
|     MangleNumbers[ND] = Number;
 | |
| }
 | |
| 
 | |
| unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
 | |
|   auto I = MangleNumbers.find(ND);
 | |
|   return I != MangleNumbers.end() ? I->second : 1;
 | |
| }
 | |
| 
 | |
| void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
 | |
|   if (Number > 1)
 | |
|     StaticLocalNumbers[VD] = Number;
 | |
| }
 | |
| 
 | |
| unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
 | |
|   auto I = StaticLocalNumbers.find(VD);
 | |
|   return I != StaticLocalNumbers.end() ? I->second : 1;
 | |
| }
 | |
| 
 | |
| MangleNumberingContext &
 | |
| ASTContext::getManglingNumberContext(const DeclContext *DC) {
 | |
|   assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
 | |
|   std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC];
 | |
|   if (!MCtx)
 | |
|     MCtx = createMangleNumberingContext();
 | |
|   return *MCtx;
 | |
| }
 | |
| 
 | |
| MangleNumberingContext &
 | |
| ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) {
 | |
|   assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
 | |
|   std::unique_ptr<MangleNumberingContext> &MCtx =
 | |
|       ExtraMangleNumberingContexts[D];
 | |
|   if (!MCtx)
 | |
|     MCtx = createMangleNumberingContext();
 | |
|   return *MCtx;
 | |
| }
 | |
| 
 | |
| std::unique_ptr<MangleNumberingContext>
 | |
| ASTContext::createMangleNumberingContext() const {
 | |
|   return ABI->createMangleNumberingContext();
 | |
| }
 | |
| 
 | |
| const CXXConstructorDecl *
 | |
| ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
 | |
|   return ABI->getCopyConstructorForExceptionObject(
 | |
|       cast<CXXRecordDecl>(RD->getFirstDecl()));
 | |
| }
 | |
| 
 | |
| void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
 | |
|                                                       CXXConstructorDecl *CD) {
 | |
|   return ABI->addCopyConstructorForExceptionObject(
 | |
|       cast<CXXRecordDecl>(RD->getFirstDecl()),
 | |
|       cast<CXXConstructorDecl>(CD->getFirstDecl()));
 | |
| }
 | |
| 
 | |
| void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
 | |
|                                                  TypedefNameDecl *DD) {
 | |
|   return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
 | |
| }
 | |
| 
 | |
| TypedefNameDecl *
 | |
| ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
 | |
|   return ABI->getTypedefNameForUnnamedTagDecl(TD);
 | |
| }
 | |
| 
 | |
| void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
 | |
|                                                 DeclaratorDecl *DD) {
 | |
|   return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
 | |
| }
 | |
| 
 | |
| DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
 | |
|   return ABI->getDeclaratorForUnnamedTagDecl(TD);
 | |
| }
 | |
| 
 | |
| void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
 | |
|   ParamIndices[D] = index;
 | |
| }
 | |
| 
 | |
| unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
 | |
|   ParameterIndexTable::const_iterator I = ParamIndices.find(D);
 | |
|   assert(I != ParamIndices.end() &&
 | |
|          "ParmIndices lacks entry set by ParmVarDecl");
 | |
|   return I->second;
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getStringLiteralArrayType(QualType EltTy,
 | |
|                                                unsigned Length) const {
 | |
|   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
 | |
|   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
 | |
|     EltTy = EltTy.withConst();
 | |
| 
 | |
|   EltTy = adjustStringLiteralBaseType(EltTy);
 | |
| 
 | |
|   // Get an array type for the string, according to C99 6.4.5. This includes
 | |
|   // the null terminator character.
 | |
|   return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr,
 | |
|                               ArrayType::Normal, /*IndexTypeQuals*/ 0);
 | |
| }
 | |
| 
 | |
| StringLiteral *
 | |
| ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const {
 | |
|   StringLiteral *&Result = StringLiteralCache[Key];
 | |
|   if (!Result)
 | |
|     Result = StringLiteral::Create(
 | |
|         *this, Key, StringLiteral::Ascii,
 | |
|         /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()),
 | |
|         SourceLocation());
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
 | |
|   const llvm::Triple &T = getTargetInfo().getTriple();
 | |
|   if (!T.isOSDarwin())
 | |
|     return false;
 | |
| 
 | |
|   if (!(T.isiOS() && T.isOSVersionLT(7)) &&
 | |
|       !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
 | |
|     return false;
 | |
| 
 | |
|   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
 | |
|   CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
 | |
|   uint64_t Size = sizeChars.getQuantity();
 | |
|   CharUnits alignChars = getTypeAlignInChars(AtomicTy);
 | |
|   unsigned Align = alignChars.getQuantity();
 | |
|   unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
 | |
|   return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
 | |
| }
 | |
| 
 | |
| bool
 | |
| ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
 | |
|                                 const ObjCMethodDecl *MethodImpl) {
 | |
|   // No point trying to match an unavailable/deprecated mothod.
 | |
|   if (MethodDecl->hasAttr<UnavailableAttr>()
 | |
|       || MethodDecl->hasAttr<DeprecatedAttr>())
 | |
|     return false;
 | |
|   if (MethodDecl->getObjCDeclQualifier() !=
 | |
|       MethodImpl->getObjCDeclQualifier())
 | |
|     return false;
 | |
|   if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
 | |
|     return false;
 | |
| 
 | |
|   if (MethodDecl->param_size() != MethodImpl->param_size())
 | |
|     return false;
 | |
| 
 | |
|   for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
 | |
|        IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
 | |
|        EF = MethodDecl->param_end();
 | |
|        IM != EM && IF != EF; ++IM, ++IF) {
 | |
|     const ParmVarDecl *DeclVar = (*IF);
 | |
|     const ParmVarDecl *ImplVar = (*IM);
 | |
|     if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
 | |
|       return false;
 | |
|     if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
 | |
| }
 | |
| 
 | |
| uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const {
 | |
|   LangAS AS;
 | |
|   if (QT->getUnqualifiedDesugaredType()->isNullPtrType())
 | |
|     AS = LangAS::Default;
 | |
|   else
 | |
|     AS = QT->getPointeeType().getAddressSpace();
 | |
| 
 | |
|   return getTargetInfo().getNullPointerValue(AS);
 | |
| }
 | |
| 
 | |
| unsigned ASTContext::getTargetAddressSpace(LangAS AS) const {
 | |
|   if (isTargetAddressSpace(AS))
 | |
|     return toTargetAddressSpace(AS);
 | |
|   else
 | |
|     return (*AddrSpaceMap)[(unsigned)AS];
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const {
 | |
|   assert(Ty->isFixedPointType());
 | |
| 
 | |
|   if (Ty->isSaturatedFixedPointType()) return Ty;
 | |
| 
 | |
|   switch (Ty->castAs<BuiltinType>()->getKind()) {
 | |
|     default:
 | |
|       llvm_unreachable("Not a fixed point type!");
 | |
|     case BuiltinType::ShortAccum:
 | |
|       return SatShortAccumTy;
 | |
|     case BuiltinType::Accum:
 | |
|       return SatAccumTy;
 | |
|     case BuiltinType::LongAccum:
 | |
|       return SatLongAccumTy;
 | |
|     case BuiltinType::UShortAccum:
 | |
|       return SatUnsignedShortAccumTy;
 | |
|     case BuiltinType::UAccum:
 | |
|       return SatUnsignedAccumTy;
 | |
|     case BuiltinType::ULongAccum:
 | |
|       return SatUnsignedLongAccumTy;
 | |
|     case BuiltinType::ShortFract:
 | |
|       return SatShortFractTy;
 | |
|     case BuiltinType::Fract:
 | |
|       return SatFractTy;
 | |
|     case BuiltinType::LongFract:
 | |
|       return SatLongFractTy;
 | |
|     case BuiltinType::UShortFract:
 | |
|       return SatUnsignedShortFractTy;
 | |
|     case BuiltinType::UFract:
 | |
|       return SatUnsignedFractTy;
 | |
|     case BuiltinType::ULongFract:
 | |
|       return SatUnsignedLongFractTy;
 | |
|   }
 | |
| }
 | |
| 
 | |
| LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const {
 | |
|   if (LangOpts.OpenCL)
 | |
|     return getTargetInfo().getOpenCLBuiltinAddressSpace(AS);
 | |
| 
 | |
|   if (LangOpts.CUDA)
 | |
|     return getTargetInfo().getCUDABuiltinAddressSpace(AS);
 | |
| 
 | |
|   return getLangASFromTargetAS(AS);
 | |
| }
 | |
| 
 | |
| // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
 | |
| // doesn't include ASTContext.h
 | |
| template
 | |
| clang::LazyGenerationalUpdatePtr<
 | |
|     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
 | |
| clang::LazyGenerationalUpdatePtr<
 | |
|     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
 | |
|         const clang::ASTContext &Ctx, Decl *Value);
 | |
| 
 | |
| unsigned char ASTContext::getFixedPointScale(QualType Ty) const {
 | |
|   assert(Ty->isFixedPointType());
 | |
| 
 | |
|   const TargetInfo &Target = getTargetInfo();
 | |
|   switch (Ty->castAs<BuiltinType>()->getKind()) {
 | |
|     default:
 | |
|       llvm_unreachable("Not a fixed point type!");
 | |
|     case BuiltinType::ShortAccum:
 | |
|     case BuiltinType::SatShortAccum:
 | |
|       return Target.getShortAccumScale();
 | |
|     case BuiltinType::Accum:
 | |
|     case BuiltinType::SatAccum:
 | |
|       return Target.getAccumScale();
 | |
|     case BuiltinType::LongAccum:
 | |
|     case BuiltinType::SatLongAccum:
 | |
|       return Target.getLongAccumScale();
 | |
|     case BuiltinType::UShortAccum:
 | |
|     case BuiltinType::SatUShortAccum:
 | |
|       return Target.getUnsignedShortAccumScale();
 | |
|     case BuiltinType::UAccum:
 | |
|     case BuiltinType::SatUAccum:
 | |
|       return Target.getUnsignedAccumScale();
 | |
|     case BuiltinType::ULongAccum:
 | |
|     case BuiltinType::SatULongAccum:
 | |
|       return Target.getUnsignedLongAccumScale();
 | |
|     case BuiltinType::ShortFract:
 | |
|     case BuiltinType::SatShortFract:
 | |
|       return Target.getShortFractScale();
 | |
|     case BuiltinType::Fract:
 | |
|     case BuiltinType::SatFract:
 | |
|       return Target.getFractScale();
 | |
|     case BuiltinType::LongFract:
 | |
|     case BuiltinType::SatLongFract:
 | |
|       return Target.getLongFractScale();
 | |
|     case BuiltinType::UShortFract:
 | |
|     case BuiltinType::SatUShortFract:
 | |
|       return Target.getUnsignedShortFractScale();
 | |
|     case BuiltinType::UFract:
 | |
|     case BuiltinType::SatUFract:
 | |
|       return Target.getUnsignedFractScale();
 | |
|     case BuiltinType::ULongFract:
 | |
|     case BuiltinType::SatULongFract:
 | |
|       return Target.getUnsignedLongFractScale();
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned char ASTContext::getFixedPointIBits(QualType Ty) const {
 | |
|   assert(Ty->isFixedPointType());
 | |
| 
 | |
|   const TargetInfo &Target = getTargetInfo();
 | |
|   switch (Ty->castAs<BuiltinType>()->getKind()) {
 | |
|     default:
 | |
|       llvm_unreachable("Not a fixed point type!");
 | |
|     case BuiltinType::ShortAccum:
 | |
|     case BuiltinType::SatShortAccum:
 | |
|       return Target.getShortAccumIBits();
 | |
|     case BuiltinType::Accum:
 | |
|     case BuiltinType::SatAccum:
 | |
|       return Target.getAccumIBits();
 | |
|     case BuiltinType::LongAccum:
 | |
|     case BuiltinType::SatLongAccum:
 | |
|       return Target.getLongAccumIBits();
 | |
|     case BuiltinType::UShortAccum:
 | |
|     case BuiltinType::SatUShortAccum:
 | |
|       return Target.getUnsignedShortAccumIBits();
 | |
|     case BuiltinType::UAccum:
 | |
|     case BuiltinType::SatUAccum:
 | |
|       return Target.getUnsignedAccumIBits();
 | |
|     case BuiltinType::ULongAccum:
 | |
|     case BuiltinType::SatULongAccum:
 | |
|       return Target.getUnsignedLongAccumIBits();
 | |
|     case BuiltinType::ShortFract:
 | |
|     case BuiltinType::SatShortFract:
 | |
|     case BuiltinType::Fract:
 | |
|     case BuiltinType::SatFract:
 | |
|     case BuiltinType::LongFract:
 | |
|     case BuiltinType::SatLongFract:
 | |
|     case BuiltinType::UShortFract:
 | |
|     case BuiltinType::SatUShortFract:
 | |
|     case BuiltinType::UFract:
 | |
|     case BuiltinType::SatUFract:
 | |
|     case BuiltinType::ULongFract:
 | |
|     case BuiltinType::SatULongFract:
 | |
|       return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| FixedPointSemantics ASTContext::getFixedPointSemantics(QualType Ty) const {
 | |
|   assert((Ty->isFixedPointType() || Ty->isIntegerType()) &&
 | |
|          "Can only get the fixed point semantics for a "
 | |
|          "fixed point or integer type.");
 | |
|   if (Ty->isIntegerType())
 | |
|     return FixedPointSemantics::GetIntegerSemantics(getIntWidth(Ty),
 | |
|                                                     Ty->isSignedIntegerType());
 | |
| 
 | |
|   bool isSigned = Ty->isSignedFixedPointType();
 | |
|   return FixedPointSemantics(
 | |
|       static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned,
 | |
|       Ty->isSaturatedFixedPointType(),
 | |
|       !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding());
 | |
| }
 | |
| 
 | |
| APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const {
 | |
|   assert(Ty->isFixedPointType());
 | |
|   return APFixedPoint::getMax(getFixedPointSemantics(Ty));
 | |
| }
 | |
| 
 | |
| APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const {
 | |
|   assert(Ty->isFixedPointType());
 | |
|   return APFixedPoint::getMin(getFixedPointSemantics(Ty));
 | |
| }
 | |
| 
 | |
| QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const {
 | |
|   assert(Ty->isUnsignedFixedPointType() &&
 | |
|          "Expected unsigned fixed point type");
 | |
| 
 | |
|   switch (Ty->castAs<BuiltinType>()->getKind()) {
 | |
|   case BuiltinType::UShortAccum:
 | |
|     return ShortAccumTy;
 | |
|   case BuiltinType::UAccum:
 | |
|     return AccumTy;
 | |
|   case BuiltinType::ULongAccum:
 | |
|     return LongAccumTy;
 | |
|   case BuiltinType::SatUShortAccum:
 | |
|     return SatShortAccumTy;
 | |
|   case BuiltinType::SatUAccum:
 | |
|     return SatAccumTy;
 | |
|   case BuiltinType::SatULongAccum:
 | |
|     return SatLongAccumTy;
 | |
|   case BuiltinType::UShortFract:
 | |
|     return ShortFractTy;
 | |
|   case BuiltinType::UFract:
 | |
|     return FractTy;
 | |
|   case BuiltinType::ULongFract:
 | |
|     return LongFractTy;
 | |
|   case BuiltinType::SatUShortFract:
 | |
|     return SatShortFractTy;
 | |
|   case BuiltinType::SatUFract:
 | |
|     return SatFractTy;
 | |
|   case BuiltinType::SatULongFract:
 | |
|     return SatLongFractTy;
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected unsigned fixed point type");
 | |
|   }
 | |
| }
 | |
| 
 | |
| ParsedTargetAttr
 | |
| ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const {
 | |
|   assert(TD != nullptr);
 | |
|   ParsedTargetAttr ParsedAttr = TD->parse();
 | |
| 
 | |
|   ParsedAttr.Features.erase(
 | |
|       llvm::remove_if(ParsedAttr.Features,
 | |
|                       [&](const std::string &Feat) {
 | |
|                         return !Target->isValidFeatureName(
 | |
|                             StringRef{Feat}.substr(1));
 | |
|                       }),
 | |
|       ParsedAttr.Features.end());
 | |
|   return ParsedAttr;
 | |
| }
 | |
| 
 | |
| void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
 | |
|                                        const FunctionDecl *FD) const {
 | |
|   if (FD)
 | |
|     getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD));
 | |
|   else
 | |
|     Target->initFeatureMap(FeatureMap, getDiagnostics(),
 | |
|                            Target->getTargetOpts().CPU,
 | |
|                            Target->getTargetOpts().Features);
 | |
| }
 | |
| 
 | |
| // Fills in the supplied string map with the set of target features for the
 | |
| // passed in function.
 | |
| void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
 | |
|                                        GlobalDecl GD) const {
 | |
|   StringRef TargetCPU = Target->getTargetOpts().CPU;
 | |
|   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
 | |
|   if (const auto *TD = FD->getAttr<TargetAttr>()) {
 | |
|     ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
 | |
| 
 | |
|     // Make a copy of the features as passed on the command line into the
 | |
|     // beginning of the additional features from the function to override.
 | |
|     ParsedAttr.Features.insert(
 | |
|         ParsedAttr.Features.begin(),
 | |
|         Target->getTargetOpts().FeaturesAsWritten.begin(),
 | |
|         Target->getTargetOpts().FeaturesAsWritten.end());
 | |
| 
 | |
|     if (ParsedAttr.Architecture != "" &&
 | |
|         Target->isValidCPUName(ParsedAttr.Architecture))
 | |
|       TargetCPU = ParsedAttr.Architecture;
 | |
| 
 | |
|     // Now populate the feature map, first with the TargetCPU which is either
 | |
|     // the default or a new one from the target attribute string. Then we'll use
 | |
|     // the passed in features (FeaturesAsWritten) along with the new ones from
 | |
|     // the attribute.
 | |
|     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
 | |
|                            ParsedAttr.Features);
 | |
|   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
 | |
|     llvm::SmallVector<StringRef, 32> FeaturesTmp;
 | |
|     Target->getCPUSpecificCPUDispatchFeatures(
 | |
|         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
 | |
|     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
 | |
|     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
 | |
|   } else {
 | |
|     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
 | |
|                            Target->getTargetOpts().Features);
 | |
|   }
 | |
| }
 |