forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			14761 lines
		
	
	
		
			526 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			14761 lines
		
	
	
		
			526 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the Expr constant evaluator.
 | |
| //
 | |
| // Constant expression evaluation produces four main results:
 | |
| //
 | |
| //  * A success/failure flag indicating whether constant folding was successful.
 | |
| //    This is the 'bool' return value used by most of the code in this file. A
 | |
| //    'false' return value indicates that constant folding has failed, and any
 | |
| //    appropriate diagnostic has already been produced.
 | |
| //
 | |
| //  * An evaluated result, valid only if constant folding has not failed.
 | |
| //
 | |
| //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
 | |
| //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
 | |
| //    where it is possible to determine the evaluated result regardless.
 | |
| //
 | |
| //  * A set of notes indicating why the evaluation was not a constant expression
 | |
| //    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
 | |
| //    too, why the expression could not be folded.
 | |
| //
 | |
| // If we are checking for a potential constant expression, failure to constant
 | |
| // fold a potential constant sub-expression will be indicated by a 'false'
 | |
| // return value (the expression could not be folded) and no diagnostic (the
 | |
| // expression is not necessarily non-constant).
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "Interp/Context.h"
 | |
| #include "Interp/Frame.h"
 | |
| #include "Interp/State.h"
 | |
| #include "clang/AST/APValue.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/ASTDiagnostic.h"
 | |
| #include "clang/AST/ASTLambda.h"
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/AST/CXXInheritance.h"
 | |
| #include "clang/AST/CharUnits.h"
 | |
| #include "clang/AST/CurrentSourceLocExprScope.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/OSLog.h"
 | |
| #include "clang/AST/OptionalDiagnostic.h"
 | |
| #include "clang/AST/RecordLayout.h"
 | |
| #include "clang/AST/StmtVisitor.h"
 | |
| #include "clang/AST/TypeLoc.h"
 | |
| #include "clang/Basic/Builtins.h"
 | |
| #include "clang/Basic/FixedPoint.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/SmallBitVector.h"
 | |
| #include "llvm/Support/SaveAndRestore.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <cstring>
 | |
| #include <functional>
 | |
| 
 | |
| #define DEBUG_TYPE "exprconstant"
 | |
| 
 | |
| using namespace clang;
 | |
| using llvm::APInt;
 | |
| using llvm::APSInt;
 | |
| using llvm::APFloat;
 | |
| using llvm::Optional;
 | |
| 
 | |
| namespace {
 | |
|   struct LValue;
 | |
|   class CallStackFrame;
 | |
|   class EvalInfo;
 | |
| 
 | |
|   using SourceLocExprScopeGuard =
 | |
|       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
 | |
| 
 | |
|   static QualType getType(APValue::LValueBase B) {
 | |
|     if (!B) return QualType();
 | |
|     if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
 | |
|       // FIXME: It's unclear where we're supposed to take the type from, and
 | |
|       // this actually matters for arrays of unknown bound. Eg:
 | |
|       //
 | |
|       // extern int arr[]; void f() { extern int arr[3]; };
 | |
|       // constexpr int *p = &arr[1]; // valid?
 | |
|       //
 | |
|       // For now, we take the array bound from the most recent declaration.
 | |
|       for (auto *Redecl = cast<ValueDecl>(D->getMostRecentDecl()); Redecl;
 | |
|            Redecl = cast_or_null<ValueDecl>(Redecl->getPreviousDecl())) {
 | |
|         QualType T = Redecl->getType();
 | |
|         if (!T->isIncompleteArrayType())
 | |
|           return T;
 | |
|       }
 | |
|       return D->getType();
 | |
|     }
 | |
| 
 | |
|     if (B.is<TypeInfoLValue>())
 | |
|       return B.getTypeInfoType();
 | |
| 
 | |
|     if (B.is<DynamicAllocLValue>())
 | |
|       return B.getDynamicAllocType();
 | |
| 
 | |
|     const Expr *Base = B.get<const Expr*>();
 | |
| 
 | |
|     // For a materialized temporary, the type of the temporary we materialized
 | |
|     // may not be the type of the expression.
 | |
|     if (const MaterializeTemporaryExpr *MTE =
 | |
|             dyn_cast<MaterializeTemporaryExpr>(Base)) {
 | |
|       SmallVector<const Expr *, 2> CommaLHSs;
 | |
|       SmallVector<SubobjectAdjustment, 2> Adjustments;
 | |
|       const Expr *Temp = MTE->getSubExpr();
 | |
|       const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
 | |
|                                                                Adjustments);
 | |
|       // Keep any cv-qualifiers from the reference if we generated a temporary
 | |
|       // for it directly. Otherwise use the type after adjustment.
 | |
|       if (!Adjustments.empty())
 | |
|         return Inner->getType();
 | |
|     }
 | |
| 
 | |
|     return Base->getType();
 | |
|   }
 | |
| 
 | |
|   /// Get an LValue path entry, which is known to not be an array index, as a
 | |
|   /// field declaration.
 | |
|   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
 | |
|     return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer());
 | |
|   }
 | |
|   /// Get an LValue path entry, which is known to not be an array index, as a
 | |
|   /// base class declaration.
 | |
|   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
 | |
|     return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer());
 | |
|   }
 | |
|   /// Determine whether this LValue path entry for a base class names a virtual
 | |
|   /// base class.
 | |
|   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
 | |
|     return E.getAsBaseOrMember().getInt();
 | |
|   }
 | |
| 
 | |
|   /// Given an expression, determine the type used to store the result of
 | |
|   /// evaluating that expression.
 | |
|   static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
 | |
|     if (E->isRValue())
 | |
|       return E->getType();
 | |
|     return Ctx.getLValueReferenceType(E->getType());
 | |
|   }
 | |
| 
 | |
|   /// Given a CallExpr, try to get the alloc_size attribute. May return null.
 | |
|   static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
 | |
|     const FunctionDecl *Callee = CE->getDirectCallee();
 | |
|     return Callee ? Callee->getAttr<AllocSizeAttr>() : nullptr;
 | |
|   }
 | |
| 
 | |
|   /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
 | |
|   /// This will look through a single cast.
 | |
|   ///
 | |
|   /// Returns null if we couldn't unwrap a function with alloc_size.
 | |
|   static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
 | |
|     if (!E->getType()->isPointerType())
 | |
|       return nullptr;
 | |
| 
 | |
|     E = E->IgnoreParens();
 | |
|     // If we're doing a variable assignment from e.g. malloc(N), there will
 | |
|     // probably be a cast of some kind. In exotic cases, we might also see a
 | |
|     // top-level ExprWithCleanups. Ignore them either way.
 | |
|     if (const auto *FE = dyn_cast<FullExpr>(E))
 | |
|       E = FE->getSubExpr()->IgnoreParens();
 | |
| 
 | |
|     if (const auto *Cast = dyn_cast<CastExpr>(E))
 | |
|       E = Cast->getSubExpr()->IgnoreParens();
 | |
| 
 | |
|     if (const auto *CE = dyn_cast<CallExpr>(E))
 | |
|       return getAllocSizeAttr(CE) ? CE : nullptr;
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   /// Determines whether or not the given Base contains a call to a function
 | |
|   /// with the alloc_size attribute.
 | |
|   static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
 | |
|     const auto *E = Base.dyn_cast<const Expr *>();
 | |
|     return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
 | |
|   }
 | |
| 
 | |
|   /// The bound to claim that an array of unknown bound has.
 | |
|   /// The value in MostDerivedArraySize is undefined in this case. So, set it
 | |
|   /// to an arbitrary value that's likely to loudly break things if it's used.
 | |
|   static const uint64_t AssumedSizeForUnsizedArray =
 | |
|       std::numeric_limits<uint64_t>::max() / 2;
 | |
| 
 | |
|   /// Determines if an LValue with the given LValueBase will have an unsized
 | |
|   /// array in its designator.
 | |
|   /// Find the path length and type of the most-derived subobject in the given
 | |
|   /// path, and find the size of the containing array, if any.
 | |
|   static unsigned
 | |
|   findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
 | |
|                            ArrayRef<APValue::LValuePathEntry> Path,
 | |
|                            uint64_t &ArraySize, QualType &Type, bool &IsArray,
 | |
|                            bool &FirstEntryIsUnsizedArray) {
 | |
|     // This only accepts LValueBases from APValues, and APValues don't support
 | |
|     // arrays that lack size info.
 | |
|     assert(!isBaseAnAllocSizeCall(Base) &&
 | |
|            "Unsized arrays shouldn't appear here");
 | |
|     unsigned MostDerivedLength = 0;
 | |
|     Type = getType(Base);
 | |
| 
 | |
|     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
 | |
|       if (Type->isArrayType()) {
 | |
|         const ArrayType *AT = Ctx.getAsArrayType(Type);
 | |
|         Type = AT->getElementType();
 | |
|         MostDerivedLength = I + 1;
 | |
|         IsArray = true;
 | |
| 
 | |
|         if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
 | |
|           ArraySize = CAT->getSize().getZExtValue();
 | |
|         } else {
 | |
|           assert(I == 0 && "unexpected unsized array designator");
 | |
|           FirstEntryIsUnsizedArray = true;
 | |
|           ArraySize = AssumedSizeForUnsizedArray;
 | |
|         }
 | |
|       } else if (Type->isAnyComplexType()) {
 | |
|         const ComplexType *CT = Type->castAs<ComplexType>();
 | |
|         Type = CT->getElementType();
 | |
|         ArraySize = 2;
 | |
|         MostDerivedLength = I + 1;
 | |
|         IsArray = true;
 | |
|       } else if (const FieldDecl *FD = getAsField(Path[I])) {
 | |
|         Type = FD->getType();
 | |
|         ArraySize = 0;
 | |
|         MostDerivedLength = I + 1;
 | |
|         IsArray = false;
 | |
|       } else {
 | |
|         // Path[I] describes a base class.
 | |
|         ArraySize = 0;
 | |
|         IsArray = false;
 | |
|       }
 | |
|     }
 | |
|     return MostDerivedLength;
 | |
|   }
 | |
| 
 | |
|   /// A path from a glvalue to a subobject of that glvalue.
 | |
|   struct SubobjectDesignator {
 | |
|     /// True if the subobject was named in a manner not supported by C++11. Such
 | |
|     /// lvalues can still be folded, but they are not core constant expressions
 | |
|     /// and we cannot perform lvalue-to-rvalue conversions on them.
 | |
|     unsigned Invalid : 1;
 | |
| 
 | |
|     /// Is this a pointer one past the end of an object?
 | |
|     unsigned IsOnePastTheEnd : 1;
 | |
| 
 | |
|     /// Indicator of whether the first entry is an unsized array.
 | |
|     unsigned FirstEntryIsAnUnsizedArray : 1;
 | |
| 
 | |
|     /// Indicator of whether the most-derived object is an array element.
 | |
|     unsigned MostDerivedIsArrayElement : 1;
 | |
| 
 | |
|     /// The length of the path to the most-derived object of which this is a
 | |
|     /// subobject.
 | |
|     unsigned MostDerivedPathLength : 28;
 | |
| 
 | |
|     /// The size of the array of which the most-derived object is an element.
 | |
|     /// This will always be 0 if the most-derived object is not an array
 | |
|     /// element. 0 is not an indicator of whether or not the most-derived object
 | |
|     /// is an array, however, because 0-length arrays are allowed.
 | |
|     ///
 | |
|     /// If the current array is an unsized array, the value of this is
 | |
|     /// undefined.
 | |
|     uint64_t MostDerivedArraySize;
 | |
| 
 | |
|     /// The type of the most derived object referred to by this address.
 | |
|     QualType MostDerivedType;
 | |
| 
 | |
|     typedef APValue::LValuePathEntry PathEntry;
 | |
| 
 | |
|     /// The entries on the path from the glvalue to the designated subobject.
 | |
|     SmallVector<PathEntry, 8> Entries;
 | |
| 
 | |
|     SubobjectDesignator() : Invalid(true) {}
 | |
| 
 | |
|     explicit SubobjectDesignator(QualType T)
 | |
|         : Invalid(false), IsOnePastTheEnd(false),
 | |
|           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
 | |
|           MostDerivedPathLength(0), MostDerivedArraySize(0),
 | |
|           MostDerivedType(T) {}
 | |
| 
 | |
|     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
 | |
|         : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
 | |
|           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
 | |
|           MostDerivedPathLength(0), MostDerivedArraySize(0) {
 | |
|       assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
 | |
|       if (!Invalid) {
 | |
|         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
 | |
|         ArrayRef<PathEntry> VEntries = V.getLValuePath();
 | |
|         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
 | |
|         if (V.getLValueBase()) {
 | |
|           bool IsArray = false;
 | |
|           bool FirstIsUnsizedArray = false;
 | |
|           MostDerivedPathLength = findMostDerivedSubobject(
 | |
|               Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
 | |
|               MostDerivedType, IsArray, FirstIsUnsizedArray);
 | |
|           MostDerivedIsArrayElement = IsArray;
 | |
|           FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     void truncate(ASTContext &Ctx, APValue::LValueBase Base,
 | |
|                   unsigned NewLength) {
 | |
|       if (Invalid)
 | |
|         return;
 | |
| 
 | |
|       assert(Base && "cannot truncate path for null pointer");
 | |
|       assert(NewLength <= Entries.size() && "not a truncation");
 | |
| 
 | |
|       if (NewLength == Entries.size())
 | |
|         return;
 | |
|       Entries.resize(NewLength);
 | |
| 
 | |
|       bool IsArray = false;
 | |
|       bool FirstIsUnsizedArray = false;
 | |
|       MostDerivedPathLength = findMostDerivedSubobject(
 | |
|           Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
 | |
|           FirstIsUnsizedArray);
 | |
|       MostDerivedIsArrayElement = IsArray;
 | |
|       FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
 | |
|     }
 | |
| 
 | |
|     void setInvalid() {
 | |
|       Invalid = true;
 | |
|       Entries.clear();
 | |
|     }
 | |
| 
 | |
|     /// Determine whether the most derived subobject is an array without a
 | |
|     /// known bound.
 | |
|     bool isMostDerivedAnUnsizedArray() const {
 | |
|       assert(!Invalid && "Calling this makes no sense on invalid designators");
 | |
|       return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
 | |
|     }
 | |
| 
 | |
|     /// Determine what the most derived array's size is. Results in an assertion
 | |
|     /// failure if the most derived array lacks a size.
 | |
|     uint64_t getMostDerivedArraySize() const {
 | |
|       assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
 | |
|       return MostDerivedArraySize;
 | |
|     }
 | |
| 
 | |
|     /// Determine whether this is a one-past-the-end pointer.
 | |
|     bool isOnePastTheEnd() const {
 | |
|       assert(!Invalid);
 | |
|       if (IsOnePastTheEnd)
 | |
|         return true;
 | |
|       if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
 | |
|           Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
 | |
|               MostDerivedArraySize)
 | |
|         return true;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     /// Get the range of valid index adjustments in the form
 | |
|     ///   {maximum value that can be subtracted from this pointer,
 | |
|     ///    maximum value that can be added to this pointer}
 | |
|     std::pair<uint64_t, uint64_t> validIndexAdjustments() {
 | |
|       if (Invalid || isMostDerivedAnUnsizedArray())
 | |
|         return {0, 0};
 | |
| 
 | |
|       // [expr.add]p4: For the purposes of these operators, a pointer to a
 | |
|       // nonarray object behaves the same as a pointer to the first element of
 | |
|       // an array of length one with the type of the object as its element type.
 | |
|       bool IsArray = MostDerivedPathLength == Entries.size() &&
 | |
|                      MostDerivedIsArrayElement;
 | |
|       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
 | |
|                                     : (uint64_t)IsOnePastTheEnd;
 | |
|       uint64_t ArraySize =
 | |
|           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
 | |
|       return {ArrayIndex, ArraySize - ArrayIndex};
 | |
|     }
 | |
| 
 | |
|     /// Check that this refers to a valid subobject.
 | |
|     bool isValidSubobject() const {
 | |
|       if (Invalid)
 | |
|         return false;
 | |
|       return !isOnePastTheEnd();
 | |
|     }
 | |
|     /// Check that this refers to a valid subobject, and if not, produce a
 | |
|     /// relevant diagnostic and set the designator as invalid.
 | |
|     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
 | |
| 
 | |
|     /// Get the type of the designated object.
 | |
|     QualType getType(ASTContext &Ctx) const {
 | |
|       assert(!Invalid && "invalid designator has no subobject type");
 | |
|       return MostDerivedPathLength == Entries.size()
 | |
|                  ? MostDerivedType
 | |
|                  : Ctx.getRecordType(getAsBaseClass(Entries.back()));
 | |
|     }
 | |
| 
 | |
|     /// Update this designator to refer to the first element within this array.
 | |
|     void addArrayUnchecked(const ConstantArrayType *CAT) {
 | |
|       Entries.push_back(PathEntry::ArrayIndex(0));
 | |
| 
 | |
|       // This is a most-derived object.
 | |
|       MostDerivedType = CAT->getElementType();
 | |
|       MostDerivedIsArrayElement = true;
 | |
|       MostDerivedArraySize = CAT->getSize().getZExtValue();
 | |
|       MostDerivedPathLength = Entries.size();
 | |
|     }
 | |
|     /// Update this designator to refer to the first element within the array of
 | |
|     /// elements of type T. This is an array of unknown size.
 | |
|     void addUnsizedArrayUnchecked(QualType ElemTy) {
 | |
|       Entries.push_back(PathEntry::ArrayIndex(0));
 | |
| 
 | |
|       MostDerivedType = ElemTy;
 | |
|       MostDerivedIsArrayElement = true;
 | |
|       // The value in MostDerivedArraySize is undefined in this case. So, set it
 | |
|       // to an arbitrary value that's likely to loudly break things if it's
 | |
|       // used.
 | |
|       MostDerivedArraySize = AssumedSizeForUnsizedArray;
 | |
|       MostDerivedPathLength = Entries.size();
 | |
|     }
 | |
|     /// Update this designator to refer to the given base or member of this
 | |
|     /// object.
 | |
|     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
 | |
|       Entries.push_back(APValue::BaseOrMemberType(D, Virtual));
 | |
| 
 | |
|       // If this isn't a base class, it's a new most-derived object.
 | |
|       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
 | |
|         MostDerivedType = FD->getType();
 | |
|         MostDerivedIsArrayElement = false;
 | |
|         MostDerivedArraySize = 0;
 | |
|         MostDerivedPathLength = Entries.size();
 | |
|       }
 | |
|     }
 | |
|     /// Update this designator to refer to the given complex component.
 | |
|     void addComplexUnchecked(QualType EltTy, bool Imag) {
 | |
|       Entries.push_back(PathEntry::ArrayIndex(Imag));
 | |
| 
 | |
|       // This is technically a most-derived object, though in practice this
 | |
|       // is unlikely to matter.
 | |
|       MostDerivedType = EltTy;
 | |
|       MostDerivedIsArrayElement = true;
 | |
|       MostDerivedArraySize = 2;
 | |
|       MostDerivedPathLength = Entries.size();
 | |
|     }
 | |
|     void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
 | |
|     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
 | |
|                                    const APSInt &N);
 | |
|     /// Add N to the address of this subobject.
 | |
|     void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
 | |
|       if (Invalid || !N) return;
 | |
|       uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
 | |
|       if (isMostDerivedAnUnsizedArray()) {
 | |
|         diagnoseUnsizedArrayPointerArithmetic(Info, E);
 | |
|         // Can't verify -- trust that the user is doing the right thing (or if
 | |
|         // not, trust that the caller will catch the bad behavior).
 | |
|         // FIXME: Should we reject if this overflows, at least?
 | |
|         Entries.back() = PathEntry::ArrayIndex(
 | |
|             Entries.back().getAsArrayIndex() + TruncatedN);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // [expr.add]p4: For the purposes of these operators, a pointer to a
 | |
|       // nonarray object behaves the same as a pointer to the first element of
 | |
|       // an array of length one with the type of the object as its element type.
 | |
|       bool IsArray = MostDerivedPathLength == Entries.size() &&
 | |
|                      MostDerivedIsArrayElement;
 | |
|       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
 | |
|                                     : (uint64_t)IsOnePastTheEnd;
 | |
|       uint64_t ArraySize =
 | |
|           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
 | |
| 
 | |
|       if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
 | |
|         // Calculate the actual index in a wide enough type, so we can include
 | |
|         // it in the note.
 | |
|         N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
 | |
|         (llvm::APInt&)N += ArrayIndex;
 | |
|         assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
 | |
|         diagnosePointerArithmetic(Info, E, N);
 | |
|         setInvalid();
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       ArrayIndex += TruncatedN;
 | |
|       assert(ArrayIndex <= ArraySize &&
 | |
|              "bounds check succeeded for out-of-bounds index");
 | |
| 
 | |
|       if (IsArray)
 | |
|         Entries.back() = PathEntry::ArrayIndex(ArrayIndex);
 | |
|       else
 | |
|         IsOnePastTheEnd = (ArrayIndex != 0);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// A stack frame in the constexpr call stack.
 | |
|   class CallStackFrame : public interp::Frame {
 | |
|   public:
 | |
|     EvalInfo &Info;
 | |
| 
 | |
|     /// Parent - The caller of this stack frame.
 | |
|     CallStackFrame *Caller;
 | |
| 
 | |
|     /// Callee - The function which was called.
 | |
|     const FunctionDecl *Callee;
 | |
| 
 | |
|     /// This - The binding for the this pointer in this call, if any.
 | |
|     const LValue *This;
 | |
| 
 | |
|     /// Arguments - Parameter bindings for this function call, indexed by
 | |
|     /// parameters' function scope indices.
 | |
|     APValue *Arguments;
 | |
| 
 | |
|     /// Source location information about the default argument or default
 | |
|     /// initializer expression we're evaluating, if any.
 | |
|     CurrentSourceLocExprScope CurSourceLocExprScope;
 | |
| 
 | |
|     // Note that we intentionally use std::map here so that references to
 | |
|     // values are stable.
 | |
|     typedef std::pair<const void *, unsigned> MapKeyTy;
 | |
|     typedef std::map<MapKeyTy, APValue> MapTy;
 | |
|     /// Temporaries - Temporary lvalues materialized within this stack frame.
 | |
|     MapTy Temporaries;
 | |
| 
 | |
|     /// CallLoc - The location of the call expression for this call.
 | |
|     SourceLocation CallLoc;
 | |
| 
 | |
|     /// Index - The call index of this call.
 | |
|     unsigned Index;
 | |
| 
 | |
|     /// The stack of integers for tracking version numbers for temporaries.
 | |
|     SmallVector<unsigned, 2> TempVersionStack = {1};
 | |
|     unsigned CurTempVersion = TempVersionStack.back();
 | |
| 
 | |
|     unsigned getTempVersion() const { return TempVersionStack.back(); }
 | |
| 
 | |
|     void pushTempVersion() {
 | |
|       TempVersionStack.push_back(++CurTempVersion);
 | |
|     }
 | |
| 
 | |
|     void popTempVersion() {
 | |
|       TempVersionStack.pop_back();
 | |
|     }
 | |
| 
 | |
|     // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
 | |
|     // on the overall stack usage of deeply-recursing constexpr evaluations.
 | |
|     // (We should cache this map rather than recomputing it repeatedly.)
 | |
|     // But let's try this and see how it goes; we can look into caching the map
 | |
|     // as a later change.
 | |
| 
 | |
|     /// LambdaCaptureFields - Mapping from captured variables/this to
 | |
|     /// corresponding data members in the closure class.
 | |
|     llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
 | |
|     FieldDecl *LambdaThisCaptureField;
 | |
| 
 | |
|     CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
 | |
|                    const FunctionDecl *Callee, const LValue *This,
 | |
|                    APValue *Arguments);
 | |
|     ~CallStackFrame();
 | |
| 
 | |
|     // Return the temporary for Key whose version number is Version.
 | |
|     APValue *getTemporary(const void *Key, unsigned Version) {
 | |
|       MapKeyTy KV(Key, Version);
 | |
|       auto LB = Temporaries.lower_bound(KV);
 | |
|       if (LB != Temporaries.end() && LB->first == KV)
 | |
|         return &LB->second;
 | |
|       // Pair (Key,Version) wasn't found in the map. Check that no elements
 | |
|       // in the map have 'Key' as their key.
 | |
|       assert((LB == Temporaries.end() || LB->first.first != Key) &&
 | |
|              (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) &&
 | |
|              "Element with key 'Key' found in map");
 | |
|       return nullptr;
 | |
|     }
 | |
| 
 | |
|     // Return the current temporary for Key in the map.
 | |
|     APValue *getCurrentTemporary(const void *Key) {
 | |
|       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
 | |
|       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
 | |
|         return &std::prev(UB)->second;
 | |
|       return nullptr;
 | |
|     }
 | |
| 
 | |
|     // Return the version number of the current temporary for Key.
 | |
|     unsigned getCurrentTemporaryVersion(const void *Key) const {
 | |
|       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
 | |
|       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
 | |
|         return std::prev(UB)->first.second;
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     /// Allocate storage for an object of type T in this stack frame.
 | |
|     /// Populates LV with a handle to the created object. Key identifies
 | |
|     /// the temporary within the stack frame, and must not be reused without
 | |
|     /// bumping the temporary version number.
 | |
|     template<typename KeyT>
 | |
|     APValue &createTemporary(const KeyT *Key, QualType T,
 | |
|                              bool IsLifetimeExtended, LValue &LV);
 | |
| 
 | |
|     void describe(llvm::raw_ostream &OS) override;
 | |
| 
 | |
|     Frame *getCaller() const override { return Caller; }
 | |
|     SourceLocation getCallLocation() const override { return CallLoc; }
 | |
|     const FunctionDecl *getCallee() const override { return Callee; }
 | |
| 
 | |
|     bool isStdFunction() const {
 | |
|       for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
 | |
|         if (DC->isStdNamespace())
 | |
|           return true;
 | |
|       return false;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// Temporarily override 'this'.
 | |
|   class ThisOverrideRAII {
 | |
|   public:
 | |
|     ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
 | |
|         : Frame(Frame), OldThis(Frame.This) {
 | |
|       if (Enable)
 | |
|         Frame.This = NewThis;
 | |
|     }
 | |
|     ~ThisOverrideRAII() {
 | |
|       Frame.This = OldThis;
 | |
|     }
 | |
|   private:
 | |
|     CallStackFrame &Frame;
 | |
|     const LValue *OldThis;
 | |
|   };
 | |
| }
 | |
| 
 | |
| static bool HandleDestruction(EvalInfo &Info, const Expr *E,
 | |
|                               const LValue &This, QualType ThisType);
 | |
| static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
 | |
|                               APValue::LValueBase LVBase, APValue &Value,
 | |
|                               QualType T);
 | |
| 
 | |
| namespace {
 | |
|   /// A cleanup, and a flag indicating whether it is lifetime-extended.
 | |
|   class Cleanup {
 | |
|     llvm::PointerIntPair<APValue*, 1, bool> Value;
 | |
|     APValue::LValueBase Base;
 | |
|     QualType T;
 | |
| 
 | |
|   public:
 | |
|     Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
 | |
|             bool IsLifetimeExtended)
 | |
|         : Value(Val, IsLifetimeExtended), Base(Base), T(T) {}
 | |
| 
 | |
|     bool isLifetimeExtended() const { return Value.getInt(); }
 | |
|     bool endLifetime(EvalInfo &Info, bool RunDestructors) {
 | |
|       if (RunDestructors) {
 | |
|         SourceLocation Loc;
 | |
|         if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
 | |
|           Loc = VD->getLocation();
 | |
|         else if (const Expr *E = Base.dyn_cast<const Expr*>())
 | |
|           Loc = E->getExprLoc();
 | |
|         return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
 | |
|       }
 | |
|       *Value.getPointer() = APValue();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     bool hasSideEffect() {
 | |
|       return T.isDestructedType();
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// A reference to an object whose construction we are currently evaluating.
 | |
|   struct ObjectUnderConstruction {
 | |
|     APValue::LValueBase Base;
 | |
|     ArrayRef<APValue::LValuePathEntry> Path;
 | |
|     friend bool operator==(const ObjectUnderConstruction &LHS,
 | |
|                            const ObjectUnderConstruction &RHS) {
 | |
|       return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
 | |
|     }
 | |
|     friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
 | |
|       return llvm::hash_combine(Obj.Base, Obj.Path);
 | |
|     }
 | |
|   };
 | |
|   enum class ConstructionPhase {
 | |
|     None,
 | |
|     Bases,
 | |
|     AfterBases,
 | |
|     Destroying,
 | |
|     DestroyingBases
 | |
|   };
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| template<> struct DenseMapInfo<ObjectUnderConstruction> {
 | |
|   using Base = DenseMapInfo<APValue::LValueBase>;
 | |
|   static ObjectUnderConstruction getEmptyKey() {
 | |
|     return {Base::getEmptyKey(), {}}; }
 | |
|   static ObjectUnderConstruction getTombstoneKey() {
 | |
|     return {Base::getTombstoneKey(), {}};
 | |
|   }
 | |
|   static unsigned getHashValue(const ObjectUnderConstruction &Object) {
 | |
|     return hash_value(Object);
 | |
|   }
 | |
|   static bool isEqual(const ObjectUnderConstruction &LHS,
 | |
|                       const ObjectUnderConstruction &RHS) {
 | |
|     return LHS == RHS;
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// A dynamically-allocated heap object.
 | |
|   struct DynAlloc {
 | |
|     /// The value of this heap-allocated object.
 | |
|     APValue Value;
 | |
|     /// The allocating expression; used for diagnostics. Either a CXXNewExpr
 | |
|     /// or a CallExpr (the latter is for direct calls to operator new inside
 | |
|     /// std::allocator<T>::allocate).
 | |
|     const Expr *AllocExpr = nullptr;
 | |
| 
 | |
|     enum Kind {
 | |
|       New,
 | |
|       ArrayNew,
 | |
|       StdAllocator
 | |
|     };
 | |
| 
 | |
|     /// Get the kind of the allocation. This must match between allocation
 | |
|     /// and deallocation.
 | |
|     Kind getKind() const {
 | |
|       if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr))
 | |
|         return NE->isArray() ? ArrayNew : New;
 | |
|       assert(isa<CallExpr>(AllocExpr));
 | |
|       return StdAllocator;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   struct DynAllocOrder {
 | |
|     bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
 | |
|       return L.getIndex() < R.getIndex();
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// EvalInfo - This is a private struct used by the evaluator to capture
 | |
|   /// information about a subexpression as it is folded.  It retains information
 | |
|   /// about the AST context, but also maintains information about the folded
 | |
|   /// expression.
 | |
|   ///
 | |
|   /// If an expression could be evaluated, it is still possible it is not a C
 | |
|   /// "integer constant expression" or constant expression.  If not, this struct
 | |
|   /// captures information about how and why not.
 | |
|   ///
 | |
|   /// One bit of information passed *into* the request for constant folding
 | |
|   /// indicates whether the subexpression is "evaluated" or not according to C
 | |
|   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
 | |
|   /// evaluate the expression regardless of what the RHS is, but C only allows
 | |
|   /// certain things in certain situations.
 | |
|   class EvalInfo : public interp::State {
 | |
|   public:
 | |
|     ASTContext &Ctx;
 | |
| 
 | |
|     /// EvalStatus - Contains information about the evaluation.
 | |
|     Expr::EvalStatus &EvalStatus;
 | |
| 
 | |
|     /// CurrentCall - The top of the constexpr call stack.
 | |
|     CallStackFrame *CurrentCall;
 | |
| 
 | |
|     /// CallStackDepth - The number of calls in the call stack right now.
 | |
|     unsigned CallStackDepth;
 | |
| 
 | |
|     /// NextCallIndex - The next call index to assign.
 | |
|     unsigned NextCallIndex;
 | |
| 
 | |
|     /// StepsLeft - The remaining number of evaluation steps we're permitted
 | |
|     /// to perform. This is essentially a limit for the number of statements
 | |
|     /// we will evaluate.
 | |
|     unsigned StepsLeft;
 | |
| 
 | |
|     /// Enable the experimental new constant interpreter. If an expression is
 | |
|     /// not supported by the interpreter, an error is triggered.
 | |
|     bool EnableNewConstInterp;
 | |
| 
 | |
|     /// BottomFrame - The frame in which evaluation started. This must be
 | |
|     /// initialized after CurrentCall and CallStackDepth.
 | |
|     CallStackFrame BottomFrame;
 | |
| 
 | |
|     /// A stack of values whose lifetimes end at the end of some surrounding
 | |
|     /// evaluation frame.
 | |
|     llvm::SmallVector<Cleanup, 16> CleanupStack;
 | |
| 
 | |
|     /// EvaluatingDecl - This is the declaration whose initializer is being
 | |
|     /// evaluated, if any.
 | |
|     APValue::LValueBase EvaluatingDecl;
 | |
| 
 | |
|     enum class EvaluatingDeclKind {
 | |
|       None,
 | |
|       /// We're evaluating the construction of EvaluatingDecl.
 | |
|       Ctor,
 | |
|       /// We're evaluating the destruction of EvaluatingDecl.
 | |
|       Dtor,
 | |
|     };
 | |
|     EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;
 | |
| 
 | |
|     /// EvaluatingDeclValue - This is the value being constructed for the
 | |
|     /// declaration whose initializer is being evaluated, if any.
 | |
|     APValue *EvaluatingDeclValue;
 | |
| 
 | |
|     /// Set of objects that are currently being constructed.
 | |
|     llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
 | |
|         ObjectsUnderConstruction;
 | |
| 
 | |
|     /// Current heap allocations, along with the location where each was
 | |
|     /// allocated. We use std::map here because we need stable addresses
 | |
|     /// for the stored APValues.
 | |
|     std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;
 | |
| 
 | |
|     /// The number of heap allocations performed so far in this evaluation.
 | |
|     unsigned NumHeapAllocs = 0;
 | |
| 
 | |
|     struct EvaluatingConstructorRAII {
 | |
|       EvalInfo &EI;
 | |
|       ObjectUnderConstruction Object;
 | |
|       bool DidInsert;
 | |
|       EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
 | |
|                                 bool HasBases)
 | |
|           : EI(EI), Object(Object) {
 | |
|         DidInsert =
 | |
|             EI.ObjectsUnderConstruction
 | |
|                 .insert({Object, HasBases ? ConstructionPhase::Bases
 | |
|                                           : ConstructionPhase::AfterBases})
 | |
|                 .second;
 | |
|       }
 | |
|       void finishedConstructingBases() {
 | |
|         EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
 | |
|       }
 | |
|       ~EvaluatingConstructorRAII() {
 | |
|         if (DidInsert) EI.ObjectsUnderConstruction.erase(Object);
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     struct EvaluatingDestructorRAII {
 | |
|       EvalInfo &EI;
 | |
|       ObjectUnderConstruction Object;
 | |
|       bool DidInsert;
 | |
|       EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
 | |
|           : EI(EI), Object(Object) {
 | |
|         DidInsert = EI.ObjectsUnderConstruction
 | |
|                         .insert({Object, ConstructionPhase::Destroying})
 | |
|                         .second;
 | |
|       }
 | |
|       void startedDestroyingBases() {
 | |
|         EI.ObjectsUnderConstruction[Object] =
 | |
|             ConstructionPhase::DestroyingBases;
 | |
|       }
 | |
|       ~EvaluatingDestructorRAII() {
 | |
|         if (DidInsert)
 | |
|           EI.ObjectsUnderConstruction.erase(Object);
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     ConstructionPhase
 | |
|     isEvaluatingCtorDtor(APValue::LValueBase Base,
 | |
|                          ArrayRef<APValue::LValuePathEntry> Path) {
 | |
|       return ObjectsUnderConstruction.lookup({Base, Path});
 | |
|     }
 | |
| 
 | |
|     /// If we're currently speculatively evaluating, the outermost call stack
 | |
|     /// depth at which we can mutate state, otherwise 0.
 | |
|     unsigned SpeculativeEvaluationDepth = 0;
 | |
| 
 | |
|     /// The current array initialization index, if we're performing array
 | |
|     /// initialization.
 | |
|     uint64_t ArrayInitIndex = -1;
 | |
| 
 | |
|     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
 | |
|     /// notes attached to it will also be stored, otherwise they will not be.
 | |
|     bool HasActiveDiagnostic;
 | |
| 
 | |
|     /// Have we emitted a diagnostic explaining why we couldn't constant
 | |
|     /// fold (not just why it's not strictly a constant expression)?
 | |
|     bool HasFoldFailureDiagnostic;
 | |
| 
 | |
|     /// Whether or not we're in a context where the front end requires a
 | |
|     /// constant value.
 | |
|     bool InConstantContext;
 | |
| 
 | |
|     /// Whether we're checking that an expression is a potential constant
 | |
|     /// expression. If so, do not fail on constructs that could become constant
 | |
|     /// later on (such as a use of an undefined global).
 | |
|     bool CheckingPotentialConstantExpression = false;
 | |
| 
 | |
|     /// Whether we're checking for an expression that has undefined behavior.
 | |
|     /// If so, we will produce warnings if we encounter an operation that is
 | |
|     /// always undefined.
 | |
|     bool CheckingForUndefinedBehavior = false;
 | |
| 
 | |
|     enum EvaluationMode {
 | |
|       /// Evaluate as a constant expression. Stop if we find that the expression
 | |
|       /// is not a constant expression.
 | |
|       EM_ConstantExpression,
 | |
| 
 | |
|       /// Evaluate as a constant expression. Stop if we find that the expression
 | |
|       /// is not a constant expression. Some expressions can be retried in the
 | |
|       /// optimizer if we don't constant fold them here, but in an unevaluated
 | |
|       /// context we try to fold them immediately since the optimizer never
 | |
|       /// gets a chance to look at it.
 | |
|       EM_ConstantExpressionUnevaluated,
 | |
| 
 | |
|       /// Fold the expression to a constant. Stop if we hit a side-effect that
 | |
|       /// we can't model.
 | |
|       EM_ConstantFold,
 | |
| 
 | |
|       /// Evaluate in any way we know how. Don't worry about side-effects that
 | |
|       /// can't be modeled.
 | |
|       EM_IgnoreSideEffects,
 | |
|     } EvalMode;
 | |
| 
 | |
|     /// Are we checking whether the expression is a potential constant
 | |
|     /// expression?
 | |
|     bool checkingPotentialConstantExpression() const override  {
 | |
|       return CheckingPotentialConstantExpression;
 | |
|     }
 | |
| 
 | |
|     /// Are we checking an expression for overflow?
 | |
|     // FIXME: We should check for any kind of undefined or suspicious behavior
 | |
|     // in such constructs, not just overflow.
 | |
|     bool checkingForUndefinedBehavior() const override {
 | |
|       return CheckingForUndefinedBehavior;
 | |
|     }
 | |
| 
 | |
|     EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
 | |
|         : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
 | |
|           CallStackDepth(0), NextCallIndex(1),
 | |
|           StepsLeft(C.getLangOpts().ConstexprStepLimit),
 | |
|           EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp),
 | |
|           BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
 | |
|           EvaluatingDecl((const ValueDecl *)nullptr),
 | |
|           EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
 | |
|           HasFoldFailureDiagnostic(false), InConstantContext(false),
 | |
|           EvalMode(Mode) {}
 | |
| 
 | |
|     ~EvalInfo() {
 | |
|       discardCleanups();
 | |
|     }
 | |
| 
 | |
|     void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
 | |
|                            EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
 | |
|       EvaluatingDecl = Base;
 | |
|       IsEvaluatingDecl = EDK;
 | |
|       EvaluatingDeclValue = &Value;
 | |
|     }
 | |
| 
 | |
|     bool CheckCallLimit(SourceLocation Loc) {
 | |
|       // Don't perform any constexpr calls (other than the call we're checking)
 | |
|       // when checking a potential constant expression.
 | |
|       if (checkingPotentialConstantExpression() && CallStackDepth > 1)
 | |
|         return false;
 | |
|       if (NextCallIndex == 0) {
 | |
|         // NextCallIndex has wrapped around.
 | |
|         FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
 | |
|         return false;
 | |
|       }
 | |
|       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
 | |
|         return true;
 | |
|       FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
 | |
|         << getLangOpts().ConstexprCallDepth;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     std::pair<CallStackFrame *, unsigned>
 | |
|     getCallFrameAndDepth(unsigned CallIndex) {
 | |
|       assert(CallIndex && "no call index in getCallFrameAndDepth");
 | |
|       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
 | |
|       // be null in this loop.
 | |
|       unsigned Depth = CallStackDepth;
 | |
|       CallStackFrame *Frame = CurrentCall;
 | |
|       while (Frame->Index > CallIndex) {
 | |
|         Frame = Frame->Caller;
 | |
|         --Depth;
 | |
|       }
 | |
|       if (Frame->Index == CallIndex)
 | |
|         return {Frame, Depth};
 | |
|       return {nullptr, 0};
 | |
|     }
 | |
| 
 | |
|     bool nextStep(const Stmt *S) {
 | |
|       if (!StepsLeft) {
 | |
|         FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
 | |
|         return false;
 | |
|       }
 | |
|       --StepsLeft;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);
 | |
| 
 | |
|     Optional<DynAlloc*> lookupDynamicAlloc(DynamicAllocLValue DA) {
 | |
|       Optional<DynAlloc*> Result;
 | |
|       auto It = HeapAllocs.find(DA);
 | |
|       if (It != HeapAllocs.end())
 | |
|         Result = &It->second;
 | |
|       return Result;
 | |
|     }
 | |
| 
 | |
|     /// Information about a stack frame for std::allocator<T>::[de]allocate.
 | |
|     struct StdAllocatorCaller {
 | |
|       unsigned FrameIndex;
 | |
|       QualType ElemType;
 | |
|       explicit operator bool() const { return FrameIndex != 0; };
 | |
|     };
 | |
| 
 | |
|     StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
 | |
|       for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
 | |
|            Call = Call->Caller) {
 | |
|         const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee);
 | |
|         if (!MD)
 | |
|           continue;
 | |
|         const IdentifierInfo *FnII = MD->getIdentifier();
 | |
|         if (!FnII || !FnII->isStr(FnName))
 | |
|           continue;
 | |
| 
 | |
|         const auto *CTSD =
 | |
|             dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent());
 | |
|         if (!CTSD)
 | |
|           continue;
 | |
| 
 | |
|         const IdentifierInfo *ClassII = CTSD->getIdentifier();
 | |
|         const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
 | |
|         if (CTSD->isInStdNamespace() && ClassII &&
 | |
|             ClassII->isStr("allocator") && TAL.size() >= 1 &&
 | |
|             TAL[0].getKind() == TemplateArgument::Type)
 | |
|           return {Call->Index, TAL[0].getAsType()};
 | |
|       }
 | |
| 
 | |
|       return {};
 | |
|     }
 | |
| 
 | |
|     void performLifetimeExtension() {
 | |
|       // Disable the cleanups for lifetime-extended temporaries.
 | |
|       CleanupStack.erase(
 | |
|           std::remove_if(CleanupStack.begin(), CleanupStack.end(),
 | |
|                          [](Cleanup &C) { return C.isLifetimeExtended(); }),
 | |
|           CleanupStack.end());
 | |
|      }
 | |
| 
 | |
|     /// Throw away any remaining cleanups at the end of evaluation. If any
 | |
|     /// cleanups would have had a side-effect, note that as an unmodeled
 | |
|     /// side-effect and return false. Otherwise, return true.
 | |
|     bool discardCleanups() {
 | |
|       for (Cleanup &C : CleanupStack) {
 | |
|         if (C.hasSideEffect() && !noteSideEffect()) {
 | |
|           CleanupStack.clear();
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
|       CleanupStack.clear();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     interp::Frame *getCurrentFrame() override { return CurrentCall; }
 | |
|     const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
 | |
| 
 | |
|     bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
 | |
|     void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
 | |
| 
 | |
|     void setFoldFailureDiagnostic(bool Flag) override {
 | |
|       HasFoldFailureDiagnostic = Flag;
 | |
|     }
 | |
| 
 | |
|     Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
 | |
| 
 | |
|     ASTContext &getCtx() const override { return Ctx; }
 | |
| 
 | |
|     // If we have a prior diagnostic, it will be noting that the expression
 | |
|     // isn't a constant expression. This diagnostic is more important,
 | |
|     // unless we require this evaluation to produce a constant expression.
 | |
|     //
 | |
|     // FIXME: We might want to show both diagnostics to the user in
 | |
|     // EM_ConstantFold mode.
 | |
|     bool hasPriorDiagnostic() override {
 | |
|       if (!EvalStatus.Diag->empty()) {
 | |
|         switch (EvalMode) {
 | |
|         case EM_ConstantFold:
 | |
|         case EM_IgnoreSideEffects:
 | |
|           if (!HasFoldFailureDiagnostic)
 | |
|             break;
 | |
|           // We've already failed to fold something. Keep that diagnostic.
 | |
|           LLVM_FALLTHROUGH;
 | |
|         case EM_ConstantExpression:
 | |
|         case EM_ConstantExpressionUnevaluated:
 | |
|           setActiveDiagnostic(false);
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     unsigned getCallStackDepth() override { return CallStackDepth; }
 | |
| 
 | |
|   public:
 | |
|     /// Should we continue evaluation after encountering a side-effect that we
 | |
|     /// couldn't model?
 | |
|     bool keepEvaluatingAfterSideEffect() {
 | |
|       switch (EvalMode) {
 | |
|       case EM_IgnoreSideEffects:
 | |
|         return true;
 | |
| 
 | |
|       case EM_ConstantExpression:
 | |
|       case EM_ConstantExpressionUnevaluated:
 | |
|       case EM_ConstantFold:
 | |
|         // By default, assume any side effect might be valid in some other
 | |
|         // evaluation of this expression from a different context.
 | |
|         return checkingPotentialConstantExpression() ||
 | |
|                checkingForUndefinedBehavior();
 | |
|       }
 | |
|       llvm_unreachable("Missed EvalMode case");
 | |
|     }
 | |
| 
 | |
|     /// Note that we have had a side-effect, and determine whether we should
 | |
|     /// keep evaluating.
 | |
|     bool noteSideEffect() {
 | |
|       EvalStatus.HasSideEffects = true;
 | |
|       return keepEvaluatingAfterSideEffect();
 | |
|     }
 | |
| 
 | |
|     /// Should we continue evaluation after encountering undefined behavior?
 | |
|     bool keepEvaluatingAfterUndefinedBehavior() {
 | |
|       switch (EvalMode) {
 | |
|       case EM_IgnoreSideEffects:
 | |
|       case EM_ConstantFold:
 | |
|         return true;
 | |
| 
 | |
|       case EM_ConstantExpression:
 | |
|       case EM_ConstantExpressionUnevaluated:
 | |
|         return checkingForUndefinedBehavior();
 | |
|       }
 | |
|       llvm_unreachable("Missed EvalMode case");
 | |
|     }
 | |
| 
 | |
|     /// Note that we hit something that was technically undefined behavior, but
 | |
|     /// that we can evaluate past it (such as signed overflow or floating-point
 | |
|     /// division by zero.)
 | |
|     bool noteUndefinedBehavior() override {
 | |
|       EvalStatus.HasUndefinedBehavior = true;
 | |
|       return keepEvaluatingAfterUndefinedBehavior();
 | |
|     }
 | |
| 
 | |
|     /// Should we continue evaluation as much as possible after encountering a
 | |
|     /// construct which can't be reduced to a value?
 | |
|     bool keepEvaluatingAfterFailure() const override {
 | |
|       if (!StepsLeft)
 | |
|         return false;
 | |
| 
 | |
|       switch (EvalMode) {
 | |
|       case EM_ConstantExpression:
 | |
|       case EM_ConstantExpressionUnevaluated:
 | |
|       case EM_ConstantFold:
 | |
|       case EM_IgnoreSideEffects:
 | |
|         return checkingPotentialConstantExpression() ||
 | |
|                checkingForUndefinedBehavior();
 | |
|       }
 | |
|       llvm_unreachable("Missed EvalMode case");
 | |
|     }
 | |
| 
 | |
|     /// Notes that we failed to evaluate an expression that other expressions
 | |
|     /// directly depend on, and determine if we should keep evaluating. This
 | |
|     /// should only be called if we actually intend to keep evaluating.
 | |
|     ///
 | |
|     /// Call noteSideEffect() instead if we may be able to ignore the value that
 | |
|     /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
 | |
|     ///
 | |
|     /// (Foo(), 1)      // use noteSideEffect
 | |
|     /// (Foo() || true) // use noteSideEffect
 | |
|     /// Foo() + 1       // use noteFailure
 | |
|     LLVM_NODISCARD bool noteFailure() {
 | |
|       // Failure when evaluating some expression often means there is some
 | |
|       // subexpression whose evaluation was skipped. Therefore, (because we
 | |
|       // don't track whether we skipped an expression when unwinding after an
 | |
|       // evaluation failure) every evaluation failure that bubbles up from a
 | |
|       // subexpression implies that a side-effect has potentially happened. We
 | |
|       // skip setting the HasSideEffects flag to true until we decide to
 | |
|       // continue evaluating after that point, which happens here.
 | |
|       bool KeepGoing = keepEvaluatingAfterFailure();
 | |
|       EvalStatus.HasSideEffects |= KeepGoing;
 | |
|       return KeepGoing;
 | |
|     }
 | |
| 
 | |
|     class ArrayInitLoopIndex {
 | |
|       EvalInfo &Info;
 | |
|       uint64_t OuterIndex;
 | |
| 
 | |
|     public:
 | |
|       ArrayInitLoopIndex(EvalInfo &Info)
 | |
|           : Info(Info), OuterIndex(Info.ArrayInitIndex) {
 | |
|         Info.ArrayInitIndex = 0;
 | |
|       }
 | |
|       ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
 | |
| 
 | |
|       operator uint64_t&() { return Info.ArrayInitIndex; }
 | |
|     };
 | |
|   };
 | |
| 
 | |
|   /// Object used to treat all foldable expressions as constant expressions.
 | |
|   struct FoldConstant {
 | |
|     EvalInfo &Info;
 | |
|     bool Enabled;
 | |
|     bool HadNoPriorDiags;
 | |
|     EvalInfo::EvaluationMode OldMode;
 | |
| 
 | |
|     explicit FoldConstant(EvalInfo &Info, bool Enabled)
 | |
|       : Info(Info),
 | |
|         Enabled(Enabled),
 | |
|         HadNoPriorDiags(Info.EvalStatus.Diag &&
 | |
|                         Info.EvalStatus.Diag->empty() &&
 | |
|                         !Info.EvalStatus.HasSideEffects),
 | |
|         OldMode(Info.EvalMode) {
 | |
|       if (Enabled)
 | |
|         Info.EvalMode = EvalInfo::EM_ConstantFold;
 | |
|     }
 | |
|     void keepDiagnostics() { Enabled = false; }
 | |
|     ~FoldConstant() {
 | |
|       if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
 | |
|           !Info.EvalStatus.HasSideEffects)
 | |
|         Info.EvalStatus.Diag->clear();
 | |
|       Info.EvalMode = OldMode;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// RAII object used to set the current evaluation mode to ignore
 | |
|   /// side-effects.
 | |
|   struct IgnoreSideEffectsRAII {
 | |
|     EvalInfo &Info;
 | |
|     EvalInfo::EvaluationMode OldMode;
 | |
|     explicit IgnoreSideEffectsRAII(EvalInfo &Info)
 | |
|         : Info(Info), OldMode(Info.EvalMode) {
 | |
|       Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
 | |
|     }
 | |
| 
 | |
|     ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
 | |
|   };
 | |
| 
 | |
|   /// RAII object used to optionally suppress diagnostics and side-effects from
 | |
|   /// a speculative evaluation.
 | |
|   class SpeculativeEvaluationRAII {
 | |
|     EvalInfo *Info = nullptr;
 | |
|     Expr::EvalStatus OldStatus;
 | |
|     unsigned OldSpeculativeEvaluationDepth;
 | |
| 
 | |
|     void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
 | |
|       Info = Other.Info;
 | |
|       OldStatus = Other.OldStatus;
 | |
|       OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
 | |
|       Other.Info = nullptr;
 | |
|     }
 | |
| 
 | |
|     void maybeRestoreState() {
 | |
|       if (!Info)
 | |
|         return;
 | |
| 
 | |
|       Info->EvalStatus = OldStatus;
 | |
|       Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
 | |
|     }
 | |
| 
 | |
|   public:
 | |
|     SpeculativeEvaluationRAII() = default;
 | |
| 
 | |
|     SpeculativeEvaluationRAII(
 | |
|         EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
 | |
|         : Info(&Info), OldStatus(Info.EvalStatus),
 | |
|           OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
 | |
|       Info.EvalStatus.Diag = NewDiag;
 | |
|       Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
 | |
|     }
 | |
| 
 | |
|     SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
 | |
|     SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
 | |
|       moveFromAndCancel(std::move(Other));
 | |
|     }
 | |
| 
 | |
|     SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
 | |
|       maybeRestoreState();
 | |
|       moveFromAndCancel(std::move(Other));
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
 | |
|   };
 | |
| 
 | |
|   /// RAII object wrapping a full-expression or block scope, and handling
 | |
|   /// the ending of the lifetime of temporaries created within it.
 | |
|   template<bool IsFullExpression>
 | |
|   class ScopeRAII {
 | |
|     EvalInfo &Info;
 | |
|     unsigned OldStackSize;
 | |
|   public:
 | |
|     ScopeRAII(EvalInfo &Info)
 | |
|         : Info(Info), OldStackSize(Info.CleanupStack.size()) {
 | |
|       // Push a new temporary version. This is needed to distinguish between
 | |
|       // temporaries created in different iterations of a loop.
 | |
|       Info.CurrentCall->pushTempVersion();
 | |
|     }
 | |
|     bool destroy(bool RunDestructors = true) {
 | |
|       bool OK = cleanup(Info, RunDestructors, OldStackSize);
 | |
|       OldStackSize = -1U;
 | |
|       return OK;
 | |
|     }
 | |
|     ~ScopeRAII() {
 | |
|       if (OldStackSize != -1U)
 | |
|         destroy(false);
 | |
|       // Body moved to a static method to encourage the compiler to inline away
 | |
|       // instances of this class.
 | |
|       Info.CurrentCall->popTempVersion();
 | |
|     }
 | |
|   private:
 | |
|     static bool cleanup(EvalInfo &Info, bool RunDestructors,
 | |
|                         unsigned OldStackSize) {
 | |
|       assert(OldStackSize <= Info.CleanupStack.size() &&
 | |
|              "running cleanups out of order?");
 | |
| 
 | |
|       // Run all cleanups for a block scope, and non-lifetime-extended cleanups
 | |
|       // for a full-expression scope.
 | |
|       bool Success = true;
 | |
|       for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
 | |
|         if (!(IsFullExpression &&
 | |
|               Info.CleanupStack[I - 1].isLifetimeExtended())) {
 | |
|           if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
 | |
|             Success = false;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compact lifetime-extended cleanups.
 | |
|       auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
 | |
|       if (IsFullExpression)
 | |
|         NewEnd =
 | |
|             std::remove_if(NewEnd, Info.CleanupStack.end(),
 | |
|                            [](Cleanup &C) { return !C.isLifetimeExtended(); });
 | |
|       Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end());
 | |
|       return Success;
 | |
|     }
 | |
|   };
 | |
|   typedef ScopeRAII<false> BlockScopeRAII;
 | |
|   typedef ScopeRAII<true> FullExpressionRAII;
 | |
| }
 | |
| 
 | |
| bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
 | |
|                                          CheckSubobjectKind CSK) {
 | |
|   if (Invalid)
 | |
|     return false;
 | |
|   if (isOnePastTheEnd()) {
 | |
|     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
 | |
|       << CSK;
 | |
|     setInvalid();
 | |
|     return false;
 | |
|   }
 | |
|   // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
 | |
|   // must actually be at least one array element; even a VLA cannot have a
 | |
|   // bound of zero. And if our index is nonzero, we already had a CCEDiag.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
 | |
|                                                                 const Expr *E) {
 | |
|   Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
 | |
|   // Do not set the designator as invalid: we can represent this situation,
 | |
|   // and correct handling of __builtin_object_size requires us to do so.
 | |
| }
 | |
| 
 | |
| void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
 | |
|                                                     const Expr *E,
 | |
|                                                     const APSInt &N) {
 | |
|   // If we're complaining, we must be able to statically determine the size of
 | |
|   // the most derived array.
 | |
|   if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
 | |
|     Info.CCEDiag(E, diag::note_constexpr_array_index)
 | |
|       << N << /*array*/ 0
 | |
|       << static_cast<unsigned>(getMostDerivedArraySize());
 | |
|   else
 | |
|     Info.CCEDiag(E, diag::note_constexpr_array_index)
 | |
|       << N << /*non-array*/ 1;
 | |
|   setInvalid();
 | |
| }
 | |
| 
 | |
| CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
 | |
|                                const FunctionDecl *Callee, const LValue *This,
 | |
|                                APValue *Arguments)
 | |
|     : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
 | |
|       Arguments(Arguments), CallLoc(CallLoc), Index(Info.NextCallIndex++) {
 | |
|   Info.CurrentCall = this;
 | |
|   ++Info.CallStackDepth;
 | |
| }
 | |
| 
 | |
| CallStackFrame::~CallStackFrame() {
 | |
|   assert(Info.CurrentCall == this && "calls retired out of order");
 | |
|   --Info.CallStackDepth;
 | |
|   Info.CurrentCall = Caller;
 | |
| }
 | |
| 
 | |
| static bool isRead(AccessKinds AK) {
 | |
|   return AK == AK_Read || AK == AK_ReadObjectRepresentation;
 | |
| }
 | |
| 
 | |
| static bool isModification(AccessKinds AK) {
 | |
|   switch (AK) {
 | |
|   case AK_Read:
 | |
|   case AK_ReadObjectRepresentation:
 | |
|   case AK_MemberCall:
 | |
|   case AK_DynamicCast:
 | |
|   case AK_TypeId:
 | |
|     return false;
 | |
|   case AK_Assign:
 | |
|   case AK_Increment:
 | |
|   case AK_Decrement:
 | |
|   case AK_Construct:
 | |
|   case AK_Destroy:
 | |
|     return true;
 | |
|   }
 | |
|   llvm_unreachable("unknown access kind");
 | |
| }
 | |
| 
 | |
| static bool isAnyAccess(AccessKinds AK) {
 | |
|   return isRead(AK) || isModification(AK);
 | |
| }
 | |
| 
 | |
| /// Is this an access per the C++ definition?
 | |
| static bool isFormalAccess(AccessKinds AK) {
 | |
|   return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy;
 | |
| }
 | |
| 
 | |
| /// Is this kind of axcess valid on an indeterminate object value?
 | |
| static bool isValidIndeterminateAccess(AccessKinds AK) {
 | |
|   switch (AK) {
 | |
|   case AK_Read:
 | |
|   case AK_Increment:
 | |
|   case AK_Decrement:
 | |
|     // These need the object's value.
 | |
|     return false;
 | |
| 
 | |
|   case AK_ReadObjectRepresentation:
 | |
|   case AK_Assign:
 | |
|   case AK_Construct:
 | |
|   case AK_Destroy:
 | |
|     // Construction and destruction don't need the value.
 | |
|     return true;
 | |
| 
 | |
|   case AK_MemberCall:
 | |
|   case AK_DynamicCast:
 | |
|   case AK_TypeId:
 | |
|     // These aren't really meaningful on scalars.
 | |
|     return true;
 | |
|   }
 | |
|   llvm_unreachable("unknown access kind");
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct ComplexValue {
 | |
|   private:
 | |
|     bool IsInt;
 | |
| 
 | |
|   public:
 | |
|     APSInt IntReal, IntImag;
 | |
|     APFloat FloatReal, FloatImag;
 | |
| 
 | |
|     ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
 | |
| 
 | |
|     void makeComplexFloat() { IsInt = false; }
 | |
|     bool isComplexFloat() const { return !IsInt; }
 | |
|     APFloat &getComplexFloatReal() { return FloatReal; }
 | |
|     APFloat &getComplexFloatImag() { return FloatImag; }
 | |
| 
 | |
|     void makeComplexInt() { IsInt = true; }
 | |
|     bool isComplexInt() const { return IsInt; }
 | |
|     APSInt &getComplexIntReal() { return IntReal; }
 | |
|     APSInt &getComplexIntImag() { return IntImag; }
 | |
| 
 | |
|     void moveInto(APValue &v) const {
 | |
|       if (isComplexFloat())
 | |
|         v = APValue(FloatReal, FloatImag);
 | |
|       else
 | |
|         v = APValue(IntReal, IntImag);
 | |
|     }
 | |
|     void setFrom(const APValue &v) {
 | |
|       assert(v.isComplexFloat() || v.isComplexInt());
 | |
|       if (v.isComplexFloat()) {
 | |
|         makeComplexFloat();
 | |
|         FloatReal = v.getComplexFloatReal();
 | |
|         FloatImag = v.getComplexFloatImag();
 | |
|       } else {
 | |
|         makeComplexInt();
 | |
|         IntReal = v.getComplexIntReal();
 | |
|         IntImag = v.getComplexIntImag();
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   struct LValue {
 | |
|     APValue::LValueBase Base;
 | |
|     CharUnits Offset;
 | |
|     SubobjectDesignator Designator;
 | |
|     bool IsNullPtr : 1;
 | |
|     bool InvalidBase : 1;
 | |
| 
 | |
|     const APValue::LValueBase getLValueBase() const { return Base; }
 | |
|     CharUnits &getLValueOffset() { return Offset; }
 | |
|     const CharUnits &getLValueOffset() const { return Offset; }
 | |
|     SubobjectDesignator &getLValueDesignator() { return Designator; }
 | |
|     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
 | |
|     bool isNullPointer() const { return IsNullPtr;}
 | |
| 
 | |
|     unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
 | |
|     unsigned getLValueVersion() const { return Base.getVersion(); }
 | |
| 
 | |
|     void moveInto(APValue &V) const {
 | |
|       if (Designator.Invalid)
 | |
|         V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
 | |
|       else {
 | |
|         assert(!InvalidBase && "APValues can't handle invalid LValue bases");
 | |
|         V = APValue(Base, Offset, Designator.Entries,
 | |
|                     Designator.IsOnePastTheEnd, IsNullPtr);
 | |
|       }
 | |
|     }
 | |
|     void setFrom(ASTContext &Ctx, const APValue &V) {
 | |
|       assert(V.isLValue() && "Setting LValue from a non-LValue?");
 | |
|       Base = V.getLValueBase();
 | |
|       Offset = V.getLValueOffset();
 | |
|       InvalidBase = false;
 | |
|       Designator = SubobjectDesignator(Ctx, V);
 | |
|       IsNullPtr = V.isNullPointer();
 | |
|     }
 | |
| 
 | |
|     void set(APValue::LValueBase B, bool BInvalid = false) {
 | |
| #ifndef NDEBUG
 | |
|       // We only allow a few types of invalid bases. Enforce that here.
 | |
|       if (BInvalid) {
 | |
|         const auto *E = B.get<const Expr *>();
 | |
|         assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
 | |
|                "Unexpected type of invalid base");
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|       Base = B;
 | |
|       Offset = CharUnits::fromQuantity(0);
 | |
|       InvalidBase = BInvalid;
 | |
|       Designator = SubobjectDesignator(getType(B));
 | |
|       IsNullPtr = false;
 | |
|     }
 | |
| 
 | |
|     void setNull(ASTContext &Ctx, QualType PointerTy) {
 | |
|       Base = (Expr *)nullptr;
 | |
|       Offset =
 | |
|           CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy));
 | |
|       InvalidBase = false;
 | |
|       Designator = SubobjectDesignator(PointerTy->getPointeeType());
 | |
|       IsNullPtr = true;
 | |
|     }
 | |
| 
 | |
|     void setInvalid(APValue::LValueBase B, unsigned I = 0) {
 | |
|       set(B, true);
 | |
|     }
 | |
| 
 | |
|     std::string toString(ASTContext &Ctx, QualType T) const {
 | |
|       APValue Printable;
 | |
|       moveInto(Printable);
 | |
|       return Printable.getAsString(Ctx, T);
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     // Check that this LValue is not based on a null pointer. If it is, produce
 | |
|     // a diagnostic and mark the designator as invalid.
 | |
|     template <typename GenDiagType>
 | |
|     bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
 | |
|       if (Designator.Invalid)
 | |
|         return false;
 | |
|       if (IsNullPtr) {
 | |
|         GenDiag();
 | |
|         Designator.setInvalid();
 | |
|         return false;
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   public:
 | |
|     bool checkNullPointer(EvalInfo &Info, const Expr *E,
 | |
|                           CheckSubobjectKind CSK) {
 | |
|       return checkNullPointerDiagnosingWith([&Info, E, CSK] {
 | |
|         Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
 | |
|       });
 | |
|     }
 | |
| 
 | |
|     bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
 | |
|                                        AccessKinds AK) {
 | |
|       return checkNullPointerDiagnosingWith([&Info, E, AK] {
 | |
|         Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
 | |
|       });
 | |
|     }
 | |
| 
 | |
|     // Check this LValue refers to an object. If not, set the designator to be
 | |
|     // invalid and emit a diagnostic.
 | |
|     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
 | |
|       return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
 | |
|              Designator.checkSubobject(Info, E, CSK);
 | |
|     }
 | |
| 
 | |
|     void addDecl(EvalInfo &Info, const Expr *E,
 | |
|                  const Decl *D, bool Virtual = false) {
 | |
|       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
 | |
|         Designator.addDeclUnchecked(D, Virtual);
 | |
|     }
 | |
|     void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
 | |
|       if (!Designator.Entries.empty()) {
 | |
|         Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
 | |
|         Designator.setInvalid();
 | |
|         return;
 | |
|       }
 | |
|       if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
 | |
|         assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
 | |
|         Designator.FirstEntryIsAnUnsizedArray = true;
 | |
|         Designator.addUnsizedArrayUnchecked(ElemTy);
 | |
|       }
 | |
|     }
 | |
|     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
 | |
|       if (checkSubobject(Info, E, CSK_ArrayToPointer))
 | |
|         Designator.addArrayUnchecked(CAT);
 | |
|     }
 | |
|     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
 | |
|       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
 | |
|         Designator.addComplexUnchecked(EltTy, Imag);
 | |
|     }
 | |
|     void clearIsNullPointer() {
 | |
|       IsNullPtr = false;
 | |
|     }
 | |
|     void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
 | |
|                               const APSInt &Index, CharUnits ElementSize) {
 | |
|       // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
 | |
|       // but we're not required to diagnose it and it's valid in C++.)
 | |
|       if (!Index)
 | |
|         return;
 | |
| 
 | |
|       // Compute the new offset in the appropriate width, wrapping at 64 bits.
 | |
|       // FIXME: When compiling for a 32-bit target, we should use 32-bit
 | |
|       // offsets.
 | |
|       uint64_t Offset64 = Offset.getQuantity();
 | |
|       uint64_t ElemSize64 = ElementSize.getQuantity();
 | |
|       uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
 | |
|       Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);
 | |
| 
 | |
|       if (checkNullPointer(Info, E, CSK_ArrayIndex))
 | |
|         Designator.adjustIndex(Info, E, Index);
 | |
|       clearIsNullPointer();
 | |
|     }
 | |
|     void adjustOffset(CharUnits N) {
 | |
|       Offset += N;
 | |
|       if (N.getQuantity())
 | |
|         clearIsNullPointer();
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   struct MemberPtr {
 | |
|     MemberPtr() {}
 | |
|     explicit MemberPtr(const ValueDecl *Decl) :
 | |
|       DeclAndIsDerivedMember(Decl, false), Path() {}
 | |
| 
 | |
|     /// The member or (direct or indirect) field referred to by this member
 | |
|     /// pointer, or 0 if this is a null member pointer.
 | |
|     const ValueDecl *getDecl() const {
 | |
|       return DeclAndIsDerivedMember.getPointer();
 | |
|     }
 | |
|     /// Is this actually a member of some type derived from the relevant class?
 | |
|     bool isDerivedMember() const {
 | |
|       return DeclAndIsDerivedMember.getInt();
 | |
|     }
 | |
|     /// Get the class which the declaration actually lives in.
 | |
|     const CXXRecordDecl *getContainingRecord() const {
 | |
|       return cast<CXXRecordDecl>(
 | |
|           DeclAndIsDerivedMember.getPointer()->getDeclContext());
 | |
|     }
 | |
| 
 | |
|     void moveInto(APValue &V) const {
 | |
|       V = APValue(getDecl(), isDerivedMember(), Path);
 | |
|     }
 | |
|     void setFrom(const APValue &V) {
 | |
|       assert(V.isMemberPointer());
 | |
|       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
 | |
|       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
 | |
|       Path.clear();
 | |
|       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
 | |
|       Path.insert(Path.end(), P.begin(), P.end());
 | |
|     }
 | |
| 
 | |
|     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
 | |
|     /// whether the member is a member of some class derived from the class type
 | |
|     /// of the member pointer.
 | |
|     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
 | |
|     /// Path - The path of base/derived classes from the member declaration's
 | |
|     /// class (exclusive) to the class type of the member pointer (inclusive).
 | |
|     SmallVector<const CXXRecordDecl*, 4> Path;
 | |
| 
 | |
|     /// Perform a cast towards the class of the Decl (either up or down the
 | |
|     /// hierarchy).
 | |
|     bool castBack(const CXXRecordDecl *Class) {
 | |
|       assert(!Path.empty());
 | |
|       const CXXRecordDecl *Expected;
 | |
|       if (Path.size() >= 2)
 | |
|         Expected = Path[Path.size() - 2];
 | |
|       else
 | |
|         Expected = getContainingRecord();
 | |
|       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
 | |
|         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
 | |
|         // if B does not contain the original member and is not a base or
 | |
|         // derived class of the class containing the original member, the result
 | |
|         // of the cast is undefined.
 | |
|         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
 | |
|         // (D::*). We consider that to be a language defect.
 | |
|         return false;
 | |
|       }
 | |
|       Path.pop_back();
 | |
|       return true;
 | |
|     }
 | |
|     /// Perform a base-to-derived member pointer cast.
 | |
|     bool castToDerived(const CXXRecordDecl *Derived) {
 | |
|       if (!getDecl())
 | |
|         return true;
 | |
|       if (!isDerivedMember()) {
 | |
|         Path.push_back(Derived);
 | |
|         return true;
 | |
|       }
 | |
|       if (!castBack(Derived))
 | |
|         return false;
 | |
|       if (Path.empty())
 | |
|         DeclAndIsDerivedMember.setInt(false);
 | |
|       return true;
 | |
|     }
 | |
|     /// Perform a derived-to-base member pointer cast.
 | |
|     bool castToBase(const CXXRecordDecl *Base) {
 | |
|       if (!getDecl())
 | |
|         return true;
 | |
|       if (Path.empty())
 | |
|         DeclAndIsDerivedMember.setInt(true);
 | |
|       if (isDerivedMember()) {
 | |
|         Path.push_back(Base);
 | |
|         return true;
 | |
|       }
 | |
|       return castBack(Base);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// Compare two member pointers, which are assumed to be of the same type.
 | |
|   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
 | |
|     if (!LHS.getDecl() || !RHS.getDecl())
 | |
|       return !LHS.getDecl() && !RHS.getDecl();
 | |
|     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
 | |
|       return false;
 | |
|     return LHS.Path == RHS.Path;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
 | |
| static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
 | |
|                             const LValue &This, const Expr *E,
 | |
|                             bool AllowNonLiteralTypes = false);
 | |
| static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
 | |
|                            bool InvalidBaseOK = false);
 | |
| static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
 | |
|                             bool InvalidBaseOK = false);
 | |
| static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
 | |
|                                   EvalInfo &Info);
 | |
| static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
 | |
| static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
 | |
| static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
 | |
|                                     EvalInfo &Info);
 | |
| static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
 | |
| static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
 | |
| static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
 | |
|                            EvalInfo &Info);
 | |
| static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
 | |
| 
 | |
| /// Evaluate an integer or fixed point expression into an APResult.
 | |
| static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
 | |
|                                         EvalInfo &Info);
 | |
| 
 | |
| /// Evaluate only a fixed point expression into an APResult.
 | |
| static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
 | |
|                                EvalInfo &Info);
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Misc utilities
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Negate an APSInt in place, converting it to a signed form if necessary, and
 | |
| /// preserving its value (by extending by up to one bit as needed).
 | |
| static void negateAsSigned(APSInt &Int) {
 | |
|   if (Int.isUnsigned() || Int.isMinSignedValue()) {
 | |
|     Int = Int.extend(Int.getBitWidth() + 1);
 | |
|     Int.setIsSigned(true);
 | |
|   }
 | |
|   Int = -Int;
 | |
| }
 | |
| 
 | |
| template<typename KeyT>
 | |
| APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
 | |
|                                          bool IsLifetimeExtended, LValue &LV) {
 | |
|   unsigned Version = getTempVersion();
 | |
|   APValue::LValueBase Base(Key, Index, Version);
 | |
|   LV.set(Base);
 | |
|   APValue &Result = Temporaries[MapKeyTy(Key, Version)];
 | |
|   assert(Result.isAbsent() && "temporary created multiple times");
 | |
| 
 | |
|   // If we're creating a temporary immediately in the operand of a speculative
 | |
|   // evaluation, don't register a cleanup to be run outside the speculative
 | |
|   // evaluation context, since we won't actually be able to initialize this
 | |
|   // object.
 | |
|   if (Index <= Info.SpeculativeEvaluationDepth) {
 | |
|     if (T.isDestructedType())
 | |
|       Info.noteSideEffect();
 | |
|   } else {
 | |
|     Info.CleanupStack.push_back(Cleanup(&Result, Base, T, IsLifetimeExtended));
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
 | |
|   if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
 | |
|     FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   DynamicAllocLValue DA(NumHeapAllocs++);
 | |
|   LV.set(APValue::LValueBase::getDynamicAlloc(DA, T));
 | |
|   auto Result = HeapAllocs.emplace(std::piecewise_construct,
 | |
|                                    std::forward_as_tuple(DA), std::tuple<>());
 | |
|   assert(Result.second && "reused a heap alloc index?");
 | |
|   Result.first->second.AllocExpr = E;
 | |
|   return &Result.first->second.Value;
 | |
| }
 | |
| 
 | |
| /// Produce a string describing the given constexpr call.
 | |
| void CallStackFrame::describe(raw_ostream &Out) {
 | |
|   unsigned ArgIndex = 0;
 | |
|   bool IsMemberCall = isa<CXXMethodDecl>(Callee) &&
 | |
|                       !isa<CXXConstructorDecl>(Callee) &&
 | |
|                       cast<CXXMethodDecl>(Callee)->isInstance();
 | |
| 
 | |
|   if (!IsMemberCall)
 | |
|     Out << *Callee << '(';
 | |
| 
 | |
|   if (This && IsMemberCall) {
 | |
|     APValue Val;
 | |
|     This->moveInto(Val);
 | |
|     Val.printPretty(Out, Info.Ctx,
 | |
|                     This->Designator.MostDerivedType);
 | |
|     // FIXME: Add parens around Val if needed.
 | |
|     Out << "->" << *Callee << '(';
 | |
|     IsMemberCall = false;
 | |
|   }
 | |
| 
 | |
|   for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
 | |
|        E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
 | |
|     if (ArgIndex > (unsigned)IsMemberCall)
 | |
|       Out << ", ";
 | |
| 
 | |
|     const ParmVarDecl *Param = *I;
 | |
|     const APValue &Arg = Arguments[ArgIndex];
 | |
|     Arg.printPretty(Out, Info.Ctx, Param->getType());
 | |
| 
 | |
|     if (ArgIndex == 0 && IsMemberCall)
 | |
|       Out << "->" << *Callee << '(';
 | |
|   }
 | |
| 
 | |
|   Out << ')';
 | |
| }
 | |
| 
 | |
| /// Evaluate an expression to see if it had side-effects, and discard its
 | |
| /// result.
 | |
| /// \return \c true if the caller should keep evaluating.
 | |
| static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
 | |
|   APValue Scratch;
 | |
|   if (!Evaluate(Scratch, Info, E))
 | |
|     // We don't need the value, but we might have skipped a side effect here.
 | |
|     return Info.noteSideEffect();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Should this call expression be treated as a string literal?
 | |
| static bool IsStringLiteralCall(const CallExpr *E) {
 | |
|   unsigned Builtin = E->getBuiltinCallee();
 | |
|   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
 | |
|           Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
 | |
| }
 | |
| 
 | |
| static bool IsGlobalLValue(APValue::LValueBase B) {
 | |
|   // C++11 [expr.const]p3 An address constant expression is a prvalue core
 | |
|   // constant expression of pointer type that evaluates to...
 | |
| 
 | |
|   // ... a null pointer value, or a prvalue core constant expression of type
 | |
|   // std::nullptr_t.
 | |
|   if (!B) return true;
 | |
| 
 | |
|   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
 | |
|     // ... the address of an object with static storage duration,
 | |
|     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
 | |
|       return VD->hasGlobalStorage();
 | |
|     // ... the address of a function,
 | |
|     return isa<FunctionDecl>(D);
 | |
|   }
 | |
| 
 | |
|   if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
 | |
|     return true;
 | |
| 
 | |
|   const Expr *E = B.get<const Expr*>();
 | |
|   switch (E->getStmtClass()) {
 | |
|   default:
 | |
|     return false;
 | |
|   case Expr::CompoundLiteralExprClass: {
 | |
|     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
 | |
|     return CLE->isFileScope() && CLE->isLValue();
 | |
|   }
 | |
|   case Expr::MaterializeTemporaryExprClass:
 | |
|     // A materialized temporary might have been lifetime-extended to static
 | |
|     // storage duration.
 | |
|     return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
 | |
|   // A string literal has static storage duration.
 | |
|   case Expr::StringLiteralClass:
 | |
|   case Expr::PredefinedExprClass:
 | |
|   case Expr::ObjCStringLiteralClass:
 | |
|   case Expr::ObjCEncodeExprClass:
 | |
|   case Expr::CXXUuidofExprClass:
 | |
|     return true;
 | |
|   case Expr::ObjCBoxedExprClass:
 | |
|     return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer();
 | |
|   case Expr::CallExprClass:
 | |
|     return IsStringLiteralCall(cast<CallExpr>(E));
 | |
|   // For GCC compatibility, &&label has static storage duration.
 | |
|   case Expr::AddrLabelExprClass:
 | |
|     return true;
 | |
|   // A Block literal expression may be used as the initialization value for
 | |
|   // Block variables at global or local static scope.
 | |
|   case Expr::BlockExprClass:
 | |
|     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
 | |
|   case Expr::ImplicitValueInitExprClass:
 | |
|     // FIXME:
 | |
|     // We can never form an lvalue with an implicit value initialization as its
 | |
|     // base through expression evaluation, so these only appear in one case: the
 | |
|     // implicit variable declaration we invent when checking whether a constexpr
 | |
|     // constructor can produce a constant expression. We must assume that such
 | |
|     // an expression might be a global lvalue.
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
 | |
|   return LVal.Base.dyn_cast<const ValueDecl*>();
 | |
| }
 | |
| 
 | |
| static bool IsLiteralLValue(const LValue &Value) {
 | |
|   if (Value.getLValueCallIndex())
 | |
|     return false;
 | |
|   const Expr *E = Value.Base.dyn_cast<const Expr*>();
 | |
|   return E && !isa<MaterializeTemporaryExpr>(E);
 | |
| }
 | |
| 
 | |
| static bool IsWeakLValue(const LValue &Value) {
 | |
|   const ValueDecl *Decl = GetLValueBaseDecl(Value);
 | |
|   return Decl && Decl->isWeak();
 | |
| }
 | |
| 
 | |
| static bool isZeroSized(const LValue &Value) {
 | |
|   const ValueDecl *Decl = GetLValueBaseDecl(Value);
 | |
|   if (Decl && isa<VarDecl>(Decl)) {
 | |
|     QualType Ty = Decl->getType();
 | |
|     if (Ty->isArrayType())
 | |
|       return Ty->isIncompleteType() ||
 | |
|              Decl->getASTContext().getTypeSize(Ty) == 0;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool HasSameBase(const LValue &A, const LValue &B) {
 | |
|   if (!A.getLValueBase())
 | |
|     return !B.getLValueBase();
 | |
|   if (!B.getLValueBase())
 | |
|     return false;
 | |
| 
 | |
|   if (A.getLValueBase().getOpaqueValue() !=
 | |
|       B.getLValueBase().getOpaqueValue()) {
 | |
|     const Decl *ADecl = GetLValueBaseDecl(A);
 | |
|     if (!ADecl)
 | |
|       return false;
 | |
|     const Decl *BDecl = GetLValueBaseDecl(B);
 | |
|     if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return IsGlobalLValue(A.getLValueBase()) ||
 | |
|          (A.getLValueCallIndex() == B.getLValueCallIndex() &&
 | |
|           A.getLValueVersion() == B.getLValueVersion());
 | |
| }
 | |
| 
 | |
| static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
 | |
|   assert(Base && "no location for a null lvalue");
 | |
|   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
 | |
|   if (VD)
 | |
|     Info.Note(VD->getLocation(), diag::note_declared_at);
 | |
|   else if (const Expr *E = Base.dyn_cast<const Expr*>())
 | |
|     Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
 | |
|   else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
 | |
|     // FIXME: Produce a note for dangling pointers too.
 | |
|     if (Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA))
 | |
|       Info.Note((*Alloc)->AllocExpr->getExprLoc(),
 | |
|                 diag::note_constexpr_dynamic_alloc_here);
 | |
|   }
 | |
|   // We have no information to show for a typeid(T) object.
 | |
| }
 | |
| 
 | |
| enum class CheckEvaluationResultKind {
 | |
|   ConstantExpression,
 | |
|   FullyInitialized,
 | |
| };
 | |
| 
 | |
| /// Materialized temporaries that we've already checked to determine if they're
 | |
| /// initializsed by a constant expression.
 | |
| using CheckedTemporaries =
 | |
|     llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;
 | |
| 
 | |
| static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
 | |
|                                   EvalInfo &Info, SourceLocation DiagLoc,
 | |
|                                   QualType Type, const APValue &Value,
 | |
|                                   Expr::ConstExprUsage Usage,
 | |
|                                   SourceLocation SubobjectLoc,
 | |
|                                   CheckedTemporaries &CheckedTemps);
 | |
| 
 | |
| /// Check that this reference or pointer core constant expression is a valid
 | |
| /// value for an address or reference constant expression. Return true if we
 | |
| /// can fold this expression, whether or not it's a constant expression.
 | |
| static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
 | |
|                                           QualType Type, const LValue &LVal,
 | |
|                                           Expr::ConstExprUsage Usage,
 | |
|                                           CheckedTemporaries &CheckedTemps) {
 | |
|   bool IsReferenceType = Type->isReferenceType();
 | |
| 
 | |
|   APValue::LValueBase Base = LVal.getLValueBase();
 | |
|   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
 | |
| 
 | |
|   if (auto *VD = LVal.getLValueBase().dyn_cast<const ValueDecl *>()) {
 | |
|     if (auto *FD = dyn_cast<FunctionDecl>(VD)) {
 | |
|       if (FD->isConsteval()) {
 | |
|         Info.FFDiag(Loc, diag::note_consteval_address_accessible)
 | |
|             << !Type->isAnyPointerType();
 | |
|         Info.Note(FD->getLocation(), diag::note_declared_at);
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check that the object is a global. Note that the fake 'this' object we
 | |
|   // manufacture when checking potential constant expressions is conservatively
 | |
|   // assumed to be global here.
 | |
|   if (!IsGlobalLValue(Base)) {
 | |
|     if (Info.getLangOpts().CPlusPlus11) {
 | |
|       const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
 | |
|       Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
 | |
|         << IsReferenceType << !Designator.Entries.empty()
 | |
|         << !!VD << VD;
 | |
|       NoteLValueLocation(Info, Base);
 | |
|     } else {
 | |
|       Info.FFDiag(Loc);
 | |
|     }
 | |
|     // Don't allow references to temporaries to escape.
 | |
|     return false;
 | |
|   }
 | |
|   assert((Info.checkingPotentialConstantExpression() ||
 | |
|           LVal.getLValueCallIndex() == 0) &&
 | |
|          "have call index for global lvalue");
 | |
| 
 | |
|   if (Base.is<DynamicAllocLValue>()) {
 | |
|     Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
 | |
|         << IsReferenceType << !Designator.Entries.empty();
 | |
|     NoteLValueLocation(Info, Base);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
 | |
|     if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
 | |
|       // Check if this is a thread-local variable.
 | |
|       if (Var->getTLSKind())
 | |
|         // FIXME: Diagnostic!
 | |
|         return false;
 | |
| 
 | |
|       // A dllimport variable never acts like a constant.
 | |
|       if (Usage == Expr::EvaluateForCodeGen && Var->hasAttr<DLLImportAttr>())
 | |
|         // FIXME: Diagnostic!
 | |
|         return false;
 | |
|     }
 | |
|     if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) {
 | |
|       // __declspec(dllimport) must be handled very carefully:
 | |
|       // We must never initialize an expression with the thunk in C++.
 | |
|       // Doing otherwise would allow the same id-expression to yield
 | |
|       // different addresses for the same function in different translation
 | |
|       // units.  However, this means that we must dynamically initialize the
 | |
|       // expression with the contents of the import address table at runtime.
 | |
|       //
 | |
|       // The C language has no notion of ODR; furthermore, it has no notion of
 | |
|       // dynamic initialization.  This means that we are permitted to
 | |
|       // perform initialization with the address of the thunk.
 | |
|       if (Info.getLangOpts().CPlusPlus && Usage == Expr::EvaluateForCodeGen &&
 | |
|           FD->hasAttr<DLLImportAttr>())
 | |
|         // FIXME: Diagnostic!
 | |
|         return false;
 | |
|     }
 | |
|   } else if (const auto *MTE = dyn_cast_or_null<MaterializeTemporaryExpr>(
 | |
|                  Base.dyn_cast<const Expr *>())) {
 | |
|     if (CheckedTemps.insert(MTE).second) {
 | |
|       QualType TempType = getType(Base);
 | |
|       if (TempType.isDestructedType()) {
 | |
|         Info.FFDiag(MTE->getExprLoc(),
 | |
|                     diag::note_constexpr_unsupported_tempoarary_nontrivial_dtor)
 | |
|             << TempType;
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       APValue *V = MTE->getOrCreateValue(false);
 | |
|       assert(V && "evasluation result refers to uninitialised temporary");
 | |
|       if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
 | |
|                                  Info, MTE->getExprLoc(), TempType, *V,
 | |
|                                  Usage, SourceLocation(), CheckedTemps))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Allow address constant expressions to be past-the-end pointers. This is
 | |
|   // an extension: the standard requires them to point to an object.
 | |
|   if (!IsReferenceType)
 | |
|     return true;
 | |
| 
 | |
|   // A reference constant expression must refer to an object.
 | |
|   if (!Base) {
 | |
|     // FIXME: diagnostic
 | |
|     Info.CCEDiag(Loc);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Does this refer one past the end of some object?
 | |
|   if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
 | |
|     const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
 | |
|     Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
 | |
|       << !Designator.Entries.empty() << !!VD << VD;
 | |
|     NoteLValueLocation(Info, Base);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Member pointers are constant expressions unless they point to a
 | |
| /// non-virtual dllimport member function.
 | |
| static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
 | |
|                                                  SourceLocation Loc,
 | |
|                                                  QualType Type,
 | |
|                                                  const APValue &Value,
 | |
|                                                  Expr::ConstExprUsage Usage) {
 | |
|   const ValueDecl *Member = Value.getMemberPointerDecl();
 | |
|   const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
 | |
|   if (!FD)
 | |
|     return true;
 | |
|   if (FD->isConsteval()) {
 | |
|     Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0;
 | |
|     Info.Note(FD->getLocation(), diag::note_declared_at);
 | |
|     return false;
 | |
|   }
 | |
|   return Usage == Expr::EvaluateForMangling || FD->isVirtual() ||
 | |
|          !FD->hasAttr<DLLImportAttr>();
 | |
| }
 | |
| 
 | |
| /// Check that this core constant expression is of literal type, and if not,
 | |
| /// produce an appropriate diagnostic.
 | |
| static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
 | |
|                              const LValue *This = nullptr) {
 | |
|   if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
 | |
|     return true;
 | |
| 
 | |
|   // C++1y: A constant initializer for an object o [...] may also invoke
 | |
|   // constexpr constructors for o and its subobjects even if those objects
 | |
|   // are of non-literal class types.
 | |
|   //
 | |
|   // C++11 missed this detail for aggregates, so classes like this:
 | |
|   //   struct foo_t { union { int i; volatile int j; } u; };
 | |
|   // are not (obviously) initializable like so:
 | |
|   //   __attribute__((__require_constant_initialization__))
 | |
|   //   static const foo_t x = {{0}};
 | |
|   // because "i" is a subobject with non-literal initialization (due to the
 | |
|   // volatile member of the union). See:
 | |
|   //   http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
 | |
|   // Therefore, we use the C++1y behavior.
 | |
|   if (This && Info.EvaluatingDecl == This->getLValueBase())
 | |
|     return true;
 | |
| 
 | |
|   // Prvalue constant expressions must be of literal types.
 | |
|   if (Info.getLangOpts().CPlusPlus11)
 | |
|     Info.FFDiag(E, diag::note_constexpr_nonliteral)
 | |
|       << E->getType();
 | |
|   else
 | |
|     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
 | |
|                                   EvalInfo &Info, SourceLocation DiagLoc,
 | |
|                                   QualType Type, const APValue &Value,
 | |
|                                   Expr::ConstExprUsage Usage,
 | |
|                                   SourceLocation SubobjectLoc,
 | |
|                                   CheckedTemporaries &CheckedTemps) {
 | |
|   if (!Value.hasValue()) {
 | |
|     Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
 | |
|       << true << Type;
 | |
|     if (SubobjectLoc.isValid())
 | |
|       Info.Note(SubobjectLoc, diag::note_constexpr_subobject_declared_here);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // We allow _Atomic(T) to be initialized from anything that T can be
 | |
|   // initialized from.
 | |
|   if (const AtomicType *AT = Type->getAs<AtomicType>())
 | |
|     Type = AT->getValueType();
 | |
| 
 | |
|   // Core issue 1454: For a literal constant expression of array or class type,
 | |
|   // each subobject of its value shall have been initialized by a constant
 | |
|   // expression.
 | |
|   if (Value.isArray()) {
 | |
|     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
 | |
|     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
 | |
|       if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
 | |
|                                  Value.getArrayInitializedElt(I), Usage,
 | |
|                                  SubobjectLoc, CheckedTemps))
 | |
|         return false;
 | |
|     }
 | |
|     if (!Value.hasArrayFiller())
 | |
|       return true;
 | |
|     return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
 | |
|                                  Value.getArrayFiller(), Usage, SubobjectLoc,
 | |
|                                  CheckedTemps);
 | |
|   }
 | |
|   if (Value.isUnion() && Value.getUnionField()) {
 | |
|     return CheckEvaluationResult(
 | |
|         CERK, Info, DiagLoc, Value.getUnionField()->getType(),
 | |
|         Value.getUnionValue(), Usage, Value.getUnionField()->getLocation(),
 | |
|         CheckedTemps);
 | |
|   }
 | |
|   if (Value.isStruct()) {
 | |
|     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
 | |
|     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
 | |
|       unsigned BaseIndex = 0;
 | |
|       for (const CXXBaseSpecifier &BS : CD->bases()) {
 | |
|         if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(),
 | |
|                                    Value.getStructBase(BaseIndex), Usage,
 | |
|                                    BS.getBeginLoc(), CheckedTemps))
 | |
|           return false;
 | |
|         ++BaseIndex;
 | |
|       }
 | |
|     }
 | |
|     for (const auto *I : RD->fields()) {
 | |
|       if (I->isUnnamedBitfield())
 | |
|         continue;
 | |
| 
 | |
|       if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
 | |
|                                  Value.getStructField(I->getFieldIndex()),
 | |
|                                  Usage, I->getLocation(), CheckedTemps))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Value.isLValue() &&
 | |
|       CERK == CheckEvaluationResultKind::ConstantExpression) {
 | |
|     LValue LVal;
 | |
|     LVal.setFrom(Info.Ctx, Value);
 | |
|     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Usage,
 | |
|                                          CheckedTemps);
 | |
|   }
 | |
| 
 | |
|   if (Value.isMemberPointer() &&
 | |
|       CERK == CheckEvaluationResultKind::ConstantExpression)
 | |
|     return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Usage);
 | |
| 
 | |
|   // Everything else is fine.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Check that this core constant expression value is a valid value for a
 | |
| /// constant expression. If not, report an appropriate diagnostic. Does not
 | |
| /// check that the expression is of literal type.
 | |
| static bool
 | |
| CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc, QualType Type,
 | |
|                         const APValue &Value,
 | |
|                         Expr::ConstExprUsage Usage = Expr::EvaluateForCodeGen) {
 | |
|   CheckedTemporaries CheckedTemps;
 | |
|   return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
 | |
|                                Info, DiagLoc, Type, Value, Usage,
 | |
|                                SourceLocation(), CheckedTemps);
 | |
| }
 | |
| 
 | |
| /// Check that this evaluated value is fully-initialized and can be loaded by
 | |
| /// an lvalue-to-rvalue conversion.
 | |
| static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
 | |
|                                   QualType Type, const APValue &Value) {
 | |
|   CheckedTemporaries CheckedTemps;
 | |
|   return CheckEvaluationResult(
 | |
|       CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
 | |
|       Expr::EvaluateForCodeGen, SourceLocation(), CheckedTemps);
 | |
| }
 | |
| 
 | |
| /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
 | |
| /// "the allocated storage is deallocated within the evaluation".
 | |
| static bool CheckMemoryLeaks(EvalInfo &Info) {
 | |
|   if (!Info.HeapAllocs.empty()) {
 | |
|     // We can still fold to a constant despite a compile-time memory leak,
 | |
|     // so long as the heap allocation isn't referenced in the result (we check
 | |
|     // that in CheckConstantExpression).
 | |
|     Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
 | |
|                  diag::note_constexpr_memory_leak)
 | |
|         << unsigned(Info.HeapAllocs.size() - 1);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
 | |
|   // A null base expression indicates a null pointer.  These are always
 | |
|   // evaluatable, and they are false unless the offset is zero.
 | |
|   if (!Value.getLValueBase()) {
 | |
|     Result = !Value.getLValueOffset().isZero();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // We have a non-null base.  These are generally known to be true, but if it's
 | |
|   // a weak declaration it can be null at runtime.
 | |
|   Result = true;
 | |
|   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
 | |
|   return !Decl || !Decl->isWeak();
 | |
| }
 | |
| 
 | |
| static bool HandleConversionToBool(const APValue &Val, bool &Result) {
 | |
|   switch (Val.getKind()) {
 | |
|   case APValue::None:
 | |
|   case APValue::Indeterminate:
 | |
|     return false;
 | |
|   case APValue::Int:
 | |
|     Result = Val.getInt().getBoolValue();
 | |
|     return true;
 | |
|   case APValue::FixedPoint:
 | |
|     Result = Val.getFixedPoint().getBoolValue();
 | |
|     return true;
 | |
|   case APValue::Float:
 | |
|     Result = !Val.getFloat().isZero();
 | |
|     return true;
 | |
|   case APValue::ComplexInt:
 | |
|     Result = Val.getComplexIntReal().getBoolValue() ||
 | |
|              Val.getComplexIntImag().getBoolValue();
 | |
|     return true;
 | |
|   case APValue::ComplexFloat:
 | |
|     Result = !Val.getComplexFloatReal().isZero() ||
 | |
|              !Val.getComplexFloatImag().isZero();
 | |
|     return true;
 | |
|   case APValue::LValue:
 | |
|     return EvalPointerValueAsBool(Val, Result);
 | |
|   case APValue::MemberPointer:
 | |
|     Result = Val.getMemberPointerDecl();
 | |
|     return true;
 | |
|   case APValue::Vector:
 | |
|   case APValue::Array:
 | |
|   case APValue::Struct:
 | |
|   case APValue::Union:
 | |
|   case APValue::AddrLabelDiff:
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unknown APValue kind");
 | |
| }
 | |
| 
 | |
| static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
 | |
|                                        EvalInfo &Info) {
 | |
|   assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
 | |
|   APValue Val;
 | |
|   if (!Evaluate(Val, Info, E))
 | |
|     return false;
 | |
|   return HandleConversionToBool(Val, Result);
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static bool HandleOverflow(EvalInfo &Info, const Expr *E,
 | |
|                            const T &SrcValue, QualType DestType) {
 | |
|   Info.CCEDiag(E, diag::note_constexpr_overflow)
 | |
|     << SrcValue << DestType;
 | |
|   return Info.noteUndefinedBehavior();
 | |
| }
 | |
| 
 | |
| static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
 | |
|                                  QualType SrcType, const APFloat &Value,
 | |
|                                  QualType DestType, APSInt &Result) {
 | |
|   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
 | |
|   // Determine whether we are converting to unsigned or signed.
 | |
|   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
 | |
| 
 | |
|   Result = APSInt(DestWidth, !DestSigned);
 | |
|   bool ignored;
 | |
|   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
 | |
|       & APFloat::opInvalidOp)
 | |
|     return HandleOverflow(Info, E, Value, DestType);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
 | |
|                                    QualType SrcType, QualType DestType,
 | |
|                                    APFloat &Result) {
 | |
|   APFloat Value = Result;
 | |
|   bool ignored;
 | |
|   Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
 | |
|                  APFloat::rmNearestTiesToEven, &ignored);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
 | |
|                                  QualType DestType, QualType SrcType,
 | |
|                                  const APSInt &Value) {
 | |
|   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
 | |
|   // Figure out if this is a truncate, extend or noop cast.
 | |
|   // If the input is signed, do a sign extend, noop, or truncate.
 | |
|   APSInt Result = Value.extOrTrunc(DestWidth);
 | |
|   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
 | |
|   if (DestType->isBooleanType())
 | |
|     Result = Value.getBoolValue();
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
 | |
|                                  QualType SrcType, const APSInt &Value,
 | |
|                                  QualType DestType, APFloat &Result) {
 | |
|   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
 | |
|   Result.convertFromAPInt(Value, Value.isSigned(),
 | |
|                           APFloat::rmNearestTiesToEven);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
 | |
|                                   APValue &Value, const FieldDecl *FD) {
 | |
|   assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
 | |
| 
 | |
|   if (!Value.isInt()) {
 | |
|     // Trying to store a pointer-cast-to-integer into a bitfield.
 | |
|     // FIXME: In this case, we should provide the diagnostic for casting
 | |
|     // a pointer to an integer.
 | |
|     assert(Value.isLValue() && "integral value neither int nor lvalue?");
 | |
|     Info.FFDiag(E);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   APSInt &Int = Value.getInt();
 | |
|   unsigned OldBitWidth = Int.getBitWidth();
 | |
|   unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
 | |
|   if (NewBitWidth < OldBitWidth)
 | |
|     Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
 | |
|                                   llvm::APInt &Res) {
 | |
|   APValue SVal;
 | |
|   if (!Evaluate(SVal, Info, E))
 | |
|     return false;
 | |
|   if (SVal.isInt()) {
 | |
|     Res = SVal.getInt();
 | |
|     return true;
 | |
|   }
 | |
|   if (SVal.isFloat()) {
 | |
|     Res = SVal.getFloat().bitcastToAPInt();
 | |
|     return true;
 | |
|   }
 | |
|   if (SVal.isVector()) {
 | |
|     QualType VecTy = E->getType();
 | |
|     unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
 | |
|     QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
 | |
|     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
 | |
|     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
 | |
|     Res = llvm::APInt::getNullValue(VecSize);
 | |
|     for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
 | |
|       APValue &Elt = SVal.getVectorElt(i);
 | |
|       llvm::APInt EltAsInt;
 | |
|       if (Elt.isInt()) {
 | |
|         EltAsInt = Elt.getInt();
 | |
|       } else if (Elt.isFloat()) {
 | |
|         EltAsInt = Elt.getFloat().bitcastToAPInt();
 | |
|       } else {
 | |
|         // Don't try to handle vectors of anything other than int or float
 | |
|         // (not sure if it's possible to hit this case).
 | |
|         Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
 | |
|         return false;
 | |
|       }
 | |
|       unsigned BaseEltSize = EltAsInt.getBitWidth();
 | |
|       if (BigEndian)
 | |
|         Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
 | |
|       else
 | |
|         Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   // Give up if the input isn't an int, float, or vector.  For example, we
 | |
|   // reject "(v4i16)(intptr_t)&a".
 | |
|   Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Perform the given integer operation, which is known to need at most BitWidth
 | |
| /// bits, and check for overflow in the original type (if that type was not an
 | |
| /// unsigned type).
 | |
| template<typename Operation>
 | |
| static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
 | |
|                                  const APSInt &LHS, const APSInt &RHS,
 | |
|                                  unsigned BitWidth, Operation Op,
 | |
|                                  APSInt &Result) {
 | |
|   if (LHS.isUnsigned()) {
 | |
|     Result = Op(LHS, RHS);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
 | |
|   Result = Value.trunc(LHS.getBitWidth());
 | |
|   if (Result.extend(BitWidth) != Value) {
 | |
|     if (Info.checkingForUndefinedBehavior())
 | |
|       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
 | |
|                                        diag::warn_integer_constant_overflow)
 | |
|           << Result.toString(10) << E->getType();
 | |
|     else
 | |
|       return HandleOverflow(Info, E, Value, E->getType());
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Perform the given binary integer operation.
 | |
| static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
 | |
|                               BinaryOperatorKind Opcode, APSInt RHS,
 | |
|                               APSInt &Result) {
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     Info.FFDiag(E);
 | |
|     return false;
 | |
|   case BO_Mul:
 | |
|     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
 | |
|                                 std::multiplies<APSInt>(), Result);
 | |
|   case BO_Add:
 | |
|     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
 | |
|                                 std::plus<APSInt>(), Result);
 | |
|   case BO_Sub:
 | |
|     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
 | |
|                                 std::minus<APSInt>(), Result);
 | |
|   case BO_And: Result = LHS & RHS; return true;
 | |
|   case BO_Xor: Result = LHS ^ RHS; return true;
 | |
|   case BO_Or:  Result = LHS | RHS; return true;
 | |
|   case BO_Div:
 | |
|   case BO_Rem:
 | |
|     if (RHS == 0) {
 | |
|       Info.FFDiag(E, diag::note_expr_divide_by_zero);
 | |
|       return false;
 | |
|     }
 | |
|     Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
 | |
|     // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
 | |
|     // this operation and gives the two's complement result.
 | |
|     if (RHS.isNegative() && RHS.isAllOnesValue() &&
 | |
|         LHS.isSigned() && LHS.isMinSignedValue())
 | |
|       return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
 | |
|                             E->getType());
 | |
|     return true;
 | |
|   case BO_Shl: {
 | |
|     if (Info.getLangOpts().OpenCL)
 | |
|       // OpenCL 6.3j: shift values are effectively % word size of LHS.
 | |
|       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
 | |
|                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
 | |
|                     RHS.isUnsigned());
 | |
|     else if (RHS.isSigned() && RHS.isNegative()) {
 | |
|       // During constant-folding, a negative shift is an opposite shift. Such
 | |
|       // a shift is not a constant expression.
 | |
|       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
 | |
|       RHS = -RHS;
 | |
|       goto shift_right;
 | |
|     }
 | |
|   shift_left:
 | |
|     // C++11 [expr.shift]p1: Shift width must be less than the bit width of
 | |
|     // the shifted type.
 | |
|     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
 | |
|     if (SA != RHS) {
 | |
|       Info.CCEDiag(E, diag::note_constexpr_large_shift)
 | |
|         << RHS << E->getType() << LHS.getBitWidth();
 | |
|     } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus2a) {
 | |
|       // C++11 [expr.shift]p2: A signed left shift must have a non-negative
 | |
|       // operand, and must not overflow the corresponding unsigned type.
 | |
|       // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
 | |
|       // E1 x 2^E2 module 2^N.
 | |
|       if (LHS.isNegative())
 | |
|         Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
 | |
|       else if (LHS.countLeadingZeros() < SA)
 | |
|         Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
 | |
|     }
 | |
|     Result = LHS << SA;
 | |
|     return true;
 | |
|   }
 | |
|   case BO_Shr: {
 | |
|     if (Info.getLangOpts().OpenCL)
 | |
|       // OpenCL 6.3j: shift values are effectively % word size of LHS.
 | |
|       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
 | |
|                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
 | |
|                     RHS.isUnsigned());
 | |
|     else if (RHS.isSigned() && RHS.isNegative()) {
 | |
|       // During constant-folding, a negative shift is an opposite shift. Such a
 | |
|       // shift is not a constant expression.
 | |
|       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
 | |
|       RHS = -RHS;
 | |
|       goto shift_left;
 | |
|     }
 | |
|   shift_right:
 | |
|     // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
 | |
|     // shifted type.
 | |
|     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
 | |
|     if (SA != RHS)
 | |
|       Info.CCEDiag(E, diag::note_constexpr_large_shift)
 | |
|         << RHS << E->getType() << LHS.getBitWidth();
 | |
|     Result = LHS >> SA;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case BO_LT: Result = LHS < RHS; return true;
 | |
|   case BO_GT: Result = LHS > RHS; return true;
 | |
|   case BO_LE: Result = LHS <= RHS; return true;
 | |
|   case BO_GE: Result = LHS >= RHS; return true;
 | |
|   case BO_EQ: Result = LHS == RHS; return true;
 | |
|   case BO_NE: Result = LHS != RHS; return true;
 | |
|   case BO_Cmp:
 | |
|     llvm_unreachable("BO_Cmp should be handled elsewhere");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Perform the given binary floating-point operation, in-place, on LHS.
 | |
| static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
 | |
|                                   APFloat &LHS, BinaryOperatorKind Opcode,
 | |
|                                   const APFloat &RHS) {
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     Info.FFDiag(E);
 | |
|     return false;
 | |
|   case BO_Mul:
 | |
|     LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
 | |
|     break;
 | |
|   case BO_Add:
 | |
|     LHS.add(RHS, APFloat::rmNearestTiesToEven);
 | |
|     break;
 | |
|   case BO_Sub:
 | |
|     LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
 | |
|     break;
 | |
|   case BO_Div:
 | |
|     // [expr.mul]p4:
 | |
|     //   If the second operand of / or % is zero the behavior is undefined.
 | |
|     if (RHS.isZero())
 | |
|       Info.CCEDiag(E, diag::note_expr_divide_by_zero);
 | |
|     LHS.divide(RHS, APFloat::rmNearestTiesToEven);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // [expr.pre]p4:
 | |
|   //   If during the evaluation of an expression, the result is not
 | |
|   //   mathematically defined [...], the behavior is undefined.
 | |
|   // FIXME: C++ rules require us to not conform to IEEE 754 here.
 | |
|   if (LHS.isNaN()) {
 | |
|     Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
 | |
|     return Info.noteUndefinedBehavior();
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Cast an lvalue referring to a base subobject to a derived class, by
 | |
| /// truncating the lvalue's path to the given length.
 | |
| static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
 | |
|                                const RecordDecl *TruncatedType,
 | |
|                                unsigned TruncatedElements) {
 | |
|   SubobjectDesignator &D = Result.Designator;
 | |
| 
 | |
|   // Check we actually point to a derived class object.
 | |
|   if (TruncatedElements == D.Entries.size())
 | |
|     return true;
 | |
|   assert(TruncatedElements >= D.MostDerivedPathLength &&
 | |
|          "not casting to a derived class");
 | |
|   if (!Result.checkSubobject(Info, E, CSK_Derived))
 | |
|     return false;
 | |
| 
 | |
|   // Truncate the path to the subobject, and remove any derived-to-base offsets.
 | |
|   const RecordDecl *RD = TruncatedType;
 | |
|   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
 | |
|     if (RD->isInvalidDecl()) return false;
 | |
|     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
 | |
|     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
 | |
|     if (isVirtualBaseClass(D.Entries[I]))
 | |
|       Result.Offset -= Layout.getVBaseClassOffset(Base);
 | |
|     else
 | |
|       Result.Offset -= Layout.getBaseClassOffset(Base);
 | |
|     RD = Base;
 | |
|   }
 | |
|   D.Entries.resize(TruncatedElements);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
 | |
|                                    const CXXRecordDecl *Derived,
 | |
|                                    const CXXRecordDecl *Base,
 | |
|                                    const ASTRecordLayout *RL = nullptr) {
 | |
|   if (!RL) {
 | |
|     if (Derived->isInvalidDecl()) return false;
 | |
|     RL = &Info.Ctx.getASTRecordLayout(Derived);
 | |
|   }
 | |
| 
 | |
|   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
 | |
|   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
 | |
|                              const CXXRecordDecl *DerivedDecl,
 | |
|                              const CXXBaseSpecifier *Base) {
 | |
|   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|   if (!Base->isVirtual())
 | |
|     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
 | |
| 
 | |
|   SubobjectDesignator &D = Obj.Designator;
 | |
|   if (D.Invalid)
 | |
|     return false;
 | |
| 
 | |
|   // Extract most-derived object and corresponding type.
 | |
|   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
 | |
|   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
 | |
|     return false;
 | |
| 
 | |
|   // Find the virtual base class.
 | |
|   if (DerivedDecl->isInvalidDecl()) return false;
 | |
|   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
 | |
|   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
 | |
|   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
 | |
|                                  QualType Type, LValue &Result) {
 | |
|   for (CastExpr::path_const_iterator PathI = E->path_begin(),
 | |
|                                      PathE = E->path_end();
 | |
|        PathI != PathE; ++PathI) {
 | |
|     if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
 | |
|                           *PathI))
 | |
|       return false;
 | |
|     Type = (*PathI)->getType();
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Cast an lvalue referring to a derived class to a known base subobject.
 | |
| static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
 | |
|                             const CXXRecordDecl *DerivedRD,
 | |
|                             const CXXRecordDecl *BaseRD) {
 | |
|   CXXBasePaths Paths(/*FindAmbiguities=*/false,
 | |
|                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
 | |
|   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
 | |
|     llvm_unreachable("Class must be derived from the passed in base class!");
 | |
| 
 | |
|   for (CXXBasePathElement &Elem : Paths.front())
 | |
|     if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Update LVal to refer to the given field, which must be a member of the type
 | |
| /// currently described by LVal.
 | |
| static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
 | |
|                                const FieldDecl *FD,
 | |
|                                const ASTRecordLayout *RL = nullptr) {
 | |
|   if (!RL) {
 | |
|     if (FD->getParent()->isInvalidDecl()) return false;
 | |
|     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
 | |
|   }
 | |
| 
 | |
|   unsigned I = FD->getFieldIndex();
 | |
|   LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
 | |
|   LVal.addDecl(Info, E, FD);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Update LVal to refer to the given indirect field.
 | |
| static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
 | |
|                                        LValue &LVal,
 | |
|                                        const IndirectFieldDecl *IFD) {
 | |
|   for (const auto *C : IFD->chain())
 | |
|     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Get the size of the given type in char units.
 | |
| static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
 | |
|                          QualType Type, CharUnits &Size) {
 | |
|   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
 | |
|   // extension.
 | |
|   if (Type->isVoidType() || Type->isFunctionType()) {
 | |
|     Size = CharUnits::One();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (Type->isDependentType()) {
 | |
|     Info.FFDiag(Loc);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!Type->isConstantSizeType()) {
 | |
|     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
 | |
|     // FIXME: Better diagnostic.
 | |
|     Info.FFDiag(Loc);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   Size = Info.Ctx.getTypeSizeInChars(Type);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Update a pointer value to model pointer arithmetic.
 | |
| /// \param Info - Information about the ongoing evaluation.
 | |
| /// \param E - The expression being evaluated, for diagnostic purposes.
 | |
| /// \param LVal - The pointer value to be updated.
 | |
| /// \param EltTy - The pointee type represented by LVal.
 | |
| /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
 | |
| static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
 | |
|                                         LValue &LVal, QualType EltTy,
 | |
|                                         APSInt Adjustment) {
 | |
|   CharUnits SizeOfPointee;
 | |
|   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
 | |
|     return false;
 | |
| 
 | |
|   LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
 | |
|                                         LValue &LVal, QualType EltTy,
 | |
|                                         int64_t Adjustment) {
 | |
|   return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
 | |
|                                      APSInt::get(Adjustment));
 | |
| }
 | |
| 
 | |
| /// Update an lvalue to refer to a component of a complex number.
 | |
| /// \param Info - Information about the ongoing evaluation.
 | |
| /// \param LVal - The lvalue to be updated.
 | |
| /// \param EltTy - The complex number's component type.
 | |
| /// \param Imag - False for the real component, true for the imaginary.
 | |
| static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
 | |
|                                        LValue &LVal, QualType EltTy,
 | |
|                                        bool Imag) {
 | |
|   if (Imag) {
 | |
|     CharUnits SizeOfComponent;
 | |
|     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
 | |
|       return false;
 | |
|     LVal.Offset += SizeOfComponent;
 | |
|   }
 | |
|   LVal.addComplex(Info, E, EltTy, Imag);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Try to evaluate the initializer for a variable declaration.
 | |
| ///
 | |
| /// \param Info   Information about the ongoing evaluation.
 | |
| /// \param E      An expression to be used when printing diagnostics.
 | |
| /// \param VD     The variable whose initializer should be obtained.
 | |
| /// \param Frame  The frame in which the variable was created. Must be null
 | |
| ///               if this variable is not local to the evaluation.
 | |
| /// \param Result Filled in with a pointer to the value of the variable.
 | |
| static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
 | |
|                                 const VarDecl *VD, CallStackFrame *Frame,
 | |
|                                 APValue *&Result, const LValue *LVal) {
 | |
| 
 | |
|   // If this is a parameter to an active constexpr function call, perform
 | |
|   // argument substitution.
 | |
|   if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
 | |
|     // Assume arguments of a potential constant expression are unknown
 | |
|     // constant expressions.
 | |
|     if (Info.checkingPotentialConstantExpression())
 | |
|       return false;
 | |
|     if (!Frame || !Frame->Arguments) {
 | |
|       Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
 | |
|       return false;
 | |
|     }
 | |
|     Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If this is a local variable, dig out its value.
 | |
|   if (Frame) {
 | |
|     Result = LVal ? Frame->getTemporary(VD, LVal->getLValueVersion())
 | |
|                   : Frame->getCurrentTemporary(VD);
 | |
|     if (!Result) {
 | |
|       // Assume variables referenced within a lambda's call operator that were
 | |
|       // not declared within the call operator are captures and during checking
 | |
|       // of a potential constant expression, assume they are unknown constant
 | |
|       // expressions.
 | |
|       assert(isLambdaCallOperator(Frame->Callee) &&
 | |
|              (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
 | |
|              "missing value for local variable");
 | |
|       if (Info.checkingPotentialConstantExpression())
 | |
|         return false;
 | |
|       // FIXME: implement capture evaluation during constant expr evaluation.
 | |
|       Info.FFDiag(E->getBeginLoc(),
 | |
|                   diag::note_unimplemented_constexpr_lambda_feature_ast)
 | |
|           << "captures not currently allowed";
 | |
|       return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Dig out the initializer, and use the declaration which it's attached to.
 | |
|   const Expr *Init = VD->getAnyInitializer(VD);
 | |
|   if (!Init || Init->isValueDependent()) {
 | |
|     // If we're checking a potential constant expression, the variable could be
 | |
|     // initialized later.
 | |
|     if (!Info.checkingPotentialConstantExpression())
 | |
|       Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If we're currently evaluating the initializer of this declaration, use that
 | |
|   // in-flight value.
 | |
|   if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
 | |
|     Result = Info.EvaluatingDeclValue;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Never evaluate the initializer of a weak variable. We can't be sure that
 | |
|   // this is the definition which will be used.
 | |
|   if (VD->isWeak()) {
 | |
|     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Check that we can fold the initializer. In C++, we will have already done
 | |
|   // this in the cases where it matters for conformance.
 | |
|   SmallVector<PartialDiagnosticAt, 8> Notes;
 | |
|   if (!VD->evaluateValue(Notes)) {
 | |
|     Info.FFDiag(E, diag::note_constexpr_var_init_non_constant,
 | |
|               Notes.size() + 1) << VD;
 | |
|     Info.Note(VD->getLocation(), diag::note_declared_at);
 | |
|     Info.addNotes(Notes);
 | |
|     return false;
 | |
|   } else if (!VD->checkInitIsICE()) {
 | |
|     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
 | |
|                  Notes.size() + 1) << VD;
 | |
|     Info.Note(VD->getLocation(), diag::note_declared_at);
 | |
|     Info.addNotes(Notes);
 | |
|   }
 | |
| 
 | |
|   Result = VD->getEvaluatedValue();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool IsConstNonVolatile(QualType T) {
 | |
|   Qualifiers Quals = T.getQualifiers();
 | |
|   return Quals.hasConst() && !Quals.hasVolatile();
 | |
| }
 | |
| 
 | |
| /// Get the base index of the given base class within an APValue representing
 | |
| /// the given derived class.
 | |
| static unsigned getBaseIndex(const CXXRecordDecl *Derived,
 | |
|                              const CXXRecordDecl *Base) {
 | |
|   Base = Base->getCanonicalDecl();
 | |
|   unsigned Index = 0;
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
 | |
|          E = Derived->bases_end(); I != E; ++I, ++Index) {
 | |
|     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
 | |
|       return Index;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("base class missing from derived class's bases list");
 | |
| }
 | |
| 
 | |
| /// Extract the value of a character from a string literal.
 | |
| static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
 | |
|                                             uint64_t Index) {
 | |
|   assert(!isa<SourceLocExpr>(Lit) &&
 | |
|          "SourceLocExpr should have already been converted to a StringLiteral");
 | |
| 
 | |
|   // FIXME: Support MakeStringConstant
 | |
|   if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
 | |
|     std::string Str;
 | |
|     Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
 | |
|     assert(Index <= Str.size() && "Index too large");
 | |
|     return APSInt::getUnsigned(Str.c_str()[Index]);
 | |
|   }
 | |
| 
 | |
|   if (auto PE = dyn_cast<PredefinedExpr>(Lit))
 | |
|     Lit = PE->getFunctionName();
 | |
|   const StringLiteral *S = cast<StringLiteral>(Lit);
 | |
|   const ConstantArrayType *CAT =
 | |
|       Info.Ctx.getAsConstantArrayType(S->getType());
 | |
|   assert(CAT && "string literal isn't an array");
 | |
|   QualType CharType = CAT->getElementType();
 | |
|   assert(CharType->isIntegerType() && "unexpected character type");
 | |
| 
 | |
|   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
 | |
|                CharType->isUnsignedIntegerType());
 | |
|   if (Index < S->getLength())
 | |
|     Value = S->getCodeUnit(Index);
 | |
|   return Value;
 | |
| }
 | |
| 
 | |
| // Expand a string literal into an array of characters.
 | |
| //
 | |
| // FIXME: This is inefficient; we should probably introduce something similar
 | |
| // to the LLVM ConstantDataArray to make this cheaper.
 | |
| static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
 | |
|                                 APValue &Result,
 | |
|                                 QualType AllocType = QualType()) {
 | |
|   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
 | |
|       AllocType.isNull() ? S->getType() : AllocType);
 | |
|   assert(CAT && "string literal isn't an array");
 | |
|   QualType CharType = CAT->getElementType();
 | |
|   assert(CharType->isIntegerType() && "unexpected character type");
 | |
| 
 | |
|   unsigned Elts = CAT->getSize().getZExtValue();
 | |
|   Result = APValue(APValue::UninitArray(),
 | |
|                    std::min(S->getLength(), Elts), Elts);
 | |
|   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
 | |
|                CharType->isUnsignedIntegerType());
 | |
|   if (Result.hasArrayFiller())
 | |
|     Result.getArrayFiller() = APValue(Value);
 | |
|   for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
 | |
|     Value = S->getCodeUnit(I);
 | |
|     Result.getArrayInitializedElt(I) = APValue(Value);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Expand an array so that it has more than Index filled elements.
 | |
| static void expandArray(APValue &Array, unsigned Index) {
 | |
|   unsigned Size = Array.getArraySize();
 | |
|   assert(Index < Size);
 | |
| 
 | |
|   // Always at least double the number of elements for which we store a value.
 | |
|   unsigned OldElts = Array.getArrayInitializedElts();
 | |
|   unsigned NewElts = std::max(Index+1, OldElts * 2);
 | |
|   NewElts = std::min(Size, std::max(NewElts, 8u));
 | |
| 
 | |
|   // Copy the data across.
 | |
|   APValue NewValue(APValue::UninitArray(), NewElts, Size);
 | |
|   for (unsigned I = 0; I != OldElts; ++I)
 | |
|     NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
 | |
|   for (unsigned I = OldElts; I != NewElts; ++I)
 | |
|     NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
 | |
|   if (NewValue.hasArrayFiller())
 | |
|     NewValue.getArrayFiller() = Array.getArrayFiller();
 | |
|   Array.swap(NewValue);
 | |
| }
 | |
| 
 | |
| /// Determine whether a type would actually be read by an lvalue-to-rvalue
 | |
| /// conversion. If it's of class type, we may assume that the copy operation
 | |
| /// is trivial. Note that this is never true for a union type with fields
 | |
| /// (because the copy always "reads" the active member) and always true for
 | |
| /// a non-class type.
 | |
| static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD);
 | |
| static bool isReadByLvalueToRvalueConversion(QualType T) {
 | |
|   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
 | |
|   return !RD || isReadByLvalueToRvalueConversion(RD);
 | |
| }
 | |
| static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) {
 | |
|   // FIXME: A trivial copy of a union copies the object representation, even if
 | |
|   // the union is empty.
 | |
|   if (RD->isUnion())
 | |
|     return !RD->field_empty();
 | |
|   if (RD->isEmpty())
 | |
|     return false;
 | |
| 
 | |
|   for (auto *Field : RD->fields())
 | |
|     if (!Field->isUnnamedBitfield() &&
 | |
|         isReadByLvalueToRvalueConversion(Field->getType()))
 | |
|       return true;
 | |
| 
 | |
|   for (auto &BaseSpec : RD->bases())
 | |
|     if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Diagnose an attempt to read from any unreadable field within the specified
 | |
| /// type, which might be a class type.
 | |
| static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
 | |
|                                   QualType T) {
 | |
|   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
 | |
|   if (!RD)
 | |
|     return false;
 | |
| 
 | |
|   if (!RD->hasMutableFields())
 | |
|     return false;
 | |
| 
 | |
|   for (auto *Field : RD->fields()) {
 | |
|     // If we're actually going to read this field in some way, then it can't
 | |
|     // be mutable. If we're in a union, then assigning to a mutable field
 | |
|     // (even an empty one) can change the active member, so that's not OK.
 | |
|     // FIXME: Add core issue number for the union case.
 | |
|     if (Field->isMutable() &&
 | |
|         (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
 | |
|       Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
 | |
|       Info.Note(Field->getLocation(), diag::note_declared_at);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (diagnoseMutableFields(Info, E, AK, Field->getType()))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   for (auto &BaseSpec : RD->bases())
 | |
|     if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType()))
 | |
|       return true;
 | |
| 
 | |
|   // All mutable fields were empty, and thus not actually read.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool lifetimeStartedInEvaluation(EvalInfo &Info,
 | |
|                                         APValue::LValueBase Base,
 | |
|                                         bool MutableSubobject = false) {
 | |
|   // A temporary we created.
 | |
|   if (Base.getCallIndex())
 | |
|     return true;
 | |
| 
 | |
|   auto *Evaluating = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
 | |
|   if (!Evaluating)
 | |
|     return false;
 | |
| 
 | |
|   auto *BaseD = Base.dyn_cast<const ValueDecl*>();
 | |
| 
 | |
|   switch (Info.IsEvaluatingDecl) {
 | |
|   case EvalInfo::EvaluatingDeclKind::None:
 | |
|     return false;
 | |
| 
 | |
|   case EvalInfo::EvaluatingDeclKind::Ctor:
 | |
|     // The variable whose initializer we're evaluating.
 | |
|     if (BaseD)
 | |
|       return declaresSameEntity(Evaluating, BaseD);
 | |
| 
 | |
|     // A temporary lifetime-extended by the variable whose initializer we're
 | |
|     // evaluating.
 | |
|     if (auto *BaseE = Base.dyn_cast<const Expr *>())
 | |
|       if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE))
 | |
|         return declaresSameEntity(BaseMTE->getExtendingDecl(), Evaluating);
 | |
|     return false;
 | |
| 
 | |
|   case EvalInfo::EvaluatingDeclKind::Dtor:
 | |
|     // C++2a [expr.const]p6:
 | |
|     //   [during constant destruction] the lifetime of a and its non-mutable
 | |
|     //   subobjects (but not its mutable subobjects) [are] considered to start
 | |
|     //   within e.
 | |
|     //
 | |
|     // FIXME: We can meaningfully extend this to cover non-const objects, but
 | |
|     // we will need special handling: we should be able to access only
 | |
|     // subobjects of such objects that are themselves declared const.
 | |
|     if (!BaseD ||
 | |
|         !(BaseD->getType().isConstQualified() ||
 | |
|           BaseD->getType()->isReferenceType()) ||
 | |
|         MutableSubobject)
 | |
|       return false;
 | |
|     return declaresSameEntity(Evaluating, BaseD);
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unknown evaluating decl kind");
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// A handle to a complete object (an object that is not a subobject of
 | |
| /// another object).
 | |
| struct CompleteObject {
 | |
|   /// The identity of the object.
 | |
|   APValue::LValueBase Base;
 | |
|   /// The value of the complete object.
 | |
|   APValue *Value;
 | |
|   /// The type of the complete object.
 | |
|   QualType Type;
 | |
| 
 | |
|   CompleteObject() : Value(nullptr) {}
 | |
|   CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
 | |
|       : Base(Base), Value(Value), Type(Type) {}
 | |
| 
 | |
|   bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
 | |
|     // If this isn't a "real" access (eg, if it's just accessing the type
 | |
|     // info), allow it. We assume the type doesn't change dynamically for
 | |
|     // subobjects of constexpr objects (even though we'd hit UB here if it
 | |
|     // did). FIXME: Is this right?
 | |
|     if (!isAnyAccess(AK))
 | |
|       return true;
 | |
| 
 | |
|     // In C++14 onwards, it is permitted to read a mutable member whose
 | |
|     // lifetime began within the evaluation.
 | |
|     // FIXME: Should we also allow this in C++11?
 | |
|     if (!Info.getLangOpts().CPlusPlus14)
 | |
|       return false;
 | |
|     return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
 | |
|   }
 | |
| 
 | |
|   explicit operator bool() const { return !Type.isNull(); }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
 | |
|                                  bool IsMutable = false) {
 | |
|   // C++ [basic.type.qualifier]p1:
 | |
|   // - A const object is an object of type const T or a non-mutable subobject
 | |
|   //   of a const object.
 | |
|   if (ObjType.isConstQualified() && !IsMutable)
 | |
|     SubobjType.addConst();
 | |
|   // - A volatile object is an object of type const T or a subobject of a
 | |
|   //   volatile object.
 | |
|   if (ObjType.isVolatileQualified())
 | |
|     SubobjType.addVolatile();
 | |
|   return SubobjType;
 | |
| }
 | |
| 
 | |
| /// Find the designated sub-object of an rvalue.
 | |
| template<typename SubobjectHandler>
 | |
| typename SubobjectHandler::result_type
 | |
| findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
 | |
|               const SubobjectDesignator &Sub, SubobjectHandler &handler) {
 | |
|   if (Sub.Invalid)
 | |
|     // A diagnostic will have already been produced.
 | |
|     return handler.failed();
 | |
|   if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
 | |
|     if (Info.getLangOpts().CPlusPlus11)
 | |
|       Info.FFDiag(E, Sub.isOnePastTheEnd()
 | |
|                          ? diag::note_constexpr_access_past_end
 | |
|                          : diag::note_constexpr_access_unsized_array)
 | |
|           << handler.AccessKind;
 | |
|     else
 | |
|       Info.FFDiag(E);
 | |
|     return handler.failed();
 | |
|   }
 | |
| 
 | |
|   APValue *O = Obj.Value;
 | |
|   QualType ObjType = Obj.Type;
 | |
|   const FieldDecl *LastField = nullptr;
 | |
|   const FieldDecl *VolatileField = nullptr;
 | |
| 
 | |
|   // Walk the designator's path to find the subobject.
 | |
|   for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
 | |
|     // Reading an indeterminate value is undefined, but assigning over one is OK.
 | |
|     if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
 | |
|         (O->isIndeterminate() &&
 | |
|          !isValidIndeterminateAccess(handler.AccessKind))) {
 | |
|       if (!Info.checkingPotentialConstantExpression())
 | |
|         Info.FFDiag(E, diag::note_constexpr_access_uninit)
 | |
|             << handler.AccessKind << O->isIndeterminate();
 | |
|       return handler.failed();
 | |
|     }
 | |
| 
 | |
|     // C++ [class.ctor]p5, C++ [class.dtor]p5:
 | |
|     //    const and volatile semantics are not applied on an object under
 | |
|     //    {con,de}struction.
 | |
|     if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
 | |
|         ObjType->isRecordType() &&
 | |
|         Info.isEvaluatingCtorDtor(
 | |
|             Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(),
 | |
|                                          Sub.Entries.begin() + I)) !=
 | |
|                           ConstructionPhase::None) {
 | |
|       ObjType = Info.Ctx.getCanonicalType(ObjType);
 | |
|       ObjType.removeLocalConst();
 | |
|       ObjType.removeLocalVolatile();
 | |
|     }
 | |
| 
 | |
|     // If this is our last pass, check that the final object type is OK.
 | |
|     if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
 | |
|       // Accesses to volatile objects are prohibited.
 | |
|       if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
 | |
|         if (Info.getLangOpts().CPlusPlus) {
 | |
|           int DiagKind;
 | |
|           SourceLocation Loc;
 | |
|           const NamedDecl *Decl = nullptr;
 | |
|           if (VolatileField) {
 | |
|             DiagKind = 2;
 | |
|             Loc = VolatileField->getLocation();
 | |
|             Decl = VolatileField;
 | |
|           } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
 | |
|             DiagKind = 1;
 | |
|             Loc = VD->getLocation();
 | |
|             Decl = VD;
 | |
|           } else {
 | |
|             DiagKind = 0;
 | |
|             if (auto *E = Obj.Base.dyn_cast<const Expr *>())
 | |
|               Loc = E->getExprLoc();
 | |
|           }
 | |
|           Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
 | |
|               << handler.AccessKind << DiagKind << Decl;
 | |
|           Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
 | |
|         } else {
 | |
|           Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
 | |
|         }
 | |
|         return handler.failed();
 | |
|       }
 | |
| 
 | |
|       // If we are reading an object of class type, there may still be more
 | |
|       // things we need to check: if there are any mutable subobjects, we
 | |
|       // cannot perform this read. (This only happens when performing a trivial
 | |
|       // copy or assignment.)
 | |
|       if (ObjType->isRecordType() &&
 | |
|           !Obj.mayAccessMutableMembers(Info, handler.AccessKind) &&
 | |
|           diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
 | |
|         return handler.failed();
 | |
|     }
 | |
| 
 | |
|     if (I == N) {
 | |
|       if (!handler.found(*O, ObjType))
 | |
|         return false;
 | |
| 
 | |
|       // If we modified a bit-field, truncate it to the right width.
 | |
|       if (isModification(handler.AccessKind) &&
 | |
|           LastField && LastField->isBitField() &&
 | |
|           !truncateBitfieldValue(Info, E, *O, LastField))
 | |
|         return false;
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     LastField = nullptr;
 | |
|     if (ObjType->isArrayType()) {
 | |
|       // Next subobject is an array element.
 | |
|       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
 | |
|       assert(CAT && "vla in literal type?");
 | |
|       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
 | |
|       if (CAT->getSize().ule(Index)) {
 | |
|         // Note, it should not be possible to form a pointer with a valid
 | |
|         // designator which points more than one past the end of the array.
 | |
|         if (Info.getLangOpts().CPlusPlus11)
 | |
|           Info.FFDiag(E, diag::note_constexpr_access_past_end)
 | |
|             << handler.AccessKind;
 | |
|         else
 | |
|           Info.FFDiag(E);
 | |
|         return handler.failed();
 | |
|       }
 | |
| 
 | |
|       ObjType = CAT->getElementType();
 | |
| 
 | |
|       if (O->getArrayInitializedElts() > Index)
 | |
|         O = &O->getArrayInitializedElt(Index);
 | |
|       else if (!isRead(handler.AccessKind)) {
 | |
|         expandArray(*O, Index);
 | |
|         O = &O->getArrayInitializedElt(Index);
 | |
|       } else
 | |
|         O = &O->getArrayFiller();
 | |
|     } else if (ObjType->isAnyComplexType()) {
 | |
|       // Next subobject is a complex number.
 | |
|       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
 | |
|       if (Index > 1) {
 | |
|         if (Info.getLangOpts().CPlusPlus11)
 | |
|           Info.FFDiag(E, diag::note_constexpr_access_past_end)
 | |
|             << handler.AccessKind;
 | |
|         else
 | |
|           Info.FFDiag(E);
 | |
|         return handler.failed();
 | |
|       }
 | |
| 
 | |
|       ObjType = getSubobjectType(
 | |
|           ObjType, ObjType->castAs<ComplexType>()->getElementType());
 | |
| 
 | |
|       assert(I == N - 1 && "extracting subobject of scalar?");
 | |
|       if (O->isComplexInt()) {
 | |
|         return handler.found(Index ? O->getComplexIntImag()
 | |
|                                    : O->getComplexIntReal(), ObjType);
 | |
|       } else {
 | |
|         assert(O->isComplexFloat());
 | |
|         return handler.found(Index ? O->getComplexFloatImag()
 | |
|                                    : O->getComplexFloatReal(), ObjType);
 | |
|       }
 | |
|     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
 | |
|       if (Field->isMutable() &&
 | |
|           !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) {
 | |
|         Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
 | |
|           << handler.AccessKind << Field;
 | |
|         Info.Note(Field->getLocation(), diag::note_declared_at);
 | |
|         return handler.failed();
 | |
|       }
 | |
| 
 | |
|       // Next subobject is a class, struct or union field.
 | |
|       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
 | |
|       if (RD->isUnion()) {
 | |
|         const FieldDecl *UnionField = O->getUnionField();
 | |
|         if (!UnionField ||
 | |
|             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
 | |
|           if (I == N - 1 && handler.AccessKind == AK_Construct) {
 | |
|             // Placement new onto an inactive union member makes it active.
 | |
|             O->setUnion(Field, APValue());
 | |
|           } else {
 | |
|             // FIXME: If O->getUnionValue() is absent, report that there's no
 | |
|             // active union member rather than reporting the prior active union
 | |
|             // member. We'll need to fix nullptr_t to not use APValue() as its
 | |
|             // representation first.
 | |
|             Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
 | |
|                 << handler.AccessKind << Field << !UnionField << UnionField;
 | |
|             return handler.failed();
 | |
|           }
 | |
|         }
 | |
|         O = &O->getUnionValue();
 | |
|       } else
 | |
|         O = &O->getStructField(Field->getFieldIndex());
 | |
| 
 | |
|       ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
 | |
|       LastField = Field;
 | |
|       if (Field->getType().isVolatileQualified())
 | |
|         VolatileField = Field;
 | |
|     } else {
 | |
|       // Next subobject is a base class.
 | |
|       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
 | |
|       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
 | |
|       O = &O->getStructBase(getBaseIndex(Derived, Base));
 | |
| 
 | |
|       ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct ExtractSubobjectHandler {
 | |
|   EvalInfo &Info;
 | |
|   const Expr *E;
 | |
|   APValue &Result;
 | |
|   const AccessKinds AccessKind;
 | |
| 
 | |
|   typedef bool result_type;
 | |
|   bool failed() { return false; }
 | |
|   bool found(APValue &Subobj, QualType SubobjType) {
 | |
|     Result = Subobj;
 | |
|     if (AccessKind == AK_ReadObjectRepresentation)
 | |
|       return true;
 | |
|     return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result);
 | |
|   }
 | |
|   bool found(APSInt &Value, QualType SubobjType) {
 | |
|     Result = APValue(Value);
 | |
|     return true;
 | |
|   }
 | |
|   bool found(APFloat &Value, QualType SubobjType) {
 | |
|     Result = APValue(Value);
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Extract the designated sub-object of an rvalue.
 | |
| static bool extractSubobject(EvalInfo &Info, const Expr *E,
 | |
|                              const CompleteObject &Obj,
 | |
|                              const SubobjectDesignator &Sub, APValue &Result,
 | |
|                              AccessKinds AK = AK_Read) {
 | |
|   assert(AK == AK_Read || AK == AK_ReadObjectRepresentation);
 | |
|   ExtractSubobjectHandler Handler = {Info, E, Result, AK};
 | |
|   return findSubobject(Info, E, Obj, Sub, Handler);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct ModifySubobjectHandler {
 | |
|   EvalInfo &Info;
 | |
|   APValue &NewVal;
 | |
|   const Expr *E;
 | |
| 
 | |
|   typedef bool result_type;
 | |
|   static const AccessKinds AccessKind = AK_Assign;
 | |
| 
 | |
|   bool checkConst(QualType QT) {
 | |
|     // Assigning to a const object has undefined behavior.
 | |
|     if (QT.isConstQualified()) {
 | |
|       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
 | |
|       return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool failed() { return false; }
 | |
|   bool found(APValue &Subobj, QualType SubobjType) {
 | |
|     if (!checkConst(SubobjType))
 | |
|       return false;
 | |
|     // We've been given ownership of NewVal, so just swap it in.
 | |
|     Subobj.swap(NewVal);
 | |
|     return true;
 | |
|   }
 | |
|   bool found(APSInt &Value, QualType SubobjType) {
 | |
|     if (!checkConst(SubobjType))
 | |
|       return false;
 | |
|     if (!NewVal.isInt()) {
 | |
|       // Maybe trying to write a cast pointer value into a complex?
 | |
|       Info.FFDiag(E);
 | |
|       return false;
 | |
|     }
 | |
|     Value = NewVal.getInt();
 | |
|     return true;
 | |
|   }
 | |
|   bool found(APFloat &Value, QualType SubobjType) {
 | |
|     if (!checkConst(SubobjType))
 | |
|       return false;
 | |
|     Value = NewVal.getFloat();
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| const AccessKinds ModifySubobjectHandler::AccessKind;
 | |
| 
 | |
| /// Update the designated sub-object of an rvalue to the given value.
 | |
| static bool modifySubobject(EvalInfo &Info, const Expr *E,
 | |
|                             const CompleteObject &Obj,
 | |
|                             const SubobjectDesignator &Sub,
 | |
|                             APValue &NewVal) {
 | |
|   ModifySubobjectHandler Handler = { Info, NewVal, E };
 | |
|   return findSubobject(Info, E, Obj, Sub, Handler);
 | |
| }
 | |
| 
 | |
| /// Find the position where two subobject designators diverge, or equivalently
 | |
| /// the length of the common initial subsequence.
 | |
| static unsigned FindDesignatorMismatch(QualType ObjType,
 | |
|                                        const SubobjectDesignator &A,
 | |
|                                        const SubobjectDesignator &B,
 | |
|                                        bool &WasArrayIndex) {
 | |
|   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
 | |
|   for (/**/; I != N; ++I) {
 | |
|     if (!ObjType.isNull() &&
 | |
|         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
 | |
|       // Next subobject is an array element.
 | |
|       if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
 | |
|         WasArrayIndex = true;
 | |
|         return I;
 | |
|       }
 | |
|       if (ObjType->isAnyComplexType())
 | |
|         ObjType = ObjType->castAs<ComplexType>()->getElementType();
 | |
|       else
 | |
|         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
 | |
|     } else {
 | |
|       if (A.Entries[I].getAsBaseOrMember() !=
 | |
|           B.Entries[I].getAsBaseOrMember()) {
 | |
|         WasArrayIndex = false;
 | |
|         return I;
 | |
|       }
 | |
|       if (const FieldDecl *FD = getAsField(A.Entries[I]))
 | |
|         // Next subobject is a field.
 | |
|         ObjType = FD->getType();
 | |
|       else
 | |
|         // Next subobject is a base class.
 | |
|         ObjType = QualType();
 | |
|     }
 | |
|   }
 | |
|   WasArrayIndex = false;
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| /// Determine whether the given subobject designators refer to elements of the
 | |
| /// same array object.
 | |
| static bool AreElementsOfSameArray(QualType ObjType,
 | |
|                                    const SubobjectDesignator &A,
 | |
|                                    const SubobjectDesignator &B) {
 | |
|   if (A.Entries.size() != B.Entries.size())
 | |
|     return false;
 | |
| 
 | |
|   bool IsArray = A.MostDerivedIsArrayElement;
 | |
|   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
 | |
|     // A is a subobject of the array element.
 | |
|     return false;
 | |
| 
 | |
|   // If A (and B) designates an array element, the last entry will be the array
 | |
|   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
 | |
|   // of length 1' case, and the entire path must match.
 | |
|   bool WasArrayIndex;
 | |
|   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
 | |
|   return CommonLength >= A.Entries.size() - IsArray;
 | |
| }
 | |
| 
 | |
| /// Find the complete object to which an LValue refers.
 | |
| static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
 | |
|                                          AccessKinds AK, const LValue &LVal,
 | |
|                                          QualType LValType) {
 | |
|   if (LVal.InvalidBase) {
 | |
|     Info.FFDiag(E);
 | |
|     return CompleteObject();
 | |
|   }
 | |
| 
 | |
|   if (!LVal.Base) {
 | |
|     Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
 | |
|     return CompleteObject();
 | |
|   }
 | |
| 
 | |
|   CallStackFrame *Frame = nullptr;
 | |
|   unsigned Depth = 0;
 | |
|   if (LVal.getLValueCallIndex()) {
 | |
|     std::tie(Frame, Depth) =
 | |
|         Info.getCallFrameAndDepth(LVal.getLValueCallIndex());
 | |
|     if (!Frame) {
 | |
|       Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
 | |
|         << AK << LVal.Base.is<const ValueDecl*>();
 | |
|       NoteLValueLocation(Info, LVal.Base);
 | |
|       return CompleteObject();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool IsAccess = isAnyAccess(AK);
 | |
| 
 | |
|   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
 | |
|   // is not a constant expression (even if the object is non-volatile). We also
 | |
|   // apply this rule to C++98, in order to conform to the expected 'volatile'
 | |
|   // semantics.
 | |
|   if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
 | |
|     if (Info.getLangOpts().CPlusPlus)
 | |
|       Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
 | |
|         << AK << LValType;
 | |
|     else
 | |
|       Info.FFDiag(E);
 | |
|     return CompleteObject();
 | |
|   }
 | |
| 
 | |
|   // Compute value storage location and type of base object.
 | |
|   APValue *BaseVal = nullptr;
 | |
|   QualType BaseType = getType(LVal.Base);
 | |
| 
 | |
|   if (const ConstantExpr *CE =
 | |
|           dyn_cast_or_null<ConstantExpr>(LVal.Base.dyn_cast<const Expr *>())) {
 | |
|     /// Nested immediate invocation have been previously removed so if we found
 | |
|     /// a ConstantExpr it can only be the EvaluatingDecl.
 | |
|     assert(CE->isImmediateInvocation() && CE == Info.EvaluatingDecl);
 | |
|     (void)CE;
 | |
|     BaseVal = Info.EvaluatingDeclValue;
 | |
|   } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) {
 | |
|     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
 | |
|     // In C++11, constexpr, non-volatile variables initialized with constant
 | |
|     // expressions are constant expressions too. Inside constexpr functions,
 | |
|     // parameters are constant expressions even if they're non-const.
 | |
|     // In C++1y, objects local to a constant expression (those with a Frame) are
 | |
|     // both readable and writable inside constant expressions.
 | |
|     // In C, such things can also be folded, although they are not ICEs.
 | |
|     const VarDecl *VD = dyn_cast<VarDecl>(D);
 | |
|     if (VD) {
 | |
|       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
 | |
|         VD = VDef;
 | |
|     }
 | |
|     if (!VD || VD->isInvalidDecl()) {
 | |
|       Info.FFDiag(E);
 | |
|       return CompleteObject();
 | |
|     }
 | |
| 
 | |
|     // Unless we're looking at a local variable or argument in a constexpr call,
 | |
|     // the variable we're reading must be const.
 | |
|     if (!Frame) {
 | |
|       if (Info.getLangOpts().CPlusPlus14 &&
 | |
|           lifetimeStartedInEvaluation(Info, LVal.Base)) {
 | |
|         // OK, we can read and modify an object if we're in the process of
 | |
|         // evaluating its initializer, because its lifetime began in this
 | |
|         // evaluation.
 | |
|       } else if (isModification(AK)) {
 | |
|         // All the remaining cases do not permit modification of the object.
 | |
|         Info.FFDiag(E, diag::note_constexpr_modify_global);
 | |
|         return CompleteObject();
 | |
|       } else if (VD->isConstexpr()) {
 | |
|         // OK, we can read this variable.
 | |
|       } else if (BaseType->isIntegralOrEnumerationType()) {
 | |
|         // In OpenCL if a variable is in constant address space it is a const
 | |
|         // value.
 | |
|         if (!(BaseType.isConstQualified() ||
 | |
|               (Info.getLangOpts().OpenCL &&
 | |
|                BaseType.getAddressSpace() == LangAS::opencl_constant))) {
 | |
|           if (!IsAccess)
 | |
|             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
 | |
|           if (Info.getLangOpts().CPlusPlus) {
 | |
|             Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
 | |
|             Info.Note(VD->getLocation(), diag::note_declared_at);
 | |
|           } else {
 | |
|             Info.FFDiag(E);
 | |
|           }
 | |
|           return CompleteObject();
 | |
|         }
 | |
|       } else if (!IsAccess) {
 | |
|         return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
 | |
|       } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
 | |
|         // We support folding of const floating-point types, in order to make
 | |
|         // static const data members of such types (supported as an extension)
 | |
|         // more useful.
 | |
|         if (Info.getLangOpts().CPlusPlus11) {
 | |
|           Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
 | |
|           Info.Note(VD->getLocation(), diag::note_declared_at);
 | |
|         } else {
 | |
|           Info.CCEDiag(E);
 | |
|         }
 | |
|       } else if (BaseType.isConstQualified() && VD->hasDefinition(Info.Ctx)) {
 | |
|         Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr) << VD;
 | |
|         // Keep evaluating to see what we can do.
 | |
|       } else {
 | |
|         // FIXME: Allow folding of values of any literal type in all languages.
 | |
|         if (Info.checkingPotentialConstantExpression() &&
 | |
|             VD->getType().isConstQualified() && !VD->hasDefinition(Info.Ctx)) {
 | |
|           // The definition of this variable could be constexpr. We can't
 | |
|           // access it right now, but may be able to in future.
 | |
|         } else if (Info.getLangOpts().CPlusPlus11) {
 | |
|           Info.FFDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
 | |
|           Info.Note(VD->getLocation(), diag::note_declared_at);
 | |
|         } else {
 | |
|           Info.FFDiag(E);
 | |
|         }
 | |
|         return CompleteObject();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal, &LVal))
 | |
|       return CompleteObject();
 | |
|   } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
 | |
|     Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA);
 | |
|     if (!Alloc) {
 | |
|       Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
 | |
|       return CompleteObject();
 | |
|     }
 | |
|     return CompleteObject(LVal.Base, &(*Alloc)->Value,
 | |
|                           LVal.Base.getDynamicAllocType());
 | |
|   } else {
 | |
|     const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
 | |
| 
 | |
|     if (!Frame) {
 | |
|       if (const MaterializeTemporaryExpr *MTE =
 | |
|               dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) {
 | |
|         assert(MTE->getStorageDuration() == SD_Static &&
 | |
|                "should have a frame for a non-global materialized temporary");
 | |
| 
 | |
|         // Per C++1y [expr.const]p2:
 | |
|         //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
 | |
|         //   - a [...] glvalue of integral or enumeration type that refers to
 | |
|         //     a non-volatile const object [...]
 | |
|         //   [...]
 | |
|         //   - a [...] glvalue of literal type that refers to a non-volatile
 | |
|         //     object whose lifetime began within the evaluation of e.
 | |
|         //
 | |
|         // C++11 misses the 'began within the evaluation of e' check and
 | |
|         // instead allows all temporaries, including things like:
 | |
|         //   int &&r = 1;
 | |
|         //   int x = ++r;
 | |
|         //   constexpr int k = r;
 | |
|         // Therefore we use the C++14 rules in C++11 too.
 | |
|         //
 | |
|         // Note that temporaries whose lifetimes began while evaluating a
 | |
|         // variable's constructor are not usable while evaluating the
 | |
|         // corresponding destructor, not even if they're of const-qualified
 | |
|         // types.
 | |
|         if (!(BaseType.isConstQualified() &&
 | |
|               BaseType->isIntegralOrEnumerationType()) &&
 | |
|             !lifetimeStartedInEvaluation(Info, LVal.Base)) {
 | |
|           if (!IsAccess)
 | |
|             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
 | |
|           Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
 | |
|           Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
 | |
|           return CompleteObject();
 | |
|         }
 | |
| 
 | |
|         BaseVal = MTE->getOrCreateValue(false);
 | |
|         assert(BaseVal && "got reference to unevaluated temporary");
 | |
|       } else {
 | |
|         if (!IsAccess)
 | |
|           return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
 | |
|         APValue Val;
 | |
|         LVal.moveInto(Val);
 | |
|         Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
 | |
|             << AK
 | |
|             << Val.getAsString(Info.Ctx,
 | |
|                                Info.Ctx.getLValueReferenceType(LValType));
 | |
|         NoteLValueLocation(Info, LVal.Base);
 | |
|         return CompleteObject();
 | |
|       }
 | |
|     } else {
 | |
|       BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion());
 | |
|       assert(BaseVal && "missing value for temporary");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // In C++14, we can't safely access any mutable state when we might be
 | |
|   // evaluating after an unmodeled side effect.
 | |
|   //
 | |
|   // FIXME: Not all local state is mutable. Allow local constant subobjects
 | |
|   // to be read here (but take care with 'mutable' fields).
 | |
|   if ((Frame && Info.getLangOpts().CPlusPlus14 &&
 | |
|        Info.EvalStatus.HasSideEffects) ||
 | |
|       (isModification(AK) && Depth < Info.SpeculativeEvaluationDepth))
 | |
|     return CompleteObject();
 | |
| 
 | |
|   return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
 | |
| }
 | |
| 
 | |
| /// Perform an lvalue-to-rvalue conversion on the given glvalue. This
 | |
| /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
 | |
| /// glvalue referred to by an entity of reference type.
 | |
| ///
 | |
| /// \param Info - Information about the ongoing evaluation.
 | |
| /// \param Conv - The expression for which we are performing the conversion.
 | |
| ///               Used for diagnostics.
 | |
| /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
 | |
| ///               case of a non-class type).
 | |
| /// \param LVal - The glvalue on which we are attempting to perform this action.
 | |
| /// \param RVal - The produced value will be placed here.
 | |
| /// \param WantObjectRepresentation - If true, we're looking for the object
 | |
| ///               representation rather than the value, and in particular,
 | |
| ///               there is no requirement that the result be fully initialized.
 | |
| static bool
 | |
| handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
 | |
|                                const LValue &LVal, APValue &RVal,
 | |
|                                bool WantObjectRepresentation = false) {
 | |
|   if (LVal.Designator.Invalid)
 | |
|     return false;
 | |
| 
 | |
|   // Check for special cases where there is no existing APValue to look at.
 | |
|   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
 | |
| 
 | |
|   AccessKinds AK =
 | |
|       WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;
 | |
| 
 | |
|   if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
 | |
|     if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
 | |
|       // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
 | |
|       // initializer until now for such expressions. Such an expression can't be
 | |
|       // an ICE in C, so this only matters for fold.
 | |
|       if (Type.isVolatileQualified()) {
 | |
|         Info.FFDiag(Conv);
 | |
|         return false;
 | |
|       }
 | |
|       APValue Lit;
 | |
|       if (!Evaluate(Lit, Info, CLE->getInitializer()))
 | |
|         return false;
 | |
|       CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
 | |
|       return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
 | |
|     } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
 | |
|       // Special-case character extraction so we don't have to construct an
 | |
|       // APValue for the whole string.
 | |
|       assert(LVal.Designator.Entries.size() <= 1 &&
 | |
|              "Can only read characters from string literals");
 | |
|       if (LVal.Designator.Entries.empty()) {
 | |
|         // Fail for now for LValue to RValue conversion of an array.
 | |
|         // (This shouldn't show up in C/C++, but it could be triggered by a
 | |
|         // weird EvaluateAsRValue call from a tool.)
 | |
|         Info.FFDiag(Conv);
 | |
|         return false;
 | |
|       }
 | |
|       if (LVal.Designator.isOnePastTheEnd()) {
 | |
|         if (Info.getLangOpts().CPlusPlus11)
 | |
|           Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
 | |
|         else
 | |
|           Info.FFDiag(Conv);
 | |
|         return false;
 | |
|       }
 | |
|       uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
 | |
|       RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex));
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type);
 | |
|   return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
 | |
| }
 | |
| 
 | |
| /// Perform an assignment of Val to LVal. Takes ownership of Val.
 | |
| static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
 | |
|                              QualType LValType, APValue &Val) {
 | |
|   if (LVal.Designator.Invalid)
 | |
|     return false;
 | |
| 
 | |
|   if (!Info.getLangOpts().CPlusPlus14) {
 | |
|     Info.FFDiag(E);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
 | |
|   return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct CompoundAssignSubobjectHandler {
 | |
|   EvalInfo &Info;
 | |
|   const Expr *E;
 | |
|   QualType PromotedLHSType;
 | |
|   BinaryOperatorKind Opcode;
 | |
|   const APValue &RHS;
 | |
| 
 | |
|   static const AccessKinds AccessKind = AK_Assign;
 | |
| 
 | |
|   typedef bool result_type;
 | |
| 
 | |
|   bool checkConst(QualType QT) {
 | |
|     // Assigning to a const object has undefined behavior.
 | |
|     if (QT.isConstQualified()) {
 | |
|       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
 | |
|       return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool failed() { return false; }
 | |
|   bool found(APValue &Subobj, QualType SubobjType) {
 | |
|     switch (Subobj.getKind()) {
 | |
|     case APValue::Int:
 | |
|       return found(Subobj.getInt(), SubobjType);
 | |
|     case APValue::Float:
 | |
|       return found(Subobj.getFloat(), SubobjType);
 | |
|     case APValue::ComplexInt:
 | |
|     case APValue::ComplexFloat:
 | |
|       // FIXME: Implement complex compound assignment.
 | |
|       Info.FFDiag(E);
 | |
|       return false;
 | |
|     case APValue::LValue:
 | |
|       return foundPointer(Subobj, SubobjType);
 | |
|     default:
 | |
|       // FIXME: can this happen?
 | |
|       Info.FFDiag(E);
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   bool found(APSInt &Value, QualType SubobjType) {
 | |
|     if (!checkConst(SubobjType))
 | |
|       return false;
 | |
| 
 | |
|     if (!SubobjType->isIntegerType()) {
 | |
|       // We don't support compound assignment on integer-cast-to-pointer
 | |
|       // values.
 | |
|       Info.FFDiag(E);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (RHS.isInt()) {
 | |
|       APSInt LHS =
 | |
|           HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
 | |
|       if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
 | |
|         return false;
 | |
|       Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
 | |
|       return true;
 | |
|     } else if (RHS.isFloat()) {
 | |
|       APFloat FValue(0.0);
 | |
|       return HandleIntToFloatCast(Info, E, SubobjType, Value, PromotedLHSType,
 | |
|                                   FValue) &&
 | |
|              handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
 | |
|              HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
 | |
|                                   Value);
 | |
|     }
 | |
| 
 | |
|     Info.FFDiag(E);
 | |
|     return false;
 | |
|   }
 | |
|   bool found(APFloat &Value, QualType SubobjType) {
 | |
|     return checkConst(SubobjType) &&
 | |
|            HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
 | |
|                                   Value) &&
 | |
|            handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
 | |
|            HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
 | |
|   }
 | |
|   bool foundPointer(APValue &Subobj, QualType SubobjType) {
 | |
|     if (!checkConst(SubobjType))
 | |
|       return false;
 | |
| 
 | |
|     QualType PointeeType;
 | |
|     if (const PointerType *PT = SubobjType->getAs<PointerType>())
 | |
|       PointeeType = PT->getPointeeType();
 | |
| 
 | |
|     if (PointeeType.isNull() || !RHS.isInt() ||
 | |
|         (Opcode != BO_Add && Opcode != BO_Sub)) {
 | |
|       Info.FFDiag(E);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     APSInt Offset = RHS.getInt();
 | |
|     if (Opcode == BO_Sub)
 | |
|       negateAsSigned(Offset);
 | |
| 
 | |
|     LValue LVal;
 | |
|     LVal.setFrom(Info.Ctx, Subobj);
 | |
|     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
 | |
|       return false;
 | |
|     LVal.moveInto(Subobj);
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
 | |
| 
 | |
| /// Perform a compound assignment of LVal <op>= RVal.
 | |
| static bool handleCompoundAssignment(
 | |
|     EvalInfo &Info, const Expr *E,
 | |
|     const LValue &LVal, QualType LValType, QualType PromotedLValType,
 | |
|     BinaryOperatorKind Opcode, const APValue &RVal) {
 | |
|   if (LVal.Designator.Invalid)
 | |
|     return false;
 | |
| 
 | |
|   if (!Info.getLangOpts().CPlusPlus14) {
 | |
|     Info.FFDiag(E);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
 | |
|   CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
 | |
|                                              RVal };
 | |
|   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct IncDecSubobjectHandler {
 | |
|   EvalInfo &Info;
 | |
|   const UnaryOperator *E;
 | |
|   AccessKinds AccessKind;
 | |
|   APValue *Old;
 | |
| 
 | |
|   typedef bool result_type;
 | |
| 
 | |
|   bool checkConst(QualType QT) {
 | |
|     // Assigning to a const object has undefined behavior.
 | |
|     if (QT.isConstQualified()) {
 | |
|       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
 | |
|       return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool failed() { return false; }
 | |
|   bool found(APValue &Subobj, QualType SubobjType) {
 | |
|     // Stash the old value. Also clear Old, so we don't clobber it later
 | |
|     // if we're post-incrementing a complex.
 | |
|     if (Old) {
 | |
|       *Old = Subobj;
 | |
|       Old = nullptr;
 | |
|     }
 | |
| 
 | |
|     switch (Subobj.getKind()) {
 | |
|     case APValue::Int:
 | |
|       return found(Subobj.getInt(), SubobjType);
 | |
|     case APValue::Float:
 | |
|       return found(Subobj.getFloat(), SubobjType);
 | |
|     case APValue::ComplexInt:
 | |
|       return found(Subobj.getComplexIntReal(),
 | |
|                    SubobjType->castAs<ComplexType>()->getElementType()
 | |
|                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
 | |
|     case APValue::ComplexFloat:
 | |
|       return found(Subobj.getComplexFloatReal(),
 | |
|                    SubobjType->castAs<ComplexType>()->getElementType()
 | |
|                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
 | |
|     case APValue::LValue:
 | |
|       return foundPointer(Subobj, SubobjType);
 | |
|     default:
 | |
|       // FIXME: can this happen?
 | |
|       Info.FFDiag(E);
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   bool found(APSInt &Value, QualType SubobjType) {
 | |
|     if (!checkConst(SubobjType))
 | |
|       return false;
 | |
| 
 | |
|     if (!SubobjType->isIntegerType()) {
 | |
|       // We don't support increment / decrement on integer-cast-to-pointer
 | |
|       // values.
 | |
|       Info.FFDiag(E);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (Old) *Old = APValue(Value);
 | |
| 
 | |
|     // bool arithmetic promotes to int, and the conversion back to bool
 | |
|     // doesn't reduce mod 2^n, so special-case it.
 | |
|     if (SubobjType->isBooleanType()) {
 | |
|       if (AccessKind == AK_Increment)
 | |
|         Value = 1;
 | |
|       else
 | |
|         Value = !Value;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     bool WasNegative = Value.isNegative();
 | |
|     if (AccessKind == AK_Increment) {
 | |
|       ++Value;
 | |
| 
 | |
|       if (!WasNegative && Value.isNegative() && E->canOverflow()) {
 | |
|         APSInt ActualValue(Value, /*IsUnsigned*/true);
 | |
|         return HandleOverflow(Info, E, ActualValue, SubobjType);
 | |
|       }
 | |
|     } else {
 | |
|       --Value;
 | |
| 
 | |
|       if (WasNegative && !Value.isNegative() && E->canOverflow()) {
 | |
|         unsigned BitWidth = Value.getBitWidth();
 | |
|         APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
 | |
|         ActualValue.setBit(BitWidth);
 | |
|         return HandleOverflow(Info, E, ActualValue, SubobjType);
 | |
|       }
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   bool found(APFloat &Value, QualType SubobjType) {
 | |
|     if (!checkConst(SubobjType))
 | |
|       return false;
 | |
| 
 | |
|     if (Old) *Old = APValue(Value);
 | |
| 
 | |
|     APFloat One(Value.getSemantics(), 1);
 | |
|     if (AccessKind == AK_Increment)
 | |
|       Value.add(One, APFloat::rmNearestTiesToEven);
 | |
|     else
 | |
|       Value.subtract(One, APFloat::rmNearestTiesToEven);
 | |
|     return true;
 | |
|   }
 | |
|   bool foundPointer(APValue &Subobj, QualType SubobjType) {
 | |
|     if (!checkConst(SubobjType))
 | |
|       return false;
 | |
| 
 | |
|     QualType PointeeType;
 | |
|     if (const PointerType *PT = SubobjType->getAs<PointerType>())
 | |
|       PointeeType = PT->getPointeeType();
 | |
|     else {
 | |
|       Info.FFDiag(E);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     LValue LVal;
 | |
|     LVal.setFrom(Info.Ctx, Subobj);
 | |
|     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
 | |
|                                      AccessKind == AK_Increment ? 1 : -1))
 | |
|       return false;
 | |
|     LVal.moveInto(Subobj);
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Perform an increment or decrement on LVal.
 | |
| static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
 | |
|                          QualType LValType, bool IsIncrement, APValue *Old) {
 | |
|   if (LVal.Designator.Invalid)
 | |
|     return false;
 | |
| 
 | |
|   if (!Info.getLangOpts().CPlusPlus14) {
 | |
|     Info.FFDiag(E);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
 | |
|   CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
 | |
|   IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
 | |
|   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
 | |
| }
 | |
| 
 | |
| /// Build an lvalue for the object argument of a member function call.
 | |
| static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
 | |
|                                    LValue &This) {
 | |
|   if (Object->getType()->isPointerType() && Object->isRValue())
 | |
|     return EvaluatePointer(Object, This, Info);
 | |
| 
 | |
|   if (Object->isGLValue())
 | |
|     return EvaluateLValue(Object, This, Info);
 | |
| 
 | |
|   if (Object->getType()->isLiteralType(Info.Ctx))
 | |
|     return EvaluateTemporary(Object, This, Info);
 | |
| 
 | |
|   Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// HandleMemberPointerAccess - Evaluate a member access operation and build an
 | |
| /// lvalue referring to the result.
 | |
| ///
 | |
| /// \param Info - Information about the ongoing evaluation.
 | |
| /// \param LV - An lvalue referring to the base of the member pointer.
 | |
| /// \param RHS - The member pointer expression.
 | |
| /// \param IncludeMember - Specifies whether the member itself is included in
 | |
| ///        the resulting LValue subobject designator. This is not possible when
 | |
| ///        creating a bound member function.
 | |
| /// \return The field or method declaration to which the member pointer refers,
 | |
| ///         or 0 if evaluation fails.
 | |
| static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
 | |
|                                                   QualType LVType,
 | |
|                                                   LValue &LV,
 | |
|                                                   const Expr *RHS,
 | |
|                                                   bool IncludeMember = true) {
 | |
|   MemberPtr MemPtr;
 | |
|   if (!EvaluateMemberPointer(RHS, MemPtr, Info))
 | |
|     return nullptr;
 | |
| 
 | |
|   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
 | |
|   // member value, the behavior is undefined.
 | |
|   if (!MemPtr.getDecl()) {
 | |
|     // FIXME: Specific diagnostic.
 | |
|     Info.FFDiag(RHS);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   if (MemPtr.isDerivedMember()) {
 | |
|     // This is a member of some derived class. Truncate LV appropriately.
 | |
|     // The end of the derived-to-base path for the base object must match the
 | |
|     // derived-to-base path for the member pointer.
 | |
|     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
 | |
|         LV.Designator.Entries.size()) {
 | |
|       Info.FFDiag(RHS);
 | |
|       return nullptr;
 | |
|     }
 | |
|     unsigned PathLengthToMember =
 | |
|         LV.Designator.Entries.size() - MemPtr.Path.size();
 | |
|     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
 | |
|       const CXXRecordDecl *LVDecl = getAsBaseClass(
 | |
|           LV.Designator.Entries[PathLengthToMember + I]);
 | |
|       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
 | |
|       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
 | |
|         Info.FFDiag(RHS);
 | |
|         return nullptr;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Truncate the lvalue to the appropriate derived class.
 | |
|     if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
 | |
|                             PathLengthToMember))
 | |
|       return nullptr;
 | |
|   } else if (!MemPtr.Path.empty()) {
 | |
|     // Extend the LValue path with the member pointer's path.
 | |
|     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
 | |
|                                   MemPtr.Path.size() + IncludeMember);
 | |
| 
 | |
|     // Walk down to the appropriate base class.
 | |
|     if (const PointerType *PT = LVType->getAs<PointerType>())
 | |
|       LVType = PT->getPointeeType();
 | |
|     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
 | |
|     assert(RD && "member pointer access on non-class-type expression");
 | |
|     // The first class in the path is that of the lvalue.
 | |
|     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
 | |
|       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
 | |
|       if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
 | |
|         return nullptr;
 | |
|       RD = Base;
 | |
|     }
 | |
|     // Finally cast to the class containing the member.
 | |
|     if (!HandleLValueDirectBase(Info, RHS, LV, RD,
 | |
|                                 MemPtr.getContainingRecord()))
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Add the member. Note that we cannot build bound member functions here.
 | |
|   if (IncludeMember) {
 | |
|     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
 | |
|       if (!HandleLValueMember(Info, RHS, LV, FD))
 | |
|         return nullptr;
 | |
|     } else if (const IndirectFieldDecl *IFD =
 | |
|                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
 | |
|       if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
 | |
|         return nullptr;
 | |
|     } else {
 | |
|       llvm_unreachable("can't construct reference to bound member function");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MemPtr.getDecl();
 | |
| }
 | |
| 
 | |
| static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
 | |
|                                                   const BinaryOperator *BO,
 | |
|                                                   LValue &LV,
 | |
|                                                   bool IncludeMember = true) {
 | |
|   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
 | |
| 
 | |
|   if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
 | |
|     if (Info.noteFailure()) {
 | |
|       MemberPtr MemPtr;
 | |
|       EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
 | |
|     }
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
 | |
|                                    BO->getRHS(), IncludeMember);
 | |
| }
 | |
| 
 | |
| /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
 | |
| /// the provided lvalue, which currently refers to the base object.
 | |
| static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
 | |
|                                     LValue &Result) {
 | |
|   SubobjectDesignator &D = Result.Designator;
 | |
|   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
 | |
|     return false;
 | |
| 
 | |
|   QualType TargetQT = E->getType();
 | |
|   if (const PointerType *PT = TargetQT->getAs<PointerType>())
 | |
|     TargetQT = PT->getPointeeType();
 | |
| 
 | |
|   // Check this cast lands within the final derived-to-base subobject path.
 | |
|   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
 | |
|     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
 | |
|       << D.MostDerivedType << TargetQT;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Check the type of the final cast. We don't need to check the path,
 | |
|   // since a cast can only be formed if the path is unique.
 | |
|   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
 | |
|   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
 | |
|   const CXXRecordDecl *FinalType;
 | |
|   if (NewEntriesSize == D.MostDerivedPathLength)
 | |
|     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
 | |
|   else
 | |
|     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
 | |
|   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
 | |
|     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
 | |
|       << D.MostDerivedType << TargetQT;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Truncate the lvalue to the appropriate derived class.
 | |
|   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
 | |
| }
 | |
| 
 | |
| /// Get the value to use for a default-initialized object of type T.
 | |
| static APValue getDefaultInitValue(QualType T) {
 | |
|   if (auto *RD = T->getAsCXXRecordDecl()) {
 | |
|     if (RD->isUnion())
 | |
|       return APValue((const FieldDecl*)nullptr);
 | |
| 
 | |
|     APValue Struct(APValue::UninitStruct(), RD->getNumBases(),
 | |
|                    std::distance(RD->field_begin(), RD->field_end()));
 | |
| 
 | |
|     unsigned Index = 0;
 | |
|     for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
 | |
|            End = RD->bases_end(); I != End; ++I, ++Index)
 | |
|       Struct.getStructBase(Index) = getDefaultInitValue(I->getType());
 | |
| 
 | |
|     for (const auto *I : RD->fields()) {
 | |
|       if (I->isUnnamedBitfield())
 | |
|         continue;
 | |
|       Struct.getStructField(I->getFieldIndex()) =
 | |
|           getDefaultInitValue(I->getType());
 | |
|     }
 | |
|     return Struct;
 | |
|   }
 | |
| 
 | |
|   if (auto *AT =
 | |
|           dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
 | |
|     APValue Array(APValue::UninitArray(), 0, AT->getSize().getZExtValue());
 | |
|     if (Array.hasArrayFiller())
 | |
|       Array.getArrayFiller() = getDefaultInitValue(AT->getElementType());
 | |
|     return Array;
 | |
|   }
 | |
| 
 | |
|   return APValue::IndeterminateValue();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| enum EvalStmtResult {
 | |
|   /// Evaluation failed.
 | |
|   ESR_Failed,
 | |
|   /// Hit a 'return' statement.
 | |
|   ESR_Returned,
 | |
|   /// Evaluation succeeded.
 | |
|   ESR_Succeeded,
 | |
|   /// Hit a 'continue' statement.
 | |
|   ESR_Continue,
 | |
|   /// Hit a 'break' statement.
 | |
|   ESR_Break,
 | |
|   /// Still scanning for 'case' or 'default' statement.
 | |
|   ESR_CaseNotFound
 | |
| };
 | |
| }
 | |
| 
 | |
| static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
 | |
|   // We don't need to evaluate the initializer for a static local.
 | |
|   if (!VD->hasLocalStorage())
 | |
|     return true;
 | |
| 
 | |
|   LValue Result;
 | |
|   APValue &Val =
 | |
|       Info.CurrentCall->createTemporary(VD, VD->getType(), true, Result);
 | |
| 
 | |
|   const Expr *InitE = VD->getInit();
 | |
|   if (!InitE) {
 | |
|     Val = getDefaultInitValue(VD->getType());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (InitE->isValueDependent())
 | |
|     return false;
 | |
| 
 | |
|   if (!EvaluateInPlace(Val, Info, Result, InitE)) {
 | |
|     // Wipe out any partially-computed value, to allow tracking that this
 | |
|     // evaluation failed.
 | |
|     Val = APValue();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
 | |
|   bool OK = true;
 | |
| 
 | |
|   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
 | |
|     OK &= EvaluateVarDecl(Info, VD);
 | |
| 
 | |
|   if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
 | |
|     for (auto *BD : DD->bindings())
 | |
|       if (auto *VD = BD->getHoldingVar())
 | |
|         OK &= EvaluateDecl(Info, VD);
 | |
| 
 | |
|   return OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Evaluate a condition (either a variable declaration or an expression).
 | |
| static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
 | |
|                          const Expr *Cond, bool &Result) {
 | |
|   FullExpressionRAII Scope(Info);
 | |
|   if (CondDecl && !EvaluateDecl(Info, CondDecl))
 | |
|     return false;
 | |
|   if (!EvaluateAsBooleanCondition(Cond, Result, Info))
 | |
|     return false;
 | |
|   return Scope.destroy();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// A location where the result (returned value) of evaluating a
 | |
| /// statement should be stored.
 | |
| struct StmtResult {
 | |
|   /// The APValue that should be filled in with the returned value.
 | |
|   APValue &Value;
 | |
|   /// The location containing the result, if any (used to support RVO).
 | |
|   const LValue *Slot;
 | |
| };
 | |
| 
 | |
| struct TempVersionRAII {
 | |
|   CallStackFrame &Frame;
 | |
| 
 | |
|   TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
 | |
|     Frame.pushTempVersion();
 | |
|   }
 | |
| 
 | |
|   ~TempVersionRAII() {
 | |
|     Frame.popTempVersion();
 | |
|   }
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
 | |
|                                    const Stmt *S,
 | |
|                                    const SwitchCase *SC = nullptr);
 | |
| 
 | |
| /// Evaluate the body of a loop, and translate the result as appropriate.
 | |
| static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
 | |
|                                        const Stmt *Body,
 | |
|                                        const SwitchCase *Case = nullptr) {
 | |
|   BlockScopeRAII Scope(Info);
 | |
| 
 | |
|   EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case);
 | |
|   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
 | |
|     ESR = ESR_Failed;
 | |
| 
 | |
|   switch (ESR) {
 | |
|   case ESR_Break:
 | |
|     return ESR_Succeeded;
 | |
|   case ESR_Succeeded:
 | |
|   case ESR_Continue:
 | |
|     return ESR_Continue;
 | |
|   case ESR_Failed:
 | |
|   case ESR_Returned:
 | |
|   case ESR_CaseNotFound:
 | |
|     return ESR;
 | |
|   }
 | |
|   llvm_unreachable("Invalid EvalStmtResult!");
 | |
| }
 | |
| 
 | |
| /// Evaluate a switch statement.
 | |
| static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
 | |
|                                      const SwitchStmt *SS) {
 | |
|   BlockScopeRAII Scope(Info);
 | |
| 
 | |
|   // Evaluate the switch condition.
 | |
|   APSInt Value;
 | |
|   {
 | |
|     if (const Stmt *Init = SS->getInit()) {
 | |
|       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
 | |
|       if (ESR != ESR_Succeeded) {
 | |
|         if (ESR != ESR_Failed && !Scope.destroy())
 | |
|           ESR = ESR_Failed;
 | |
|         return ESR;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     FullExpressionRAII CondScope(Info);
 | |
|     if (SS->getConditionVariable() &&
 | |
|         !EvaluateDecl(Info, SS->getConditionVariable()))
 | |
|       return ESR_Failed;
 | |
|     if (!EvaluateInteger(SS->getCond(), Value, Info))
 | |
|       return ESR_Failed;
 | |
|     if (!CondScope.destroy())
 | |
|       return ESR_Failed;
 | |
|   }
 | |
| 
 | |
|   // Find the switch case corresponding to the value of the condition.
 | |
|   // FIXME: Cache this lookup.
 | |
|   const SwitchCase *Found = nullptr;
 | |
|   for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
 | |
|        SC = SC->getNextSwitchCase()) {
 | |
|     if (isa<DefaultStmt>(SC)) {
 | |
|       Found = SC;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     const CaseStmt *CS = cast<CaseStmt>(SC);
 | |
|     APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
 | |
|     APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
 | |
|                               : LHS;
 | |
|     if (LHS <= Value && Value <= RHS) {
 | |
|       Found = SC;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Found)
 | |
|     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
 | |
| 
 | |
|   // Search the switch body for the switch case and evaluate it from there.
 | |
|   EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found);
 | |
|   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
 | |
|     return ESR_Failed;
 | |
| 
 | |
|   switch (ESR) {
 | |
|   case ESR_Break:
 | |
|     return ESR_Succeeded;
 | |
|   case ESR_Succeeded:
 | |
|   case ESR_Continue:
 | |
|   case ESR_Failed:
 | |
|   case ESR_Returned:
 | |
|     return ESR;
 | |
|   case ESR_CaseNotFound:
 | |
|     // This can only happen if the switch case is nested within a statement
 | |
|     // expression. We have no intention of supporting that.
 | |
|     Info.FFDiag(Found->getBeginLoc(),
 | |
|                 diag::note_constexpr_stmt_expr_unsupported);
 | |
|     return ESR_Failed;
 | |
|   }
 | |
|   llvm_unreachable("Invalid EvalStmtResult!");
 | |
| }
 | |
| 
 | |
| // Evaluate a statement.
 | |
| static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
 | |
|                                    const Stmt *S, const SwitchCase *Case) {
 | |
|   if (!Info.nextStep(S))
 | |
|     return ESR_Failed;
 | |
| 
 | |
|   // If we're hunting down a 'case' or 'default' label, recurse through
 | |
|   // substatements until we hit the label.
 | |
|   if (Case) {
 | |
|     switch (S->getStmtClass()) {
 | |
|     case Stmt::CompoundStmtClass:
 | |
|       // FIXME: Precompute which substatement of a compound statement we
 | |
|       // would jump to, and go straight there rather than performing a
 | |
|       // linear scan each time.
 | |
|     case Stmt::LabelStmtClass:
 | |
|     case Stmt::AttributedStmtClass:
 | |
|     case Stmt::DoStmtClass:
 | |
|       break;
 | |
| 
 | |
|     case Stmt::CaseStmtClass:
 | |
|     case Stmt::DefaultStmtClass:
 | |
|       if (Case == S)
 | |
|         Case = nullptr;
 | |
|       break;
 | |
| 
 | |
|     case Stmt::IfStmtClass: {
 | |
|       // FIXME: Precompute which side of an 'if' we would jump to, and go
 | |
|       // straight there rather than scanning both sides.
 | |
|       const IfStmt *IS = cast<IfStmt>(S);
 | |
| 
 | |
|       // Wrap the evaluation in a block scope, in case it's a DeclStmt
 | |
|       // preceded by our switch label.
 | |
|       BlockScopeRAII Scope(Info);
 | |
| 
 | |
|       // Step into the init statement in case it brings an (uninitialized)
 | |
|       // variable into scope.
 | |
|       if (const Stmt *Init = IS->getInit()) {
 | |
|         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
 | |
|         if (ESR != ESR_CaseNotFound) {
 | |
|           assert(ESR != ESR_Succeeded);
 | |
|           return ESR;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Condition variable must be initialized if it exists.
 | |
|       // FIXME: We can skip evaluating the body if there's a condition
 | |
|       // variable, as there can't be any case labels within it.
 | |
|       // (The same is true for 'for' statements.)
 | |
| 
 | |
|       EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
 | |
|       if (ESR == ESR_Failed)
 | |
|         return ESR;
 | |
|       if (ESR != ESR_CaseNotFound)
 | |
|         return Scope.destroy() ? ESR : ESR_Failed;
 | |
|       if (!IS->getElse())
 | |
|         return ESR_CaseNotFound;
 | |
| 
 | |
|       ESR = EvaluateStmt(Result, Info, IS->getElse(), Case);
 | |
|       if (ESR == ESR_Failed)
 | |
|         return ESR;
 | |
|       if (ESR != ESR_CaseNotFound)
 | |
|         return Scope.destroy() ? ESR : ESR_Failed;
 | |
|       return ESR_CaseNotFound;
 | |
|     }
 | |
| 
 | |
|     case Stmt::WhileStmtClass: {
 | |
|       EvalStmtResult ESR =
 | |
|           EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
 | |
|       if (ESR != ESR_Continue)
 | |
|         return ESR;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case Stmt::ForStmtClass: {
 | |
|       const ForStmt *FS = cast<ForStmt>(S);
 | |
|       BlockScopeRAII Scope(Info);
 | |
| 
 | |
|       // Step into the init statement in case it brings an (uninitialized)
 | |
|       // variable into scope.
 | |
|       if (const Stmt *Init = FS->getInit()) {
 | |
|         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
 | |
|         if (ESR != ESR_CaseNotFound) {
 | |
|           assert(ESR != ESR_Succeeded);
 | |
|           return ESR;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       EvalStmtResult ESR =
 | |
|           EvaluateLoopBody(Result, Info, FS->getBody(), Case);
 | |
|       if (ESR != ESR_Continue)
 | |
|         return ESR;
 | |
|       if (FS->getInc()) {
 | |
|         FullExpressionRAII IncScope(Info);
 | |
|         if (!EvaluateIgnoredValue(Info, FS->getInc()) || !IncScope.destroy())
 | |
|           return ESR_Failed;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case Stmt::DeclStmtClass: {
 | |
|       // Start the lifetime of any uninitialized variables we encounter. They
 | |
|       // might be used by the selected branch of the switch.
 | |
|       const DeclStmt *DS = cast<DeclStmt>(S);
 | |
|       for (const auto *D : DS->decls()) {
 | |
|         if (const auto *VD = dyn_cast<VarDecl>(D)) {
 | |
|           if (VD->hasLocalStorage() && !VD->getInit())
 | |
|             if (!EvaluateVarDecl(Info, VD))
 | |
|               return ESR_Failed;
 | |
|           // FIXME: If the variable has initialization that can't be jumped
 | |
|           // over, bail out of any immediately-surrounding compound-statement
 | |
|           // too. There can't be any case labels here.
 | |
|         }
 | |
|       }
 | |
|       return ESR_CaseNotFound;
 | |
|     }
 | |
| 
 | |
|     default:
 | |
|       return ESR_CaseNotFound;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   switch (S->getStmtClass()) {
 | |
|   default:
 | |
|     if (const Expr *E = dyn_cast<Expr>(S)) {
 | |
|       // Don't bother evaluating beyond an expression-statement which couldn't
 | |
|       // be evaluated.
 | |
|       // FIXME: Do we need the FullExpressionRAII object here?
 | |
|       // VisitExprWithCleanups should create one when necessary.
 | |
|       FullExpressionRAII Scope(Info);
 | |
|       if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
 | |
|         return ESR_Failed;
 | |
|       return ESR_Succeeded;
 | |
|     }
 | |
| 
 | |
|     Info.FFDiag(S->getBeginLoc());
 | |
|     return ESR_Failed;
 | |
| 
 | |
|   case Stmt::NullStmtClass:
 | |
|     return ESR_Succeeded;
 | |
| 
 | |
|   case Stmt::DeclStmtClass: {
 | |
|     const DeclStmt *DS = cast<DeclStmt>(S);
 | |
|     for (const auto *D : DS->decls()) {
 | |
|       // Each declaration initialization is its own full-expression.
 | |
|       FullExpressionRAII Scope(Info);
 | |
|       if (!EvaluateDecl(Info, D) && !Info.noteFailure())
 | |
|         return ESR_Failed;
 | |
|       if (!Scope.destroy())
 | |
|         return ESR_Failed;
 | |
|     }
 | |
|     return ESR_Succeeded;
 | |
|   }
 | |
| 
 | |
|   case Stmt::ReturnStmtClass: {
 | |
|     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
 | |
|     FullExpressionRAII Scope(Info);
 | |
|     if (RetExpr &&
 | |
|         !(Result.Slot
 | |
|               ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
 | |
|               : Evaluate(Result.Value, Info, RetExpr)))
 | |
|       return ESR_Failed;
 | |
|     return Scope.destroy() ? ESR_Returned : ESR_Failed;
 | |
|   }
 | |
| 
 | |
|   case Stmt::CompoundStmtClass: {
 | |
|     BlockScopeRAII Scope(Info);
 | |
| 
 | |
|     const CompoundStmt *CS = cast<CompoundStmt>(S);
 | |
|     for (const auto *BI : CS->body()) {
 | |
|       EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
 | |
|       if (ESR == ESR_Succeeded)
 | |
|         Case = nullptr;
 | |
|       else if (ESR != ESR_CaseNotFound) {
 | |
|         if (ESR != ESR_Failed && !Scope.destroy())
 | |
|           return ESR_Failed;
 | |
|         return ESR;
 | |
|       }
 | |
|     }
 | |
|     if (Case)
 | |
|       return ESR_CaseNotFound;
 | |
|     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
 | |
|   }
 | |
| 
 | |
|   case Stmt::IfStmtClass: {
 | |
|     const IfStmt *IS = cast<IfStmt>(S);
 | |
| 
 | |
|     // Evaluate the condition, as either a var decl or as an expression.
 | |
|     BlockScopeRAII Scope(Info);
 | |
|     if (const Stmt *Init = IS->getInit()) {
 | |
|       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
 | |
|       if (ESR != ESR_Succeeded) {
 | |
|         if (ESR != ESR_Failed && !Scope.destroy())
 | |
|           return ESR_Failed;
 | |
|         return ESR;
 | |
|       }
 | |
|     }
 | |
|     bool Cond;
 | |
|     if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
 | |
|       return ESR_Failed;
 | |
| 
 | |
|     if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
 | |
|       EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
 | |
|       if (ESR != ESR_Succeeded) {
 | |
|         if (ESR != ESR_Failed && !Scope.destroy())
 | |
|           return ESR_Failed;
 | |
|         return ESR;
 | |
|       }
 | |
|     }
 | |
|     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
 | |
|   }
 | |
| 
 | |
|   case Stmt::WhileStmtClass: {
 | |
|     const WhileStmt *WS = cast<WhileStmt>(S);
 | |
|     while (true) {
 | |
|       BlockScopeRAII Scope(Info);
 | |
|       bool Continue;
 | |
|       if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
 | |
|                         Continue))
 | |
|         return ESR_Failed;
 | |
|       if (!Continue)
 | |
|         break;
 | |
| 
 | |
|       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
 | |
|       if (ESR != ESR_Continue) {
 | |
|         if (ESR != ESR_Failed && !Scope.destroy())
 | |
|           return ESR_Failed;
 | |
|         return ESR;
 | |
|       }
 | |
|       if (!Scope.destroy())
 | |
|         return ESR_Failed;
 | |
|     }
 | |
|     return ESR_Succeeded;
 | |
|   }
 | |
| 
 | |
|   case Stmt::DoStmtClass: {
 | |
|     const DoStmt *DS = cast<DoStmt>(S);
 | |
|     bool Continue;
 | |
|     do {
 | |
|       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
 | |
|       if (ESR != ESR_Continue)
 | |
|         return ESR;
 | |
|       Case = nullptr;
 | |
| 
 | |
|       FullExpressionRAII CondScope(Info);
 | |
|       if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) ||
 | |
|           !CondScope.destroy())
 | |
|         return ESR_Failed;
 | |
|     } while (Continue);
 | |
|     return ESR_Succeeded;
 | |
|   }
 | |
| 
 | |
|   case Stmt::ForStmtClass: {
 | |
|     const ForStmt *FS = cast<ForStmt>(S);
 | |
|     BlockScopeRAII ForScope(Info);
 | |
|     if (FS->getInit()) {
 | |
|       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
 | |
|       if (ESR != ESR_Succeeded) {
 | |
|         if (ESR != ESR_Failed && !ForScope.destroy())
 | |
|           return ESR_Failed;
 | |
|         return ESR;
 | |
|       }
 | |
|     }
 | |
|     while (true) {
 | |
|       BlockScopeRAII IterScope(Info);
 | |
|       bool Continue = true;
 | |
|       if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
 | |
|                                          FS->getCond(), Continue))
 | |
|         return ESR_Failed;
 | |
|       if (!Continue)
 | |
|         break;
 | |
| 
 | |
|       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
 | |
|       if (ESR != ESR_Continue) {
 | |
|         if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
 | |
|           return ESR_Failed;
 | |
|         return ESR;
 | |
|       }
 | |
| 
 | |
|       if (FS->getInc()) {
 | |
|         FullExpressionRAII IncScope(Info);
 | |
|         if (!EvaluateIgnoredValue(Info, FS->getInc()) || !IncScope.destroy())
 | |
|           return ESR_Failed;
 | |
|       }
 | |
| 
 | |
|       if (!IterScope.destroy())
 | |
|         return ESR_Failed;
 | |
|     }
 | |
|     return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
 | |
|   }
 | |
| 
 | |
|   case Stmt::CXXForRangeStmtClass: {
 | |
|     const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
 | |
|     BlockScopeRAII Scope(Info);
 | |
| 
 | |
|     // Evaluate the init-statement if present.
 | |
|     if (FS->getInit()) {
 | |
|       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
 | |
|       if (ESR != ESR_Succeeded) {
 | |
|         if (ESR != ESR_Failed && !Scope.destroy())
 | |
|           return ESR_Failed;
 | |
|         return ESR;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Initialize the __range variable.
 | |
|     EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
 | |
|     if (ESR != ESR_Succeeded) {
 | |
|       if (ESR != ESR_Failed && !Scope.destroy())
 | |
|         return ESR_Failed;
 | |
|       return ESR;
 | |
|     }
 | |
| 
 | |
|     // Create the __begin and __end iterators.
 | |
|     ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
 | |
|     if (ESR != ESR_Succeeded) {
 | |
|       if (ESR != ESR_Failed && !Scope.destroy())
 | |
|         return ESR_Failed;
 | |
|       return ESR;
 | |
|     }
 | |
|     ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
 | |
|     if (ESR != ESR_Succeeded) {
 | |
|       if (ESR != ESR_Failed && !Scope.destroy())
 | |
|         return ESR_Failed;
 | |
|       return ESR;
 | |
|     }
 | |
| 
 | |
|     while (true) {
 | |
|       // Condition: __begin != __end.
 | |
|       {
 | |
|         bool Continue = true;
 | |
|         FullExpressionRAII CondExpr(Info);
 | |
|         if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
 | |
|           return ESR_Failed;
 | |
|         if (!Continue)
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|       // User's variable declaration, initialized by *__begin.
 | |
|       BlockScopeRAII InnerScope(Info);
 | |
|       ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
 | |
|       if (ESR != ESR_Succeeded) {
 | |
|         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
 | |
|           return ESR_Failed;
 | |
|         return ESR;
 | |
|       }
 | |
| 
 | |
|       // Loop body.
 | |
|       ESR = EvaluateLoopBody(Result, Info, FS->getBody());
 | |
|       if (ESR != ESR_Continue) {
 | |
|         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
 | |
|           return ESR_Failed;
 | |
|         return ESR;
 | |
|       }
 | |
| 
 | |
|       // Increment: ++__begin
 | |
|       if (!EvaluateIgnoredValue(Info, FS->getInc()))
 | |
|         return ESR_Failed;
 | |
| 
 | |
|       if (!InnerScope.destroy())
 | |
|         return ESR_Failed;
 | |
|     }
 | |
| 
 | |
|     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
 | |
|   }
 | |
| 
 | |
|   case Stmt::SwitchStmtClass:
 | |
|     return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
 | |
| 
 | |
|   case Stmt::ContinueStmtClass:
 | |
|     return ESR_Continue;
 | |
| 
 | |
|   case Stmt::BreakStmtClass:
 | |
|     return ESR_Break;
 | |
| 
 | |
|   case Stmt::LabelStmtClass:
 | |
|     return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
 | |
| 
 | |
|   case Stmt::AttributedStmtClass:
 | |
|     // As a general principle, C++11 attributes can be ignored without
 | |
|     // any semantic impact.
 | |
|     return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
 | |
|                         Case);
 | |
| 
 | |
|   case Stmt::CaseStmtClass:
 | |
|   case Stmt::DefaultStmtClass:
 | |
|     return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
 | |
|   case Stmt::CXXTryStmtClass:
 | |
|     // Evaluate try blocks by evaluating all sub statements.
 | |
|     return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
 | |
| /// default constructor. If so, we'll fold it whether or not it's marked as
 | |
| /// constexpr. If it is marked as constexpr, we will never implicitly define it,
 | |
| /// so we need special handling.
 | |
| static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
 | |
|                                            const CXXConstructorDecl *CD,
 | |
|                                            bool IsValueInitialization) {
 | |
|   if (!CD->isTrivial() || !CD->isDefaultConstructor())
 | |
|     return false;
 | |
| 
 | |
|   // Value-initialization does not call a trivial default constructor, so such a
 | |
|   // call is a core constant expression whether or not the constructor is
 | |
|   // constexpr.
 | |
|   if (!CD->isConstexpr() && !IsValueInitialization) {
 | |
|     if (Info.getLangOpts().CPlusPlus11) {
 | |
|       // FIXME: If DiagDecl is an implicitly-declared special member function,
 | |
|       // we should be much more explicit about why it's not constexpr.
 | |
|       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
 | |
|         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
 | |
|       Info.Note(CD->getLocation(), diag::note_declared_at);
 | |
|     } else {
 | |
|       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// CheckConstexprFunction - Check that a function can be called in a constant
 | |
| /// expression.
 | |
| static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
 | |
|                                    const FunctionDecl *Declaration,
 | |
|                                    const FunctionDecl *Definition,
 | |
|                                    const Stmt *Body) {
 | |
|   // Potential constant expressions can contain calls to declared, but not yet
 | |
|   // defined, constexpr functions.
 | |
|   if (Info.checkingPotentialConstantExpression() && !Definition &&
 | |
|       Declaration->isConstexpr())
 | |
|     return false;
 | |
| 
 | |
|   // Bail out if the function declaration itself is invalid.  We will
 | |
|   // have produced a relevant diagnostic while parsing it, so just
 | |
|   // note the problematic sub-expression.
 | |
|   if (Declaration->isInvalidDecl()) {
 | |
|     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // DR1872: An instantiated virtual constexpr function can't be called in a
 | |
|   // constant expression (prior to C++20). We can still constant-fold such a
 | |
|   // call.
 | |
|   if (!Info.Ctx.getLangOpts().CPlusPlus2a && isa<CXXMethodDecl>(Declaration) &&
 | |
|       cast<CXXMethodDecl>(Declaration)->isVirtual())
 | |
|     Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
 | |
| 
 | |
|   if (Definition && Definition->isInvalidDecl()) {
 | |
|     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Can we evaluate this function call?
 | |
|   if (Definition && Definition->isConstexpr() && Body)
 | |
|     return true;
 | |
| 
 | |
|   if (Info.getLangOpts().CPlusPlus11) {
 | |
|     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
 | |
| 
 | |
|     // If this function is not constexpr because it is an inherited
 | |
|     // non-constexpr constructor, diagnose that directly.
 | |
|     auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
 | |
|     if (CD && CD->isInheritingConstructor()) {
 | |
|       auto *Inherited = CD->getInheritedConstructor().getConstructor();
 | |
|       if (!Inherited->isConstexpr())
 | |
|         DiagDecl = CD = Inherited;
 | |
|     }
 | |
| 
 | |
|     // FIXME: If DiagDecl is an implicitly-declared special member function
 | |
|     // or an inheriting constructor, we should be much more explicit about why
 | |
|     // it's not constexpr.
 | |
|     if (CD && CD->isInheritingConstructor())
 | |
|       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
 | |
|         << CD->getInheritedConstructor().getConstructor()->getParent();
 | |
|     else
 | |
|       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
 | |
|         << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
 | |
|     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
 | |
|   } else {
 | |
|     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct CheckDynamicTypeHandler {
 | |
|   AccessKinds AccessKind;
 | |
|   typedef bool result_type;
 | |
|   bool failed() { return false; }
 | |
|   bool found(APValue &Subobj, QualType SubobjType) { return true; }
 | |
|   bool found(APSInt &Value, QualType SubobjType) { return true; }
 | |
|   bool found(APFloat &Value, QualType SubobjType) { return true; }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Check that we can access the notional vptr of an object / determine its
 | |
| /// dynamic type.
 | |
| static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
 | |
|                              AccessKinds AK, bool Polymorphic) {
 | |
|   if (This.Designator.Invalid)
 | |
|     return false;
 | |
| 
 | |
|   CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType());
 | |
| 
 | |
|   if (!Obj)
 | |
|     return false;
 | |
| 
 | |
|   if (!Obj.Value) {
 | |
|     // The object is not usable in constant expressions, so we can't inspect
 | |
|     // its value to see if it's in-lifetime or what the active union members
 | |
|     // are. We can still check for a one-past-the-end lvalue.
 | |
|     if (This.Designator.isOnePastTheEnd() ||
 | |
|         This.Designator.isMostDerivedAnUnsizedArray()) {
 | |
|       Info.FFDiag(E, This.Designator.isOnePastTheEnd()
 | |
|                          ? diag::note_constexpr_access_past_end
 | |
|                          : diag::note_constexpr_access_unsized_array)
 | |
|           << AK;
 | |
|       return false;
 | |
|     } else if (Polymorphic) {
 | |
|       // Conservatively refuse to perform a polymorphic operation if we would
 | |
|       // not be able to read a notional 'vptr' value.
 | |
|       APValue Val;
 | |
|       This.moveInto(Val);
 | |
|       QualType StarThisType =
 | |
|           Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx));
 | |
|       Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
 | |
|           << AK << Val.getAsString(Info.Ctx, StarThisType);
 | |
|       return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   CheckDynamicTypeHandler Handler{AK};
 | |
|   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
 | |
| }
 | |
| 
 | |
| /// Check that the pointee of the 'this' pointer in a member function call is
 | |
| /// either within its lifetime or in its period of construction or destruction.
 | |
| static bool
 | |
| checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
 | |
|                                      const LValue &This,
 | |
|                                      const CXXMethodDecl *NamedMember) {
 | |
|   return checkDynamicType(
 | |
|       Info, E, This,
 | |
|       isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false);
 | |
| }
 | |
| 
 | |
| struct DynamicType {
 | |
|   /// The dynamic class type of the object.
 | |
|   const CXXRecordDecl *Type;
 | |
|   /// The corresponding path length in the lvalue.
 | |
|   unsigned PathLength;
 | |
| };
 | |
| 
 | |
| static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
 | |
|                                              unsigned PathLength) {
 | |
|   assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=
 | |
|       Designator.Entries.size() && "invalid path length");
 | |
|   return (PathLength == Designator.MostDerivedPathLength)
 | |
|              ? Designator.MostDerivedType->getAsCXXRecordDecl()
 | |
|              : getAsBaseClass(Designator.Entries[PathLength - 1]);
 | |
| }
 | |
| 
 | |
| /// Determine the dynamic type of an object.
 | |
| static Optional<DynamicType> ComputeDynamicType(EvalInfo &Info, const Expr *E,
 | |
|                                                 LValue &This, AccessKinds AK) {
 | |
|   // If we don't have an lvalue denoting an object of class type, there is no
 | |
|   // meaningful dynamic type. (We consider objects of non-class type to have no
 | |
|   // dynamic type.)
 | |
|   if (!checkDynamicType(Info, E, This, AK, true))
 | |
|     return None;
 | |
| 
 | |
|   // Refuse to compute a dynamic type in the presence of virtual bases. This
 | |
|   // shouldn't happen other than in constant-folding situations, since literal
 | |
|   // types can't have virtual bases.
 | |
|   //
 | |
|   // Note that consumers of DynamicType assume that the type has no virtual
 | |
|   // bases, and will need modifications if this restriction is relaxed.
 | |
|   const CXXRecordDecl *Class =
 | |
|       This.Designator.MostDerivedType->getAsCXXRecordDecl();
 | |
|   if (!Class || Class->getNumVBases()) {
 | |
|     Info.FFDiag(E);
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   // FIXME: For very deep class hierarchies, it might be beneficial to use a
 | |
|   // binary search here instead. But the overwhelmingly common case is that
 | |
|   // we're not in the middle of a constructor, so it probably doesn't matter
 | |
|   // in practice.
 | |
|   ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
 | |
|   for (unsigned PathLength = This.Designator.MostDerivedPathLength;
 | |
|        PathLength <= Path.size(); ++PathLength) {
 | |
|     switch (Info.isEvaluatingCtorDtor(This.getLValueBase(),
 | |
|                                       Path.slice(0, PathLength))) {
 | |
|     case ConstructionPhase::Bases:
 | |
|     case ConstructionPhase::DestroyingBases:
 | |
|       // We're constructing or destroying a base class. This is not the dynamic
 | |
|       // type.
 | |
|       break;
 | |
| 
 | |
|     case ConstructionPhase::None:
 | |
|     case ConstructionPhase::AfterBases:
 | |
|     case ConstructionPhase::Destroying:
 | |
|       // We've finished constructing the base classes and not yet started
 | |
|       // destroying them again, so this is the dynamic type.
 | |
|       return DynamicType{getBaseClassType(This.Designator, PathLength),
 | |
|                          PathLength};
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // CWG issue 1517: we're constructing a base class of the object described by
 | |
|   // 'This', so that object has not yet begun its period of construction and
 | |
|   // any polymorphic operation on it results in undefined behavior.
 | |
|   Info.FFDiag(E);
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| /// Perform virtual dispatch.
 | |
| static const CXXMethodDecl *HandleVirtualDispatch(
 | |
|     EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
 | |
|     llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
 | |
|   Optional<DynamicType> DynType = ComputeDynamicType(
 | |
|       Info, E, This,
 | |
|       isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall);
 | |
|   if (!DynType)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Find the final overrider. It must be declared in one of the classes on the
 | |
|   // path from the dynamic type to the static type.
 | |
|   // FIXME: If we ever allow literal types to have virtual base classes, that
 | |
|   // won't be true.
 | |
|   const CXXMethodDecl *Callee = Found;
 | |
|   unsigned PathLength = DynType->PathLength;
 | |
|   for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
 | |
|     const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
 | |
|     const CXXMethodDecl *Overrider =
 | |
|         Found->getCorrespondingMethodDeclaredInClass(Class, false);
 | |
|     if (Overrider) {
 | |
|       Callee = Overrider;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++2a [class.abstract]p6:
 | |
|   //   the effect of making a virtual call to a pure virtual function [...] is
 | |
|   //   undefined
 | |
|   if (Callee->isPure()) {
 | |
|     Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
 | |
|     Info.Note(Callee->getLocation(), diag::note_declared_at);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // If necessary, walk the rest of the path to determine the sequence of
 | |
|   // covariant adjustment steps to apply.
 | |
|   if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(),
 | |
|                                        Found->getReturnType())) {
 | |
|     CovariantAdjustmentPath.push_back(Callee->getReturnType());
 | |
|     for (unsigned CovariantPathLength = PathLength + 1;
 | |
|          CovariantPathLength != This.Designator.Entries.size();
 | |
|          ++CovariantPathLength) {
 | |
|       const CXXRecordDecl *NextClass =
 | |
|           getBaseClassType(This.Designator, CovariantPathLength);
 | |
|       const CXXMethodDecl *Next =
 | |
|           Found->getCorrespondingMethodDeclaredInClass(NextClass, false);
 | |
|       if (Next && !Info.Ctx.hasSameUnqualifiedType(
 | |
|                       Next->getReturnType(), CovariantAdjustmentPath.back()))
 | |
|         CovariantAdjustmentPath.push_back(Next->getReturnType());
 | |
|     }
 | |
|     if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(),
 | |
|                                          CovariantAdjustmentPath.back()))
 | |
|       CovariantAdjustmentPath.push_back(Found->getReturnType());
 | |
|   }
 | |
| 
 | |
|   // Perform 'this' adjustment.
 | |
|   if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
 | |
|     return nullptr;
 | |
| 
 | |
|   return Callee;
 | |
| }
 | |
| 
 | |
| /// Perform the adjustment from a value returned by a virtual function to
 | |
| /// a value of the statically expected type, which may be a pointer or
 | |
| /// reference to a base class of the returned type.
 | |
| static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
 | |
|                                             APValue &Result,
 | |
|                                             ArrayRef<QualType> Path) {
 | |
|   assert(Result.isLValue() &&
 | |
|          "unexpected kind of APValue for covariant return");
 | |
|   if (Result.isNullPointer())
 | |
|     return true;
 | |
| 
 | |
|   LValue LVal;
 | |
|   LVal.setFrom(Info.Ctx, Result);
 | |
| 
 | |
|   const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
 | |
|   for (unsigned I = 1; I != Path.size(); ++I) {
 | |
|     const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
 | |
|     assert(OldClass && NewClass && "unexpected kind of covariant return");
 | |
|     if (OldClass != NewClass &&
 | |
|         !CastToBaseClass(Info, E, LVal, OldClass, NewClass))
 | |
|       return false;
 | |
|     OldClass = NewClass;
 | |
|   }
 | |
| 
 | |
|   LVal.moveInto(Result);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Determine whether \p Base, which is known to be a direct base class of
 | |
| /// \p Derived, is a public base class.
 | |
| static bool isBaseClassPublic(const CXXRecordDecl *Derived,
 | |
|                               const CXXRecordDecl *Base) {
 | |
|   for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
 | |
|     auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
 | |
|     if (BaseClass && declaresSameEntity(BaseClass, Base))
 | |
|       return BaseSpec.getAccessSpecifier() == AS_public;
 | |
|   }
 | |
|   llvm_unreachable("Base is not a direct base of Derived");
 | |
| }
 | |
| 
 | |
| /// Apply the given dynamic cast operation on the provided lvalue.
 | |
| ///
 | |
| /// This implements the hard case of dynamic_cast, requiring a "runtime check"
 | |
| /// to find a suitable target subobject.
 | |
| static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
 | |
|                               LValue &Ptr) {
 | |
|   // We can't do anything with a non-symbolic pointer value.
 | |
|   SubobjectDesignator &D = Ptr.Designator;
 | |
|   if (D.Invalid)
 | |
|     return false;
 | |
| 
 | |
|   // C++ [expr.dynamic.cast]p6:
 | |
|   //   If v is a null pointer value, the result is a null pointer value.
 | |
|   if (Ptr.isNullPointer() && !E->isGLValue())
 | |
|     return true;
 | |
| 
 | |
|   // For all the other cases, we need the pointer to point to an object within
 | |
|   // its lifetime / period of construction / destruction, and we need to know
 | |
|   // its dynamic type.
 | |
|   Optional<DynamicType> DynType =
 | |
|       ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
 | |
|   if (!DynType)
 | |
|     return false;
 | |
| 
 | |
|   // C++ [expr.dynamic.cast]p7:
 | |
|   //   If T is "pointer to cv void", then the result is a pointer to the most
 | |
|   //   derived object
 | |
|   if (E->getType()->isVoidPointerType())
 | |
|     return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
 | |
| 
 | |
|   const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
 | |
|   assert(C && "dynamic_cast target is not void pointer nor class");
 | |
|   CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C));
 | |
| 
 | |
|   auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
 | |
|     // C++ [expr.dynamic.cast]p9:
 | |
|     if (!E->isGLValue()) {
 | |
|       //   The value of a failed cast to pointer type is the null pointer value
 | |
|       //   of the required result type.
 | |
|       Ptr.setNull(Info.Ctx, E->getType());
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     //   A failed cast to reference type throws [...] std::bad_cast.
 | |
|     unsigned DiagKind;
 | |
|     if (!Paths && (declaresSameEntity(DynType->Type, C) ||
 | |
|                    DynType->Type->isDerivedFrom(C)))
 | |
|       DiagKind = 0;
 | |
|     else if (!Paths || Paths->begin() == Paths->end())
 | |
|       DiagKind = 1;
 | |
|     else if (Paths->isAmbiguous(CQT))
 | |
|       DiagKind = 2;
 | |
|     else {
 | |
|       assert(Paths->front().Access != AS_public && "why did the cast fail?");
 | |
|       DiagKind = 3;
 | |
|     }
 | |
|     Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
 | |
|         << DiagKind << Ptr.Designator.getType(Info.Ctx)
 | |
|         << Info.Ctx.getRecordType(DynType->Type)
 | |
|         << E->getType().getUnqualifiedType();
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   // Runtime check, phase 1:
 | |
|   //   Walk from the base subobject towards the derived object looking for the
 | |
|   //   target type.
 | |
|   for (int PathLength = Ptr.Designator.Entries.size();
 | |
|        PathLength >= (int)DynType->PathLength; --PathLength) {
 | |
|     const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
 | |
|     if (declaresSameEntity(Class, C))
 | |
|       return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
 | |
|     // We can only walk across public inheritance edges.
 | |
|     if (PathLength > (int)DynType->PathLength &&
 | |
|         !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
 | |
|                            Class))
 | |
|       return RuntimeCheckFailed(nullptr);
 | |
|   }
 | |
| 
 | |
|   // Runtime check, phase 2:
 | |
|   //   Search the dynamic type for an unambiguous public base of type C.
 | |
|   CXXBasePaths Paths(/*FindAmbiguities=*/true,
 | |
|                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
 | |
|   if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) &&
 | |
|       Paths.front().Access == AS_public) {
 | |
|     // Downcast to the dynamic type...
 | |
|     if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
 | |
|       return false;
 | |
|     // ... then upcast to the chosen base class subobject.
 | |
|     for (CXXBasePathElement &Elem : Paths.front())
 | |
|       if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, the runtime check fails.
 | |
|   return RuntimeCheckFailed(&Paths);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct StartLifetimeOfUnionMemberHandler {
 | |
|   const FieldDecl *Field;
 | |
| 
 | |
|   static const AccessKinds AccessKind = AK_Assign;
 | |
| 
 | |
|   typedef bool result_type;
 | |
|   bool failed() { return false; }
 | |
|   bool found(APValue &Subobj, QualType SubobjType) {
 | |
|     // We are supposed to perform no initialization but begin the lifetime of
 | |
|     // the object. We interpret that as meaning to do what default
 | |
|     // initialization of the object would do if all constructors involved were
 | |
|     // trivial:
 | |
|     //  * All base, non-variant member, and array element subobjects' lifetimes
 | |
|     //    begin
 | |
|     //  * No variant members' lifetimes begin
 | |
|     //  * All scalar subobjects whose lifetimes begin have indeterminate values
 | |
|     assert(SubobjType->isUnionType());
 | |
|     if (!declaresSameEntity(Subobj.getUnionField(), Field) ||
 | |
|         !Subobj.getUnionValue().hasValue())
 | |
|       Subobj.setUnion(Field, getDefaultInitValue(Field->getType()));
 | |
|     return true;
 | |
|   }
 | |
|   bool found(APSInt &Value, QualType SubobjType) {
 | |
|     llvm_unreachable("wrong value kind for union object");
 | |
|   }
 | |
|   bool found(APFloat &Value, QualType SubobjType) {
 | |
|     llvm_unreachable("wrong value kind for union object");
 | |
|   }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
 | |
| 
 | |
| /// Handle a builtin simple-assignment or a call to a trivial assignment
 | |
| /// operator whose left-hand side might involve a union member access. If it
 | |
| /// does, implicitly start the lifetime of any accessed union elements per
 | |
| /// C++20 [class.union]5.
 | |
| static bool HandleUnionActiveMemberChange(EvalInfo &Info, const Expr *LHSExpr,
 | |
|                                           const LValue &LHS) {
 | |
|   if (LHS.InvalidBase || LHS.Designator.Invalid)
 | |
|     return false;
 | |
| 
 | |
|   llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
 | |
|   // C++ [class.union]p5:
 | |
|   //   define the set S(E) of subexpressions of E as follows:
 | |
|   unsigned PathLength = LHS.Designator.Entries.size();
 | |
|   for (const Expr *E = LHSExpr; E != nullptr;) {
 | |
|     //   -- If E is of the form A.B, S(E) contains the elements of S(A)...
 | |
|     if (auto *ME = dyn_cast<MemberExpr>(E)) {
 | |
|       auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
 | |
|       // Note that we can't implicitly start the lifetime of a reference,
 | |
|       // so we don't need to proceed any further if we reach one.
 | |
|       if (!FD || FD->getType()->isReferenceType())
 | |
|         break;
 | |
| 
 | |
|       //    ... and also contains A.B if B names a union member ...
 | |
|       if (FD->getParent()->isUnion()) {
 | |
|         //    ... of a non-class, non-array type, or of a class type with a
 | |
|         //    trivial default constructor that is not deleted, or an array of
 | |
|         //    such types.
 | |
|         auto *RD =
 | |
|             FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
 | |
|         if (!RD || RD->hasTrivialDefaultConstructor())
 | |
|           UnionPathLengths.push_back({PathLength - 1, FD});
 | |
|       }
 | |
| 
 | |
|       E = ME->getBase();
 | |
|       --PathLength;
 | |
|       assert(declaresSameEntity(FD,
 | |
|                                 LHS.Designator.Entries[PathLength]
 | |
|                                     .getAsBaseOrMember().getPointer()));
 | |
| 
 | |
|       //   -- If E is of the form A[B] and is interpreted as a built-in array
 | |
|       //      subscripting operator, S(E) is [S(the array operand, if any)].
 | |
|     } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
 | |
|       // Step over an ArrayToPointerDecay implicit cast.
 | |
|       auto *Base = ASE->getBase()->IgnoreImplicit();
 | |
|       if (!Base->getType()->isArrayType())
 | |
|         break;
 | |
| 
 | |
|       E = Base;
 | |
|       --PathLength;
 | |
| 
 | |
|     } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|       // Step over a derived-to-base conversion.
 | |
|       E = ICE->getSubExpr();
 | |
|       if (ICE->getCastKind() == CK_NoOp)
 | |
|         continue;
 | |
|       if (ICE->getCastKind() != CK_DerivedToBase &&
 | |
|           ICE->getCastKind() != CK_UncheckedDerivedToBase)
 | |
|         break;
 | |
|       // Walk path backwards as we walk up from the base to the derived class.
 | |
|       for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
 | |
|         --PathLength;
 | |
|         (void)Elt;
 | |
|         assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),
 | |
|                                   LHS.Designator.Entries[PathLength]
 | |
|                                       .getAsBaseOrMember().getPointer()));
 | |
|       }
 | |
| 
 | |
|     //   -- Otherwise, S(E) is empty.
 | |
|     } else {
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Common case: no unions' lifetimes are started.
 | |
|   if (UnionPathLengths.empty())
 | |
|     return true;
 | |
| 
 | |
|   //   if modification of X [would access an inactive union member], an object
 | |
|   //   of the type of X is implicitly created
 | |
|   CompleteObject Obj =
 | |
|       findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType());
 | |
|   if (!Obj)
 | |
|     return false;
 | |
|   for (std::pair<unsigned, const FieldDecl *> LengthAndField :
 | |
|            llvm::reverse(UnionPathLengths)) {
 | |
|     // Form a designator for the union object.
 | |
|     SubobjectDesignator D = LHS.Designator;
 | |
|     D.truncate(Info.Ctx, LHS.Base, LengthAndField.first);
 | |
| 
 | |
|     StartLifetimeOfUnionMemberHandler StartLifetime{LengthAndField.second};
 | |
|     if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| typedef SmallVector<APValue, 8> ArgVector;
 | |
| }
 | |
| 
 | |
| /// EvaluateArgs - Evaluate the arguments to a function call.
 | |
| static bool EvaluateArgs(ArrayRef<const Expr *> Args, ArgVector &ArgValues,
 | |
|                          EvalInfo &Info, const FunctionDecl *Callee) {
 | |
|   bool Success = true;
 | |
|   llvm::SmallBitVector ForbiddenNullArgs;
 | |
|   if (Callee->hasAttr<NonNullAttr>()) {
 | |
|     ForbiddenNullArgs.resize(Args.size());
 | |
|     for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
 | |
|       if (!Attr->args_size()) {
 | |
|         ForbiddenNullArgs.set();
 | |
|         break;
 | |
|       } else
 | |
|         for (auto Idx : Attr->args()) {
 | |
|           unsigned ASTIdx = Idx.getASTIndex();
 | |
|           if (ASTIdx >= Args.size())
 | |
|             continue;
 | |
|           ForbiddenNullArgs[ASTIdx] = 1;
 | |
|         }
 | |
|     }
 | |
|   }
 | |
|   // FIXME: This is the wrong evaluation order for an assignment operator
 | |
|   // called via operator syntax.
 | |
|   for (unsigned Idx = 0; Idx < Args.size(); Idx++) {
 | |
|     if (!Evaluate(ArgValues[Idx], Info, Args[Idx])) {
 | |
|       // If we're checking for a potential constant expression, evaluate all
 | |
|       // initializers even if some of them fail.
 | |
|       if (!Info.noteFailure())
 | |
|         return false;
 | |
|       Success = false;
 | |
|     } else if (!ForbiddenNullArgs.empty() &&
 | |
|                ForbiddenNullArgs[Idx] &&
 | |
|                ArgValues[Idx].isLValue() &&
 | |
|                ArgValues[Idx].isNullPointer()) {
 | |
|       Info.CCEDiag(Args[Idx], diag::note_non_null_attribute_failed);
 | |
|       if (!Info.noteFailure())
 | |
|         return false;
 | |
|       Success = false;
 | |
|     }
 | |
|   }
 | |
|   return Success;
 | |
| }
 | |
| 
 | |
| /// Evaluate a function call.
 | |
| static bool HandleFunctionCall(SourceLocation CallLoc,
 | |
|                                const FunctionDecl *Callee, const LValue *This,
 | |
|                                ArrayRef<const Expr*> Args, const Stmt *Body,
 | |
|                                EvalInfo &Info, APValue &Result,
 | |
|                                const LValue *ResultSlot) {
 | |
|   ArgVector ArgValues(Args.size());
 | |
|   if (!EvaluateArgs(Args, ArgValues, Info, Callee))
 | |
|     return false;
 | |
| 
 | |
|   if (!Info.CheckCallLimit(CallLoc))
 | |
|     return false;
 | |
| 
 | |
|   CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
 | |
| 
 | |
|   // For a trivial copy or move assignment, perform an APValue copy. This is
 | |
|   // essential for unions, where the operations performed by the assignment
 | |
|   // operator cannot be represented as statements.
 | |
|   //
 | |
|   // Skip this for non-union classes with no fields; in that case, the defaulted
 | |
|   // copy/move does not actually read the object.
 | |
|   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
 | |
|   if (MD && MD->isDefaulted() &&
 | |
|       (MD->getParent()->isUnion() ||
 | |
|        (MD->isTrivial() &&
 | |
|         isReadByLvalueToRvalueConversion(MD->getParent())))) {
 | |
|     assert(This &&
 | |
|            (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
 | |
|     LValue RHS;
 | |
|     RHS.setFrom(Info.Ctx, ArgValues[0]);
 | |
|     APValue RHSValue;
 | |
|     if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(), RHS,
 | |
|                                         RHSValue, MD->getParent()->isUnion()))
 | |
|       return false;
 | |
|     if (Info.getLangOpts().CPlusPlus2a && MD->isTrivial() &&
 | |
|         !HandleUnionActiveMemberChange(Info, Args[0], *This))
 | |
|       return false;
 | |
|     if (!handleAssignment(Info, Args[0], *This, MD->getThisType(),
 | |
|                           RHSValue))
 | |
|       return false;
 | |
|     This->moveInto(Result);
 | |
|     return true;
 | |
|   } else if (MD && isLambdaCallOperator(MD)) {
 | |
|     // We're in a lambda; determine the lambda capture field maps unless we're
 | |
|     // just constexpr checking a lambda's call operator. constexpr checking is
 | |
|     // done before the captures have been added to the closure object (unless
 | |
|     // we're inferring constexpr-ness), so we don't have access to them in this
 | |
|     // case. But since we don't need the captures to constexpr check, we can
 | |
|     // just ignore them.
 | |
|     if (!Info.checkingPotentialConstantExpression())
 | |
|       MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
 | |
|                                         Frame.LambdaThisCaptureField);
 | |
|   }
 | |
| 
 | |
|   StmtResult Ret = {Result, ResultSlot};
 | |
|   EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
 | |
|   if (ESR == ESR_Succeeded) {
 | |
|     if (Callee->getReturnType()->isVoidType())
 | |
|       return true;
 | |
|     Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
 | |
|   }
 | |
|   return ESR == ESR_Returned;
 | |
| }
 | |
| 
 | |
| /// Evaluate a constructor call.
 | |
| static bool HandleConstructorCall(const Expr *E, const LValue &This,
 | |
|                                   APValue *ArgValues,
 | |
|                                   const CXXConstructorDecl *Definition,
 | |
|                                   EvalInfo &Info, APValue &Result) {
 | |
|   SourceLocation CallLoc = E->getExprLoc();
 | |
|   if (!Info.CheckCallLimit(CallLoc))
 | |
|     return false;
 | |
| 
 | |
|   const CXXRecordDecl *RD = Definition->getParent();
 | |
|   if (RD->getNumVBases()) {
 | |
|     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   EvalInfo::EvaluatingConstructorRAII EvalObj(
 | |
|       Info,
 | |
|       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
 | |
|       RD->getNumBases());
 | |
|   CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues);
 | |
| 
 | |
|   // FIXME: Creating an APValue just to hold a nonexistent return value is
 | |
|   // wasteful.
 | |
|   APValue RetVal;
 | |
|   StmtResult Ret = {RetVal, nullptr};
 | |
| 
 | |
|   // If it's a delegating constructor, delegate.
 | |
|   if (Definition->isDelegatingConstructor()) {
 | |
|     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
 | |
|     {
 | |
|       FullExpressionRAII InitScope(Info);
 | |
|       if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) ||
 | |
|           !InitScope.destroy())
 | |
|         return false;
 | |
|     }
 | |
|     return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
 | |
|   }
 | |
| 
 | |
|   // For a trivial copy or move constructor, perform an APValue copy. This is
 | |
|   // essential for unions (or classes with anonymous union members), where the
 | |
|   // operations performed by the constructor cannot be represented by
 | |
|   // ctor-initializers.
 | |
|   //
 | |
|   // Skip this for empty non-union classes; we should not perform an
 | |
|   // lvalue-to-rvalue conversion on them because their copy constructor does not
 | |
|   // actually read them.
 | |
|   if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
 | |
|       (Definition->getParent()->isUnion() ||
 | |
|        (Definition->isTrivial() &&
 | |
|         isReadByLvalueToRvalueConversion(Definition->getParent())))) {
 | |
|     LValue RHS;
 | |
|     RHS.setFrom(Info.Ctx, ArgValues[0]);
 | |
|     return handleLValueToRValueConversion(
 | |
|         Info, E, Definition->getParamDecl(0)->getType().getNonReferenceType(),
 | |
|         RHS, Result, Definition->getParent()->isUnion());
 | |
|   }
 | |
| 
 | |
|   // Reserve space for the struct members.
 | |
|   if (!Result.hasValue()) {
 | |
|     if (!RD->isUnion())
 | |
|       Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
 | |
|                        std::distance(RD->field_begin(), RD->field_end()));
 | |
|     else
 | |
|       // A union starts with no active member.
 | |
|       Result = APValue((const FieldDecl*)nullptr);
 | |
|   }
 | |
| 
 | |
|   if (RD->isInvalidDecl()) return false;
 | |
|   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
 | |
| 
 | |
|   // A scope for temporaries lifetime-extended by reference members.
 | |
|   BlockScopeRAII LifetimeExtendedScope(Info);
 | |
| 
 | |
|   bool Success = true;
 | |
|   unsigned BasesSeen = 0;
 | |
| #ifndef NDEBUG
 | |
|   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
 | |
| #endif
 | |
|   CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
 | |
|   auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
 | |
|     // We might be initializing the same field again if this is an indirect
 | |
|     // field initialization.
 | |
|     if (FieldIt == RD->field_end() ||
 | |
|         FieldIt->getFieldIndex() > FD->getFieldIndex()) {
 | |
|       assert(Indirect && "fields out of order?");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Default-initialize any fields with no explicit initializer.
 | |
|     for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
 | |
|       assert(FieldIt != RD->field_end() && "missing field?");
 | |
|       if (!FieldIt->isUnnamedBitfield())
 | |
|         Result.getStructField(FieldIt->getFieldIndex()) =
 | |
|             getDefaultInitValue(FieldIt->getType());
 | |
|     }
 | |
|     ++FieldIt;
 | |
|   };
 | |
|   for (const auto *I : Definition->inits()) {
 | |
|     LValue Subobject = This;
 | |
|     LValue SubobjectParent = This;
 | |
|     APValue *Value = &Result;
 | |
| 
 | |
|     // Determine the subobject to initialize.
 | |
|     FieldDecl *FD = nullptr;
 | |
|     if (I->isBaseInitializer()) {
 | |
|       QualType BaseType(I->getBaseClass(), 0);
 | |
| #ifndef NDEBUG
 | |
|       // Non-virtual base classes are initialized in the order in the class
 | |
|       // definition. We have already checked for virtual base classes.
 | |
|       assert(!BaseIt->isVirtual() && "virtual base for literal type");
 | |
|       assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
 | |
|              "base class initializers not in expected order");
 | |
|       ++BaseIt;
 | |
| #endif
 | |
|       if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
 | |
|                                   BaseType->getAsCXXRecordDecl(), &Layout))
 | |
|         return false;
 | |
|       Value = &Result.getStructBase(BasesSeen++);
 | |
|     } else if ((FD = I->getMember())) {
 | |
|       if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
 | |
|         return false;
 | |
|       if (RD->isUnion()) {
 | |
|         Result = APValue(FD);
 | |
|         Value = &Result.getUnionValue();
 | |
|       } else {
 | |
|         SkipToField(FD, false);
 | |
|         Value = &Result.getStructField(FD->getFieldIndex());
 | |
|       }
 | |
|     } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
 | |
|       // Walk the indirect field decl's chain to find the object to initialize,
 | |
|       // and make sure we've initialized every step along it.
 | |
|       auto IndirectFieldChain = IFD->chain();
 | |
|       for (auto *C : IndirectFieldChain) {
 | |
|         FD = cast<FieldDecl>(C);
 | |
|         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
 | |
|         // Switch the union field if it differs. This happens if we had
 | |
|         // preceding zero-initialization, and we're now initializing a union
 | |
|         // subobject other than the first.
 | |
|         // FIXME: In this case, the values of the other subobjects are
 | |
|         // specified, since zero-initialization sets all padding bits to zero.
 | |
|         if (!Value->hasValue() ||
 | |
|             (Value->isUnion() && Value->getUnionField() != FD)) {
 | |
|           if (CD->isUnion())
 | |
|             *Value = APValue(FD);
 | |
|           else
 | |
|             // FIXME: This immediately starts the lifetime of all members of an
 | |
|             // anonymous struct. It would be preferable to strictly start member
 | |
|             // lifetime in initialization order.
 | |
|             *Value = getDefaultInitValue(Info.Ctx.getRecordType(CD));
 | |
|         }
 | |
|         // Store Subobject as its parent before updating it for the last element
 | |
|         // in the chain.
 | |
|         if (C == IndirectFieldChain.back())
 | |
|           SubobjectParent = Subobject;
 | |
|         if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
 | |
|           return false;
 | |
|         if (CD->isUnion())
 | |
|           Value = &Value->getUnionValue();
 | |
|         else {
 | |
|           if (C == IndirectFieldChain.front() && !RD->isUnion())
 | |
|             SkipToField(FD, true);
 | |
|           Value = &Value->getStructField(FD->getFieldIndex());
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       llvm_unreachable("unknown base initializer kind");
 | |
|     }
 | |
| 
 | |
|     // Need to override This for implicit field initializers as in this case
 | |
|     // This refers to innermost anonymous struct/union containing initializer,
 | |
|     // not to currently constructed class.
 | |
|     const Expr *Init = I->getInit();
 | |
|     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
 | |
|                                   isa<CXXDefaultInitExpr>(Init));
 | |
|     FullExpressionRAII InitScope(Info);
 | |
|     if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
 | |
|         (FD && FD->isBitField() &&
 | |
|          !truncateBitfieldValue(Info, Init, *Value, FD))) {
 | |
|       // If we're checking for a potential constant expression, evaluate all
 | |
|       // initializers even if some of them fail.
 | |
|       if (!Info.noteFailure())
 | |
|         return false;
 | |
|       Success = false;
 | |
|     }
 | |
| 
 | |
|     // This is the point at which the dynamic type of the object becomes this
 | |
|     // class type.
 | |
|     if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
 | |
|       EvalObj.finishedConstructingBases();
 | |
|   }
 | |
| 
 | |
|   // Default-initialize any remaining fields.
 | |
|   if (!RD->isUnion()) {
 | |
|     for (; FieldIt != RD->field_end(); ++FieldIt) {
 | |
|       if (!FieldIt->isUnnamedBitfield())
 | |
|         Result.getStructField(FieldIt->getFieldIndex()) =
 | |
|             getDefaultInitValue(FieldIt->getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Success &&
 | |
|          EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed &&
 | |
|          LifetimeExtendedScope.destroy();
 | |
| }
 | |
| 
 | |
| static bool HandleConstructorCall(const Expr *E, const LValue &This,
 | |
|                                   ArrayRef<const Expr*> Args,
 | |
|                                   const CXXConstructorDecl *Definition,
 | |
|                                   EvalInfo &Info, APValue &Result) {
 | |
|   ArgVector ArgValues(Args.size());
 | |
|   if (!EvaluateArgs(Args, ArgValues, Info, Definition))
 | |
|     return false;
 | |
| 
 | |
|   return HandleConstructorCall(E, This, ArgValues.data(), Definition,
 | |
|                                Info, Result);
 | |
| }
 | |
| 
 | |
| static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc,
 | |
|                                   const LValue &This, APValue &Value,
 | |
|                                   QualType T) {
 | |
|   // Objects can only be destroyed while they're within their lifetimes.
 | |
|   // FIXME: We have no representation for whether an object of type nullptr_t
 | |
|   // is in its lifetime; it usually doesn't matter. Perhaps we should model it
 | |
|   // as indeterminate instead?
 | |
|   if (Value.isAbsent() && !T->isNullPtrType()) {
 | |
|     APValue Printable;
 | |
|     This.moveInto(Printable);
 | |
|     Info.FFDiag(CallLoc, diag::note_constexpr_destroy_out_of_lifetime)
 | |
|       << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Invent an expression for location purposes.
 | |
|   // FIXME: We shouldn't need to do this.
 | |
|   OpaqueValueExpr LocE(CallLoc, Info.Ctx.IntTy, VK_RValue);
 | |
| 
 | |
|   // For arrays, destroy elements right-to-left.
 | |
|   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
 | |
|     uint64_t Size = CAT->getSize().getZExtValue();
 | |
|     QualType ElemT = CAT->getElementType();
 | |
| 
 | |
|     LValue ElemLV = This;
 | |
|     ElemLV.addArray(Info, &LocE, CAT);
 | |
|     if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
 | |
|       return false;
 | |
| 
 | |
|     // Ensure that we have actual array elements available to destroy; the
 | |
|     // destructors might mutate the value, so we can't run them on the array
 | |
|     // filler.
 | |
|     if (Size && Size > Value.getArrayInitializedElts())
 | |
|       expandArray(Value, Value.getArraySize() - 1);
 | |
| 
 | |
|     for (; Size != 0; --Size) {
 | |
|       APValue &Elem = Value.getArrayInitializedElt(Size - 1);
 | |
|       if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
 | |
|           !HandleDestructionImpl(Info, CallLoc, ElemLV, Elem, ElemT))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // End the lifetime of this array now.
 | |
|     Value = APValue();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
 | |
|   if (!RD) {
 | |
|     if (T.isDestructedType()) {
 | |
|       Info.FFDiag(CallLoc, diag::note_constexpr_unsupported_destruction) << T;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     Value = APValue();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (RD->getNumVBases()) {
 | |
|     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   const CXXDestructorDecl *DD = RD->getDestructor();
 | |
|   if (!DD && !RD->hasTrivialDestructor()) {
 | |
|     Info.FFDiag(CallLoc);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!DD || DD->isTrivial() ||
 | |
|       (RD->isAnonymousStructOrUnion() && RD->isUnion())) {
 | |
|     // A trivial destructor just ends the lifetime of the object. Check for
 | |
|     // this case before checking for a body, because we might not bother
 | |
|     // building a body for a trivial destructor. Note that it doesn't matter
 | |
|     // whether the destructor is constexpr in this case; all trivial
 | |
|     // destructors are constexpr.
 | |
|     //
 | |
|     // If an anonymous union would be destroyed, some enclosing destructor must
 | |
|     // have been explicitly defined, and the anonymous union destruction should
 | |
|     // have no effect.
 | |
|     Value = APValue();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!Info.CheckCallLimit(CallLoc))
 | |
|     return false;
 | |
| 
 | |
|   const FunctionDecl *Definition = nullptr;
 | |
|   const Stmt *Body = DD->getBody(Definition);
 | |
| 
 | |
|   if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body))
 | |
|     return false;
 | |
| 
 | |
|   CallStackFrame Frame(Info, CallLoc, Definition, &This, nullptr);
 | |
| 
 | |
|   // We're now in the period of destruction of this object.
 | |
|   unsigned BasesLeft = RD->getNumBases();
 | |
|   EvalInfo::EvaluatingDestructorRAII EvalObj(
 | |
|       Info,
 | |
|       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
 | |
|   if (!EvalObj.DidInsert) {
 | |
|     // C++2a [class.dtor]p19:
 | |
|     //   the behavior is undefined if the destructor is invoked for an object
 | |
|     //   whose lifetime has ended
 | |
|     // (Note that formally the lifetime ends when the period of destruction
 | |
|     // begins, even though certain uses of the object remain valid until the
 | |
|     // period of destruction ends.)
 | |
|     Info.FFDiag(CallLoc, diag::note_constexpr_double_destroy);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // FIXME: Creating an APValue just to hold a nonexistent return value is
 | |
|   // wasteful.
 | |
|   APValue RetVal;
 | |
|   StmtResult Ret = {RetVal, nullptr};
 | |
|   if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed)
 | |
|     return false;
 | |
| 
 | |
|   // A union destructor does not implicitly destroy its members.
 | |
|   if (RD->isUnion())
 | |
|     return true;
 | |
| 
 | |
|   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
 | |
| 
 | |
|   // We don't have a good way to iterate fields in reverse, so collect all the
 | |
|   // fields first and then walk them backwards.
 | |
|   SmallVector<FieldDecl*, 16> Fields(RD->field_begin(), RD->field_end());
 | |
|   for (const FieldDecl *FD : llvm::reverse(Fields)) {
 | |
|     if (FD->isUnnamedBitfield())
 | |
|       continue;
 | |
| 
 | |
|     LValue Subobject = This;
 | |
|     if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
 | |
|       return false;
 | |
| 
 | |
|     APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
 | |
|     if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
 | |
|                                FD->getType()))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (BasesLeft != 0)
 | |
|     EvalObj.startedDestroyingBases();
 | |
| 
 | |
|   // Destroy base classes in reverse order.
 | |
|   for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) {
 | |
|     --BasesLeft;
 | |
| 
 | |
|     QualType BaseType = Base.getType();
 | |
|     LValue Subobject = This;
 | |
|     if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
 | |
|                                 BaseType->getAsCXXRecordDecl(), &Layout))
 | |
|       return false;
 | |
| 
 | |
|     APValue *SubobjectValue = &Value.getStructBase(BasesLeft);
 | |
|     if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
 | |
|                                BaseType))
 | |
|       return false;
 | |
|   }
 | |
|   assert(BasesLeft == 0 && "NumBases was wrong?");
 | |
| 
 | |
|   // The period of destruction ends now. The object is gone.
 | |
|   Value = APValue();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct DestroyObjectHandler {
 | |
|   EvalInfo &Info;
 | |
|   const Expr *E;
 | |
|   const LValue &This;
 | |
|   const AccessKinds AccessKind;
 | |
| 
 | |
|   typedef bool result_type;
 | |
|   bool failed() { return false; }
 | |
|   bool found(APValue &Subobj, QualType SubobjType) {
 | |
|     return HandleDestructionImpl(Info, E->getExprLoc(), This, Subobj,
 | |
|                                  SubobjType);
 | |
|   }
 | |
|   bool found(APSInt &Value, QualType SubobjType) {
 | |
|     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
 | |
|     return false;
 | |
|   }
 | |
|   bool found(APFloat &Value, QualType SubobjType) {
 | |
|     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| /// Perform a destructor or pseudo-destructor call on the given object, which
 | |
| /// might in general not be a complete object.
 | |
| static bool HandleDestruction(EvalInfo &Info, const Expr *E,
 | |
|                               const LValue &This, QualType ThisType) {
 | |
|   CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType);
 | |
|   DestroyObjectHandler Handler = {Info, E, This, AK_Destroy};
 | |
|   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
 | |
| }
 | |
| 
 | |
| /// Destroy and end the lifetime of the given complete object.
 | |
| static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
 | |
|                               APValue::LValueBase LVBase, APValue &Value,
 | |
|                               QualType T) {
 | |
|   // If we've had an unmodeled side-effect, we can't rely on mutable state
 | |
|   // (such as the object we're about to destroy) being correct.
 | |
|   if (Info.EvalStatus.HasSideEffects)
 | |
|     return false;
 | |
| 
 | |
|   LValue LV;
 | |
|   LV.set({LVBase});
 | |
|   return HandleDestructionImpl(Info, Loc, LV, Value, T);
 | |
| }
 | |
| 
 | |
| /// Perform a call to 'perator new' or to `__builtin_operator_new'.
 | |
| static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
 | |
|                                   LValue &Result) {
 | |
|   if (Info.checkingPotentialConstantExpression() ||
 | |
|       Info.SpeculativeEvaluationDepth)
 | |
|     return false;
 | |
| 
 | |
|   // This is permitted only within a call to std::allocator<T>::allocate.
 | |
|   auto Caller = Info.getStdAllocatorCaller("allocate");
 | |
|   if (!Caller) {
 | |
|     Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus2a
 | |
|                                      ? diag::note_constexpr_new_untyped
 | |
|                                      : diag::note_constexpr_new);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   QualType ElemType = Caller.ElemType;
 | |
|   if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
 | |
|     Info.FFDiag(E->getExprLoc(),
 | |
|                 diag::note_constexpr_new_not_complete_object_type)
 | |
|         << (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   APSInt ByteSize;
 | |
|   if (!EvaluateInteger(E->getArg(0), ByteSize, Info))
 | |
|     return false;
 | |
|   bool IsNothrow = false;
 | |
|   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
 | |
|     EvaluateIgnoredValue(Info, E->getArg(I));
 | |
|     IsNothrow |= E->getType()->isNothrowT();
 | |
|   }
 | |
| 
 | |
|   CharUnits ElemSize;
 | |
|   if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
 | |
|     return false;
 | |
|   APInt Size, Remainder;
 | |
|   APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
 | |
|   APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder);
 | |
|   if (Remainder != 0) {
 | |
|     // This likely indicates a bug in the implementation of 'std::allocator'.
 | |
|     Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
 | |
|         << ByteSize << APSInt(ElemSizeAP, true) << ElemType;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (ByteSize.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
 | |
|     if (IsNothrow) {
 | |
|       Result.setNull(Info.Ctx, E->getType());
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     Info.FFDiag(E, diag::note_constexpr_new_too_large) << APSInt(Size, true);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   QualType AllocType = Info.Ctx.getConstantArrayType(ElemType, Size, nullptr,
 | |
|                                                      ArrayType::Normal, 0);
 | |
|   APValue *Val = Info.createHeapAlloc(E, AllocType, Result);
 | |
|   *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
 | |
|   Result.addArray(Info, E, cast<ConstantArrayType>(AllocType));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool hasVirtualDestructor(QualType T) {
 | |
|   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
 | |
|     if (CXXDestructorDecl *DD = RD->getDestructor())
 | |
|       return DD->isVirtual();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
 | |
|   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
 | |
|     if (CXXDestructorDecl *DD = RD->getDestructor())
 | |
|       return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Check that the given object is a suitable pointer to a heap allocation that
 | |
| /// still exists and is of the right kind for the purpose of a deletion.
 | |
| ///
 | |
| /// On success, returns the heap allocation to deallocate. On failure, produces
 | |
| /// a diagnostic and returns None.
 | |
| static Optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
 | |
|                                             const LValue &Pointer,
 | |
|                                             DynAlloc::Kind DeallocKind) {
 | |
|   auto PointerAsString = [&] {
 | |
|     return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
 | |
|   };
 | |
| 
 | |
|   DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
 | |
|   if (!DA) {
 | |
|     Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
 | |
|         << PointerAsString();
 | |
|     if (Pointer.Base)
 | |
|       NoteLValueLocation(Info, Pointer.Base);
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   Optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
 | |
|   if (!Alloc) {
 | |
|     Info.FFDiag(E, diag::note_constexpr_double_delete);
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   QualType AllocType = Pointer.Base.getDynamicAllocType();
 | |
|   if (DeallocKind != (*Alloc)->getKind()) {
 | |
|     Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
 | |
|         << DeallocKind << (*Alloc)->getKind() << AllocType;
 | |
|     NoteLValueLocation(Info, Pointer.Base);
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   bool Subobject = false;
 | |
|   if (DeallocKind == DynAlloc::New) {
 | |
|     Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
 | |
|                 Pointer.Designator.isOnePastTheEnd();
 | |
|   } else {
 | |
|     Subobject = Pointer.Designator.Entries.size() != 1 ||
 | |
|                 Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
 | |
|   }
 | |
|   if (Subobject) {
 | |
|     Info.FFDiag(E, diag::note_constexpr_delete_subobject)
 | |
|         << PointerAsString() << Pointer.Designator.isOnePastTheEnd();
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   return Alloc;
 | |
| }
 | |
| 
 | |
| // Perform a call to 'operator delete' or '__builtin_operator_delete'.
 | |
| bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
 | |
|   if (Info.checkingPotentialConstantExpression() ||
 | |
|       Info.SpeculativeEvaluationDepth)
 | |
|     return false;
 | |
| 
 | |
|   // This is permitted only within a call to std::allocator<T>::deallocate.
 | |
|   if (!Info.getStdAllocatorCaller("deallocate")) {
 | |
|     Info.FFDiag(E->getExprLoc());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   LValue Pointer;
 | |
|   if (!EvaluatePointer(E->getArg(0), Pointer, Info))
 | |
|     return false;
 | |
|   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
 | |
|     EvaluateIgnoredValue(Info, E->getArg(I));
 | |
| 
 | |
|   if (Pointer.Designator.Invalid)
 | |
|     return false;
 | |
| 
 | |
|   // Deleting a null pointer has no effect.
 | |
|   if (Pointer.isNullPointer())
 | |
|     return true;
 | |
| 
 | |
|   if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
 | |
|     return false;
 | |
| 
 | |
|   Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Generic Evaluation
 | |
| //===----------------------------------------------------------------------===//
 | |
| namespace {
 | |
| 
 | |
| class BitCastBuffer {
 | |
|   // FIXME: We're going to need bit-level granularity when we support
 | |
|   // bit-fields.
 | |
|   // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
 | |
|   // we don't support a host or target where that is the case. Still, we should
 | |
|   // use a more generic type in case we ever do.
 | |
|   SmallVector<Optional<unsigned char>, 32> Bytes;
 | |
| 
 | |
|   static_assert(std::numeric_limits<unsigned char>::digits >= 8,
 | |
|                 "Need at least 8 bit unsigned char");
 | |
| 
 | |
|   bool TargetIsLittleEndian;
 | |
| 
 | |
| public:
 | |
|   BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
 | |
|       : Bytes(Width.getQuantity()),
 | |
|         TargetIsLittleEndian(TargetIsLittleEndian) {}
 | |
| 
 | |
|   LLVM_NODISCARD
 | |
|   bool readObject(CharUnits Offset, CharUnits Width,
 | |
|                   SmallVectorImpl<unsigned char> &Output) const {
 | |
|     for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
 | |
|       // If a byte of an integer is uninitialized, then the whole integer is
 | |
|       // uninitalized.
 | |
|       if (!Bytes[I.getQuantity()])
 | |
|         return false;
 | |
|       Output.push_back(*Bytes[I.getQuantity()]);
 | |
|     }
 | |
|     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
 | |
|       std::reverse(Output.begin(), Output.end());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
 | |
|     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
 | |
|       std::reverse(Input.begin(), Input.end());
 | |
| 
 | |
|     size_t Index = 0;
 | |
|     for (unsigned char Byte : Input) {
 | |
|       assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?");
 | |
|       Bytes[Offset.getQuantity() + Index] = Byte;
 | |
|       ++Index;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   size_t size() { return Bytes.size(); }
 | |
| };
 | |
| 
 | |
| /// Traverse an APValue to produce an BitCastBuffer, emulating how the current
 | |
| /// target would represent the value at runtime.
 | |
| class APValueToBufferConverter {
 | |
|   EvalInfo &Info;
 | |
|   BitCastBuffer Buffer;
 | |
|   const CastExpr *BCE;
 | |
| 
 | |
|   APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
 | |
|                            const CastExpr *BCE)
 | |
|       : Info(Info),
 | |
|         Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
 | |
|         BCE(BCE) {}
 | |
| 
 | |
|   bool visit(const APValue &Val, QualType Ty) {
 | |
|     return visit(Val, Ty, CharUnits::fromQuantity(0));
 | |
|   }
 | |
| 
 | |
|   // Write out Val with type Ty into Buffer starting at Offset.
 | |
|   bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
 | |
|     assert((size_t)Offset.getQuantity() <= Buffer.size());
 | |
| 
 | |
|     // As a special case, nullptr_t has an indeterminate value.
 | |
|     if (Ty->isNullPtrType())
 | |
|       return true;
 | |
| 
 | |
|     // Dig through Src to find the byte at SrcOffset.
 | |
|     switch (Val.getKind()) {
 | |
|     case APValue::Indeterminate:
 | |
|     case APValue::None:
 | |
|       return true;
 | |
| 
 | |
|     case APValue::Int:
 | |
|       return visitInt(Val.getInt(), Ty, Offset);
 | |
|     case APValue::Float:
 | |
|       return visitFloat(Val.getFloat(), Ty, Offset);
 | |
|     case APValue::Array:
 | |
|       return visitArray(Val, Ty, Offset);
 | |
|     case APValue::Struct:
 | |
|       return visitRecord(Val, Ty, Offset);
 | |
| 
 | |
|     case APValue::ComplexInt:
 | |
|     case APValue::ComplexFloat:
 | |
|     case APValue::Vector:
 | |
|     case APValue::FixedPoint:
 | |
|       // FIXME: We should support these.
 | |
| 
 | |
|     case APValue::Union:
 | |
|     case APValue::MemberPointer:
 | |
|     case APValue::AddrLabelDiff: {
 | |
|       Info.FFDiag(BCE->getBeginLoc(),
 | |
|                   diag::note_constexpr_bit_cast_unsupported_type)
 | |
|           << Ty;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     case APValue::LValue:
 | |
|       llvm_unreachable("LValue subobject in bit_cast?");
 | |
|     }
 | |
|     llvm_unreachable("Unhandled APValue::ValueKind");
 | |
|   }
 | |
| 
 | |
|   bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
 | |
|     const RecordDecl *RD = Ty->getAsRecordDecl();
 | |
|     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
 | |
| 
 | |
|     // Visit the base classes.
 | |
|     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
 | |
|       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
 | |
|         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
 | |
|         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|         if (!visitRecord(Val.getStructBase(I), BS.getType(),
 | |
|                          Layout.getBaseClassOffset(BaseDecl) + Offset))
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Visit the fields.
 | |
|     unsigned FieldIdx = 0;
 | |
|     for (FieldDecl *FD : RD->fields()) {
 | |
|       if (FD->isBitField()) {
 | |
|         Info.FFDiag(BCE->getBeginLoc(),
 | |
|                     diag::note_constexpr_bit_cast_unsupported_bitfield);
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
 | |
| 
 | |
|       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&
 | |
|              "only bit-fields can have sub-char alignment");
 | |
|       CharUnits FieldOffset =
 | |
|           Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset;
 | |
|       QualType FieldTy = FD->getType();
 | |
|       if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset))
 | |
|         return false;
 | |
|       ++FieldIdx;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
 | |
|     const auto *CAT =
 | |
|         dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
 | |
|     if (!CAT)
 | |
|       return false;
 | |
| 
 | |
|     CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
 | |
|     unsigned NumInitializedElts = Val.getArrayInitializedElts();
 | |
|     unsigned ArraySize = Val.getArraySize();
 | |
|     // First, initialize the initialized elements.
 | |
|     for (unsigned I = 0; I != NumInitializedElts; ++I) {
 | |
|       const APValue &SubObj = Val.getArrayInitializedElt(I);
 | |
|       if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Next, initialize the rest of the array using the filler.
 | |
|     if (Val.hasArrayFiller()) {
 | |
|       const APValue &Filler = Val.getArrayFiller();
 | |
|       for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
 | |
|         if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
 | |
|     CharUnits Width = Info.Ctx.getTypeSizeInChars(Ty);
 | |
|     SmallVector<unsigned char, 8> Bytes(Width.getQuantity());
 | |
|     llvm::StoreIntToMemory(Val, &*Bytes.begin(), Width.getQuantity());
 | |
|     Buffer.writeObject(Offset, Bytes);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
 | |
|     APSInt AsInt(Val.bitcastToAPInt());
 | |
|     return visitInt(AsInt, Ty, Offset);
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   static Optional<BitCastBuffer> convert(EvalInfo &Info, const APValue &Src,
 | |
|                                          const CastExpr *BCE) {
 | |
|     CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
 | |
|     APValueToBufferConverter Converter(Info, DstSize, BCE);
 | |
|     if (!Converter.visit(Src, BCE->getSubExpr()->getType()))
 | |
|       return None;
 | |
|     return Converter.Buffer;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Write an BitCastBuffer into an APValue.
 | |
| class BufferToAPValueConverter {
 | |
|   EvalInfo &Info;
 | |
|   const BitCastBuffer &Buffer;
 | |
|   const CastExpr *BCE;
 | |
| 
 | |
|   BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
 | |
|                            const CastExpr *BCE)
 | |
|       : Info(Info), Buffer(Buffer), BCE(BCE) {}
 | |
| 
 | |
|   // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
 | |
|   // with an invalid type, so anything left is a deficiency on our part (FIXME).
 | |
|   // Ideally this will be unreachable.
 | |
|   llvm::NoneType unsupportedType(QualType Ty) {
 | |
|     Info.FFDiag(BCE->getBeginLoc(),
 | |
|                 diag::note_constexpr_bit_cast_unsupported_type)
 | |
|         << Ty;
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   Optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
 | |
|                           const EnumType *EnumSugar = nullptr) {
 | |
|     if (T->isNullPtrType()) {
 | |
|       uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0));
 | |
|       return APValue((Expr *)nullptr,
 | |
|                      /*Offset=*/CharUnits::fromQuantity(NullValue),
 | |
|                      APValue::NoLValuePath{}, /*IsNullPtr=*/true);
 | |
|     }
 | |
| 
 | |
|     CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
 | |
|     SmallVector<uint8_t, 8> Bytes;
 | |
|     if (!Buffer.readObject(Offset, SizeOf, Bytes)) {
 | |
|       // If this is std::byte or unsigned char, then its okay to store an
 | |
|       // indeterminate value.
 | |
|       bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
 | |
|       bool IsUChar =
 | |
|           !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
 | |
|                          T->isSpecificBuiltinType(BuiltinType::Char_U));
 | |
|       if (!IsStdByte && !IsUChar) {
 | |
|         QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
 | |
|         Info.FFDiag(BCE->getExprLoc(),
 | |
|                     diag::note_constexpr_bit_cast_indet_dest)
 | |
|             << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
 | |
|         return None;
 | |
|       }
 | |
| 
 | |
|       return APValue::IndeterminateValue();
 | |
|     }
 | |
| 
 | |
|     APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
 | |
|     llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size());
 | |
| 
 | |
|     if (T->isIntegralOrEnumerationType()) {
 | |
|       Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
 | |
|       return APValue(Val);
 | |
|     }
 | |
| 
 | |
|     if (T->isRealFloatingType()) {
 | |
|       const llvm::fltSemantics &Semantics =
 | |
|           Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
 | |
|       return APValue(APFloat(Semantics, Val));
 | |
|     }
 | |
| 
 | |
|     return unsupportedType(QualType(T, 0));
 | |
|   }
 | |
| 
 | |
|   Optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
 | |
|     const RecordDecl *RD = RTy->getAsRecordDecl();
 | |
|     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
 | |
| 
 | |
|     unsigned NumBases = 0;
 | |
|     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
 | |
|       NumBases = CXXRD->getNumBases();
 | |
| 
 | |
|     APValue ResultVal(APValue::UninitStruct(), NumBases,
 | |
|                       std::distance(RD->field_begin(), RD->field_end()));
 | |
| 
 | |
|     // Visit the base classes.
 | |
|     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
 | |
|       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
 | |
|         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
 | |
|         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
 | |
|         if (BaseDecl->isEmpty() ||
 | |
|             Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
 | |
|           continue;
 | |
| 
 | |
|         Optional<APValue> SubObj = visitType(
 | |
|             BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
 | |
|         if (!SubObj)
 | |
|           return None;
 | |
|         ResultVal.getStructBase(I) = *SubObj;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Visit the fields.
 | |
|     unsigned FieldIdx = 0;
 | |
|     for (FieldDecl *FD : RD->fields()) {
 | |
|       // FIXME: We don't currently support bit-fields. A lot of the logic for
 | |
|       // this is in CodeGen, so we need to factor it around.
 | |
|       if (FD->isBitField()) {
 | |
|         Info.FFDiag(BCE->getBeginLoc(),
 | |
|                     diag::note_constexpr_bit_cast_unsupported_bitfield);
 | |
|         return None;
 | |
|       }
 | |
| 
 | |
|       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
 | |
|       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0);
 | |
| 
 | |
|       CharUnits FieldOffset =
 | |
|           CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
 | |
|           Offset;
 | |
|       QualType FieldTy = FD->getType();
 | |
|       Optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
 | |
|       if (!SubObj)
 | |
|         return None;
 | |
|       ResultVal.getStructField(FieldIdx) = *SubObj;
 | |
|       ++FieldIdx;
 | |
|     }
 | |
| 
 | |
|     return ResultVal;
 | |
|   }
 | |
| 
 | |
|   Optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
 | |
|     QualType RepresentationType = Ty->getDecl()->getIntegerType();
 | |
|     assert(!RepresentationType.isNull() &&
 | |
|            "enum forward decl should be caught by Sema");
 | |
|     const auto *AsBuiltin =
 | |
|         RepresentationType.getCanonicalType()->castAs<BuiltinType>();
 | |
|     // Recurse into the underlying type. Treat std::byte transparently as
 | |
|     // unsigned char.
 | |
|     return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
 | |
|   }
 | |
| 
 | |
|   Optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
 | |
|     size_t Size = Ty->getSize().getLimitedValue();
 | |
|     CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
 | |
| 
 | |
|     APValue ArrayValue(APValue::UninitArray(), Size, Size);
 | |
|     for (size_t I = 0; I != Size; ++I) {
 | |
|       Optional<APValue> ElementValue =
 | |
|           visitType(Ty->getElementType(), Offset + I * ElementWidth);
 | |
|       if (!ElementValue)
 | |
|         return None;
 | |
|       ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
 | |
|     }
 | |
| 
 | |
|     return ArrayValue;
 | |
|   }
 | |
| 
 | |
|   Optional<APValue> visit(const Type *Ty, CharUnits Offset) {
 | |
|     return unsupportedType(QualType(Ty, 0));
 | |
|   }
 | |
| 
 | |
|   Optional<APValue> visitType(QualType Ty, CharUnits Offset) {
 | |
|     QualType Can = Ty.getCanonicalType();
 | |
| 
 | |
|     switch (Can->getTypeClass()) {
 | |
| #define TYPE(Class, Base)                                                      \
 | |
|   case Type::Class:                                                            \
 | |
|     return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
 | |
| #define ABSTRACT_TYPE(Class, Base)
 | |
| #define NON_CANONICAL_TYPE(Class, Base)                                        \
 | |
|   case Type::Class:                                                            \
 | |
|     llvm_unreachable("non-canonical type should be impossible!");
 | |
| #define DEPENDENT_TYPE(Class, Base)                                            \
 | |
|   case Type::Class:                                                            \
 | |
|     llvm_unreachable(                                                          \
 | |
|         "dependent types aren't supported in the constant evaluator!");
 | |
| #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base)                            \
 | |
|   case Type::Class:                                                            \
 | |
|     llvm_unreachable("either dependent or not canonical!");
 | |
| #include "clang/AST/TypeNodes.inc"
 | |
|     }
 | |
|     llvm_unreachable("Unhandled Type::TypeClass");
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   // Pull out a full value of type DstType.
 | |
|   static Optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
 | |
|                                    const CastExpr *BCE) {
 | |
|     BufferToAPValueConverter Converter(Info, Buffer, BCE);
 | |
|     return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0));
 | |
|   }
 | |
| };
 | |
| 
 | |
| static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
 | |
|                                                  QualType Ty, EvalInfo *Info,
 | |
|                                                  const ASTContext &Ctx,
 | |
|                                                  bool CheckingDest) {
 | |
|   Ty = Ty.getCanonicalType();
 | |
| 
 | |
|   auto diag = [&](int Reason) {
 | |
|     if (Info)
 | |
|       Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
 | |
|           << CheckingDest << (Reason == 4) << Reason;
 | |
|     return false;
 | |
|   };
 | |
|   auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
 | |
|     if (Info)
 | |
|       Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
 | |
|           << NoteTy << Construct << Ty;
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   if (Ty->isUnionType())
 | |
|     return diag(0);
 | |
|   if (Ty->isPointerType())
 | |
|     return diag(1);
 | |
|   if (Ty->isMemberPointerType())
 | |
|     return diag(2);
 | |
|   if (Ty.isVolatileQualified())
 | |
|     return diag(3);
 | |
| 
 | |
|   if (RecordDecl *Record = Ty->getAsRecordDecl()) {
 | |
|     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
 | |
|       for (CXXBaseSpecifier &BS : CXXRD->bases())
 | |
|         if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
 | |
|                                                   CheckingDest))
 | |
|           return note(1, BS.getType(), BS.getBeginLoc());
 | |
|     }
 | |
|     for (FieldDecl *FD : Record->fields()) {
 | |
|       if (FD->getType()->isReferenceType())
 | |
|         return diag(4);
 | |
|       if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
 | |
|                                                 CheckingDest))
 | |
|         return note(0, FD->getType(), FD->getBeginLoc());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Ty->isArrayType() &&
 | |
|       !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty),
 | |
|                                             Info, Ctx, CheckingDest))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool checkBitCastConstexprEligibility(EvalInfo *Info,
 | |
|                                              const ASTContext &Ctx,
 | |
|                                              const CastExpr *BCE) {
 | |
|   bool DestOK = checkBitCastConstexprEligibilityType(
 | |
|       BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
 | |
|   bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
 | |
|                                 BCE->getBeginLoc(),
 | |
|                                 BCE->getSubExpr()->getType(), Info, Ctx, false);
 | |
|   return SourceOK;
 | |
| }
 | |
| 
 | |
| static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
 | |
|                                         APValue &SourceValue,
 | |
|                                         const CastExpr *BCE) {
 | |
|   assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
 | |
|          "no host or target supports non 8-bit chars");
 | |
|   assert(SourceValue.isLValue() &&
 | |
|          "LValueToRValueBitcast requires an lvalue operand!");
 | |
| 
 | |
|   if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE))
 | |
|     return false;
 | |
| 
 | |
|   LValue SourceLValue;
 | |
|   APValue SourceRValue;
 | |
|   SourceLValue.setFrom(Info.Ctx, SourceValue);
 | |
|   if (!handleLValueToRValueConversion(
 | |
|           Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
 | |
|           SourceRValue, /*WantObjectRepresentation=*/true))
 | |
|     return false;
 | |
| 
 | |
|   // Read out SourceValue into a char buffer.
 | |
|   Optional<BitCastBuffer> Buffer =
 | |
|       APValueToBufferConverter::convert(Info, SourceRValue, BCE);
 | |
|   if (!Buffer)
 | |
|     return false;
 | |
| 
 | |
|   // Write out the buffer into a new APValue.
 | |
|   Optional<APValue> MaybeDestValue =
 | |
|       BufferToAPValueConverter::convert(Info, *Buffer, BCE);
 | |
|   if (!MaybeDestValue)
 | |
|     return false;
 | |
| 
 | |
|   DestValue = std::move(*MaybeDestValue);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| template <class Derived>
 | |
| class ExprEvaluatorBase
 | |
|   : public ConstStmtVisitor<Derived, bool> {
 | |
| private:
 | |
|   Derived &getDerived() { return static_cast<Derived&>(*this); }
 | |
|   bool DerivedSuccess(const APValue &V, const Expr *E) {
 | |
|     return getDerived().Success(V, E);
 | |
|   }
 | |
|   bool DerivedZeroInitialization(const Expr *E) {
 | |
|     return getDerived().ZeroInitialization(E);
 | |
|   }
 | |
| 
 | |
|   // Check whether a conditional operator with a non-constant condition is a
 | |
|   // potential constant expression. If neither arm is a potential constant
 | |
|   // expression, then the conditional operator is not either.
 | |
|   template<typename ConditionalOperator>
 | |
|   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
 | |
|     assert(Info.checkingPotentialConstantExpression());
 | |
| 
 | |
|     // Speculatively evaluate both arms.
 | |
|     SmallVector<PartialDiagnosticAt, 8> Diag;
 | |
|     {
 | |
|       SpeculativeEvaluationRAII Speculate(Info, &Diag);
 | |
|       StmtVisitorTy::Visit(E->getFalseExpr());
 | |
|       if (Diag.empty())
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     {
 | |
|       SpeculativeEvaluationRAII Speculate(Info, &Diag);
 | |
|       Diag.clear();
 | |
|       StmtVisitorTy::Visit(E->getTrueExpr());
 | |
|       if (Diag.empty())
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     Error(E, diag::note_constexpr_conditional_never_const);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   template<typename ConditionalOperator>
 | |
|   bool HandleConditionalOperator(const ConditionalOperator *E) {
 | |
|     bool BoolResult;
 | |
|     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
 | |
|       if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
 | |
|         CheckPotentialConstantConditional(E);
 | |
|         return false;
 | |
|       }
 | |
|       if (Info.noteFailure()) {
 | |
|         StmtVisitorTy::Visit(E->getTrueExpr());
 | |
|         StmtVisitorTy::Visit(E->getFalseExpr());
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
 | |
|     return StmtVisitorTy::Visit(EvalExpr);
 | |
|   }
 | |
| 
 | |
| protected:
 | |
|   EvalInfo &Info;
 | |
|   typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
 | |
|   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
 | |
| 
 | |
|   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
 | |
|     return Info.CCEDiag(E, D);
 | |
|   }
 | |
| 
 | |
|   bool ZeroInitialization(const Expr *E) { return Error(E); }
 | |
| 
 | |
| public:
 | |
|   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
 | |
| 
 | |
|   EvalInfo &getEvalInfo() { return Info; }
 | |
| 
 | |
|   /// Report an evaluation error. This should only be called when an error is
 | |
|   /// first discovered. When propagating an error, just return false.
 | |
|   bool Error(const Expr *E, diag::kind D) {
 | |
|     Info.FFDiag(E, D);
 | |
|     return false;
 | |
|   }
 | |
|   bool Error(const Expr *E) {
 | |
|     return Error(E, diag::note_invalid_subexpr_in_const_expr);
 | |
|   }
 | |
| 
 | |
|   bool VisitStmt(const Stmt *) {
 | |
|     llvm_unreachable("Expression evaluator should not be called on stmts");
 | |
|   }
 | |
|   bool VisitExpr(const Expr *E) {
 | |
|     return Error(E);
 | |
|   }
 | |
| 
 | |
|   bool VisitConstantExpr(const ConstantExpr *E)
 | |
|     { return StmtVisitorTy::Visit(E->getSubExpr()); }
 | |
|   bool VisitParenExpr(const ParenExpr *E)
 | |
|     { return StmtVisitorTy::Visit(E->getSubExpr()); }
 | |
|   bool VisitUnaryExtension(const UnaryOperator *E)
 | |
|     { return StmtVisitorTy::Visit(E->getSubExpr()); }
 | |
|   bool VisitUnaryPlus(const UnaryOperator *E)
 | |
|     { return StmtVisitorTy::Visit(E->getSubExpr()); }
 | |
|   bool VisitChooseExpr(const ChooseExpr *E)
 | |
|     { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
 | |
|   bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
 | |
|     { return StmtVisitorTy::Visit(E->getResultExpr()); }
 | |
|   bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
 | |
|     { return StmtVisitorTy::Visit(E->getReplacement()); }
 | |
|   bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
 | |
|     TempVersionRAII RAII(*Info.CurrentCall);
 | |
|     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
 | |
|     return StmtVisitorTy::Visit(E->getExpr());
 | |
|   }
 | |
|   bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
 | |
|     TempVersionRAII RAII(*Info.CurrentCall);
 | |
|     // The initializer may not have been parsed yet, or might be erroneous.
 | |
|     if (!E->getExpr())
 | |
|       return Error(E);
 | |
|     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
 | |
|     return StmtVisitorTy::Visit(E->getExpr());
 | |
|   }
 | |
| 
 | |
|   bool VisitExprWithCleanups(const ExprWithCleanups *E) {
 | |
|     FullExpressionRAII Scope(Info);
 | |
|     return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
 | |
|   }
 | |
| 
 | |
|   // Temporaries are registered when created, so we don't care about
 | |
|   // CXXBindTemporaryExpr.
 | |
|   bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
 | |
|     return StmtVisitorTy::Visit(E->getSubExpr());
 | |
|   }
 | |
| 
 | |
|   bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
 | |
|     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
 | |
|     return static_cast<Derived*>(this)->VisitCastExpr(E);
 | |
|   }
 | |
|   bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
 | |
|     if (!Info.Ctx.getLangOpts().CPlusPlus2a)
 | |
|       CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
 | |
|     return static_cast<Derived*>(this)->VisitCastExpr(E);
 | |
|   }
 | |
|   bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
 | |
|     return static_cast<Derived*>(this)->VisitCastExpr(E);
 | |
|   }
 | |
| 
 | |
|   bool VisitBinaryOperator(const BinaryOperator *E) {
 | |
|     switch (E->getOpcode()) {
 | |
|     default:
 | |
|       return Error(E);
 | |
| 
 | |
|     case BO_Comma:
 | |
|       VisitIgnoredValue(E->getLHS());
 | |
|       return StmtVisitorTy::Visit(E->getRHS());
 | |
| 
 | |
|     case BO_PtrMemD:
 | |
|     case BO_PtrMemI: {
 | |
|       LValue Obj;
 | |
|       if (!HandleMemberPointerAccess(Info, E, Obj))
 | |
|         return false;
 | |
|       APValue Result;
 | |
|       if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
 | |
|         return false;
 | |
|       return DerivedSuccess(Result, E);
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) {
 | |
|     return StmtVisitorTy::Visit(E->getSemanticForm());
 | |
|   }
 | |
| 
 | |
|   bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
 | |
|     // Evaluate and cache the common expression. We treat it as a temporary,
 | |
|     // even though it's not quite the same thing.
 | |
|     LValue CommonLV;
 | |
|     if (!Evaluate(Info.CurrentCall->createTemporary(
 | |
|                       E->getOpaqueValue(),
 | |
|                       getStorageType(Info.Ctx, E->getOpaqueValue()), false,
 | |
|                       CommonLV),
 | |
|                   Info, E->getCommon()))
 | |
|       return false;
 | |
| 
 | |
|     return HandleConditionalOperator(E);
 | |
|   }
 | |
| 
 | |
|   bool VisitConditionalOperator(const ConditionalOperator *E) {
 | |
|     bool IsBcpCall = false;
 | |
|     // If the condition (ignoring parens) is a __builtin_constant_p call,
 | |
|     // the result is a constant expression if it can be folded without
 | |
|     // side-effects. This is an important GNU extension. See GCC PR38377
 | |
|     // for discussion.
 | |
|     if (const CallExpr *CallCE =
 | |
|           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
 | |
|       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
 | |
|         IsBcpCall = true;
 | |
| 
 | |
|     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
 | |
|     // constant expression; we can't check whether it's potentially foldable.
 | |
|     // FIXME: We should instead treat __builtin_constant_p as non-constant if
 | |
|     // it would return 'false' in this mode.
 | |
|     if (Info.checkingPotentialConstantExpression() && IsBcpCall)
 | |
|       return false;
 | |
| 
 | |
|     FoldConstant Fold(Info, IsBcpCall);
 | |
|     if (!HandleConditionalOperator(E)) {
 | |
|       Fold.keepDiagnostics();
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
 | |
|     if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E))
 | |
|       return DerivedSuccess(*Value, E);
 | |
| 
 | |
|     const Expr *Source = E->getSourceExpr();
 | |
|     if (!Source)
 | |
|       return Error(E);
 | |
|     if (Source == E) { // sanity checking.
 | |
|       assert(0 && "OpaqueValueExpr recursively refers to itself");
 | |
|       return Error(E);
 | |
|     }
 | |
|     return StmtVisitorTy::Visit(Source);
 | |
|   }
 | |
| 
 | |
|   bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
 | |
|     for (const Expr *SemE : E->semantics()) {
 | |
|       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
 | |
|         // FIXME: We can't handle the case where an OpaqueValueExpr is also the
 | |
|         // result expression: there could be two different LValues that would
 | |
|         // refer to the same object in that case, and we can't model that.
 | |
|         if (SemE == E->getResultExpr())
 | |
|           return Error(E);
 | |
| 
 | |
|         // Unique OVEs get evaluated if and when we encounter them when
 | |
|         // emitting the rest of the semantic form, rather than eagerly.
 | |
|         if (OVE->isUnique())
 | |
|           continue;
 | |
| 
 | |
|         LValue LV;
 | |
|         if (!Evaluate(Info.CurrentCall->createTemporary(
 | |
|                           OVE, getStorageType(Info.Ctx, OVE), false, LV),
 | |
|                       Info, OVE->getSourceExpr()))
 | |
|           return false;
 | |
|       } else if (SemE == E->getResultExpr()) {
 | |
|         if (!StmtVisitorTy::Visit(SemE))
 | |
|           return false;
 | |
|       } else {
 | |
|         if (!EvaluateIgnoredValue(Info, SemE))
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool VisitCallExpr(const CallExpr *E) {
 | |
|     APValue Result;
 | |
|     if (!handleCallExpr(E, Result, nullptr))
 | |
|       return false;
 | |
|     return DerivedSuccess(Result, E);
 | |
|   }
 | |
| 
 | |
|   bool handleCallExpr(const CallExpr *E, APValue &Result,
 | |
|                      const LValue *ResultSlot) {
 | |
|     const Expr *Callee = E->getCallee()->IgnoreParens();
 | |
|     QualType CalleeType = Callee->getType();
 | |
| 
 | |
|     const FunctionDecl *FD = nullptr;
 | |
|     LValue *This = nullptr, ThisVal;
 | |
|     auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
 | |
|     bool HasQualifier = false;
 | |
| 
 | |
|     // Extract function decl and 'this' pointer from the callee.
 | |
|     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
 | |
|       const CXXMethodDecl *Member = nullptr;
 | |
|       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
 | |
|         // Explicit bound member calls, such as x.f() or p->g();
 | |
|         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
 | |
|           return false;
 | |
|         Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
 | |
|         if (!Member)
 | |
|           return Error(Callee);
 | |
|         This = &ThisVal;
 | |
|         HasQualifier = ME->hasQualifier();
 | |
|       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
 | |
|         // Indirect bound member calls ('.*' or '->*').
 | |
|         const ValueDecl *D =
 | |
|             HandleMemberPointerAccess(Info, BE, ThisVal, false);
 | |
|         if (!D)
 | |
|           return false;
 | |
|         Member = dyn_cast<CXXMethodDecl>(D);
 | |
|         if (!Member)
 | |
|           return Error(Callee);
 | |
|         This = &ThisVal;
 | |
|       } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
 | |
|         if (!Info.getLangOpts().CPlusPlus2a)
 | |
|           Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
 | |
|         return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) &&
 | |
|                HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType());
 | |
|       } else
 | |
|         return Error(Callee);
 | |
|       FD = Member;
 | |
|     } else if (CalleeType->isFunctionPointerType()) {
 | |
|       LValue Call;
 | |
|       if (!EvaluatePointer(Callee, Call, Info))
 | |
|         return false;
 | |
| 
 | |
|       if (!Call.getLValueOffset().isZero())
 | |
|         return Error(Callee);
 | |
|       FD = dyn_cast_or_null<FunctionDecl>(
 | |
|                              Call.getLValueBase().dyn_cast<const ValueDecl*>());
 | |
|       if (!FD)
 | |
|         return Error(Callee);
 | |
|       // Don't call function pointers which have been cast to some other type.
 | |
|       // Per DR (no number yet), the caller and callee can differ in noexcept.
 | |
|       if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
 | |
|         CalleeType->getPointeeType(), FD->getType())) {
 | |
|         return Error(E);
 | |
|       }
 | |
| 
 | |
|       // Overloaded operator calls to member functions are represented as normal
 | |
|       // calls with '*this' as the first argument.
 | |
|       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
 | |
|       if (MD && !MD->isStatic()) {
 | |
|         // FIXME: When selecting an implicit conversion for an overloaded
 | |
|         // operator delete, we sometimes try to evaluate calls to conversion
 | |
|         // operators without a 'this' parameter!
 | |
|         if (Args.empty())
 | |
|           return Error(E);
 | |
| 
 | |
|         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
 | |
|           return false;
 | |
|         This = &ThisVal;
 | |
|         Args = Args.slice(1);
 | |
|       } else if (MD && MD->isLambdaStaticInvoker()) {
 | |
|         // Map the static invoker for the lambda back to the call operator.
 | |
|         // Conveniently, we don't have to slice out the 'this' argument (as is
 | |
|         // being done for the non-static case), since a static member function
 | |
|         // doesn't have an implicit argument passed in.
 | |
|         const CXXRecordDecl *ClosureClass = MD->getParent();
 | |
|         assert(
 | |
|             ClosureClass->captures_begin() == ClosureClass->captures_end() &&
 | |
|             "Number of captures must be zero for conversion to function-ptr");
 | |
| 
 | |
|         const CXXMethodDecl *LambdaCallOp =
 | |
|             ClosureClass->getLambdaCallOperator();
 | |
| 
 | |
|         // Set 'FD', the function that will be called below, to the call
 | |
|         // operator.  If the closure object represents a generic lambda, find
 | |
|         // the corresponding specialization of the call operator.
 | |
| 
 | |
|         if (ClosureClass->isGenericLambda()) {
 | |
|           assert(MD->isFunctionTemplateSpecialization() &&
 | |
|                  "A generic lambda's static-invoker function must be a "
 | |
|                  "template specialization");
 | |
|           const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
 | |
|           FunctionTemplateDecl *CallOpTemplate =
 | |
|               LambdaCallOp->getDescribedFunctionTemplate();
 | |
|           void *InsertPos = nullptr;
 | |
|           FunctionDecl *CorrespondingCallOpSpecialization =
 | |
|               CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
 | |
|           assert(CorrespondingCallOpSpecialization &&
 | |
|                  "We must always have a function call operator specialization "
 | |
|                  "that corresponds to our static invoker specialization");
 | |
|           FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
 | |
|         } else
 | |
|           FD = LambdaCallOp;
 | |
|       } else if (FD->isReplaceableGlobalAllocationFunction()) {
 | |
|         if (FD->getDeclName().getCXXOverloadedOperator() == OO_New ||
 | |
|             FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
 | |
|           LValue Ptr;
 | |
|           if (!HandleOperatorNewCall(Info, E, Ptr))
 | |
|             return false;
 | |
|           Ptr.moveInto(Result);
 | |
|           return true;
 | |
|         } else {
 | |
|           return HandleOperatorDeleteCall(Info, E);
 | |
|         }
 | |
|       }
 | |
|     } else
 | |
|       return Error(E);
 | |
| 
 | |
|     SmallVector<QualType, 4> CovariantAdjustmentPath;
 | |
|     if (This) {
 | |
|       auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
 | |
|       if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
 | |
|         // Perform virtual dispatch, if necessary.
 | |
|         FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
 | |
|                                    CovariantAdjustmentPath);
 | |
|         if (!FD)
 | |
|           return false;
 | |
|       } else {
 | |
|         // Check that the 'this' pointer points to an object of the right type.
 | |
|         // FIXME: If this is an assignment operator call, we may need to change
 | |
|         // the active union member before we check this.
 | |
|         if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Destructor calls are different enough that they have their own codepath.
 | |
|     if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
 | |
|       assert(This && "no 'this' pointer for destructor call");
 | |
|       return HandleDestruction(Info, E, *This,
 | |
|                                Info.Ctx.getRecordType(DD->getParent()));
 | |
|     }
 | |
| 
 | |
|     const FunctionDecl *Definition = nullptr;
 | |
|     Stmt *Body = FD->getBody(Definition);
 | |
| 
 | |
|     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
 | |
|         !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body, Info,
 | |
|                             Result, ResultSlot))
 | |
|       return false;
 | |
| 
 | |
|     if (!CovariantAdjustmentPath.empty() &&
 | |
|         !HandleCovariantReturnAdjustment(Info, E, Result,
 | |
|                                          CovariantAdjustmentPath))
 | |
|       return false;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
 | |
|     return StmtVisitorTy::Visit(E->getInitializer());
 | |
|   }
 | |
|   bool VisitInitListExpr(const InitListExpr *E) {
 | |
|     if (E->getNumInits() == 0)
 | |
|       return DerivedZeroInitialization(E);
 | |
|     if (E->getNumInits() == 1)
 | |
|       return StmtVisitorTy::Visit(E->getInit(0));
 | |
|     return Error(E);
 | |
|   }
 | |
|   bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
 | |
|     return DerivedZeroInitialization(E);
 | |
|   }
 | |
|   bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
 | |
|     return DerivedZeroInitialization(E);
 | |
|   }
 | |
|   bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
 | |
|     return DerivedZeroInitialization(E);
 | |
|   }
 | |
| 
 | |
|   /// A member expression where the object is a prvalue is itself a prvalue.
 | |
|   bool VisitMemberExpr(const MemberExpr *E) {
 | |
|     assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&
 | |
|            "missing temporary materialization conversion");
 | |
|     assert(!E->isArrow() && "missing call to bound member function?");
 | |
| 
 | |
|     APValue Val;
 | |
|     if (!Evaluate(Val, Info, E->getBase()))
 | |
|       return false;
 | |
| 
 | |
|     QualType BaseTy = E->getBase()->getType();
 | |
| 
 | |
|     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
 | |
|     if (!FD) return Error(E);
 | |
|     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
 | |
|     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
 | |
|            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
 | |
| 
 | |
|     // Note: there is no lvalue base here. But this case should only ever
 | |
|     // happen in C or in C++98, where we cannot be evaluating a constexpr
 | |
|     // constructor, which is the only case the base matters.
 | |
|     CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
 | |
|     SubobjectDesignator Designator(BaseTy);
 | |
|     Designator.addDeclUnchecked(FD);
 | |
| 
 | |
|     APValue Result;
 | |
|     return extractSubobject(Info, E, Obj, Designator, Result) &&
 | |
|            DerivedSuccess(Result, E);
 | |
|   }
 | |
| 
 | |
|   bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) {
 | |
|     APValue Val;
 | |
|     if (!Evaluate(Val, Info, E->getBase()))
 | |
|       return false;
 | |
| 
 | |
|     if (Val.isVector()) {
 | |
|       SmallVector<uint32_t, 4> Indices;
 | |
|       E->getEncodedElementAccess(Indices);
 | |
|       if (Indices.size() == 1) {
 | |
|         // Return scalar.
 | |
|         return DerivedSuccess(Val.getVectorElt(Indices[0]), E);
 | |
|       } else {
 | |
|         // Construct new APValue vector.
 | |
|         SmallVector<APValue, 4> Elts;
 | |
|         for (unsigned I = 0; I < Indices.size(); ++I) {
 | |
|           Elts.push_back(Val.getVectorElt(Indices[I]));
 | |
|         }
 | |
|         APValue VecResult(Elts.data(), Indices.size());
 | |
|         return DerivedSuccess(VecResult, E);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool VisitCastExpr(const CastExpr *E) {
 | |
|     switch (E->getCastKind()) {
 | |
|     default:
 | |
|       break;
 | |
| 
 | |
|     case CK_AtomicToNonAtomic: {
 | |
|       APValue AtomicVal;
 | |
|       // This does not need to be done in place even for class/array types:
 | |
|       // atomic-to-non-atomic conversion implies copying the object
 | |
|       // representation.
 | |
|       if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
 | |
|         return false;
 | |
|       return DerivedSuccess(AtomicVal, E);
 | |
|     }
 | |
| 
 | |
|     case CK_NoOp:
 | |
|     case CK_UserDefinedConversion:
 | |
|       return StmtVisitorTy::Visit(E->getSubExpr());
 | |
| 
 | |
|     case CK_LValueToRValue: {
 | |
|       LValue LVal;
 | |
|       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
 | |
|         return false;
 | |
|       APValue RVal;
 | |
|       // Note, we use the subexpression's type in order to retain cv-qualifiers.
 | |
|       if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
 | |
|                                           LVal, RVal))
 | |
|         return false;
 | |
|       return DerivedSuccess(RVal, E);
 | |
|     }
 | |
|     case CK_LValueToRValueBitCast: {
 | |
|       APValue DestValue, SourceValue;
 | |
|       if (!Evaluate(SourceValue, Info, E->getSubExpr()))
 | |
|         return false;
 | |
|       if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E))
 | |
|         return false;
 | |
|       return DerivedSuccess(DestValue, E);
 | |
|     }
 | |
| 
 | |
|     case CK_AddressSpaceConversion: {
 | |
|       APValue Value;
 | |
|       if (!Evaluate(Value, Info, E->getSubExpr()))
 | |
|         return false;
 | |
|       return DerivedSuccess(Value, E);
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     return Error(E);
 | |
|   }
 | |
| 
 | |
|   bool VisitUnaryPostInc(const UnaryOperator *UO) {
 | |
|     return VisitUnaryPostIncDec(UO);
 | |
|   }
 | |
|   bool VisitUnaryPostDec(const UnaryOperator *UO) {
 | |
|     return VisitUnaryPostIncDec(UO);
 | |
|   }
 | |
|   bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
 | |
|     if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
 | |
|       return Error(UO);
 | |
| 
 | |
|     LValue LVal;
 | |
|     if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
 | |
|       return false;
 | |
|     APValue RVal;
 | |
|     if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
 | |
|                       UO->isIncrementOp(), &RVal))
 | |
|       return false;
 | |
|     return DerivedSuccess(RVal, UO);
 | |
|   }
 | |
| 
 | |
|   bool VisitStmtExpr(const StmtExpr *E) {
 | |
|     // We will have checked the full-expressions inside the statement expression
 | |
|     // when they were completed, and don't need to check them again now.
 | |
|     if (Info.checkingForUndefinedBehavior())
 | |
|       return Error(E);
 | |
| 
 | |
|     const CompoundStmt *CS = E->getSubStmt();
 | |
|     if (CS->body_empty())
 | |
|       return true;
 | |
| 
 | |
|     BlockScopeRAII Scope(Info);
 | |
|     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
 | |
|                                            BE = CS->body_end();
 | |
|          /**/; ++BI) {
 | |
|       if (BI + 1 == BE) {
 | |
|         const Expr *FinalExpr = dyn_cast<Expr>(*BI);
 | |
|         if (!FinalExpr) {
 | |
|           Info.FFDiag((*BI)->getBeginLoc(),
 | |
|                       diag::note_constexpr_stmt_expr_unsupported);
 | |
|           return false;
 | |
|         }
 | |
|         return this->Visit(FinalExpr) && Scope.destroy();
 | |
|       }
 | |
| 
 | |
|       APValue ReturnValue;
 | |
|       StmtResult Result = { ReturnValue, nullptr };
 | |
|       EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
 | |
|       if (ESR != ESR_Succeeded) {
 | |
|         // FIXME: If the statement-expression terminated due to 'return',
 | |
|         // 'break', or 'continue', it would be nice to propagate that to
 | |
|         // the outer statement evaluation rather than bailing out.
 | |
|         if (ESR != ESR_Failed)
 | |
|           Info.FFDiag((*BI)->getBeginLoc(),
 | |
|                       diag::note_constexpr_stmt_expr_unsupported);
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     llvm_unreachable("Return from function from the loop above.");
 | |
|   }
 | |
| 
 | |
|   /// Visit a value which is evaluated, but whose value is ignored.
 | |
|   void VisitIgnoredValue(const Expr *E) {
 | |
|     EvaluateIgnoredValue(Info, E);
 | |
|   }
 | |
| 
 | |
|   /// Potentially visit a MemberExpr's base expression.
 | |
|   void VisitIgnoredBaseExpression(const Expr *E) {
 | |
|     // While MSVC doesn't evaluate the base expression, it does diagnose the
 | |
|     // presence of side-effecting behavior.
 | |
|     if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
 | |
|       return;
 | |
|     VisitIgnoredValue(E);
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Common base class for lvalue and temporary evaluation.
 | |
| //===----------------------------------------------------------------------===//
 | |
| namespace {
 | |
| template<class Derived>
 | |
| class LValueExprEvaluatorBase
 | |
|   : public ExprEvaluatorBase<Derived> {
 | |
| protected:
 | |
|   LValue &Result;
 | |
|   bool InvalidBaseOK;
 | |
|   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
 | |
|   typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
 | |
| 
 | |
|   bool Success(APValue::LValueBase B) {
 | |
|     Result.set(B);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool evaluatePointer(const Expr *E, LValue &Result) {
 | |
|     return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
 | |
|       : ExprEvaluatorBaseTy(Info), Result(Result),
 | |
|         InvalidBaseOK(InvalidBaseOK) {}
 | |
| 
 | |
|   bool Success(const APValue &V, const Expr *E) {
 | |
|     Result.setFrom(this->Info.Ctx, V);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool VisitMemberExpr(const MemberExpr *E) {
 | |
|     // Handle non-static data members.
 | |
|     QualType BaseTy;
 | |
|     bool EvalOK;
 | |
|     if (E->isArrow()) {
 | |
|       EvalOK = evaluatePointer(E->getBase(), Result);
 | |
|       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
 | |
|     } else if (E->getBase()->isRValue()) {
 | |
|       assert(E->getBase()->getType()->isRecordType());
 | |
|       EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
 | |
|       BaseTy = E->getBase()->getType();
 | |
|     } else {
 | |
|       EvalOK = this->Visit(E->getBase());
 | |
|       BaseTy = E->getBase()->getType();
 | |
|     }
 | |
|     if (!EvalOK) {
 | |
|       if (!InvalidBaseOK)
 | |
|         return false;
 | |
|       Result.setInvalid(E);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     const ValueDecl *MD = E->getMemberDecl();
 | |
|     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
 | |
|       assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
 | |
|              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
 | |
|       (void)BaseTy;
 | |
|       if (!HandleLValueMember(this->Info, E, Result, FD))
 | |
|         return false;
 | |
|     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
 | |
|       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
 | |
|         return false;
 | |
|     } else
 | |
|       return this->Error(E);
 | |
| 
 | |
|     if (MD->getType()->isReferenceType()) {
 | |
|       APValue RefValue;
 | |
|       if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
 | |
|                                           RefValue))
 | |
|         return false;
 | |
|       return Success(RefValue, E);
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool VisitBinaryOperator(const BinaryOperator *E) {
 | |
|     switch (E->getOpcode()) {
 | |
|     default:
 | |
|       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
 | |
| 
 | |
|     case BO_PtrMemD:
 | |
|     case BO_PtrMemI:
 | |
|       return HandleMemberPointerAccess(this->Info, E, Result);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool VisitCastExpr(const CastExpr *E) {
 | |
|     switch (E->getCastKind()) {
 | |
|     default:
 | |
|       return ExprEvaluatorBaseTy::VisitCastExpr(E);
 | |
| 
 | |
|     case CK_DerivedToBase:
 | |
|     case CK_UncheckedDerivedToBase:
 | |
|       if (!this->Visit(E->getSubExpr()))
 | |
|         return false;
 | |
| 
 | |
|       // Now figure out the necessary offset to add to the base LV to get from
 | |
|       // the derived class to the base class.
 | |
|       return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
 | |
|                                   Result);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // LValue Evaluation
 | |
| //
 | |
| // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
 | |
| // function designators (in C), decl references to void objects (in C), and
 | |
| // temporaries (if building with -Wno-address-of-temporary).
 | |
| //
 | |
| // LValue evaluation produces values comprising a base expression of one of the
 | |
| // following types:
 | |
| // - Declarations
 | |
| //  * VarDecl
 | |
| //  * FunctionDecl
 | |
| // - Literals
 | |
| //  * CompoundLiteralExpr in C (and in global scope in C++)
 | |
| //  * StringLiteral
 | |
| //  * PredefinedExpr
 | |
| //  * ObjCStringLiteralExpr
 | |
| //  * ObjCEncodeExpr
 | |
| //  * AddrLabelExpr
 | |
| //  * BlockExpr
 | |
| //  * CallExpr for a MakeStringConstant builtin
 | |
| // - typeid(T) expressions, as TypeInfoLValues
 | |
| // - Locals and temporaries
 | |
| //  * MaterializeTemporaryExpr
 | |
| //  * Any Expr, with a CallIndex indicating the function in which the temporary
 | |
| //    was evaluated, for cases where the MaterializeTemporaryExpr is missing
 | |
| //    from the AST (FIXME).
 | |
| //  * A MaterializeTemporaryExpr that has static storage duration, with no
 | |
| //    CallIndex, for a lifetime-extended temporary.
 | |
| //  * The ConstantExpr that is currently being evaluated during evaluation of an
 | |
| //    immediate invocation.
 | |
| // plus an offset in bytes.
 | |
| //===----------------------------------------------------------------------===//
 | |
| namespace {
 | |
| class LValueExprEvaluator
 | |
|   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
 | |
| public:
 | |
|   LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
 | |
|     LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
 | |
| 
 | |
|   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
 | |
|   bool VisitUnaryPreIncDec(const UnaryOperator *UO);
 | |
| 
 | |
|   bool VisitDeclRefExpr(const DeclRefExpr *E);
 | |
|   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
 | |
|   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
 | |
|   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
 | |
|   bool VisitMemberExpr(const MemberExpr *E);
 | |
|   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
 | |
|   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
 | |
|   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
 | |
|   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
 | |
|   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
 | |
|   bool VisitUnaryDeref(const UnaryOperator *E);
 | |
|   bool VisitUnaryReal(const UnaryOperator *E);
 | |
|   bool VisitUnaryImag(const UnaryOperator *E);
 | |
|   bool VisitUnaryPreInc(const UnaryOperator *UO) {
 | |
|     return VisitUnaryPreIncDec(UO);
 | |
|   }
 | |
|   bool VisitUnaryPreDec(const UnaryOperator *UO) {
 | |
|     return VisitUnaryPreIncDec(UO);
 | |
|   }
 | |
|   bool VisitBinAssign(const BinaryOperator *BO);
 | |
|   bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
 | |
| 
 | |
|   bool VisitCastExpr(const CastExpr *E) {
 | |
|     switch (E->getCastKind()) {
 | |
|     default:
 | |
|       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
 | |
| 
 | |
|     case CK_LValueBitCast:
 | |
|       this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
 | |
|       if (!Visit(E->getSubExpr()))
 | |
|         return false;
 | |
|       Result.Designator.setInvalid();
 | |
|       return true;
 | |
| 
 | |
|     case CK_BaseToDerived:
 | |
|       if (!Visit(E->getSubExpr()))
 | |
|         return false;
 | |
|       return HandleBaseToDerivedCast(Info, E, Result);
 | |
| 
 | |
|     case CK_Dynamic:
 | |
|       if (!Visit(E->getSubExpr()))
 | |
|         return false;
 | |
|       return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Evaluate an expression as an lvalue. This can be legitimately called on
 | |
| /// expressions which are not glvalues, in three cases:
 | |
| ///  * function designators in C, and
 | |
| ///  * "extern void" objects
 | |
| ///  * @selector() expressions in Objective-C
 | |
| static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
 | |
|                            bool InvalidBaseOK) {
 | |
|   assert(E->isGLValue() || E->getType()->isFunctionType() ||
 | |
|          E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E));
 | |
|   return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
 | |
| }
 | |
| 
 | |
| bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
 | |
|   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
 | |
|     return Success(FD);
 | |
|   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
 | |
|     return VisitVarDecl(E, VD);
 | |
|   if (const BindingDecl *BD = dyn_cast<BindingDecl>(E->getDecl()))
 | |
|     return Visit(BD->getBinding());
 | |
|   return Error(E);
 | |
| }
 | |
| 
 | |
| 
 | |
| bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
 | |
| 
 | |
|   // If we are within a lambda's call operator, check whether the 'VD' referred
 | |
|   // to within 'E' actually represents a lambda-capture that maps to a
 | |
|   // data-member/field within the closure object, and if so, evaluate to the
 | |
|   // field or what the field refers to.
 | |
|   if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
 | |
|       isa<DeclRefExpr>(E) &&
 | |
|       cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) {
 | |
|     // We don't always have a complete capture-map when checking or inferring if
 | |
|     // the function call operator meets the requirements of a constexpr function
 | |
|     // - but we don't need to evaluate the captures to determine constexprness
 | |
|     // (dcl.constexpr C++17).
 | |
|     if (Info.checkingPotentialConstantExpression())
 | |
|       return false;
 | |
| 
 | |
|     if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
 | |
|       // Start with 'Result' referring to the complete closure object...
 | |
|       Result = *Info.CurrentCall->This;
 | |
|       // ... then update it to refer to the field of the closure object
 | |
|       // that represents the capture.
 | |
|       if (!HandleLValueMember(Info, E, Result, FD))
 | |
|         return false;
 | |
|       // And if the field is of reference type, update 'Result' to refer to what
 | |
|       // the field refers to.
 | |
|       if (FD->getType()->isReferenceType()) {
 | |
|         APValue RVal;
 | |
|         if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result,
 | |
|                                             RVal))
 | |
|           return false;
 | |
|         Result.setFrom(Info.Ctx, RVal);
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   CallStackFrame *Frame = nullptr;
 | |
|   if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1) {
 | |
|     // Only if a local variable was declared in the function currently being
 | |
|     // evaluated, do we expect to be able to find its value in the current
 | |
|     // frame. (Otherwise it was likely declared in an enclosing context and
 | |
|     // could either have a valid evaluatable value (for e.g. a constexpr
 | |
|     // variable) or be ill-formed (and trigger an appropriate evaluation
 | |
|     // diagnostic)).
 | |
|     if (Info.CurrentCall->Callee &&
 | |
|         Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
 | |
|       Frame = Info.CurrentCall;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!VD->getType()->isReferenceType()) {
 | |
|     if (Frame) {
 | |
|       Result.set({VD, Frame->Index,
 | |
|                   Info.CurrentCall->getCurrentTemporaryVersion(VD)});
 | |
|       return true;
 | |
|     }
 | |
|     return Success(VD);
 | |
|   }
 | |
| 
 | |
|   APValue *V;
 | |
|   if (!evaluateVarDeclInit(Info, E, VD, Frame, V, nullptr))
 | |
|     return false;
 | |
|   if (!V->hasValue()) {
 | |
|     // FIXME: Is it possible for V to be indeterminate here? If so, we should
 | |
|     // adjust the diagnostic to say that.
 | |
|     if (!Info.checkingPotentialConstantExpression())
 | |
|       Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
 | |
|     return false;
 | |
|   }
 | |
|   return Success(*V, E);
 | |
| }
 | |
| 
 | |
| bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
 | |
|     const MaterializeTemporaryExpr *E) {
 | |
|   // Walk through the expression to find the materialized temporary itself.
 | |
|   SmallVector<const Expr *, 2> CommaLHSs;
 | |
|   SmallVector<SubobjectAdjustment, 2> Adjustments;
 | |
|   const Expr *Inner =
 | |
|       E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
 | |
| 
 | |
|   // If we passed any comma operators, evaluate their LHSs.
 | |
|   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
 | |
|     if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
 | |
|       return false;
 | |
| 
 | |
|   // A materialized temporary with static storage duration can appear within the
 | |
|   // result of a constant expression evaluation, so we need to preserve its
 | |
|   // value for use outside this evaluation.
 | |
|   APValue *Value;
 | |
|   if (E->getStorageDuration() == SD_Static) {
 | |
|     Value = E->getOrCreateValue(true);
 | |
|     *Value = APValue();
 | |
|     Result.set(E);
 | |
|   } else {
 | |
|     Value = &Info.CurrentCall->createTemporary(
 | |
|         E, E->getType(), E->getStorageDuration() == SD_Automatic, Result);
 | |
|   }
 | |
| 
 | |
|   QualType Type = Inner->getType();
 | |
| 
 | |
|   // Materialize the temporary itself.
 | |
|   if (!EvaluateInPlace(*Value, Info, Result, Inner)) {
 | |
|     *Value = APValue();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Adjust our lvalue to refer to the desired subobject.
 | |
|   for (unsigned I = Adjustments.size(); I != 0; /**/) {
 | |
|     --I;
 | |
|     switch (Adjustments[I].Kind) {
 | |
|     case SubobjectAdjustment::DerivedToBaseAdjustment:
 | |
|       if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
 | |
|                                 Type, Result))
 | |
|         return false;
 | |
|       Type = Adjustments[I].DerivedToBase.BasePath->getType();
 | |
|       break;
 | |
| 
 | |
|     case SubobjectAdjustment::FieldAdjustment:
 | |
|       if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
 | |
|         return false;
 | |
|       Type = Adjustments[I].Field->getType();
 | |
|       break;
 | |
| 
 | |
|     case SubobjectAdjustment::MemberPointerAdjustment:
 | |
|       if (!HandleMemberPointerAccess(this->Info, Type, Result,
 | |
|                                      Adjustments[I].Ptr.RHS))
 | |
|         return false;
 | |
|       Type = Adjustments[I].Ptr.MPT->getPointeeType();
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
 | |
|   assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
 | |
|          "lvalue compound literal in c++?");
 | |
|   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
 | |
|   // only see this when folding in C, so there's no standard to follow here.
 | |
|   return Success(E);
 | |
| }
 | |
| 
 | |
| bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
 | |
|   TypeInfoLValue TypeInfo;
 | |
| 
 | |
|   if (!E->isPotentiallyEvaluated()) {
 | |
|     if (E->isTypeOperand())
 | |
|       TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr());
 | |
|     else
 | |
|       TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
 | |
|   } else {
 | |
|     if (!Info.Ctx.getLangOpts().CPlusPlus2a) {
 | |
|       Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
 | |
|         << E->getExprOperand()->getType()
 | |
|         << E->getExprOperand()->getSourceRange();
 | |
|     }
 | |
| 
 | |
|     if (!Visit(E->getExprOperand()))
 | |
|       return false;
 | |
| 
 | |
|     Optional<DynamicType> DynType =
 | |
|         ComputeDynamicType(Info, E, Result, AK_TypeId);
 | |
|     if (!DynType)
 | |
|       return false;
 | |
| 
 | |
|     TypeInfo =
 | |
|         TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
 | |
|   }
 | |
| 
 | |
|   return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType()));
 | |
| }
 | |
| 
 | |
| bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
 | |
|   return Success(E);
 | |
| }
 | |
| 
 | |
| bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
 | |
|   // Handle static data members.
 | |
|   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
 | |
|     VisitIgnoredBaseExpression(E->getBase());
 | |
|     return VisitVarDecl(E, VD);
 | |
|   }
 | |
| 
 | |
|   // Handle static member functions.
 | |
|   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
 | |
|     if (MD->isStatic()) {
 | |
|       VisitIgnoredBaseExpression(E->getBase());
 | |
|       return Success(MD);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle non-static data members.
 | |
|   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
 | |
| }
 | |
| 
 | |
| bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
 | |
|   // FIXME: Deal with vectors as array subscript bases.
 | |
|   if (E->getBase()->getType()->isVectorType())
 | |
|     return Error(E);
 | |
| 
 | |
|   bool Success = true;
 | |
|   if (!evaluatePointer(E->getBase(), Result)) {
 | |
|     if (!Info.noteFailure())
 | |
|       return false;
 | |
|     Success = false;
 | |
|   }
 | |
| 
 | |
|   APSInt Index;
 | |
|   if (!EvaluateInteger(E->getIdx(), Index, Info))
 | |
|     return false;
 | |
| 
 | |
|   return Success &&
 | |
|          HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
 | |
| }
 | |
| 
 | |
| bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
 | |
|   return evaluatePointer(E->getSubExpr(), Result);
 | |
| }
 | |
| 
 | |
| bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
 | |
|   if (!Visit(E->getSubExpr()))
 | |
|     return false;
 | |
|   // __real is a no-op on scalar lvalues.
 | |
|   if (E->getSubExpr()->getType()->isAnyComplexType())
 | |
|     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
 | |
|   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
 | |
|          "lvalue __imag__ on scalar?");
 | |
|   if (!Visit(E->getSubExpr()))
 | |
|     return false;
 | |
|   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
 | |
|   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
 | |
|     return Error(UO);
 | |
| 
 | |
|   if (!this->Visit(UO->getSubExpr()))
 | |
|     return false;
 | |
| 
 | |
|   return handleIncDec(
 | |
|       this->Info, UO, Result, UO->getSubExpr()->getType(),
 | |
|       UO->isIncrementOp(), nullptr);
 | |
| }
 | |
| 
 | |
| bool LValueExprEvaluator::VisitCompoundAssignOperator(
 | |
|     const CompoundAssignOperator *CAO) {
 | |
|   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
 | |
|     return Error(CAO);
 | |
| 
 | |
|   APValue RHS;
 | |
| 
 | |
|   // The overall lvalue result is the result of evaluating the LHS.
 | |
|   if (!this->Visit(CAO->getLHS())) {
 | |
|     if (Info.noteFailure())
 | |
|       Evaluate(RHS, this->Info, CAO->getRHS());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!Evaluate(RHS, this->Info, CAO->getRHS()))
 | |
|     return false;
 | |
| 
 | |
|   return handleCompoundAssignment(
 | |
|       this->Info, CAO,
 | |
|       Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
 | |
|       CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
 | |
| }
 | |
| 
 | |
| bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
 | |
|   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
 | |
|     return Error(E);
 | |
| 
 | |
|   APValue NewVal;
 | |
| 
 | |
|   if (!this->Visit(E->getLHS())) {
 | |
|     if (Info.noteFailure())
 | |
|       Evaluate(NewVal, this->Info, E->getRHS());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!Evaluate(NewVal, this->Info, E->getRHS()))
 | |
|     return false;
 | |
| 
 | |
|   if (Info.getLangOpts().CPlusPlus2a &&
 | |
|       !HandleUnionActiveMemberChange(Info, E->getLHS(), Result))
 | |
|     return false;
 | |
| 
 | |
|   return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
 | |
|                           NewVal);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Pointer Evaluation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Attempts to compute the number of bytes available at the pointer
 | |
| /// returned by a function with the alloc_size attribute. Returns true if we
 | |
| /// were successful. Places an unsigned number into `Result`.
 | |
| ///
 | |
| /// This expects the given CallExpr to be a call to a function with an
 | |
| /// alloc_size attribute.
 | |
| static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
 | |
|                                             const CallExpr *Call,
 | |
|                                             llvm::APInt &Result) {
 | |
|   const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
 | |
| 
 | |
|   assert(AllocSize && AllocSize->getElemSizeParam().isValid());
 | |
|   unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
 | |
|   unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
 | |
|   if (Call->getNumArgs() <= SizeArgNo)
 | |
|     return false;
 | |
| 
 | |
|   auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
 | |
|     Expr::EvalResult ExprResult;
 | |
|     if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects))
 | |
|       return false;
 | |
|     Into = ExprResult.Val.getInt();
 | |
|     if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
 | |
|       return false;
 | |
|     Into = Into.zextOrSelf(BitsInSizeT);
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   APSInt SizeOfElem;
 | |
|   if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
 | |
|     return false;
 | |
| 
 | |
|   if (!AllocSize->getNumElemsParam().isValid()) {
 | |
|     Result = std::move(SizeOfElem);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   APSInt NumberOfElems;
 | |
|   unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
 | |
|   if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
 | |
|     return false;
 | |
| 
 | |
|   bool Overflow;
 | |
|   llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
 | |
|   if (Overflow)
 | |
|     return false;
 | |
| 
 | |
|   Result = std::move(BytesAvailable);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Convenience function. LVal's base must be a call to an alloc_size
 | |
| /// function.
 | |
| static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
 | |
|                                             const LValue &LVal,
 | |
|                                             llvm::APInt &Result) {
 | |
|   assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
 | |
|          "Can't get the size of a non alloc_size function");
 | |
|   const auto *Base = LVal.getLValueBase().get<const Expr *>();
 | |
|   const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
 | |
|   return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
 | |
| }
 | |
| 
 | |
| /// Attempts to evaluate the given LValueBase as the result of a call to
 | |
| /// a function with the alloc_size attribute. If it was possible to do so, this
 | |
| /// function will return true, make Result's Base point to said function call,
 | |
| /// and mark Result's Base as invalid.
 | |
| static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
 | |
|                                       LValue &Result) {
 | |
|   if (Base.isNull())
 | |
|     return false;
 | |
| 
 | |
|   // Because we do no form of static analysis, we only support const variables.
 | |
|   //
 | |
|   // Additionally, we can't support parameters, nor can we support static
 | |
|   // variables (in the latter case, use-before-assign isn't UB; in the former,
 | |
|   // we have no clue what they'll be assigned to).
 | |
|   const auto *VD =
 | |
|       dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
 | |
|   if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
 | |
|     return false;
 | |
| 
 | |
|   const Expr *Init = VD->getAnyInitializer();
 | |
|   if (!Init)
 | |
|     return false;
 | |
| 
 | |
|   const Expr *E = Init->IgnoreParens();
 | |
|   if (!tryUnwrapAllocSizeCall(E))
 | |
|     return false;
 | |
| 
 | |
|   // Store E instead of E unwrapped so that the type of the LValue's base is
 | |
|   // what the user wanted.
 | |
|   Result.setInvalid(E);
 | |
| 
 | |
|   QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
 | |
|   Result.addUnsizedArray(Info, E, Pointee);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class PointerExprEvaluator
 | |
|   : public ExprEvaluatorBase<PointerExprEvaluator> {
 | |
|   LValue &Result;
 | |
|   bool InvalidBaseOK;
 | |
| 
 | |
|   bool Success(const Expr *E) {
 | |
|     Result.set(E);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool evaluateLValue(const Expr *E, LValue &Result) {
 | |
|     return EvaluateLValue(E, Result, Info, InvalidBaseOK);
 | |
|   }
 | |
| 
 | |
|   bool evaluatePointer(const Expr *E, LValue &Result) {
 | |
|     return EvaluatePointer(E, Result, Info, InvalidBaseOK);
 | |
|   }
 | |
| 
 | |
|   bool visitNonBuiltinCallExpr(const CallExpr *E);
 | |
| public:
 | |
| 
 | |
|   PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
 | |
|       : ExprEvaluatorBaseTy(info), Result(Result),
 | |
|         InvalidBaseOK(InvalidBaseOK) {}
 | |
| 
 | |
|   bool Success(const APValue &V, const Expr *E) {
 | |
|     Result.setFrom(Info.Ctx, V);
 | |
|     return true;
 | |
|   }
 | |
|   bool ZeroInitialization(const Expr *E) {
 | |
|     Result.setNull(Info.Ctx, E->getType());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool VisitBinaryOperator(const BinaryOperator *E);
 | |
|   bool VisitCastExpr(const CastExpr* E);
 | |
|   bool VisitUnaryAddrOf(const UnaryOperator *E);
 | |
|   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
 | |
|       { return Success(E); }
 | |
|   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
 | |
|     if (E->isExpressibleAsConstantInitializer())
 | |
|       return Success(E);
 | |
|     if (Info.noteFailure())
 | |
|       EvaluateIgnoredValue(Info, E->getSubExpr());
 | |
|     return Error(E);
 | |
|   }
 | |
|   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
 | |
|       { return Success(E); }
 | |
|   bool VisitCallExpr(const CallExpr *E);
 | |
|   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
 | |
|   bool VisitBlockExpr(const BlockExpr *E) {
 | |
|     if (!E->getBlockDecl()->hasCaptures())
 | |
|       return Success(E);
 | |
|     return Error(E);
 | |
|   }
 | |
|   bool VisitCXXThisExpr(const CXXThisExpr *E) {
 | |
|     // Can't look at 'this' when checking a potential constant expression.
 | |
|     if (Info.checkingPotentialConstantExpression())
 | |
|       return false;
 | |
|     if (!Info.CurrentCall->This) {
 | |
|       if (Info.getLangOpts().CPlusPlus11)
 | |
|         Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
 | |
|       else
 | |
|         Info.FFDiag(E);
 | |
|       return false;
 | |
|     }
 | |
|     Result = *Info.CurrentCall->This;
 | |
|     // If we are inside a lambda's call operator, the 'this' expression refers
 | |
|     // to the enclosing '*this' object (either by value or reference) which is
 | |
|     // either copied into the closure object's field that represents the '*this'
 | |
|     // or refers to '*this'.
 | |
|     if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
 | |
|       // Ensure we actually have captured 'this'. (an error will have
 | |
|       // been previously reported if not).
 | |
|       if (!Info.CurrentCall->LambdaThisCaptureField)
 | |
|         return false;
 | |
| 
 | |
|       // Update 'Result' to refer to the data member/field of the closure object
 | |
|       // that represents the '*this' capture.
 | |
|       if (!HandleLValueMember(Info, E, Result,
 | |
|                              Info.CurrentCall->LambdaThisCaptureField))
 | |
|         return false;
 | |
|       // If we captured '*this' by reference, replace the field with its referent.
 | |
|       if (Info.CurrentCall->LambdaThisCaptureField->getType()
 | |
|               ->isPointerType()) {
 | |
|         APValue RVal;
 | |
|         if (!handleLValueToRValueConversion(Info, E, E->getType(), Result,
 | |
|                                             RVal))
 | |
|           return false;
 | |
| 
 | |
|         Result.setFrom(Info.Ctx, RVal);
 | |
|       }
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool VisitCXXNewExpr(const CXXNewExpr *E);
 | |
| 
 | |
|   bool VisitSourceLocExpr(const SourceLocExpr *E) {
 | |
|     assert(E->isStringType() && "SourceLocExpr isn't a pointer type?");
 | |
|     APValue LValResult = E->EvaluateInContext(
 | |
|         Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
 | |
|     Result.setFrom(Info.Ctx, LValResult);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // FIXME: Missing: @protocol, @selector
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
 | |
|                             bool InvalidBaseOK) {
 | |
|   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
 | |
|   return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
 | |
| }
 | |
| 
 | |
| bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
 | |
|   if (E->getOpcode() != BO_Add &&
 | |
|       E->getOpcode() != BO_Sub)
 | |
|     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
 | |
| 
 | |
|   const Expr *PExp = E->getLHS();
 | |
|   const Expr *IExp = E->getRHS();
 | |
|   if (IExp->getType()->isPointerType())
 | |
|     std::swap(PExp, IExp);
 | |
| 
 | |
|   bool EvalPtrOK = evaluatePointer(PExp, Result);
 | |
|   if (!EvalPtrOK && !Info.noteFailure())
 | |
|     return false;
 | |
| 
 | |
|   llvm::APSInt Offset;
 | |
|   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
 | |
|     return false;
 | |
| 
 | |
|   if (E->getOpcode() == BO_Sub)
 | |
|     negateAsSigned(Offset);
 | |
| 
 | |
|   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
 | |
|   return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
 | |
| }
 | |
| 
 | |
| bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
 | |
|   return evaluateLValue(E->getSubExpr(), Result);
 | |
| }
 | |
| 
 | |
| bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
 | |
|   const Expr *SubExpr = E->getSubExpr();
 | |
| 
 | |
|   switch (E->getCastKind()) {
 | |
|   default:
 | |
|     break;
 | |
|   case CK_BitCast:
 | |
|   case CK_CPointerToObjCPointerCast:
 | |
|   case CK_BlockPointerToObjCPointerCast:
 | |
|   case CK_AnyPointerToBlockPointerCast:
 | |
|   case CK_AddressSpaceConversion:
 | |
|     if (!Visit(SubExpr))
 | |
|       return false;
 | |
|     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
 | |
|     // permitted in constant expressions in C++11. Bitcasts from cv void* are
 | |
|     // also static_casts, but we disallow them as a resolution to DR1312.
 | |
|     if (!E->getType()->isVoidPointerType()) {
 | |
|       if (!Result.InvalidBase && !Result.Designator.Invalid &&
 | |
|           !Result.IsNullPtr &&
 | |
|           Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx),
 | |
|                                           E->getType()->getPointeeType()) &&
 | |
|           Info.getStdAllocatorCaller("allocate")) {
 | |
|         // Inside a call to std::allocator::allocate and friends, we permit
 | |
|         // casting from void* back to cv1 T* for a pointer that points to a
 | |
|         // cv2 T.
 | |
|       } else {
 | |
|         Result.Designator.setInvalid();
 | |
|         if (SubExpr->getType()->isVoidPointerType())
 | |
|           CCEDiag(E, diag::note_constexpr_invalid_cast)
 | |
|             << 3 << SubExpr->getType();
 | |
|         else
 | |
|           CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
 | |
|       }
 | |
|     }
 | |
|     if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
 | |
|       ZeroInitialization(E);
 | |
|     return true;
 | |
| 
 | |
|   case CK_DerivedToBase:
 | |
|   case CK_UncheckedDerivedToBase:
 | |
|     if (!evaluatePointer(E->getSubExpr(), Result))
 | |
|       return false;
 | |
|     if (!Result.Base && Result.Offset.isZero())
 | |
|       return true;
 | |
| 
 | |
|     // Now figure out the necessary offset to add to the base LV to get from
 | |
|     // the derived class to the base class.
 | |
|     return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
 | |
|                                   castAs<PointerType>()->getPointeeType(),
 | |
|                                 Result);
 | |
| 
 | |
|   case CK_BaseToDerived:
 | |
|     if (!Visit(E->getSubExpr()))
 | |
|       return false;
 | |
|     if (!Result.Base && Result.Offset.isZero())
 | |
|       return true;
 | |
|     return HandleBaseToDerivedCast(Info, E, Result);
 | |
| 
 | |
|   case CK_Dynamic:
 | |
|     if (!Visit(E->getSubExpr()))
 | |
|       return false;
 | |
|     return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
 | |
| 
 | |
|   case CK_NullToPointer:
 | |
|     VisitIgnoredValue(E->getSubExpr());
 | |
|     return ZeroInitialization(E);
 | |
| 
 | |
|   case CK_IntegralToPointer: {
 | |
|     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
 | |
| 
 | |
|     APValue Value;
 | |
|     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
 | |
|       break;
 | |
| 
 | |
|     if (Value.isInt()) {
 | |
|       unsigned Size = Info.Ctx.getTypeSize(E->getType());
 | |
|       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
 | |
|       Result.Base = (Expr*)nullptr;
 | |
|       Result.InvalidBase = false;
 | |
|       Result.Offset = CharUnits::fromQuantity(N);
 | |
|       Result.Designator.setInvalid();
 | |
|       Result.IsNullPtr = false;
 | |
|       return true;
 | |
|     } else {
 | |
|       // Cast is of an lvalue, no need to change value.
 | |
|       Result.setFrom(Info.Ctx, Value);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   case CK_ArrayToPointerDecay: {
 | |
|     if (SubExpr->isGLValue()) {
 | |
|       if (!evaluateLValue(SubExpr, Result))
 | |
|         return false;
 | |
|     } else {
 | |
|       APValue &Value = Info.CurrentCall->createTemporary(
 | |
|           SubExpr, SubExpr->getType(), false, Result);
 | |
|       if (!EvaluateInPlace(Value, Info, Result, SubExpr))
 | |
|         return false;
 | |
|     }
 | |
|     // The result is a pointer to the first element of the array.
 | |
|     auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
 | |
|     if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
 | |
|       Result.addArray(Info, E, CAT);
 | |
|     else
 | |
|       Result.addUnsizedArray(Info, E, AT->getElementType());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case CK_FunctionToPointerDecay:
 | |
|     return evaluateLValue(SubExpr, Result);
 | |
| 
 | |
|   case CK_LValueToRValue: {
 | |
|     LValue LVal;
 | |
|     if (!evaluateLValue(E->getSubExpr(), LVal))
 | |
|       return false;
 | |
| 
 | |
|     APValue RVal;
 | |
|     // Note, we use the subexpression's type in order to retain cv-qualifiers.
 | |
|     if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
 | |
|                                         LVal, RVal))
 | |
|       return InvalidBaseOK &&
 | |
|              evaluateLValueAsAllocSize(Info, LVal.Base, Result);
 | |
|     return Success(RVal, E);
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return ExprEvaluatorBaseTy::VisitCastExpr(E);
 | |
| }
 | |
| 
 | |
| static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
 | |
|                                 UnaryExprOrTypeTrait ExprKind) {
 | |
|   // C++ [expr.alignof]p3:
 | |
|   //     When alignof is applied to a reference type, the result is the
 | |
|   //     alignment of the referenced type.
 | |
|   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
 | |
|     T = Ref->getPointeeType();
 | |
| 
 | |
|   if (T.getQualifiers().hasUnaligned())
 | |
|     return CharUnits::One();
 | |
| 
 | |
|   const bool AlignOfReturnsPreferred =
 | |
|       Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
 | |
| 
 | |
|   // __alignof is defined to return the preferred alignment.
 | |
|   // Before 8, clang returned the preferred alignment for alignof and _Alignof
 | |
|   // as well.
 | |
|   if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
 | |
|     return Info.Ctx.toCharUnitsFromBits(
 | |
|       Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
 | |
|   // alignof and _Alignof are defined to return the ABI alignment.
 | |
|   else if (ExprKind == UETT_AlignOf)
 | |
|     return Info.Ctx.getTypeAlignInChars(T.getTypePtr());
 | |
|   else
 | |
|     llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
 | |
| }
 | |
| 
 | |
| static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
 | |
|                                 UnaryExprOrTypeTrait ExprKind) {
 | |
|   E = E->IgnoreParens();
 | |
| 
 | |
|   // The kinds of expressions that we have special-case logic here for
 | |
|   // should be kept up to date with the special checks for those
 | |
|   // expressions in Sema.
 | |
| 
 | |
|   // alignof decl is always accepted, even if it doesn't make sense: we default
 | |
|   // to 1 in those cases.
 | |
|   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
 | |
|     return Info.Ctx.getDeclAlign(DRE->getDecl(),
 | |
|                                  /*RefAsPointee*/true);
 | |
| 
 | |
|   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
 | |
|     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
 | |
|                                  /*RefAsPointee*/true);
 | |
| 
 | |
|   return GetAlignOfType(Info, E->getType(), ExprKind);
 | |
| }
 | |
| 
 | |
| static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) {
 | |
|   if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>())
 | |
|     return Info.Ctx.getDeclAlign(VD);
 | |
|   if (const auto *E = Value.Base.dyn_cast<const Expr *>())
 | |
|     return GetAlignOfExpr(Info, E, UETT_AlignOf);
 | |
|   return GetAlignOfType(Info, Value.Base.getTypeInfoType(), UETT_AlignOf);
 | |
| }
 | |
| 
 | |
| /// Evaluate the value of the alignment argument to __builtin_align_{up,down},
 | |
| /// __builtin_is_aligned and __builtin_assume_aligned.
 | |
| static bool getAlignmentArgument(const Expr *E, QualType ForType,
 | |
|                                  EvalInfo &Info, APSInt &Alignment) {
 | |
|   if (!EvaluateInteger(E, Alignment, Info))
 | |
|     return false;
 | |
|   if (Alignment < 0 || !Alignment.isPowerOf2()) {
 | |
|     Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment;
 | |
|     return false;
 | |
|   }
 | |
|   unsigned SrcWidth = Info.Ctx.getIntWidth(ForType);
 | |
|   APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1));
 | |
|   if (APSInt::compareValues(Alignment, MaxValue) > 0) {
 | |
|     Info.FFDiag(E, diag::note_constexpr_alignment_too_big)
 | |
|         << MaxValue << ForType << Alignment;
 | |
|     return false;
 | |
|   }
 | |
|   // Ensure both alignment and source value have the same bit width so that we
 | |
|   // don't assert when computing the resulting value.
 | |
|   APSInt ExtAlignment =
 | |
|       APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true);
 | |
|   assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 &&
 | |
|          "Alignment should not be changed by ext/trunc");
 | |
|   Alignment = ExtAlignment;
 | |
|   assert(Alignment.getBitWidth() == SrcWidth);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // To be clear: this happily visits unsupported builtins. Better name welcomed.
 | |
| bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
 | |
|   if (ExprEvaluatorBaseTy::VisitCallExpr(E))
 | |
|     return true;
 | |
| 
 | |
|   if (!(InvalidBaseOK && getAllocSizeAttr(E)))
 | |
|     return false;
 | |
| 
 | |
|   Result.setInvalid(E);
 | |
|   QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
 | |
|   Result.addUnsizedArray(Info, E, PointeeTy);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
 | |
|   if (IsStringLiteralCall(E))
 | |
|     return Success(E);
 | |
| 
 | |
|   if (unsigned BuiltinOp = E->getBuiltinCallee())
 | |
|     return VisitBuiltinCallExpr(E, BuiltinOp);
 | |
| 
 | |
|   return visitNonBuiltinCallExpr(E);
 | |
| }
 | |
| 
 | |
| bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
 | |
|                                                 unsigned BuiltinOp) {
 | |
|   switch (BuiltinOp) {
 | |
|   case Builtin::BI__builtin_addressof:
 | |
|     return evaluateLValue(E->getArg(0), Result);
 | |
|   case Builtin::BI__builtin_assume_aligned: {
 | |
|     // We need to be very careful here because: if the pointer does not have the
 | |
|     // asserted alignment, then the behavior is undefined, and undefined
 | |
|     // behavior is non-constant.
 | |
|     if (!evaluatePointer(E->getArg(0), Result))
 | |
|       return false;
 | |
| 
 | |
|     LValue OffsetResult(Result);
 | |
|     APSInt Alignment;
 | |
|     if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
 | |
|                               Alignment))
 | |
|       return false;
 | |
|     CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());
 | |
| 
 | |
|     if (E->getNumArgs() > 2) {
 | |
|       APSInt Offset;
 | |
|       if (!EvaluateInteger(E->getArg(2), Offset, Info))
 | |
|         return false;
 | |
| 
 | |
|       int64_t AdditionalOffset = -Offset.getZExtValue();
 | |
|       OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
 | |
|     }
 | |
| 
 | |
|     // If there is a base object, then it must have the correct alignment.
 | |
|     if (OffsetResult.Base) {
 | |
|       CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult);
 | |
| 
 | |
|       if (BaseAlignment < Align) {
 | |
|         Result.Designator.setInvalid();
 | |
|         // FIXME: Add support to Diagnostic for long / long long.
 | |
|         CCEDiag(E->getArg(0),
 | |
|                 diag::note_constexpr_baa_insufficient_alignment) << 0
 | |
|           << (unsigned)BaseAlignment.getQuantity()
 | |
|           << (unsigned)Align.getQuantity();
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // The offset must also have the correct alignment.
 | |
|     if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
 | |
|       Result.Designator.setInvalid();
 | |
| 
 | |
|       (OffsetResult.Base
 | |
|            ? CCEDiag(E->getArg(0),
 | |
|                      diag::note_constexpr_baa_insufficient_alignment) << 1
 | |
|            : CCEDiag(E->getArg(0),
 | |
|                      diag::note_constexpr_baa_value_insufficient_alignment))
 | |
|         << (int)OffsetResult.Offset.getQuantity()
 | |
|         << (unsigned)Align.getQuantity();
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
|   case Builtin::BI__builtin_align_up:
 | |
|   case Builtin::BI__builtin_align_down: {
 | |
|     if (!evaluatePointer(E->getArg(0), Result))
 | |
|       return false;
 | |
|     APSInt Alignment;
 | |
|     if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
 | |
|                               Alignment))
 | |
|       return false;
 | |
|     CharUnits BaseAlignment = getBaseAlignment(Info, Result);
 | |
|     CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset);
 | |
|     // For align_up/align_down, we can return the same value if the alignment
 | |
|     // is known to be greater or equal to the requested value.
 | |
|     if (PtrAlign.getQuantity() >= Alignment)
 | |
|       return true;
 | |
| 
 | |
|     // The alignment could be greater than the minimum at run-time, so we cannot
 | |
|     // infer much about the resulting pointer value. One case is possible:
 | |
|     // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we
 | |
|     // can infer the correct index if the requested alignment is smaller than
 | |
|     // the base alignment so we can perform the computation on the offset.
 | |
|     if (BaseAlignment.getQuantity() >= Alignment) {
 | |
|       assert(Alignment.getBitWidth() <= 64 &&
 | |
|              "Cannot handle > 64-bit address-space");
 | |
|       uint64_t Alignment64 = Alignment.getZExtValue();
 | |
|       CharUnits NewOffset = CharUnits::fromQuantity(
 | |
|           BuiltinOp == Builtin::BI__builtin_align_down
 | |
|               ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64)
 | |
|               : llvm::alignTo(Result.Offset.getQuantity(), Alignment64));
 | |
|       Result.adjustOffset(NewOffset - Result.Offset);
 | |
|       // TODO: diagnose out-of-bounds values/only allow for arrays?
 | |
|       return true;
 | |
|     }
 | |
|     // Otherwise, we cannot constant-evaluate the result.
 | |
|     Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust)
 | |
|         << Alignment;
 | |
|     return false;
 | |
|   }
 | |
|   case Builtin::BI__builtin_operator_new:
 | |
|     return HandleOperatorNewCall(Info, E, Result);
 | |
|   case Builtin::BI__builtin_launder:
 | |
|     return evaluatePointer(E->getArg(0), Result);
 | |
|   case Builtin::BIstrchr:
 | |
|   case Builtin::BIwcschr:
 | |
|   case Builtin::BImemchr:
 | |
|   case Builtin::BIwmemchr:
 | |
|     if (Info.getLangOpts().CPlusPlus11)
 | |
|       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
 | |
|         << /*isConstexpr*/0 << /*isConstructor*/0
 | |
|         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
 | |
|     else
 | |
|       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case Builtin::BI__builtin_strchr:
 | |
|   case Builtin::BI__builtin_wcschr:
 | |
|   case Builtin::BI__builtin_memchr:
 | |
|   case Builtin::BI__builtin_char_memchr:
 | |
|   case Builtin::BI__builtin_wmemchr: {
 | |
|     if (!Visit(E->getArg(0)))
 | |
|       return false;
 | |
|     APSInt Desired;
 | |
|     if (!EvaluateInteger(E->getArg(1), Desired, Info))
 | |
|       return false;
 | |
|     uint64_t MaxLength = uint64_t(-1);
 | |
|     if (BuiltinOp != Builtin::BIstrchr &&
 | |
|         BuiltinOp != Builtin::BIwcschr &&
 | |
|         BuiltinOp != Builtin::BI__builtin_strchr &&
 | |
|         BuiltinOp != Builtin::BI__builtin_wcschr) {
 | |
|       APSInt N;
 | |
|       if (!EvaluateInteger(E->getArg(2), N, Info))
 | |
|         return false;
 | |
|       MaxLength = N.getExtValue();
 | |
|     }
 | |
|     // We cannot find the value if there are no candidates to match against.
 | |
|     if (MaxLength == 0u)
 | |
|       return ZeroInitialization(E);
 | |
|     if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
 | |
|         Result.Designator.Invalid)
 | |
|       return false;
 | |
|     QualType CharTy = Result.Designator.getType(Info.Ctx);
 | |
|     bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
 | |
|                      BuiltinOp == Builtin::BI__builtin_memchr;
 | |
|     assert(IsRawByte ||
 | |
|            Info.Ctx.hasSameUnqualifiedType(
 | |
|                CharTy, E->getArg(0)->getType()->getPointeeType()));
 | |
|     // Pointers to const void may point to objects of incomplete type.
 | |
|     if (IsRawByte && CharTy->isIncompleteType()) {
 | |
|       Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
 | |
|       return false;
 | |
|     }
 | |
|     // Give up on byte-oriented matching against multibyte elements.
 | |
|     // FIXME: We can compare the bytes in the correct order.
 | |
|     if (IsRawByte && Info.Ctx.getTypeSizeInChars(CharTy) != CharUnits::One())
 | |
|       return false;
 | |
|     // Figure out what value we're actually looking for (after converting to
 | |
|     // the corresponding unsigned type if necessary).
 | |
|     uint64_t DesiredVal;
 | |
|     bool StopAtNull = false;
 | |
|     switch (BuiltinOp) {
 | |
|     case Builtin::BIstrchr:
 | |
|     case Builtin::BI__builtin_strchr:
 | |
|       // strchr compares directly to the passed integer, and therefore
 | |
|       // always fails if given an int that is not a char.
 | |
|       if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
 | |
|                                                   E->getArg(1)->getType(),
 | |
|                                                   Desired),
 | |
|                                Desired))
 | |
|         return ZeroInitialization(E);
 | |
|       StopAtNull = true;
 | |
|       LLVM_FALLTHROUGH;
 | |
|     case Builtin::BImemchr:
 | |
|     case Builtin::BI__builtin_memchr:
 | |
|     case Builtin::BI__builtin_char_memchr:
 | |
|       // memchr compares by converting both sides to unsigned char. That's also
 | |
|       // correct for strchr if we get this far (to cope with plain char being
 | |
|       // unsigned in the strchr case).
 | |
|       DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
 | |
|       break;
 | |
| 
 | |
|     case Builtin::BIwcschr:
 | |
|     case Builtin::BI__builtin_wcschr:
 | |
|       StopAtNull = true;
 | |
|       LLVM_FALLTHROUGH;
 | |
|     case Builtin::BIwmemchr:
 | |
|     case Builtin::BI__builtin_wmemchr:
 | |
|       // wcschr and wmemchr are given a wchar_t to look for. Just use it.
 | |
|       DesiredVal = Desired.getZExtValue();
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     for (; MaxLength; --MaxLength) {
 | |
|       APValue Char;
 | |
|       if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
 | |
|           !Char.isInt())
 | |
|         return false;
 | |
|       if (Char.getInt().getZExtValue() == DesiredVal)
 | |
|         return true;
 | |
|       if (StopAtNull && !Char.getInt())
 | |
|         break;
 | |
|       if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
 | |
|         return false;
 | |
|     }
 | |
|     // Not found: return nullptr.
 | |
|     return ZeroInitialization(E);
 | |
|   }
 | |
| 
 | |
|   case Builtin::BImemcpy:
 | |
|   case Builtin::BImemmove:
 | |
|   case Builtin::BIwmemcpy:
 | |
|   case Builtin::BIwmemmove:
 | |
|     if (Info.getLangOpts().CPlusPlus11)
 | |
|       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
 | |
|         << /*isConstexpr*/0 << /*isConstructor*/0
 | |
|         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
 | |
|     else
 | |
|       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case Builtin::BI__builtin_memcpy:
 | |
|   case Builtin::BI__builtin_memmove:
 | |
|   case Builtin::BI__builtin_wmemcpy:
 | |
|   case Builtin::BI__builtin_wmemmove: {
 | |
|     bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
 | |
|                  BuiltinOp == Builtin::BIwmemmove ||
 | |
|                  BuiltinOp == Builtin::BI__builtin_wmemcpy ||
 | |
|                  BuiltinOp == Builtin::BI__builtin_wmemmove;
 | |
|     bool Move = BuiltinOp == Builtin::BImemmove ||
 | |
|                 BuiltinOp == Builtin::BIwmemmove ||
 | |
|                 BuiltinOp == Builtin::BI__builtin_memmove ||
 | |
|                 BuiltinOp == Builtin::BI__builtin_wmemmove;
 | |
| 
 | |
|     // The result of mem* is the first argument.
 | |
|     if (!Visit(E->getArg(0)))
 | |
|       return false;
 | |
|     LValue Dest = Result;
 | |
| 
 | |
|     LValue Src;
 | |
|     if (!EvaluatePointer(E->getArg(1), Src, Info))
 | |
|       return false;
 | |
| 
 | |
|     APSInt N;
 | |
|     if (!EvaluateInteger(E->getArg(2), N, Info))
 | |
|       return false;
 | |
|     assert(!N.isSigned() && "memcpy and friends take an unsigned size");
 | |
| 
 | |
|     // If the size is zero, we treat this as always being a valid no-op.
 | |
|     // (Even if one of the src and dest pointers is null.)
 | |
|     if (!N)
 | |
|       return true;
 | |
| 
 | |
|     // Otherwise, if either of the operands is null, we can't proceed. Don't
 | |
|     // try to determine the type of the copied objects, because there aren't
 | |
|     // any.
 | |
|     if (!Src.Base || !Dest.Base) {
 | |
|       APValue Val;
 | |
|       (!Src.Base ? Src : Dest).moveInto(Val);
 | |
|       Info.FFDiag(E, diag::note_constexpr_memcpy_null)
 | |
|           << Move << WChar << !!Src.Base
 | |
|           << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
 | |
|       return false;
 | |
|     }
 | |
|     if (Src.Designator.Invalid || Dest.Designator.Invalid)
 | |
|       return false;
 | |
| 
 | |
|     // We require that Src and Dest are both pointers to arrays of
 | |
|     // trivially-copyable type. (For the wide version, the designator will be
 | |
|     // invalid if the designated object is not a wchar_t.)
 | |
|     QualType T = Dest.Designator.getType(Info.Ctx);
 | |
|     QualType SrcT = Src.Designator.getType(Info.Ctx);
 | |
|     if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) {
 | |
|       Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
 | |
|       return false;
 | |
|     }
 | |
|     if (T->isIncompleteType()) {
 | |
|       Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
 | |
|       return false;
 | |
|     }
 | |
|     if (!T.isTriviallyCopyableType(Info.Ctx)) {
 | |
|       Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Figure out how many T's we're copying.
 | |
|     uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
 | |
|     if (!WChar) {
 | |
|       uint64_t Remainder;
 | |
|       llvm::APInt OrigN = N;
 | |
|       llvm::APInt::udivrem(OrigN, TSize, N, Remainder);
 | |
|       if (Remainder) {
 | |
|         Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
 | |
|             << Move << WChar << 0 << T << OrigN.toString(10, /*Signed*/false)
 | |
|             << (unsigned)TSize;
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Check that the copying will remain within the arrays, just so that we
 | |
|     // can give a more meaningful diagnostic. This implicitly also checks that
 | |
|     // N fits into 64 bits.
 | |
|     uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
 | |
|     uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
 | |
|     if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) {
 | |
|       Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
 | |
|           << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
 | |
|           << N.toString(10, /*Signed*/false);
 | |
|       return false;
 | |
|     }
 | |
|     uint64_t NElems = N.getZExtValue();
 | |
|     uint64_t NBytes = NElems * TSize;
 | |
| 
 | |
|     // Check for overlap.
 | |
|     int Direction = 1;
 | |
|     if (HasSameBase(Src, Dest)) {
 | |
|       uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
 | |
|       uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
 | |
|       if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
 | |
|         // Dest is inside the source region.
 | |
|         if (!Move) {
 | |
|           Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
 | |
|           return false;
 | |
|         }
 | |
|         // For memmove and friends, copy backwards.
 | |
|         if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
 | |
|             !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
 | |
|           return false;
 | |
|         Direction = -1;
 | |
|       } else if (!Move && SrcOffset >= DestOffset &&
 | |
|                  SrcOffset - DestOffset < NBytes) {
 | |
|         // Src is inside the destination region for memcpy: invalid.
 | |
|         Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     while (true) {
 | |
|       APValue Val;
 | |
|       // FIXME: Set WantObjectRepresentation to true if we're copying a
 | |
|       // char-like type?
 | |
|       if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
 | |
|           !handleAssignment(Info, E, Dest, T, Val))
 | |
|         return false;
 | |
|       // Do not iterate past the last element; if we're copying backwards, that
 | |
|       // might take us off the start of the array.
 | |
|       if (--NElems == 0)
 | |
|         return true;
 | |
|       if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
 | |
|           !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return visitNonBuiltinCallExpr(E);
 | |
| }
 | |
| 
 | |
| static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
 | |
|                                      APValue &Result, const InitListExpr *ILE,
 | |
|                                      QualType AllocType);
 | |
| 
 | |
| bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
 | |
|   if (!Info.getLangOpts().CPlusPlus2a)
 | |
|     Info.CCEDiag(E, diag::note_constexpr_new);
 | |
| 
 | |
|   // We cannot speculatively evaluate a delete expression.
 | |
|   if (Info.SpeculativeEvaluationDepth)
 | |
|     return false;
 | |
| 
 | |
|   FunctionDecl *OperatorNew = E->getOperatorNew();
 | |
| 
 | |
|   bool IsNothrow = false;
 | |
|   bool IsPlacement = false;
 | |
|   if (OperatorNew->isReservedGlobalPlacementOperator() &&
 | |
|       Info.CurrentCall->isStdFunction() && !E->isArray()) {
 | |
|     // FIXME Support array placement new.
 | |
|     assert(E->getNumPlacementArgs() == 1);
 | |
|     if (!EvaluatePointer(E->getPlacementArg(0), Result, Info))
 | |
|       return false;
 | |
|     if (Result.Designator.Invalid)
 | |
|       return false;
 | |
|     IsPlacement = true;
 | |
|   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
 | |
|     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
 | |
|         << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
 | |
|     return false;
 | |
|   } else if (E->getNumPlacementArgs()) {
 | |
|     // The only new-placement list we support is of the form (std::nothrow).
 | |
|     //
 | |
|     // FIXME: There is no restriction on this, but it's not clear that any
 | |
|     // other form makes any sense. We get here for cases such as:
 | |
|     //
 | |
|     //   new (std::align_val_t{N}) X(int)
 | |
|     //
 | |
|     // (which should presumably be valid only if N is a multiple of
 | |
|     // alignof(int), and in any case can't be deallocated unless N is
 | |
|     // alignof(X) and X has new-extended alignment).
 | |
|     if (E->getNumPlacementArgs() != 1 ||
 | |
|         !E->getPlacementArg(0)->getType()->isNothrowT())
 | |
|       return Error(E, diag::note_constexpr_new_placement);
 | |
| 
 | |
|     LValue Nothrow;
 | |
|     if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info))
 | |
|       return false;
 | |
|     IsNothrow = true;
 | |
|   }
 | |
| 
 | |
|   const Expr *Init = E->getInitializer();
 | |
|   const InitListExpr *ResizedArrayILE = nullptr;
 | |
| 
 | |
|   QualType AllocType = E->getAllocatedType();
 | |
|   if (Optional<const Expr*> ArraySize = E->getArraySize()) {
 | |
|     const Expr *Stripped = *ArraySize;
 | |
|     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
 | |
|          Stripped = ICE->getSubExpr())
 | |
|       if (ICE->getCastKind() != CK_NoOp &&
 | |
|           ICE->getCastKind() != CK_IntegralCast)
 | |
|         break;
 | |
| 
 | |
|     llvm::APSInt ArrayBound;
 | |
|     if (!EvaluateInteger(Stripped, ArrayBound, Info))
 | |
|       return false;
 | |
| 
 | |
|     // C++ [expr.new]p9:
 | |
|     //   The expression is erroneous if:
 | |
|     //   -- [...] its value before converting to size_t [or] applying the
 | |
|     //      second standard conversion sequence is less than zero
 | |
|     if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
 | |
|       if (IsNothrow)
 | |
|         return ZeroInitialization(E);
 | |
| 
 | |
|       Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
 | |
|           << ArrayBound << (*ArraySize)->getSourceRange();
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     //   -- its value is such that the size of the allocated object would
 | |
|     //      exceed the implementation-defined limit
 | |
|     if (ConstantArrayType::getNumAddressingBits(Info.Ctx, AllocType,
 | |
|                                                 ArrayBound) >
 | |
|         ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
 | |
|       if (IsNothrow)
 | |
|         return ZeroInitialization(E);
 | |
| 
 | |
|       Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_large)
 | |
|         << ArrayBound << (*ArraySize)->getSourceRange();
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     //   -- the new-initializer is a braced-init-list and the number of
 | |
|     //      array elements for which initializers are provided [...]
 | |
|     //      exceeds the number of elements to initialize
 | |
|     if (Init) {
 | |
|       auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType());
 | |
|       assert(CAT && "unexpected type for array initializer");
 | |
| 
 | |
|       unsigned Bits =
 | |
|           std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth());
 | |
|       llvm::APInt InitBound = CAT->getSize().zextOrSelf(Bits);
 | |
|       llvm::APInt AllocBound = ArrayBound.zextOrSelf(Bits);
 | |
|       if (InitBound.ugt(AllocBound)) {
 | |
|         if (IsNothrow)
 | |
|           return ZeroInitialization(E);
 | |
| 
 | |
|         Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
 | |
|             << AllocBound.toString(10, /*Signed=*/false)
 | |
|             << InitBound.toString(10, /*Signed=*/false)
 | |
|             << (*ArraySize)->getSourceRange();
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // If the sizes differ, we must have an initializer list, and we need
 | |
|       // special handling for this case when we initialize.
 | |
|       if (InitBound != AllocBound)
 | |
|         ResizedArrayILE = cast<InitListExpr>(Init);
 | |
|     }
 | |
| 
 | |
|     AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr,
 | |
|                                               ArrayType::Normal, 0);
 | |
|   } else {
 | |
|     assert(!AllocType->isArrayType() &&
 | |
|            "array allocation with non-array new");
 | |
|   }
 | |
| 
 | |
|   APValue *Val;
 | |
|   if (IsPlacement) {
 | |
|     AccessKinds AK = AK_Construct;
 | |
|     struct FindObjectHandler {
 | |
|       EvalInfo &Info;
 | |
|       const Expr *E;
 | |
|       QualType AllocType;
 | |
|       const AccessKinds AccessKind;
 | |
|       APValue *Value;
 | |
| 
 | |
|       typedef bool result_type;
 | |
|       bool failed() { return false; }
 | |
|       bool found(APValue &Subobj, QualType SubobjType) {
 | |
|         // FIXME: Reject the cases where [basic.life]p8 would not permit the
 | |
|         // old name of the object to be used to name the new object.
 | |
|         if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) {
 | |
|           Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) <<
 | |
|             SubobjType << AllocType;
 | |
|           return false;
 | |
|         }
 | |
|         Value = &Subobj;
 | |
|         return true;
 | |
|       }
 | |
|       bool found(APSInt &Value, QualType SubobjType) {
 | |
|         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
 | |
|         return false;
 | |
|       }
 | |
|       bool found(APFloat &Value, QualType SubobjType) {
 | |
|         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
 | |
|         return false;
 | |
|       }
 | |
|     } Handler = {Info, E, AllocType, AK, nullptr};
 | |
| 
 | |
|     CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
 | |
|     if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
 | |
|       return false;
 | |
| 
 | |
|     Val = Handler.Value;
 | |
| 
 | |
|     // [basic.life]p1:
 | |
|     //   The lifetime of an object o of type T ends when [...] the storage
 | |
|     //   which the object occupies is [...] reused by an object that is not
 | |
|     //   nested within o (6.6.2).
 | |
|     *Val = APValue();
 | |
|   } else {
 | |
|     // Perform the allocation and obtain a pointer to the resulting object.
 | |
|     Val = Info.createHeapAlloc(E, AllocType, Result);
 | |
|     if (!Val)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (ResizedArrayILE) {
 | |
|     if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE,
 | |
|                                   AllocType))
 | |
|       return false;
 | |
|   } else if (Init) {
 | |
|     if (!EvaluateInPlace(*Val, Info, Result, Init))
 | |
|       return false;
 | |
|   } else {
 | |
|     *Val = getDefaultInitValue(AllocType);
 | |
|   }
 | |
| 
 | |
|   // Array new returns a pointer to the first element, not a pointer to the
 | |
|   // array.
 | |
|   if (auto *AT = AllocType->getAsArrayTypeUnsafe())
 | |
|     Result.addArray(Info, E, cast<ConstantArrayType>(AT));
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Member Pointer Evaluation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class MemberPointerExprEvaluator
 | |
|   : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
 | |
|   MemberPtr &Result;
 | |
| 
 | |
|   bool Success(const ValueDecl *D) {
 | |
|     Result = MemberPtr(D);
 | |
|     return true;
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
 | |
|     : ExprEvaluatorBaseTy(Info), Result(Result) {}
 | |
| 
 | |
|   bool Success(const APValue &V, const Expr *E) {
 | |
|     Result.setFrom(V);
 | |
|     return true;
 | |
|   }
 | |
|   bool ZeroInitialization(const Expr *E) {
 | |
|     return Success((const ValueDecl*)nullptr);
 | |
|   }
 | |
| 
 | |
|   bool VisitCastExpr(const CastExpr *E);
 | |
|   bool VisitUnaryAddrOf(const UnaryOperator *E);
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
 | |
|                                   EvalInfo &Info) {
 | |
|   assert(E->isRValue() && E->getType()->isMemberPointerType());
 | |
|   return MemberPointerExprEvaluator(Info, Result).Visit(E);
 | |
| }
 | |
| 
 | |
| bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
 | |
|   switch (E->getCastKind()) {
 | |
|   default:
 | |
|     return ExprEvaluatorBaseTy::VisitCastExpr(E);
 | |
| 
 | |
|   case CK_NullToMemberPointer:
 | |
|     VisitIgnoredValue(E->getSubExpr());
 | |
|     return ZeroInitialization(E);
 | |
| 
 | |
|   case CK_BaseToDerivedMemberPointer: {
 | |
|     if (!Visit(E->getSubExpr()))
 | |
|       return false;
 | |
|     if (E->path_empty())
 | |
|       return true;
 | |
|     // Base-to-derived member pointer casts store the path in derived-to-base
 | |
|     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
 | |
|     // the wrong end of the derived->base arc, so stagger the path by one class.
 | |
|     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
 | |
|     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
 | |
|          PathI != PathE; ++PathI) {
 | |
|       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
 | |
|       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
 | |
|       if (!Result.castToDerived(Derived))
 | |
|         return Error(E);
 | |
|     }
 | |
|     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
 | |
|     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
 | |
|       return Error(E);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case CK_DerivedToBaseMemberPointer:
 | |
|     if (!Visit(E->getSubExpr()))
 | |
|       return false;
 | |
|     for (CastExpr::path_const_iterator PathI = E->path_begin(),
 | |
|          PathE = E->path_end(); PathI != PathE; ++PathI) {
 | |
|       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
 | |
|       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
 | |
|       if (!Result.castToBase(Base))
 | |
|         return Error(E);
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
 | |
|   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
 | |
|   // member can be formed.
 | |
|   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Record Evaluation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   class RecordExprEvaluator
 | |
|   : public ExprEvaluatorBase<RecordExprEvaluator> {
 | |
|     const LValue &This;
 | |
|     APValue &Result;
 | |
|   public:
 | |
| 
 | |
|     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
 | |
|       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
 | |
| 
 | |
|     bool Success(const APValue &V, const Expr *E) {
 | |
|       Result = V;
 | |
|       return true;
 | |
|     }
 | |
|     bool ZeroInitialization(const Expr *E) {
 | |
|       return ZeroInitialization(E, E->getType());
 | |
|     }
 | |
|     bool ZeroInitialization(const Expr *E, QualType T);
 | |
| 
 | |
|     bool VisitCallExpr(const CallExpr *E) {
 | |
|       return handleCallExpr(E, Result, &This);
 | |
|     }
 | |
|     bool VisitCastExpr(const CastExpr *E);
 | |
|     bool VisitInitListExpr(const InitListExpr *E);
 | |
|     bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
 | |
|       return VisitCXXConstructExpr(E, E->getType());
 | |
|     }
 | |
|     bool VisitLambdaExpr(const LambdaExpr *E);
 | |
|     bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
 | |
|     bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
 | |
|     bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
 | |
|     bool VisitBinCmp(const BinaryOperator *E);
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// Perform zero-initialization on an object of non-union class type.
 | |
| /// C++11 [dcl.init]p5:
 | |
| ///  To zero-initialize an object or reference of type T means:
 | |
| ///    [...]
 | |
| ///    -- if T is a (possibly cv-qualified) non-union class type,
 | |
| ///       each non-static data member and each base-class subobject is
 | |
| ///       zero-initialized
 | |
| static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
 | |
|                                           const RecordDecl *RD,
 | |
|                                           const LValue &This, APValue &Result) {
 | |
|   assert(!RD->isUnion() && "Expected non-union class type");
 | |
|   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
 | |
|   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
 | |
|                    std::distance(RD->field_begin(), RD->field_end()));
 | |
| 
 | |
|   if (RD->isInvalidDecl()) return false;
 | |
|   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
 | |
| 
 | |
|   if (CD) {
 | |
|     unsigned Index = 0;
 | |
|     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
 | |
|            End = CD->bases_end(); I != End; ++I, ++Index) {
 | |
|       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
 | |
|       LValue Subobject = This;
 | |
|       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
 | |
|         return false;
 | |
|       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
 | |
|                                          Result.getStructBase(Index)))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (const auto *I : RD->fields()) {
 | |
|     // -- if T is a reference type, no initialization is performed.
 | |
|     if (I->getType()->isReferenceType())
 | |
|       continue;
 | |
| 
 | |
|     LValue Subobject = This;
 | |
|     if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
 | |
|       return false;
 | |
| 
 | |
|     ImplicitValueInitExpr VIE(I->getType());
 | |
|     if (!EvaluateInPlace(
 | |
|           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
 | |
|   const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
 | |
|   if (RD->isInvalidDecl()) return false;
 | |
|   if (RD->isUnion()) {
 | |
|     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
 | |
|     // object's first non-static named data member is zero-initialized
 | |
|     RecordDecl::field_iterator I = RD->field_begin();
 | |
|     if (I == RD->field_end()) {
 | |
|       Result = APValue((const FieldDecl*)nullptr);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     LValue Subobject = This;
 | |
|     if (!HandleLValueMember(Info, E, Subobject, *I))
 | |
|       return false;
 | |
|     Result = APValue(*I);
 | |
|     ImplicitValueInitExpr VIE(I->getType());
 | |
|     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
 | |
|   }
 | |
| 
 | |
|   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
 | |
|     Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return HandleClassZeroInitialization(Info, E, RD, This, Result);
 | |
| }
 | |
| 
 | |
| bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
 | |
|   switch (E->getCastKind()) {
 | |
|   default:
 | |
|     return ExprEvaluatorBaseTy::VisitCastExpr(E);
 | |
| 
 | |
|   case CK_ConstructorConversion:
 | |
|     return Visit(E->getSubExpr());
 | |
| 
 | |
|   case CK_DerivedToBase:
 | |
|   case CK_UncheckedDerivedToBase: {
 | |
|     APValue DerivedObject;
 | |
|     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
 | |
|       return false;
 | |
|     if (!DerivedObject.isStruct())
 | |
|       return Error(E->getSubExpr());
 | |
| 
 | |
|     // Derived-to-base rvalue conversion: just slice off the derived part.
 | |
|     APValue *Value = &DerivedObject;
 | |
|     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
 | |
|     for (CastExpr::path_const_iterator PathI = E->path_begin(),
 | |
|          PathE = E->path_end(); PathI != PathE; ++PathI) {
 | |
|       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
 | |
|       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
 | |
|       Value = &Value->getStructBase(getBaseIndex(RD, Base));
 | |
|       RD = Base;
 | |
|     }
 | |
|     Result = *Value;
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
 | |
|   if (E->isTransparent())
 | |
|     return Visit(E->getInit(0));
 | |
| 
 | |
|   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
 | |
|   if (RD->isInvalidDecl()) return false;
 | |
|   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
 | |
|   auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
 | |
| 
 | |
|   EvalInfo::EvaluatingConstructorRAII EvalObj(
 | |
|       Info,
 | |
|       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
 | |
|       CXXRD && CXXRD->getNumBases());
 | |
| 
 | |
|   if (RD->isUnion()) {
 | |
|     const FieldDecl *Field = E->getInitializedFieldInUnion();
 | |
|     Result = APValue(Field);
 | |
|     if (!Field)
 | |
|       return true;
 | |
| 
 | |
|     // If the initializer list for a union does not contain any elements, the
 | |
|     // first element of the union is value-initialized.
 | |
|     // FIXME: The element should be initialized from an initializer list.
 | |
|     //        Is this difference ever observable for initializer lists which
 | |
|     //        we don't build?
 | |
|     ImplicitValueInitExpr VIE(Field->getType());
 | |
|     const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
 | |
| 
 | |
|     LValue Subobject = This;
 | |
|     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
 | |
|       return false;
 | |
| 
 | |
|     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
 | |
|     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
 | |
|                                   isa<CXXDefaultInitExpr>(InitExpr));
 | |
| 
 | |
|     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
 | |
|   }
 | |
| 
 | |
|   if (!Result.hasValue())
 | |
|     Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
 | |
|                      std::distance(RD->field_begin(), RD->field_end()));
 | |
|   unsigned ElementNo = 0;
 | |
|   bool Success = true;
 | |
| 
 | |
|   // Initialize base classes.
 | |
|   if (CXXRD && CXXRD->getNumBases()) {
 | |
|     for (const auto &Base : CXXRD->bases()) {
 | |
|       assert(ElementNo < E->getNumInits() && "missing init for base class");
 | |
|       const Expr *Init = E->getInit(ElementNo);
 | |
| 
 | |
|       LValue Subobject = This;
 | |
|       if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
 | |
|         return false;
 | |
| 
 | |
|       APValue &FieldVal = Result.getStructBase(ElementNo);
 | |
|       if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
 | |
|         if (!Info.noteFailure())
 | |
|           return false;
 | |
|         Success = false;
 | |
|       }
 | |
|       ++ElementNo;
 | |
|     }
 | |
| 
 | |
|     EvalObj.finishedConstructingBases();
 | |
|   }
 | |
| 
 | |
|   // Initialize members.
 | |
|   for (const auto *Field : RD->fields()) {
 | |
|     // Anonymous bit-fields are not considered members of the class for
 | |
|     // purposes of aggregate initialization.
 | |
|     if (Field->isUnnamedBitfield())
 | |
|       continue;
 | |
| 
 | |
|     LValue Subobject = This;
 | |
| 
 | |
|     bool HaveInit = ElementNo < E->getNumInits();
 | |
| 
 | |
|     // FIXME: Diagnostics here should point to the end of the initializer
 | |
|     // list, not the start.
 | |
|     if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
 | |
|                             Subobject, Field, &Layout))
 | |
|       return false;
 | |
| 
 | |
|     // Perform an implicit value-initialization for members beyond the end of
 | |
|     // the initializer list.
 | |
|     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
 | |
|     const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
 | |
| 
 | |
|     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
 | |
|     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
 | |
|                                   isa<CXXDefaultInitExpr>(Init));
 | |
| 
 | |
|     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
 | |
|     if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
 | |
|         (Field->isBitField() && !truncateBitfieldValue(Info, Init,
 | |
|                                                        FieldVal, Field))) {
 | |
|       if (!Info.noteFailure())
 | |
|         return false;
 | |
|       Success = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Success;
 | |
| }
 | |
| 
 | |
| bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
 | |
|                                                 QualType T) {
 | |
|   // Note that E's type is not necessarily the type of our class here; we might
 | |
|   // be initializing an array element instead.
 | |
|   const CXXConstructorDecl *FD = E->getConstructor();
 | |
|   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
 | |
| 
 | |
|   bool ZeroInit = E->requiresZeroInitialization();
 | |
|   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
 | |
|     // If we've already performed zero-initialization, we're already done.
 | |
|     if (Result.hasValue())
 | |
|       return true;
 | |
| 
 | |
|     if (ZeroInit)
 | |
|       return ZeroInitialization(E, T);
 | |
| 
 | |
|     Result = getDefaultInitValue(T);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   const FunctionDecl *Definition = nullptr;
 | |
|   auto Body = FD->getBody(Definition);
 | |
| 
 | |
|   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
 | |
|     return false;
 | |
| 
 | |
|   // Avoid materializing a temporary for an elidable copy/move constructor.
 | |
|   if (E->isElidable() && !ZeroInit)
 | |
|     if (const MaterializeTemporaryExpr *ME
 | |
|           = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
 | |
|       return Visit(ME->getSubExpr());
 | |
| 
 | |
|   if (ZeroInit && !ZeroInitialization(E, T))
 | |
|     return false;
 | |
| 
 | |
|   auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
 | |
|   return HandleConstructorCall(E, This, Args,
 | |
|                                cast<CXXConstructorDecl>(Definition), Info,
 | |
|                                Result);
 | |
| }
 | |
| 
 | |
| bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
 | |
|     const CXXInheritedCtorInitExpr *E) {
 | |
|   if (!Info.CurrentCall) {
 | |
|     assert(Info.checkingPotentialConstantExpression());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   const CXXConstructorDecl *FD = E->getConstructor();
 | |
|   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
 | |
|     return false;
 | |
| 
 | |
|   const FunctionDecl *Definition = nullptr;
 | |
|   auto Body = FD->getBody(Definition);
 | |
| 
 | |
|   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
 | |
|     return false;
 | |
| 
 | |
|   return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
 | |
|                                cast<CXXConstructorDecl>(Definition), Info,
 | |
|                                Result);
 | |
| }
 | |
| 
 | |
| bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
 | |
|     const CXXStdInitializerListExpr *E) {
 | |
|   const ConstantArrayType *ArrayType =
 | |
|       Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
 | |
| 
 | |
|   LValue Array;
 | |
|   if (!EvaluateLValue(E->getSubExpr(), Array, Info))
 | |
|     return false;
 | |
| 
 | |
|   // Get a pointer to the first element of the array.
 | |
|   Array.addArray(Info, E, ArrayType);
 | |
| 
 | |
|   // FIXME: Perform the checks on the field types in SemaInit.
 | |
|   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
 | |
|   RecordDecl::field_iterator Field = Record->field_begin();
 | |
|   if (Field == Record->field_end())
 | |
|     return Error(E);
 | |
| 
 | |
|   // Start pointer.
 | |
|   if (!Field->getType()->isPointerType() ||
 | |
|       !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
 | |
|                             ArrayType->getElementType()))
 | |
|     return Error(E);
 | |
| 
 | |
|   // FIXME: What if the initializer_list type has base classes, etc?
 | |
|   Result = APValue(APValue::UninitStruct(), 0, 2);
 | |
|   Array.moveInto(Result.getStructField(0));
 | |
| 
 | |
|   if (++Field == Record->field_end())
 | |
|     return Error(E);
 | |
| 
 | |
|   if (Field->getType()->isPointerType() &&
 | |
|       Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
 | |
|                            ArrayType->getElementType())) {
 | |
|     // End pointer.
 | |
|     if (!HandleLValueArrayAdjustment(Info, E, Array,
 | |
|                                      ArrayType->getElementType(),
 | |
|                                      ArrayType->getSize().getZExtValue()))
 | |
|       return false;
 | |
|     Array.moveInto(Result.getStructField(1));
 | |
|   } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
 | |
|     // Length.
 | |
|     Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
 | |
|   else
 | |
|     return Error(E);
 | |
| 
 | |
|   if (++Field != Record->field_end())
 | |
|     return Error(E);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
 | |
|   const CXXRecordDecl *ClosureClass = E->getLambdaClass();
 | |
|   if (ClosureClass->isInvalidDecl())
 | |
|     return false;
 | |
| 
 | |
|   const size_t NumFields =
 | |
|       std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
 | |
| 
 | |
|   assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
 | |
|                                             E->capture_init_end()) &&
 | |
|          "The number of lambda capture initializers should equal the number of "
 | |
|          "fields within the closure type");
 | |
| 
 | |
|   Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
 | |
|   // Iterate through all the lambda's closure object's fields and initialize
 | |
|   // them.
 | |
|   auto *CaptureInitIt = E->capture_init_begin();
 | |
|   const LambdaCapture *CaptureIt = ClosureClass->captures_begin();
 | |
|   bool Success = true;
 | |
|   for (const auto *Field : ClosureClass->fields()) {
 | |
|     assert(CaptureInitIt != E->capture_init_end());
 | |
|     // Get the initializer for this field
 | |
|     Expr *const CurFieldInit = *CaptureInitIt++;
 | |
| 
 | |
|     // If there is no initializer, either this is a VLA or an error has
 | |
|     // occurred.
 | |
|     if (!CurFieldInit)
 | |
|       return Error(E);
 | |
| 
 | |
|     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
 | |
|     if (!EvaluateInPlace(FieldVal, Info, This, CurFieldInit)) {
 | |
|       if (!Info.keepEvaluatingAfterFailure())
 | |
|         return false;
 | |
|       Success = false;
 | |
|     }
 | |
|     ++CaptureIt;
 | |
|   }
 | |
|   return Success;
 | |
| }
 | |
| 
 | |
| static bool EvaluateRecord(const Expr *E, const LValue &This,
 | |
|                            APValue &Result, EvalInfo &Info) {
 | |
|   assert(E->isRValue() && E->getType()->isRecordType() &&
 | |
|          "can't evaluate expression as a record rvalue");
 | |
|   return RecordExprEvaluator(Info, This, Result).Visit(E);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Temporary Evaluation
 | |
| //
 | |
| // Temporaries are represented in the AST as rvalues, but generally behave like
 | |
| // lvalues. The full-object of which the temporary is a subobject is implicitly
 | |
| // materialized so that a reference can bind to it.
 | |
| //===----------------------------------------------------------------------===//
 | |
| namespace {
 | |
| class TemporaryExprEvaluator
 | |
|   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
 | |
| public:
 | |
|   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
 | |
|     LValueExprEvaluatorBaseTy(Info, Result, false) {}
 | |
| 
 | |
|   /// Visit an expression which constructs the value of this temporary.
 | |
|   bool VisitConstructExpr(const Expr *E) {
 | |
|     APValue &Value =
 | |
|         Info.CurrentCall->createTemporary(E, E->getType(), false, Result);
 | |
|     return EvaluateInPlace(Value, Info, Result, E);
 | |
|   }
 | |
| 
 | |
|   bool VisitCastExpr(const CastExpr *E) {
 | |
|     switch (E->getCastKind()) {
 | |
|     default:
 | |
|       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
 | |
| 
 | |
|     case CK_ConstructorConversion:
 | |
|       return VisitConstructExpr(E->getSubExpr());
 | |
|     }
 | |
|   }
 | |
|   bool VisitInitListExpr(const InitListExpr *E) {
 | |
|     return VisitConstructExpr(E);
 | |
|   }
 | |
|   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
 | |
|     return VisitConstructExpr(E);
 | |
|   }
 | |
|   bool VisitCallExpr(const CallExpr *E) {
 | |
|     return VisitConstructExpr(E);
 | |
|   }
 | |
|   bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
 | |
|     return VisitConstructExpr(E);
 | |
|   }
 | |
|   bool VisitLambdaExpr(const LambdaExpr *E) {
 | |
|     return VisitConstructExpr(E);
 | |
|   }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Evaluate an expression of record type as a temporary.
 | |
| static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
 | |
|   assert(E->isRValue() && E->getType()->isRecordType());
 | |
|   return TemporaryExprEvaluator(Info, Result).Visit(E);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Vector Evaluation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   class VectorExprEvaluator
 | |
|   : public ExprEvaluatorBase<VectorExprEvaluator> {
 | |
|     APValue &Result;
 | |
|   public:
 | |
| 
 | |
|     VectorExprEvaluator(EvalInfo &info, APValue &Result)
 | |
|       : ExprEvaluatorBaseTy(info), Result(Result) {}
 | |
| 
 | |
|     bool Success(ArrayRef<APValue> V, const Expr *E) {
 | |
|       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
 | |
|       // FIXME: remove this APValue copy.
 | |
|       Result = APValue(V.data(), V.size());
 | |
|       return true;
 | |
|     }
 | |
|     bool Success(const APValue &V, const Expr *E) {
 | |
|       assert(V.isVector());
 | |
|       Result = V;
 | |
|       return true;
 | |
|     }
 | |
|     bool ZeroInitialization(const Expr *E);
 | |
| 
 | |
|     bool VisitUnaryReal(const UnaryOperator *E)
 | |
|       { return Visit(E->getSubExpr()); }
 | |
|     bool VisitCastExpr(const CastExpr* E);
 | |
|     bool VisitInitListExpr(const InitListExpr *E);
 | |
|     bool VisitUnaryImag(const UnaryOperator *E);
 | |
|     // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
 | |
|     //                 binary comparisons, binary and/or/xor,
 | |
|     //                 conditional operator (for GNU conditional select),
 | |
|     //                 shufflevector, ExtVectorElementExpr
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
 | |
|   assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
 | |
|   return VectorExprEvaluator(Info, Result).Visit(E);
 | |
| }
 | |
| 
 | |
| bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
 | |
|   const VectorType *VTy = E->getType()->castAs<VectorType>();
 | |
|   unsigned NElts = VTy->getNumElements();
 | |
| 
 | |
|   const Expr *SE = E->getSubExpr();
 | |
|   QualType SETy = SE->getType();
 | |
| 
 | |
|   switch (E->getCastKind()) {
 | |
|   case CK_VectorSplat: {
 | |
|     APValue Val = APValue();
 | |
|     if (SETy->isIntegerType()) {
 | |
|       APSInt IntResult;
 | |
|       if (!EvaluateInteger(SE, IntResult, Info))
 | |
|         return false;
 | |
|       Val = APValue(std::move(IntResult));
 | |
|     } else if (SETy->isRealFloatingType()) {
 | |
|       APFloat FloatResult(0.0);
 | |
|       if (!EvaluateFloat(SE, FloatResult, Info))
 | |
|         return false;
 | |
|       Val = APValue(std::move(FloatResult));
 | |
|     } else {
 | |
|       return Error(E);
 | |
|     }
 | |
| 
 | |
|     // Splat and create vector APValue.
 | |
|     SmallVector<APValue, 4> Elts(NElts, Val);
 | |
|     return Success(Elts, E);
 | |
|   }
 | |
|   case CK_BitCast: {
 | |
|     // Evaluate the operand into an APInt we can extract from.
 | |
|     llvm::APInt SValInt;
 | |
|     if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
 | |
|       return false;
 | |
|     // Extract the elements
 | |
|     QualType EltTy = VTy->getElementType();
 | |
|     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
 | |
|     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
 | |
|     SmallVector<APValue, 4> Elts;
 | |
|     if (EltTy->isRealFloatingType()) {
 | |
|       const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
 | |
|       unsigned FloatEltSize = EltSize;
 | |
|       if (&Sem == &APFloat::x87DoubleExtended())
 | |
|         FloatEltSize = 80;
 | |
|       for (unsigned i = 0; i < NElts; i++) {
 | |
|         llvm::APInt Elt;
 | |
|         if (BigEndian)
 | |
|           Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
 | |
|         else
 | |
|           Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
 | |
|         Elts.push_back(APValue(APFloat(Sem, Elt)));
 | |
|       }
 | |
|     } else if (EltTy->isIntegerType()) {
 | |
|       for (unsigned i = 0; i < NElts; i++) {
 | |
|         llvm::APInt Elt;
 | |
|         if (BigEndian)
 | |
|           Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
 | |
|         else
 | |
|           Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
 | |
|         Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
 | |
|       }
 | |
|     } else {
 | |
|       return Error(E);
 | |
|     }
 | |
|     return Success(Elts, E);
 | |
|   }
 | |
|   default:
 | |
|     return ExprEvaluatorBaseTy::VisitCastExpr(E);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool
 | |
| VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
 | |
|   const VectorType *VT = E->getType()->castAs<VectorType>();
 | |
|   unsigned NumInits = E->getNumInits();
 | |
|   unsigned NumElements = VT->getNumElements();
 | |
| 
 | |
|   QualType EltTy = VT->getElementType();
 | |
|   SmallVector<APValue, 4> Elements;
 | |
| 
 | |
|   // The number of initializers can be less than the number of
 | |
|   // vector elements. For OpenCL, this can be due to nested vector
 | |
|   // initialization. For GCC compatibility, missing trailing elements
 | |
|   // should be initialized with zeroes.
 | |
|   unsigned CountInits = 0, CountElts = 0;
 | |
|   while (CountElts < NumElements) {
 | |
|     // Handle nested vector initialization.
 | |
|     if (CountInits < NumInits
 | |
|         && E->getInit(CountInits)->getType()->isVectorType()) {
 | |
|       APValue v;
 | |
|       if (!EvaluateVector(E->getInit(CountInits), v, Info))
 | |
|         return Error(E);
 | |
|       unsigned vlen = v.getVectorLength();
 | |
|       for (unsigned j = 0; j < vlen; j++)
 | |
|         Elements.push_back(v.getVectorElt(j));
 | |
|       CountElts += vlen;
 | |
|     } else if (EltTy->isIntegerType()) {
 | |
|       llvm::APSInt sInt(32);
 | |
|       if (CountInits < NumInits) {
 | |
|         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
 | |
|           return false;
 | |
|       } else // trailing integer zero.
 | |
|         sInt = Info.Ctx.MakeIntValue(0, EltTy);
 | |
|       Elements.push_back(APValue(sInt));
 | |
|       CountElts++;
 | |
|     } else {
 | |
|       llvm::APFloat f(0.0);
 | |
|       if (CountInits < NumInits) {
 | |
|         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
 | |
|           return false;
 | |
|       } else // trailing float zero.
 | |
|         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
 | |
|       Elements.push_back(APValue(f));
 | |
|       CountElts++;
 | |
|     }
 | |
|     CountInits++;
 | |
|   }
 | |
|   return Success(Elements, E);
 | |
| }
 | |
| 
 | |
| bool
 | |
| VectorExprEvaluator::ZeroInitialization(const Expr *E) {
 | |
|   const auto *VT = E->getType()->castAs<VectorType>();
 | |
|   QualType EltTy = VT->getElementType();
 | |
|   APValue ZeroElement;
 | |
|   if (EltTy->isIntegerType())
 | |
|     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
 | |
|   else
 | |
|     ZeroElement =
 | |
|         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
 | |
| 
 | |
|   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
 | |
|   return Success(Elements, E);
 | |
| }
 | |
| 
 | |
| bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
 | |
|   VisitIgnoredValue(E->getSubExpr());
 | |
|   return ZeroInitialization(E);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Array Evaluation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   class ArrayExprEvaluator
 | |
|   : public ExprEvaluatorBase<ArrayExprEvaluator> {
 | |
|     const LValue &This;
 | |
|     APValue &Result;
 | |
|   public:
 | |
| 
 | |
|     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
 | |
|       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
 | |
| 
 | |
|     bool Success(const APValue &V, const Expr *E) {
 | |
|       assert(V.isArray() && "expected array");
 | |
|       Result = V;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     bool ZeroInitialization(const Expr *E) {
 | |
|       const ConstantArrayType *CAT =
 | |
|           Info.Ctx.getAsConstantArrayType(E->getType());
 | |
|       if (!CAT)
 | |
|         return Error(E);
 | |
| 
 | |
|       Result = APValue(APValue::UninitArray(), 0,
 | |
|                        CAT->getSize().getZExtValue());
 | |
|       if (!Result.hasArrayFiller()) return true;
 | |
| 
 | |
|       // Zero-initialize all elements.
 | |
|       LValue Subobject = This;
 | |
|       Subobject.addArray(Info, E, CAT);
 | |
|       ImplicitValueInitExpr VIE(CAT->getElementType());
 | |
|       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
 | |
|     }
 | |
| 
 | |
|     bool VisitCallExpr(const CallExpr *E) {
 | |
|       return handleCallExpr(E, Result, &This);
 | |
|     }
 | |
|     bool VisitInitListExpr(const InitListExpr *E,
 | |
|                            QualType AllocType = QualType());
 | |
|     bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
 | |
|     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
 | |
|     bool VisitCXXConstructExpr(const CXXConstructExpr *E,
 | |
|                                const LValue &Subobject,
 | |
|                                APValue *Value, QualType Type);
 | |
|     bool VisitStringLiteral(const StringLiteral *E,
 | |
|                             QualType AllocType = QualType()) {
 | |
|       expandStringLiteral(Info, E, Result, AllocType);
 | |
|       return true;
 | |
|     }
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static bool EvaluateArray(const Expr *E, const LValue &This,
 | |
|                           APValue &Result, EvalInfo &Info) {
 | |
|   assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
 | |
|   return ArrayExprEvaluator(Info, This, Result).Visit(E);
 | |
| }
 | |
| 
 | |
| static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
 | |
|                                      APValue &Result, const InitListExpr *ILE,
 | |
|                                      QualType AllocType) {
 | |
|   assert(ILE->isRValue() && ILE->getType()->isArrayType() &&
 | |
|          "not an array rvalue");
 | |
|   return ArrayExprEvaluator(Info, This, Result)
 | |
|       .VisitInitListExpr(ILE, AllocType);
 | |
| }
 | |
| 
 | |
| // Return true iff the given array filler may depend on the element index.
 | |
| static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
 | |
|   // For now, just whitelist non-class value-initialization and initialization
 | |
|   // lists comprised of them.
 | |
|   if (isa<ImplicitValueInitExpr>(FillerExpr))
 | |
|     return false;
 | |
|   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
 | |
|     for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
 | |
|       if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
 | |
|                                            QualType AllocType) {
 | |
|   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
 | |
|       AllocType.isNull() ? E->getType() : AllocType);
 | |
|   if (!CAT)
 | |
|     return Error(E);
 | |
| 
 | |
|   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
 | |
|   // an appropriately-typed string literal enclosed in braces.
 | |
|   if (E->isStringLiteralInit()) {
 | |
|     auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParens());
 | |
|     // FIXME: Support ObjCEncodeExpr here once we support it in
 | |
|     // ArrayExprEvaluator generally.
 | |
|     if (!SL)
 | |
|       return Error(E);
 | |
|     return VisitStringLiteral(SL, AllocType);
 | |
|   }
 | |
| 
 | |
|   bool Success = true;
 | |
| 
 | |
|   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
 | |
|          "zero-initialized array shouldn't have any initialized elts");
 | |
|   APValue Filler;
 | |
|   if (Result.isArray() && Result.hasArrayFiller())
 | |
|     Filler = Result.getArrayFiller();
 | |
| 
 | |
|   unsigned NumEltsToInit = E->getNumInits();
 | |
|   unsigned NumElts = CAT->getSize().getZExtValue();
 | |
|   const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
 | |
| 
 | |
|   // If the initializer might depend on the array index, run it for each
 | |
|   // array element.
 | |
|   if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr))
 | |
|     NumEltsToInit = NumElts;
 | |
| 
 | |
|   LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
 | |
|                           << NumEltsToInit << ".\n");
 | |
| 
 | |
|   Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
 | |
| 
 | |
|   // If the array was previously zero-initialized, preserve the
 | |
|   // zero-initialized values.
 | |
|   if (Filler.hasValue()) {
 | |
|     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
 | |
|       Result.getArrayInitializedElt(I) = Filler;
 | |
|     if (Result.hasArrayFiller())
 | |
|       Result.getArrayFiller() = Filler;
 | |
|   }
 | |
| 
 | |
|   LValue Subobject = This;
 | |
|   Subobject.addArray(Info, E, CAT);
 | |
|   for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
 | |
|     const Expr *Init =
 | |
|         Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
 | |
|     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
 | |
|                          Info, Subobject, Init) ||
 | |
|         !HandleLValueArrayAdjustment(Info, Init, Subobject,
 | |
|                                      CAT->getElementType(), 1)) {
 | |
|       if (!Info.noteFailure())
 | |
|         return false;
 | |
|       Success = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Result.hasArrayFiller())
 | |
|     return Success;
 | |
| 
 | |
|   // If we get here, we have a trivial filler, which we can just evaluate
 | |
|   // once and splat over the rest of the array elements.
 | |
|   assert(FillerExpr && "no array filler for incomplete init list");
 | |
|   return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
 | |
|                          FillerExpr) && Success;
 | |
| }
 | |
| 
 | |
| bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
 | |
|   LValue CommonLV;
 | |
|   if (E->getCommonExpr() &&
 | |
|       !Evaluate(Info.CurrentCall->createTemporary(
 | |
|                     E->getCommonExpr(),
 | |
|                     getStorageType(Info.Ctx, E->getCommonExpr()), false,
 | |
|                     CommonLV),
 | |
|                 Info, E->getCommonExpr()->getSourceExpr()))
 | |
|     return false;
 | |
| 
 | |
|   auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
 | |
| 
 | |
|   uint64_t Elements = CAT->getSize().getZExtValue();
 | |
|   Result = APValue(APValue::UninitArray(), Elements, Elements);
 | |
| 
 | |
|   LValue Subobject = This;
 | |
|   Subobject.addArray(Info, E, CAT);
 | |
| 
 | |
|   bool Success = true;
 | |
|   for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
 | |
|     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
 | |
|                          Info, Subobject, E->getSubExpr()) ||
 | |
|         !HandleLValueArrayAdjustment(Info, E, Subobject,
 | |
|                                      CAT->getElementType(), 1)) {
 | |
|       if (!Info.noteFailure())
 | |
|         return false;
 | |
|       Success = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Success;
 | |
| }
 | |
| 
 | |
| bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
 | |
|   return VisitCXXConstructExpr(E, This, &Result, E->getType());
 | |
| }
 | |
| 
 | |
| bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
 | |
|                                                const LValue &Subobject,
 | |
|                                                APValue *Value,
 | |
|                                                QualType Type) {
 | |
|   bool HadZeroInit = Value->hasValue();
 | |
| 
 | |
|   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
 | |
|     unsigned N = CAT->getSize().getZExtValue();
 | |
| 
 | |
|     // Preserve the array filler if we had prior zero-initialization.
 | |
|     APValue Filler =
 | |
|       HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
 | |
|                                              : APValue();
 | |
| 
 | |
|     *Value = APValue(APValue::UninitArray(), N, N);
 | |
| 
 | |
|     if (HadZeroInit)
 | |
|       for (unsigned I = 0; I != N; ++I)
 | |
|         Value->getArrayInitializedElt(I) = Filler;
 | |
| 
 | |
|     // Initialize the elements.
 | |
|     LValue ArrayElt = Subobject;
 | |
|     ArrayElt.addArray(Info, E, CAT);
 | |
|     for (unsigned I = 0; I != N; ++I)
 | |
|       if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
 | |
|                                  CAT->getElementType()) ||
 | |
|           !HandleLValueArrayAdjustment(Info, E, ArrayElt,
 | |
|                                        CAT->getElementType(), 1))
 | |
|         return false;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!Type->isRecordType())
 | |
|     return Error(E);
 | |
| 
 | |
|   return RecordExprEvaluator(Info, Subobject, *Value)
 | |
|              .VisitCXXConstructExpr(E, Type);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Integer Evaluation
 | |
| //
 | |
| // As a GNU extension, we support casting pointers to sufficiently-wide integer
 | |
| // types and back in constant folding. Integer values are thus represented
 | |
| // either as an integer-valued APValue, or as an lvalue-valued APValue.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class IntExprEvaluator
 | |
|         : public ExprEvaluatorBase<IntExprEvaluator> {
 | |
|   APValue &Result;
 | |
| public:
 | |
|   IntExprEvaluator(EvalInfo &info, APValue &result)
 | |
|       : ExprEvaluatorBaseTy(info), Result(result) {}
 | |
| 
 | |
|   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
 | |
|     assert(E->getType()->isIntegralOrEnumerationType() &&
 | |
|            "Invalid evaluation result.");
 | |
|     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
 | |
|            "Invalid evaluation result.");
 | |
|     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
 | |
|            "Invalid evaluation result.");
 | |
|     Result = APValue(SI);
 | |
|     return true;
 | |
|   }
 | |
|   bool Success(const llvm::APSInt &SI, const Expr *E) {
 | |
|     return Success(SI, E, Result);
 | |
|   }
 | |
| 
 | |
|   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
 | |
|     assert(E->getType()->isIntegralOrEnumerationType() &&
 | |
|            "Invalid evaluation result.");
 | |
|     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
 | |
|            "Invalid evaluation result.");
 | |
|     Result = APValue(APSInt(I));
 | |
|     Result.getInt().setIsUnsigned(
 | |
|                             E->getType()->isUnsignedIntegerOrEnumerationType());
 | |
|     return true;
 | |
|   }
 | |
|   bool Success(const llvm::APInt &I, const Expr *E) {
 | |
|     return Success(I, E, Result);
 | |
|   }
 | |
| 
 | |
|   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
 | |
|     assert(E->getType()->isIntegralOrEnumerationType() &&
 | |
|            "Invalid evaluation result.");
 | |
|     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
 | |
|     return true;
 | |
|   }
 | |
|   bool Success(uint64_t Value, const Expr *E) {
 | |
|     return Success(Value, E, Result);
 | |
|   }
 | |
| 
 | |
|   bool Success(CharUnits Size, const Expr *E) {
 | |
|     return Success(Size.getQuantity(), E);
 | |
|   }
 | |
| 
 | |
|   bool Success(const APValue &V, const Expr *E) {
 | |
|     if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
 | |
|       Result = V;
 | |
|       return true;
 | |
|     }
 | |
|     return Success(V.getInt(), E);
 | |
|   }
 | |
| 
 | |
|   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //                            Visitor Methods
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   bool VisitConstantExpr(const ConstantExpr *E);
 | |
| 
 | |
|   bool VisitIntegerLiteral(const IntegerLiteral *E) {
 | |
|     return Success(E->getValue(), E);
 | |
|   }
 | |
|   bool VisitCharacterLiteral(const CharacterLiteral *E) {
 | |
|     return Success(E->getValue(), E);
 | |
|   }
 | |
| 
 | |
|   bool CheckReferencedDecl(const Expr *E, const Decl *D);
 | |
|   bool VisitDeclRefExpr(const DeclRefExpr *E) {
 | |
|     if (CheckReferencedDecl(E, E->getDecl()))
 | |
|       return true;
 | |
| 
 | |
|     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
 | |
|   }
 | |
|   bool VisitMemberExpr(const MemberExpr *E) {
 | |
|     if (CheckReferencedDecl(E, E->getMemberDecl())) {
 | |
|       VisitIgnoredBaseExpression(E->getBase());
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
 | |
|   }
 | |
| 
 | |
|   bool VisitCallExpr(const CallExpr *E);
 | |
|   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
 | |
|   bool VisitBinaryOperator(const BinaryOperator *E);
 | |
|   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
 | |
|   bool VisitUnaryOperator(const UnaryOperator *E);
 | |
| 
 | |
|   bool VisitCastExpr(const CastExpr* E);
 | |
|   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
 | |
| 
 | |
|   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
 | |
|     return Success(E->getValue(), E);
 | |
|   }
 | |
| 
 | |
|   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
 | |
|     return Success(E->getValue(), E);
 | |
|   }
 | |
| 
 | |
|   bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
 | |
|     if (Info.ArrayInitIndex == uint64_t(-1)) {
 | |
|       // We were asked to evaluate this subexpression independent of the
 | |
|       // enclosing ArrayInitLoopExpr. We can't do that.
 | |
|       Info.FFDiag(E);
 | |
|       return false;
 | |
|     }
 | |
|     return Success(Info.ArrayInitIndex, E);
 | |
|   }
 | |
| 
 | |
|   // Note, GNU defines __null as an integer, not a pointer.
 | |
|   bool VisitGNUNullExpr(const GNUNullExpr *E) {
 | |
|     return ZeroInitialization(E);
 | |
|   }
 | |
| 
 | |
|   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
 | |
|     return Success(E->getValue(), E);
 | |
|   }
 | |
| 
 | |
|   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
 | |
|     return Success(E->getValue(), E);
 | |
|   }
 | |
| 
 | |
|   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
 | |
|     return Success(E->getValue(), E);
 | |
|   }
 | |
| 
 | |
|   bool VisitUnaryReal(const UnaryOperator *E);
 | |
|   bool VisitUnaryImag(const UnaryOperator *E);
 | |
| 
 | |
|   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
 | |
|   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
 | |
|   bool VisitSourceLocExpr(const SourceLocExpr *E);
 | |
|   bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E);
 | |
|   bool VisitRequiresExpr(const RequiresExpr *E);
 | |
|   // FIXME: Missing: array subscript of vector, member of vector
 | |
| };
 | |
| 
 | |
| class FixedPointExprEvaluator
 | |
|     : public ExprEvaluatorBase<FixedPointExprEvaluator> {
 | |
|   APValue &Result;
 | |
| 
 | |
|  public:
 | |
|   FixedPointExprEvaluator(EvalInfo &info, APValue &result)
 | |
|       : ExprEvaluatorBaseTy(info), Result(result) {}
 | |
| 
 | |
|   bool Success(const llvm::APInt &I, const Expr *E) {
 | |
|     return Success(
 | |
|         APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E);
 | |
|   }
 | |
| 
 | |
|   bool Success(uint64_t Value, const Expr *E) {
 | |
|     return Success(
 | |
|         APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E);
 | |
|   }
 | |
| 
 | |
|   bool Success(const APValue &V, const Expr *E) {
 | |
|     return Success(V.getFixedPoint(), E);
 | |
|   }
 | |
| 
 | |
|   bool Success(const APFixedPoint &V, const Expr *E) {
 | |
|     assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
 | |
|     assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
 | |
|            "Invalid evaluation result.");
 | |
|     Result = APValue(V);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //                            Visitor Methods
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
 | |
|     return Success(E->getValue(), E);
 | |
|   }
 | |
| 
 | |
|   bool VisitCastExpr(const CastExpr *E);
 | |
|   bool VisitUnaryOperator(const UnaryOperator *E);
 | |
|   bool VisitBinaryOperator(const BinaryOperator *E);
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
 | |
| /// produce either the integer value or a pointer.
 | |
| ///
 | |
| /// GCC has a heinous extension which folds casts between pointer types and
 | |
| /// pointer-sized integral types. We support this by allowing the evaluation of
 | |
| /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
 | |
| /// Some simple arithmetic on such values is supported (they are treated much
 | |
| /// like char*).
 | |
| static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
 | |
|                                     EvalInfo &Info) {
 | |
|   assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
 | |
|   return IntExprEvaluator(Info, Result).Visit(E);
 | |
| }
 | |
| 
 | |
| static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
 | |
|   APValue Val;
 | |
|   if (!EvaluateIntegerOrLValue(E, Val, Info))
 | |
|     return false;
 | |
|   if (!Val.isInt()) {
 | |
|     // FIXME: It would be better to produce the diagnostic for casting
 | |
|     //        a pointer to an integer.
 | |
|     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
 | |
|     return false;
 | |
|   }
 | |
|   Result = Val.getInt();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
 | |
|   APValue Evaluated = E->EvaluateInContext(
 | |
|       Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
 | |
|   return Success(Evaluated, E);
 | |
| }
 | |
| 
 | |
| static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
 | |
|                                EvalInfo &Info) {
 | |
|   if (E->getType()->isFixedPointType()) {
 | |
|     APValue Val;
 | |
|     if (!FixedPointExprEvaluator(Info, Val).Visit(E))
 | |
|       return false;
 | |
|     if (!Val.isFixedPoint())
 | |
|       return false;
 | |
| 
 | |
|     Result = Val.getFixedPoint();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
 | |
|                                         EvalInfo &Info) {
 | |
|   if (E->getType()->isIntegerType()) {
 | |
|     auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType());
 | |
|     APSInt Val;
 | |
|     if (!EvaluateInteger(E, Val, Info))
 | |
|       return false;
 | |
|     Result = APFixedPoint(Val, FXSema);
 | |
|     return true;
 | |
|   } else if (E->getType()->isFixedPointType()) {
 | |
|     return EvaluateFixedPoint(E, Result, Info);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Check whether the given declaration can be directly converted to an integral
 | |
| /// rvalue. If not, no diagnostic is produced; there are other things we can
 | |
| /// try.
 | |
| bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
 | |
|   // Enums are integer constant exprs.
 | |
|   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
 | |
|     // Check for signedness/width mismatches between E type and ECD value.
 | |
|     bool SameSign = (ECD->getInitVal().isSigned()
 | |
|                      == E->getType()->isSignedIntegerOrEnumerationType());
 | |
|     bool SameWidth = (ECD->getInitVal().getBitWidth()
 | |
|                       == Info.Ctx.getIntWidth(E->getType()));
 | |
|     if (SameSign && SameWidth)
 | |
|       return Success(ECD->getInitVal(), E);
 | |
|     else {
 | |
|       // Get rid of mismatch (otherwise Success assertions will fail)
 | |
|       // by computing a new value matching the type of E.
 | |
|       llvm::APSInt Val = ECD->getInitVal();
 | |
|       if (!SameSign)
 | |
|         Val.setIsSigned(!ECD->getInitVal().isSigned());
 | |
|       if (!SameWidth)
 | |
|         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
 | |
|       return Success(Val, E);
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Values returned by __builtin_classify_type, chosen to match the values
 | |
| /// produced by GCC's builtin.
 | |
| enum class GCCTypeClass {
 | |
|   None = -1,
 | |
|   Void = 0,
 | |
|   Integer = 1,
 | |
|   // GCC reserves 2 for character types, but instead classifies them as
 | |
|   // integers.
 | |
|   Enum = 3,
 | |
|   Bool = 4,
 | |
|   Pointer = 5,
 | |
|   // GCC reserves 6 for references, but appears to never use it (because
 | |
|   // expressions never have reference type, presumably).
 | |
|   PointerToDataMember = 7,
 | |
|   RealFloat = 8,
 | |
|   Complex = 9,
 | |
|   // GCC reserves 10 for functions, but does not use it since GCC version 6 due
 | |
|   // to decay to pointer. (Prior to version 6 it was only used in C++ mode).
 | |
|   // GCC claims to reserve 11 for pointers to member functions, but *actually*
 | |
|   // uses 12 for that purpose, same as for a class or struct. Maybe it
 | |
|   // internally implements a pointer to member as a struct?  Who knows.
 | |
|   PointerToMemberFunction = 12, // Not a bug, see above.
 | |
|   ClassOrStruct = 12,
 | |
|   Union = 13,
 | |
|   // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to
 | |
|   // decay to pointer. (Prior to version 6 it was only used in C++ mode).
 | |
|   // GCC reserves 15 for strings, but actually uses 5 (pointer) for string
 | |
|   // literals.
 | |
| };
 | |
| 
 | |
| /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
 | |
| /// as GCC.
 | |
| static GCCTypeClass
 | |
| EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) {
 | |
|   assert(!T->isDependentType() && "unexpected dependent type");
 | |
| 
 | |
|   QualType CanTy = T.getCanonicalType();
 | |
|   const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy);
 | |
| 
 | |
|   switch (CanTy->getTypeClass()) {
 | |
| #define TYPE(ID, BASE)
 | |
| #define DEPENDENT_TYPE(ID, BASE) case Type::ID:
 | |
| #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
 | |
| #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
 | |
| #include "clang/AST/TypeNodes.inc"
 | |
|   case Type::Auto:
 | |
|   case Type::DeducedTemplateSpecialization:
 | |
|       llvm_unreachable("unexpected non-canonical or dependent type");
 | |
| 
 | |
|   case Type::Builtin:
 | |
|     switch (BT->getKind()) {
 | |
| #define BUILTIN_TYPE(ID, SINGLETON_ID)
 | |
| #define SIGNED_TYPE(ID, SINGLETON_ID) \
 | |
|     case BuiltinType::ID: return GCCTypeClass::Integer;
 | |
| #define FLOATING_TYPE(ID, SINGLETON_ID) \
 | |
|     case BuiltinType::ID: return GCCTypeClass::RealFloat;
 | |
| #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
 | |
|     case BuiltinType::ID: break;
 | |
| #include "clang/AST/BuiltinTypes.def"
 | |
|     case BuiltinType::Void:
 | |
|       return GCCTypeClass::Void;
 | |
| 
 | |
|     case BuiltinType::Bool:
 | |
|       return GCCTypeClass::Bool;
 | |
| 
 | |
|     case BuiltinType::Char_U:
 | |
|     case BuiltinType::UChar:
 | |
|     case BuiltinType::WChar_U:
 | |
|     case BuiltinType::Char8:
 | |
|     case BuiltinType::Char16:
 | |
|     case BuiltinType::Char32:
 | |
|     case BuiltinType::UShort:
 | |
|     case BuiltinType::UInt:
 | |
|     case BuiltinType::ULong:
 | |
|     case BuiltinType::ULongLong:
 | |
|     case BuiltinType::UInt128:
 | |
|       return GCCTypeClass::Integer;
 | |
| 
 | |
|     case BuiltinType::UShortAccum:
 | |
|     case BuiltinType::UAccum:
 | |
|     case BuiltinType::ULongAccum:
 | |
|     case BuiltinType::UShortFract:
 | |
|     case BuiltinType::UFract:
 | |
|     case BuiltinType::ULongFract:
 | |
|     case BuiltinType::SatUShortAccum:
 | |
|     case BuiltinType::SatUAccum:
 | |
|     case BuiltinType::SatULongAccum:
 | |
|     case BuiltinType::SatUShortFract:
 | |
|     case BuiltinType::SatUFract:
 | |
|     case BuiltinType::SatULongFract:
 | |
|       return GCCTypeClass::None;
 | |
| 
 | |
|     case BuiltinType::NullPtr:
 | |
| 
 | |
|     case BuiltinType::ObjCId:
 | |
|     case BuiltinType::ObjCClass:
 | |
|     case BuiltinType::ObjCSel:
 | |
| #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
 | |
|     case BuiltinType::Id:
 | |
| #include "clang/Basic/OpenCLImageTypes.def"
 | |
| #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
 | |
|     case BuiltinType::Id:
 | |
| #include "clang/Basic/OpenCLExtensionTypes.def"
 | |
|     case BuiltinType::OCLSampler:
 | |
|     case BuiltinType::OCLEvent:
 | |
|     case BuiltinType::OCLClkEvent:
 | |
|     case BuiltinType::OCLQueue:
 | |
|     case BuiltinType::OCLReserveID:
 | |
| #define SVE_TYPE(Name, Id, SingletonId) \
 | |
|     case BuiltinType::Id:
 | |
| #include "clang/Basic/AArch64SVEACLETypes.def"
 | |
|       return GCCTypeClass::None;
 | |
| 
 | |
|     case BuiltinType::Dependent:
 | |
|       llvm_unreachable("unexpected dependent type");
 | |
|     };
 | |
|     llvm_unreachable("unexpected placeholder type");
 | |
| 
 | |
|   case Type::Enum:
 | |
|     return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
 | |
| 
 | |
|   case Type::Pointer:
 | |
|   case Type::ConstantArray:
 | |
|   case Type::VariableArray:
 | |
|   case Type::IncompleteArray:
 | |
|   case Type::FunctionNoProto:
 | |
|   case Type::FunctionProto:
 | |
|     return GCCTypeClass::Pointer;
 | |
| 
 | |
|   case Type::MemberPointer:
 | |
|     return CanTy->isMemberDataPointerType()
 | |
|                ? GCCTypeClass::PointerToDataMember
 | |
|                : GCCTypeClass::PointerToMemberFunction;
 | |
| 
 | |
|   case Type::Complex:
 | |
|     return GCCTypeClass::Complex;
 | |
| 
 | |
|   case Type::Record:
 | |
|     return CanTy->isUnionType() ? GCCTypeClass::Union
 | |
|                                 : GCCTypeClass::ClassOrStruct;
 | |
| 
 | |
|   case Type::Atomic:
 | |
|     // GCC classifies _Atomic T the same as T.
 | |
|     return EvaluateBuiltinClassifyType(
 | |
|         CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
 | |
| 
 | |
|   case Type::BlockPointer:
 | |
|   case Type::Vector:
 | |
|   case Type::ExtVector:
 | |
|   case Type::ObjCObject:
 | |
|   case Type::ObjCInterface:
 | |
|   case Type::ObjCObjectPointer:
 | |
|   case Type::Pipe:
 | |
|     // GCC classifies vectors as None. We follow its lead and classify all
 | |
|     // other types that don't fit into the regular classification the same way.
 | |
|     return GCCTypeClass::None;
 | |
| 
 | |
|   case Type::LValueReference:
 | |
|   case Type::RValueReference:
 | |
|     llvm_unreachable("invalid type for expression");
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unexpected type class");
 | |
| }
 | |
| 
 | |
| /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
 | |
| /// as GCC.
 | |
| static GCCTypeClass
 | |
| EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
 | |
|   // If no argument was supplied, default to None. This isn't
 | |
|   // ideal, however it is what gcc does.
 | |
|   if (E->getNumArgs() == 0)
 | |
|     return GCCTypeClass::None;
 | |
| 
 | |
|   // FIXME: Bizarrely, GCC treats a call with more than one argument as not
 | |
|   // being an ICE, but still folds it to a constant using the type of the first
 | |
|   // argument.
 | |
|   return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts);
 | |
| }
 | |
| 
 | |
| /// EvaluateBuiltinConstantPForLValue - Determine the result of
 | |
| /// __builtin_constant_p when applied to the given pointer.
 | |
| ///
 | |
| /// A pointer is only "constant" if it is null (or a pointer cast to integer)
 | |
| /// or it points to the first character of a string literal.
 | |
| static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
 | |
|   APValue::LValueBase Base = LV.getLValueBase();
 | |
|   if (Base.isNull()) {
 | |
|     // A null base is acceptable.
 | |
|     return true;
 | |
|   } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
 | |
|     if (!isa<StringLiteral>(E))
 | |
|       return false;
 | |
|     return LV.getLValueOffset().isZero();
 | |
|   } else if (Base.is<TypeInfoLValue>()) {
 | |
|     // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
 | |
|     // evaluate to true.
 | |
|     return true;
 | |
|   } else {
 | |
|     // Any other base is not constant enough for GCC.
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
 | |
| /// GCC as we can manage.
 | |
| static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
 | |
|   // This evaluation is not permitted to have side-effects, so evaluate it in
 | |
|   // a speculative evaluation context.
 | |
|   SpeculativeEvaluationRAII SpeculativeEval(Info);
 | |
| 
 | |
|   // Constant-folding is always enabled for the operand of __builtin_constant_p
 | |
|   // (even when the enclosing evaluation context otherwise requires a strict
 | |
|   // language-specific constant expression).
 | |
|   FoldConstant Fold(Info, true);
 | |
| 
 | |
|   QualType ArgType = Arg->getType();
 | |
| 
 | |
|   // __builtin_constant_p always has one operand. The rules which gcc follows
 | |
|   // are not precisely documented, but are as follows:
 | |
|   //
 | |
|   //  - If the operand is of integral, floating, complex or enumeration type,
 | |
|   //    and can be folded to a known value of that type, it returns 1.
 | |
|   //  - If the operand can be folded to a pointer to the first character
 | |
|   //    of a string literal (or such a pointer cast to an integral type)
 | |
|   //    or to a null pointer or an integer cast to a pointer, it returns 1.
 | |
|   //
 | |
|   // Otherwise, it returns 0.
 | |
|   //
 | |
|   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
 | |
|   // its support for this did not work prior to GCC 9 and is not yet well
 | |
|   // understood.
 | |
|   if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
 | |
|       ArgType->isAnyComplexType() || ArgType->isPointerType() ||
 | |
|       ArgType->isNullPtrType()) {
 | |
|     APValue V;
 | |
|     if (!::EvaluateAsRValue(Info, Arg, V)) {
 | |
|       Fold.keepDiagnostics();
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // For a pointer (possibly cast to integer), there are special rules.
 | |
|     if (V.getKind() == APValue::LValue)
 | |
|       return EvaluateBuiltinConstantPForLValue(V);
 | |
| 
 | |
|     // Otherwise, any constant value is good enough.
 | |
|     return V.hasValue();
 | |
|   }
 | |
| 
 | |
|   // Anything else isn't considered to be sufficiently constant.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Retrieves the "underlying object type" of the given expression,
 | |
| /// as used by __builtin_object_size.
 | |
| static QualType getObjectType(APValue::LValueBase B) {
 | |
|   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
 | |
|     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
 | |
|       return VD->getType();
 | |
|   } else if (const Expr *E = B.dyn_cast<const Expr*>()) {
 | |
|     if (isa<CompoundLiteralExpr>(E))
 | |
|       return E->getType();
 | |
|   } else if (B.is<TypeInfoLValue>()) {
 | |
|     return B.getTypeInfoType();
 | |
|   } else if (B.is<DynamicAllocLValue>()) {
 | |
|     return B.getDynamicAllocType();
 | |
|   }
 | |
| 
 | |
|   return QualType();
 | |
| }
 | |
| 
 | |
| /// A more selective version of E->IgnoreParenCasts for
 | |
| /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
 | |
| /// to change the type of E.
 | |
| /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
 | |
| ///
 | |
| /// Always returns an RValue with a pointer representation.
 | |
| static const Expr *ignorePointerCastsAndParens(const Expr *E) {
 | |
|   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
 | |
| 
 | |
|   auto *NoParens = E->IgnoreParens();
 | |
|   auto *Cast = dyn_cast<CastExpr>(NoParens);
 | |
|   if (Cast == nullptr)
 | |
|     return NoParens;
 | |
| 
 | |
|   // We only conservatively allow a few kinds of casts, because this code is
 | |
|   // inherently a simple solution that seeks to support the common case.
 | |
|   auto CastKind = Cast->getCastKind();
 | |
|   if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
 | |
|       CastKind != CK_AddressSpaceConversion)
 | |
|     return NoParens;
 | |
| 
 | |
|   auto *SubExpr = Cast->getSubExpr();
 | |
|   if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue())
 | |
|     return NoParens;
 | |
|   return ignorePointerCastsAndParens(SubExpr);
 | |
| }
 | |
| 
 | |
| /// Checks to see if the given LValue's Designator is at the end of the LValue's
 | |
| /// record layout. e.g.
 | |
| ///   struct { struct { int a, b; } fst, snd; } obj;
 | |
| ///   obj.fst   // no
 | |
| ///   obj.snd   // yes
 | |
| ///   obj.fst.a // no
 | |
| ///   obj.fst.b // no
 | |
| ///   obj.snd.a // no
 | |
| ///   obj.snd.b // yes
 | |
| ///
 | |
| /// Please note: this function is specialized for how __builtin_object_size
 | |
| /// views "objects".
 | |
| ///
 | |
| /// If this encounters an invalid RecordDecl or otherwise cannot determine the
 | |
| /// correct result, it will always return true.
 | |
| static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
 | |
|   assert(!LVal.Designator.Invalid);
 | |
| 
 | |
|   auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
 | |
|     const RecordDecl *Parent = FD->getParent();
 | |
|     Invalid = Parent->isInvalidDecl();
 | |
|     if (Invalid || Parent->isUnion())
 | |
|       return true;
 | |
|     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
 | |
|     return FD->getFieldIndex() + 1 == Layout.getFieldCount();
 | |
|   };
 | |
| 
 | |
|   auto &Base = LVal.getLValueBase();
 | |
|   if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
 | |
|     if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
 | |
|       bool Invalid;
 | |
|       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
 | |
|         return Invalid;
 | |
|     } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
 | |
|       for (auto *FD : IFD->chain()) {
 | |
|         bool Invalid;
 | |
|         if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
 | |
|           return Invalid;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned I = 0;
 | |
|   QualType BaseType = getType(Base);
 | |
|   if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
 | |
|     // If we don't know the array bound, conservatively assume we're looking at
 | |
|     // the final array element.
 | |
|     ++I;
 | |
|     if (BaseType->isIncompleteArrayType())
 | |
|       BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
 | |
|     else
 | |
|       BaseType = BaseType->castAs<PointerType>()->getPointeeType();
 | |
|   }
 | |
| 
 | |
|   for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
 | |
|     const auto &Entry = LVal.Designator.Entries[I];
 | |
|     if (BaseType->isArrayType()) {
 | |
|       // Because __builtin_object_size treats arrays as objects, we can ignore
 | |
|       // the index iff this is the last array in the Designator.
 | |
|       if (I + 1 == E)
 | |
|         return true;
 | |
|       const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
 | |
|       uint64_t Index = Entry.getAsArrayIndex();
 | |
|       if (Index + 1 != CAT->getSize())
 | |
|         return false;
 | |
|       BaseType = CAT->getElementType();
 | |
|     } else if (BaseType->isAnyComplexType()) {
 | |
|       const auto *CT = BaseType->castAs<ComplexType>();
 | |
|       uint64_t Index = Entry.getAsArrayIndex();
 | |
|       if (Index != 1)
 | |
|         return false;
 | |
|       BaseType = CT->getElementType();
 | |
|     } else if (auto *FD = getAsField(Entry)) {
 | |
|       bool Invalid;
 | |
|       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
 | |
|         return Invalid;
 | |
|       BaseType = FD->getType();
 | |
|     } else {
 | |
|       assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Tests to see if the LValue has a user-specified designator (that isn't
 | |
| /// necessarily valid). Note that this always returns 'true' if the LValue has
 | |
| /// an unsized array as its first designator entry, because there's currently no
 | |
| /// way to tell if the user typed *foo or foo[0].
 | |
| static bool refersToCompleteObject(const LValue &LVal) {
 | |
|   if (LVal.Designator.Invalid)
 | |
|     return false;
 | |
| 
 | |
|   if (!LVal.Designator.Entries.empty())
 | |
|     return LVal.Designator.isMostDerivedAnUnsizedArray();
 | |
| 
 | |
|   if (!LVal.InvalidBase)
 | |
|     return true;
 | |
| 
 | |
|   // If `E` is a MemberExpr, then the first part of the designator is hiding in
 | |
|   // the LValueBase.
 | |
|   const auto *E = LVal.Base.dyn_cast<const Expr *>();
 | |
|   return !E || !isa<MemberExpr>(E);
 | |
| }
 | |
| 
 | |
| /// Attempts to detect a user writing into a piece of memory that's impossible
 | |
| /// to figure out the size of by just using types.
 | |
| static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
 | |
|   const SubobjectDesignator &Designator = LVal.Designator;
 | |
|   // Notes:
 | |
|   // - Users can only write off of the end when we have an invalid base. Invalid
 | |
|   //   bases imply we don't know where the memory came from.
 | |
|   // - We used to be a bit more aggressive here; we'd only be conservative if
 | |
|   //   the array at the end was flexible, or if it had 0 or 1 elements. This
 | |
|   //   broke some common standard library extensions (PR30346), but was
 | |
|   //   otherwise seemingly fine. It may be useful to reintroduce this behavior
 | |
|   //   with some sort of whitelist. OTOH, it seems that GCC is always
 | |
|   //   conservative with the last element in structs (if it's an array), so our
 | |
|   //   current behavior is more compatible than a whitelisting approach would
 | |
|   //   be.
 | |
|   return LVal.InvalidBase &&
 | |
|          Designator.Entries.size() == Designator.MostDerivedPathLength &&
 | |
|          Designator.MostDerivedIsArrayElement &&
 | |
|          isDesignatorAtObjectEnd(Ctx, LVal);
 | |
| }
 | |
| 
 | |
| /// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
 | |
| /// Fails if the conversion would cause loss of precision.
 | |
| static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
 | |
|                                             CharUnits &Result) {
 | |
|   auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
 | |
|   if (Int.ugt(CharUnitsMax))
 | |
|     return false;
 | |
|   Result = CharUnits::fromQuantity(Int.getZExtValue());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
 | |
| /// determine how many bytes exist from the beginning of the object to either
 | |
| /// the end of the current subobject, or the end of the object itself, depending
 | |
| /// on what the LValue looks like + the value of Type.
 | |
| ///
 | |
| /// If this returns false, the value of Result is undefined.
 | |
| static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
 | |
|                                unsigned Type, const LValue &LVal,
 | |
|                                CharUnits &EndOffset) {
 | |
|   bool DetermineForCompleteObject = refersToCompleteObject(LVal);
 | |
| 
 | |
|   auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
 | |
|     if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
 | |
|       return false;
 | |
|     return HandleSizeof(Info, ExprLoc, Ty, Result);
 | |
|   };
 | |
| 
 | |
|   // We want to evaluate the size of the entire object. This is a valid fallback
 | |
|   // for when Type=1 and the designator is invalid, because we're asked for an
 | |
|   // upper-bound.
 | |
|   if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
 | |
|     // Type=3 wants a lower bound, so we can't fall back to this.
 | |
|     if (Type == 3 && !DetermineForCompleteObject)
 | |
|       return false;
 | |
| 
 | |
|     llvm::APInt APEndOffset;
 | |
|     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
 | |
|         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
 | |
|       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
 | |
| 
 | |
|     if (LVal.InvalidBase)
 | |
|       return false;
 | |
| 
 | |
|     QualType BaseTy = getObjectType(LVal.getLValueBase());
 | |
|     return CheckedHandleSizeof(BaseTy, EndOffset);
 | |
|   }
 | |
| 
 | |
|   // We want to evaluate the size of a subobject.
 | |
|   const SubobjectDesignator &Designator = LVal.Designator;
 | |
| 
 | |
|   // The following is a moderately common idiom in C:
 | |
|   //
 | |
|   // struct Foo { int a; char c[1]; };
 | |
|   // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
 | |
|   // strcpy(&F->c[0], Bar);
 | |
|   //
 | |
|   // In order to not break too much legacy code, we need to support it.
 | |
|   if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
 | |
|     // If we can resolve this to an alloc_size call, we can hand that back,
 | |
|     // because we know for certain how many bytes there are to write to.
 | |
|     llvm::APInt APEndOffset;
 | |
|     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
 | |
|         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
 | |
|       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
 | |
| 
 | |
|     // If we cannot determine the size of the initial allocation, then we can't
 | |
|     // given an accurate upper-bound. However, we are still able to give
 | |
|     // conservative lower-bounds for Type=3.
 | |
|     if (Type == 1)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   CharUnits BytesPerElem;
 | |
|   if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
 | |
|     return false;
 | |
| 
 | |
|   // According to the GCC documentation, we want the size of the subobject
 | |
|   // denoted by the pointer. But that's not quite right -- what we actually
 | |
|   // want is the size of the immediately-enclosing array, if there is one.
 | |
|   int64_t ElemsRemaining;
 | |
|   if (Designator.MostDerivedIsArrayElement &&
 | |
|       Designator.Entries.size() == Designator.MostDerivedPathLength) {
 | |
|     uint64_t ArraySize = Designator.getMostDerivedArraySize();
 | |
|     uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
 | |
|     ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
 | |
|   } else {
 | |
|     ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
 | |
|   }
 | |
| 
 | |
|   EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Tries to evaluate the __builtin_object_size for @p E. If successful,
 | |
| /// returns true and stores the result in @p Size.
 | |
| ///
 | |
| /// If @p WasError is non-null, this will report whether the failure to evaluate
 | |
| /// is to be treated as an Error in IntExprEvaluator.
 | |
| static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
 | |
|                                          EvalInfo &Info, uint64_t &Size) {
 | |
|   // Determine the denoted object.
 | |
|   LValue LVal;
 | |
|   {
 | |
|     // The operand of __builtin_object_size is never evaluated for side-effects.
 | |
|     // If there are any, but we can determine the pointed-to object anyway, then
 | |
|     // ignore the side-effects.
 | |
|     SpeculativeEvaluationRAII SpeculativeEval(Info);
 | |
|     IgnoreSideEffectsRAII Fold(Info);
 | |
| 
 | |
|     if (E->isGLValue()) {
 | |
|       // It's possible for us to be given GLValues if we're called via
 | |
|       // Expr::tryEvaluateObjectSize.
 | |
|       APValue RVal;
 | |
|       if (!EvaluateAsRValue(Info, E, RVal))
 | |
|         return false;
 | |
|       LVal.setFrom(Info.Ctx, RVal);
 | |
|     } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
 | |
|                                 /*InvalidBaseOK=*/true))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // If we point to before the start of the object, there are no accessible
 | |
|   // bytes.
 | |
|   if (LVal.getLValueOffset().isNegative()) {
 | |
|     Size = 0;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   CharUnits EndOffset;
 | |
|   if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
 | |
|     return false;
 | |
| 
 | |
|   // If we've fallen outside of the end offset, just pretend there's nothing to
 | |
|   // write to/read from.
 | |
|   if (EndOffset <= LVal.getLValueOffset())
 | |
|     Size = 0;
 | |
|   else
 | |
|     Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool IntExprEvaluator::VisitConstantExpr(const ConstantExpr *E) {
 | |
|   llvm::SaveAndRestore<bool> InConstantContext(Info.InConstantContext, true);
 | |
|   if (E->getResultAPValueKind() != APValue::None)
 | |
|     return Success(E->getAPValueResult(), E);
 | |
|   return ExprEvaluatorBaseTy::VisitConstantExpr(E);
 | |
| }
 | |
| 
 | |
| bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
 | |
|   if (unsigned BuiltinOp = E->getBuiltinCallee())
 | |
|     return VisitBuiltinCallExpr(E, BuiltinOp);
 | |
| 
 | |
|   return ExprEvaluatorBaseTy::VisitCallExpr(E);
 | |
| }
 | |
| 
 | |
| static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info,
 | |
|                                      APValue &Val, APSInt &Alignment) {
 | |
|   QualType SrcTy = E->getArg(0)->getType();
 | |
|   if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment))
 | |
|     return false;
 | |
|   // Even though we are evaluating integer expressions we could get a pointer
 | |
|   // argument for the __builtin_is_aligned() case.
 | |
|   if (SrcTy->isPointerType()) {
 | |
|     LValue Ptr;
 | |
|     if (!EvaluatePointer(E->getArg(0), Ptr, Info))
 | |
|       return false;
 | |
|     Ptr.moveInto(Val);
 | |
|   } else if (!SrcTy->isIntegralOrEnumerationType()) {
 | |
|     Info.FFDiag(E->getArg(0));
 | |
|     return false;
 | |
|   } else {
 | |
|     APSInt SrcInt;
 | |
|     if (!EvaluateInteger(E->getArg(0), SrcInt, Info))
 | |
|       return false;
 | |
|     assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() &&
 | |
|            "Bit widths must be the same");
 | |
|     Val = APValue(SrcInt);
 | |
|   }
 | |
|   assert(Val.hasValue());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
 | |
|                                             unsigned BuiltinOp) {
 | |
|   switch (BuiltinOp) {
 | |
|   default:
 | |
|     return ExprEvaluatorBaseTy::VisitCallExpr(E);
 | |
| 
 | |
|   case Builtin::BI__builtin_dynamic_object_size:
 | |
|   case Builtin::BI__builtin_object_size: {
 | |
|     // The type was checked when we built the expression.
 | |
|     unsigned Type =
 | |
|         E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
 | |
|     assert(Type <= 3 && "unexpected type");
 | |
| 
 | |
|     uint64_t Size;
 | |
|     if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
 | |
|       return Success(Size, E);
 | |
| 
 | |
|     if (E->getArg(0)->HasSideEffects(Info.Ctx))
 | |
|       return Success((Type & 2) ? 0 : -1, E);
 | |
| 
 | |
|     // Expression had no side effects, but we couldn't statically determine the
 | |
|     // size of the referenced object.
 | |
|     switch (Info.EvalMode) {
 | |
|     case EvalInfo::EM_ConstantExpression:
 | |
|     case EvalInfo::EM_ConstantFold:
 | |
|     case EvalInfo::EM_IgnoreSideEffects:
 | |
|       // Leave it to IR generation.
 | |
|       return Error(E);
 | |
|     case EvalInfo::EM_ConstantExpressionUnevaluated:
 | |
|       // Reduce it to a constant now.
 | |
|       return Success((Type & 2) ? 0 : -1, E);
 | |
|     }
 | |
| 
 | |
|     llvm_unreachable("unexpected EvalMode");
 | |
|   }
 | |
| 
 | |
|   case Builtin::BI__builtin_os_log_format_buffer_size: {
 | |
|     analyze_os_log::OSLogBufferLayout Layout;
 | |
|     analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout);
 | |
|     return Success(Layout.size().getQuantity(), E);
 | |
|   }
 | |
| 
 | |
|   case Builtin::BI__builtin_is_aligned: {
 | |
|     APValue Src;
 | |
|     APSInt Alignment;
 | |
|     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
 | |
|       return false;
 | |
|     if (Src.isLValue()) {
 | |
|       // If we evaluated a pointer, check the minimum known alignment.
 | |
|       LValue Ptr;
 | |
|       Ptr.setFrom(Info.Ctx, Src);
 | |
|       CharUnits BaseAlignment = getBaseAlignment(Info, Ptr);
 | |
|       CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset);
 | |
|       // We can return true if the known alignment at the computed offset is
 | |
|       // greater than the requested alignment.
 | |
|       assert(PtrAlign.isPowerOfTwo());
 | |
|       assert(Alignment.isPowerOf2());
 | |
|       if (PtrAlign.getQuantity() >= Alignment)
 | |
|         return Success(1, E);
 | |
|       // If the alignment is not known to be sufficient, some cases could still
 | |
|       // be aligned at run time. However, if the requested alignment is less or
 | |
|       // equal to the base alignment and the offset is not aligned, we know that
 | |
|       // the run-time value can never be aligned.
 | |
|       if (BaseAlignment.getQuantity() >= Alignment &&
 | |
|           PtrAlign.getQuantity() < Alignment)
 | |
|         return Success(0, E);
 | |
|       // Otherwise we can't infer whether the value is sufficiently aligned.
 | |
|       // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N)
 | |
|       //  in cases where we can't fully evaluate the pointer.
 | |
|       Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute)
 | |
|           << Alignment;
 | |
|       return false;
 | |
|     }
 | |
|     assert(Src.isInt());
 | |
|     return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E);
 | |
|   }
 | |
|   case Builtin::BI__builtin_align_up: {
 | |
|     APValue Src;
 | |
|     APSInt Alignment;
 | |
|     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
 | |
|       return false;
 | |
|     if (!Src.isInt())
 | |
|       return Error(E);
 | |
|     APSInt AlignedVal =
 | |
|         APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1),
 | |
|                Src.getInt().isUnsigned());
 | |
|     assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
 | |
|     return Success(AlignedVal, E);
 | |
|   }
 | |
|   case Builtin::BI__builtin_align_down: {
 | |
|     APValue Src;
 | |
|     APSInt Alignment;
 | |
|     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
 | |
|       return false;
 | |
|     if (!Src.isInt())
 | |
|       return Error(E);
 | |
|     APSInt AlignedVal =
 | |
|         APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned());
 | |
|     assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
 | |
|     return Success(AlignedVal, E);
 | |
|   }
 | |
| 
 | |
|   case Builtin::BI__builtin_bswap16:
 | |
|   case Builtin::BI__builtin_bswap32:
 | |
|   case Builtin::BI__builtin_bswap64: {
 | |
|     APSInt Val;
 | |
|     if (!EvaluateInteger(E->getArg(0), Val, Info))
 | |
|       return false;
 | |
| 
 | |
|     return Success(Val.byteSwap(), E);
 | |
|   }
 | |
| 
 | |
|   case Builtin::BI__builtin_classify_type:
 | |
|     return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
 | |
| 
 | |
|   case Builtin::BI__builtin_clrsb:
 | |
|   case Builtin::BI__builtin_clrsbl:
 | |
|   case Builtin::BI__builtin_clrsbll: {
 | |
|     APSInt Val;
 | |
|     if (!EvaluateInteger(E->getArg(0), Val, Info))
 | |
|       return false;
 | |
| 
 | |
|     return Success(Val.getBitWidth() - Val.getMinSignedBits(), E);
 | |
|   }
 | |
| 
 | |
|   case Builtin::BI__builtin_clz:
 | |
|   case Builtin::BI__builtin_clzl:
 | |
|   case Builtin::BI__builtin_clzll:
 | |
|   case Builtin::BI__builtin_clzs: {
 | |
|     APSInt Val;
 | |
|     if (!EvaluateInteger(E->getArg(0), Val, Info))
 | |
|       return false;
 | |
|     if (!Val)
 | |
|       return Error(E);
 | |
| 
 | |
|     return Success(Val.countLeadingZeros(), E);
 | |
|   }
 | |
| 
 | |
|   case Builtin::BI__builtin_constant_p: {
 | |
|     const Expr *Arg = E->getArg(0);
 | |
|     if (EvaluateBuiltinConstantP(Info, Arg))
 | |
|       return Success(true, E);
 | |
|     if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) {
 | |
|       // Outside a constant context, eagerly evaluate to false in the presence
 | |
|       // of side-effects in order to avoid -Wunsequenced false-positives in
 | |
|       // a branch on __builtin_constant_p(expr).
 | |
|       return Success(false, E);
 | |
|     }
 | |
|     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   case Builtin::BI__builtin_is_constant_evaluated: {
 | |
|     const auto *Callee = Info.CurrentCall->getCallee();
 | |
|     if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression &&
 | |
|         (Info.CallStackDepth == 1 ||
 | |
|          (Info.CallStackDepth == 2 && Callee->isInStdNamespace() &&
 | |
|           Callee->getIdentifier() &&
 | |
|           Callee->getIdentifier()->isStr("is_constant_evaluated")))) {
 | |
|       // FIXME: Find a better way to avoid duplicated diagnostics.
 | |
|       if (Info.EvalStatus.Diag)
 | |
|         Info.report((Info.CallStackDepth == 1) ? E->getExprLoc()
 | |
|                                                : Info.CurrentCall->CallLoc,
 | |
|                     diag::warn_is_constant_evaluated_always_true_constexpr)
 | |
|             << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated"
 | |
|                                          : "std::is_constant_evaluated");
 | |
|     }
 | |
| 
 | |
|     return Success(Info.InConstantContext, E);
 | |
|   }
 | |
| 
 | |
|   case Builtin::BI__builtin_ctz:
 | |
|   case Builtin::BI__builtin_ctzl:
 | |
|   case Builtin::BI__builtin_ctzll:
 | |
|   case Builtin::BI__builtin_ctzs: {
 | |
|     APSInt Val;
 | |
|     if (!EvaluateInteger(E->getArg(0), Val, Info))
 | |
|       return false;
 | |
|     if (!Val)
 | |
|       return Error(E);
 | |
| 
 | |
|     return Success(Val.countTrailingZeros(), E);
 | |
|   }
 | |
| 
 | |
|   case Builtin::BI__builtin_eh_return_data_regno: {
 | |
|     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
 | |
|     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
 | |
|     return Success(Operand, E);
 | |
|   }
 | |
| 
 | |
|   case Builtin::BI__builtin_expect:
 | |
|     return Visit(E->getArg(0));
 | |
| 
 | |
|   case Builtin::BI__builtin_ffs:
 | |
|   case Builtin::BI__builtin_ffsl:
 | |
|   case Builtin::BI__builtin_ffsll: {
 | |
|     APSInt Val;
 | |
|     if (!EvaluateInteger(E->getArg(0), Val, Info))
 | |
|       return false;
 | |
| 
 | |
|     unsigned N = Val.countTrailingZeros();
 | |
|     return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
 | |
|   }
 | |
| 
 | |
|   case Builtin::BI__builtin_fpclassify: {
 | |
|     APFloat Val(0.0);
 | |
|     if (!EvaluateFloat(E->getArg(5), Val, Info))
 | |
|       return false;
 | |
|     unsigned Arg;
 | |
|     switch (Val.getCategory()) {
 | |
|     case APFloat::fcNaN: Arg = 0; break;
 | |
|     case APFloat::fcInfinity: Arg = 1; break;
 | |
|     case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
 | |
|     case APFloat::fcZero: Arg = 4; break;
 | |
|     }
 | |
|     return Visit(E->getArg(Arg));
 | |
|   }
 | |
| 
 | |
|   case Builtin::BI__builtin_isinf_sign: {
 | |
|     APFloat Val(0.0);
 | |
|     return EvaluateFloat(E->getArg(0), Val, Info) &&
 | |
|            Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
 | |
|   }
 | |
| 
 | |
|   case Builtin::BI__builtin_isinf: {
 | |
|     APFloat Val(0.0);
 | |
|     return EvaluateFloat(E->getArg(0), Val, Info) &&
 | |
|            Success(Val.isInfinity() ? 1 : 0, E);
 | |
|   }
 | |
| 
 | |
|   case Builtin::BI__builtin_isfinite: {
 | |
|     APFloat Val(0.0);
 | |
|     return EvaluateFloat(E->getArg(0), Val, Info) &&
 | |
|            Success(Val.isFinite() ? 1 : 0, E);
 | |
|   }
 | |
| 
 | |
|   case Builtin::BI__builtin_isnan: {
 | |
|     APFloat Val(0.0);
 | |
|     return EvaluateFloat(E->getArg(0), Val, Info) &&
 | |
|            Success(Val.isNaN() ? 1 : 0, E);
 | |
|   }
 | |
| 
 | |
|   case Builtin::BI__builtin_isnormal: {
 | |
|     APFloat Val(0.0);
 | |
|     return EvaluateFloat(E->getArg(0), Val, Info) &&
 | |
|            Success(Val.isNormal() ? 1 : 0, E);
 | |
|   }
 | |
| 
 | |
|   case Builtin::BI__builtin_parity:
 | |
|   case Builtin::BI__builtin_parityl:
 | |
|   case Builtin::BI__builtin_parityll: {
 | |
|     APSInt Val;
 | |
|     if (!EvaluateInteger(E->getArg(0), Val, Info))
 | |
|       return false;
 | |
| 
 | |
|     return Success(Val.countPopulation() % 2, E);
 | |
|   }
 | |
| 
 | |
|   case Builtin::BI__builtin_popcount:
 | |
|   case Builtin::BI__builtin_popcountl:
 | |
|   case Builtin::BI__builtin_popcountll: {
 | |
|     APSInt Val;
 | |
|     if (!EvaluateInteger(E->getArg(0), Val, Info))
 | |
|       return false;
 | |
| 
 | |
|     return Success(Val.countPopulation(), E);
 | |
|   }
 | |
| 
 | |
|   case Builtin::BIstrlen:
 | |
|   case Builtin::BIwcslen:
 | |
|     // A call to strlen is not a constant expression.
 | |
|     if (Info.getLangOpts().CPlusPlus11)
 | |
|       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
 | |
|         << /*isConstexpr*/0 << /*isConstructor*/0
 | |
|         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
 | |
|     else
 | |
|       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case Builtin::BI__builtin_strlen:
 | |
|   case Builtin::BI__builtin_wcslen: {
 | |
|     // As an extension, we support __builtin_strlen() as a constant expression,
 | |
|     // and support folding strlen() to a constant.
 | |
|     LValue String;
 | |
|     if (!EvaluatePointer(E->getArg(0), String, Info))
 | |
|       return false;
 | |
| 
 | |
|     QualType CharTy = E->getArg(0)->getType()->getPointeeType();
 | |
| 
 | |
|     // Fast path: if it's a string literal, search the string value.
 | |
|     if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
 | |
|             String.getLValueBase().dyn_cast<const Expr *>())) {
 | |
|       // The string literal may have embedded null characters. Find the first
 | |
|       // one and truncate there.
 | |
|       StringRef Str = S->getBytes();
 | |
|       int64_t Off = String.Offset.getQuantity();
 | |
|       if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
 | |
|           S->getCharByteWidth() == 1 &&
 | |
|           // FIXME: Add fast-path for wchar_t too.
 | |
|           Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
 | |
|         Str = Str.substr(Off);
 | |
| 
 | |
|         StringRef::size_type Pos = Str.find(0);
 | |
|         if (Pos != StringRef::npos)
 | |
|           Str = Str.substr(0, Pos);
 | |
| 
 | |
|         return Success(Str.size(), E);
 | |
|       }
 | |
| 
 | |
|       // Fall through to slow path to issue appropriate diagnostic.
 | |
|     }
 | |
| 
 | |
|     // Slow path: scan the bytes of the string looking for the terminating 0.
 | |
|     for (uint64_t Strlen = 0; /**/; ++Strlen) {
 | |
|       APValue Char;
 | |
|       if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
 | |
|           !Char.isInt())
 | |
|         return false;
 | |
|       if (!Char.getInt())
 | |
|         return Success(Strlen, E);
 | |
|       if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   case Builtin::BIstrcmp:
 | |
|   case Builtin::BIwcscmp:
 | |
|   case Builtin::BIstrncmp:
 | |
|   case Builtin::BIwcsncmp:
 | |
|   case Builtin::BImemcmp:
 | |
|   case Builtin::BIbcmp:
 | |
|   case Builtin::BIwmemcmp:
 | |
|     // A call to strlen is not a constant expression.
 | |
|     if (Info.getLangOpts().CPlusPlus11)
 | |
|       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
 | |
|         << /*isConstexpr*/0 << /*isConstructor*/0
 | |
|         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
 | |
|     else
 | |
|       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case Builtin::BI__builtin_strcmp:
 | |
|   case Builtin::BI__builtin_wcscmp:
 | |
|   case Builtin::BI__builtin_strncmp:
 | |
|   case Builtin::BI__builtin_wcsncmp:
 | |
|   case Builtin::BI__builtin_memcmp:
 | |
|   case Builtin::BI__builtin_bcmp:
 | |
|   case Builtin::BI__builtin_wmemcmp: {
 | |
|     LValue String1, String2;
 | |
|     if (!EvaluatePointer(E->getArg(0), String1, Info) ||
 | |
|         !EvaluatePointer(E->getArg(1), String2, Info))
 | |
|       return false;
 | |
| 
 | |
|     uint64_t MaxLength = uint64_t(-1);
 | |
|     if (BuiltinOp != Builtin::BIstrcmp &&
 | |
|         BuiltinOp != Builtin::BIwcscmp &&
 | |
|         BuiltinOp != Builtin::BI__builtin_strcmp &&
 | |
|         BuiltinOp != Builtin::BI__builtin_wcscmp) {
 | |
|       APSInt N;
 | |
|       if (!EvaluateInteger(E->getArg(2), N, Info))
 | |
|         return false;
 | |
|       MaxLength = N.getExtValue();
 | |
|     }
 | |
| 
 | |
|     // Empty substrings compare equal by definition.
 | |
|     if (MaxLength == 0u)
 | |
|       return Success(0, E);
 | |
| 
 | |
|     if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
 | |
|         !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
 | |
|         String1.Designator.Invalid || String2.Designator.Invalid)
 | |
|       return false;
 | |
| 
 | |
|     QualType CharTy1 = String1.Designator.getType(Info.Ctx);
 | |
|     QualType CharTy2 = String2.Designator.getType(Info.Ctx);
 | |
| 
 | |
|     bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
 | |
|                      BuiltinOp == Builtin::BIbcmp ||
 | |
|                      BuiltinOp == Builtin::BI__builtin_memcmp ||
 | |
|                      BuiltinOp == Builtin::BI__builtin_bcmp;
 | |
| 
 | |
|     assert(IsRawByte ||
 | |
|            (Info.Ctx.hasSameUnqualifiedType(
 | |
|                 CharTy1, E->getArg(0)->getType()->getPointeeType()) &&
 | |
|             Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)));
 | |
| 
 | |
|     const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
 | |
|       return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
 | |
|              handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
 | |
|              Char1.isInt() && Char2.isInt();
 | |
|     };
 | |
|     const auto &AdvanceElems = [&] {
 | |
|       return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
 | |
|              HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
 | |
|     };
 | |
| 
 | |
|     if (IsRawByte) {
 | |
|       uint64_t BytesRemaining = MaxLength;
 | |
|       // Pointers to const void may point to objects of incomplete type.
 | |
|       if (CharTy1->isIncompleteType()) {
 | |
|         Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy1;
 | |
|         return false;
 | |
|       }
 | |
|       if (CharTy2->isIncompleteType()) {
 | |
|         Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy2;
 | |
|         return false;
 | |
|       }
 | |
|       uint64_t CharTy1Width{Info.Ctx.getTypeSize(CharTy1)};
 | |
|       CharUnits CharTy1Size = Info.Ctx.toCharUnitsFromBits(CharTy1Width);
 | |
|       // Give up on comparing between elements with disparate widths.
 | |
|       if (CharTy1Size != Info.Ctx.getTypeSizeInChars(CharTy2))
 | |
|         return false;
 | |
|       uint64_t BytesPerElement = CharTy1Size.getQuantity();
 | |
|       assert(BytesRemaining && "BytesRemaining should not be zero: the "
 | |
|                                "following loop considers at least one element");
 | |
|       while (true) {
 | |
|         APValue Char1, Char2;
 | |
|         if (!ReadCurElems(Char1, Char2))
 | |
|           return false;
 | |
|         // We have compatible in-memory widths, but a possible type and
 | |
|         // (for `bool`) internal representation mismatch.
 | |
|         // Assuming two's complement representation, including 0 for `false` and
 | |
|         // 1 for `true`, we can check an appropriate number of elements for
 | |
|         // equality even if they are not byte-sized.
 | |
|         APSInt Char1InMem = Char1.getInt().extOrTrunc(CharTy1Width);
 | |
|         APSInt Char2InMem = Char2.getInt().extOrTrunc(CharTy1Width);
 | |
|         if (Char1InMem.ne(Char2InMem)) {
 | |
|           // If the elements are byte-sized, then we can produce a three-way
 | |
|           // comparison result in a straightforward manner.
 | |
|           if (BytesPerElement == 1u) {
 | |
|             // memcmp always compares unsigned chars.
 | |
|             return Success(Char1InMem.ult(Char2InMem) ? -1 : 1, E);
 | |
|           }
 | |
|           // The result is byte-order sensitive, and we have multibyte elements.
 | |
|           // FIXME: We can compare the remaining bytes in the correct order.
 | |
|           return false;
 | |
|         }
 | |
|         if (!AdvanceElems())
 | |
|           return false;
 | |
|         if (BytesRemaining <= BytesPerElement)
 | |
|           break;
 | |
|         BytesRemaining -= BytesPerElement;
 | |
|       }
 | |
|       // Enough elements are equal to account for the memcmp limit.
 | |
|       return Success(0, E);
 | |
|     }
 | |
| 
 | |
|     bool StopAtNull =
 | |
|         (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
 | |
|          BuiltinOp != Builtin::BIwmemcmp &&
 | |
|          BuiltinOp != Builtin::BI__builtin_memcmp &&
 | |
|          BuiltinOp != Builtin::BI__builtin_bcmp &&
 | |
|          BuiltinOp != Builtin::BI__builtin_wmemcmp);
 | |
|     bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
 | |
|                   BuiltinOp == Builtin::BIwcsncmp ||
 | |
|                   BuiltinOp == Builtin::BIwmemcmp ||
 | |
|                   BuiltinOp == Builtin::BI__builtin_wcscmp ||
 | |
|                   BuiltinOp == Builtin::BI__builtin_wcsncmp ||
 | |
|                   BuiltinOp == Builtin::BI__builtin_wmemcmp;
 | |
| 
 | |
|     for (; MaxLength; --MaxLength) {
 | |
|       APValue Char1, Char2;
 | |
|       if (!ReadCurElems(Char1, Char2))
 | |
|         return false;
 | |
|       if (Char1.getInt() != Char2.getInt()) {
 | |
|         if (IsWide) // wmemcmp compares with wchar_t signedness.
 | |
|           return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
 | |
|         // memcmp always compares unsigned chars.
 | |
|         return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E);
 | |
|       }
 | |
|       if (StopAtNull && !Char1.getInt())
 | |
|         return Success(0, E);
 | |
|       assert(!(StopAtNull && !Char2.getInt()));
 | |
|       if (!AdvanceElems())
 | |
|         return false;
 | |
|     }
 | |
|     // We hit the strncmp / memcmp limit.
 | |
|     return Success(0, E);
 | |
|   }
 | |
| 
 | |
|   case Builtin::BI__atomic_always_lock_free:
 | |
|   case Builtin::BI__atomic_is_lock_free:
 | |
|   case Builtin::BI__c11_atomic_is_lock_free: {
 | |
|     APSInt SizeVal;
 | |
|     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
 | |
|       return false;
 | |
| 
 | |
|     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
 | |
|     // of two less than the maximum inline atomic width, we know it is
 | |
|     // lock-free.  If the size isn't a power of two, or greater than the
 | |
|     // maximum alignment where we promote atomics, we know it is not lock-free
 | |
|     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
 | |
|     // the answer can only be determined at runtime; for example, 16-byte
 | |
|     // atomics have lock-free implementations on some, but not all,
 | |
|     // x86-64 processors.
 | |
| 
 | |
|     // Check power-of-two.
 | |
|     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
 | |
|     if (Size.isPowerOfTwo()) {
 | |
|       // Check against inlining width.
 | |
|       unsigned InlineWidthBits =
 | |
|           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
 | |
|       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
 | |
|         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
 | |
|             Size == CharUnits::One() ||
 | |
|             E->getArg(1)->isNullPointerConstant(Info.Ctx,
 | |
|                                                 Expr::NPC_NeverValueDependent))
 | |
|           // OK, we will inline appropriately-aligned operations of this size,
 | |
|           // and _Atomic(T) is appropriately-aligned.
 | |
|           return Success(1, E);
 | |
| 
 | |
|         QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
 | |
|           castAs<PointerType>()->getPointeeType();
 | |
|         if (!PointeeType->isIncompleteType() &&
 | |
|             Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
 | |
|           // OK, we will inline operations on this object.
 | |
|           return Success(1, E);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
 | |
|         Success(0, E) : Error(E);
 | |
|   }
 | |
|   case Builtin::BIomp_is_initial_device:
 | |
|     // We can decide statically which value the runtime would return if called.
 | |
|     return Success(Info.getLangOpts().OpenMPIsDevice ? 0 : 1, E);
 | |
|   case Builtin::BI__builtin_add_overflow:
 | |
|   case Builtin::BI__builtin_sub_overflow:
 | |
|   case Builtin::BI__builtin_mul_overflow:
 | |
|   case Builtin::BI__builtin_sadd_overflow:
 | |
|   case Builtin::BI__builtin_uadd_overflow:
 | |
|   case Builtin::BI__builtin_uaddl_overflow:
 | |
|   case Builtin::BI__builtin_uaddll_overflow:
 | |
|   case Builtin::BI__builtin_usub_overflow:
 | |
|   case Builtin::BI__builtin_usubl_overflow:
 | |
|   case Builtin::BI__builtin_usubll_overflow:
 | |
|   case Builtin::BI__builtin_umul_overflow:
 | |
|   case Builtin::BI__builtin_umull_overflow:
 | |
|   case Builtin::BI__builtin_umulll_overflow:
 | |
|   case Builtin::BI__builtin_saddl_overflow:
 | |
|   case Builtin::BI__builtin_saddll_overflow:
 | |
|   case Builtin::BI__builtin_ssub_overflow:
 | |
|   case Builtin::BI__builtin_ssubl_overflow:
 | |
|   case Builtin::BI__builtin_ssubll_overflow:
 | |
|   case Builtin::BI__builtin_smul_overflow:
 | |
|   case Builtin::BI__builtin_smull_overflow:
 | |
|   case Builtin::BI__builtin_smulll_overflow: {
 | |
|     LValue ResultLValue;
 | |
|     APSInt LHS, RHS;
 | |
| 
 | |
|     QualType ResultType = E->getArg(2)->getType()->getPointeeType();
 | |
|     if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
 | |
|         !EvaluateInteger(E->getArg(1), RHS, Info) ||
 | |
|         !EvaluatePointer(E->getArg(2), ResultLValue, Info))
 | |
|       return false;
 | |
| 
 | |
|     APSInt Result;
 | |
|     bool DidOverflow = false;
 | |
| 
 | |
|     // If the types don't have to match, enlarge all 3 to the largest of them.
 | |
|     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
 | |
|         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
 | |
|         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
 | |
|       bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
 | |
|                       ResultType->isSignedIntegerOrEnumerationType();
 | |
|       bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
 | |
|                       ResultType->isSignedIntegerOrEnumerationType();
 | |
|       uint64_t LHSSize = LHS.getBitWidth();
 | |
|       uint64_t RHSSize = RHS.getBitWidth();
 | |
|       uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType);
 | |
|       uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);
 | |
| 
 | |
|       // Add an additional bit if the signedness isn't uniformly agreed to. We
 | |
|       // could do this ONLY if there is a signed and an unsigned that both have
 | |
|       // MaxBits, but the code to check that is pretty nasty.  The issue will be
 | |
|       // caught in the shrink-to-result later anyway.
 | |
|       if (IsSigned && !AllSigned)
 | |
|         ++MaxBits;
 | |
| 
 | |
|       LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned);
 | |
|       RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned);
 | |
|       Result = APSInt(MaxBits, !IsSigned);
 | |
|     }
 | |
| 
 | |
|     // Find largest int.
 | |
|     switch (BuiltinOp) {
 | |
|     default:
 | |
|       llvm_unreachable("Invalid value for BuiltinOp");
 | |
|     case Builtin::BI__builtin_add_overflow:
 | |
|     case Builtin::BI__builtin_sadd_overflow:
 | |
|     case Builtin::BI__builtin_saddl_overflow:
 | |
|     case Builtin::BI__builtin_saddll_overflow:
 | |
|     case Builtin::BI__builtin_uadd_overflow:
 | |
|     case Builtin::BI__builtin_uaddl_overflow:
 | |
|     case Builtin::BI__builtin_uaddll_overflow:
 | |
|       Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow)
 | |
|                               : LHS.uadd_ov(RHS, DidOverflow);
 | |
|       break;
 | |
|     case Builtin::BI__builtin_sub_overflow:
 | |
|     case Builtin::BI__builtin_ssub_overflow:
 | |
|     case Builtin::BI__builtin_ssubl_overflow:
 | |
|     case Builtin::BI__builtin_ssubll_overflow:
 | |
|     case Builtin::BI__builtin_usub_overflow:
 | |
|     case Builtin::BI__builtin_usubl_overflow:
 | |
|     case Builtin::BI__builtin_usubll_overflow:
 | |
|       Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow)
 | |
|                               : LHS.usub_ov(RHS, DidOverflow);
 | |
|       break;
 | |
|     case Builtin::BI__builtin_mul_overflow:
 | |
|     case Builtin::BI__builtin_smul_overflow:
 | |
|     case Builtin::BI__builtin_smull_overflow:
 | |
|     case Builtin::BI__builtin_smulll_overflow:
 | |
|     case Builtin::BI__builtin_umul_overflow:
 | |
|     case Builtin::BI__builtin_umull_overflow:
 | |
|     case Builtin::BI__builtin_umulll_overflow:
 | |
|       Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow)
 | |
|                               : LHS.umul_ov(RHS, DidOverflow);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // In the case where multiple sizes are allowed, truncate and see if
 | |
|     // the values are the same.
 | |
|     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
 | |
|         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
 | |
|         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
 | |
|       // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
 | |
|       // since it will give us the behavior of a TruncOrSelf in the case where
 | |
|       // its parameter <= its size.  We previously set Result to be at least the
 | |
|       // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
 | |
|       // will work exactly like TruncOrSelf.
 | |
|       APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType));
 | |
|       Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
 | |
| 
 | |
|       if (!APSInt::isSameValue(Temp, Result))
 | |
|         DidOverflow = true;
 | |
|       Result = Temp;
 | |
|     }
 | |
| 
 | |
|     APValue APV{Result};
 | |
|     if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
 | |
|       return false;
 | |
|     return Success(DidOverflow, E);
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Determine whether this is a pointer past the end of the complete
 | |
| /// object referred to by the lvalue.
 | |
| static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
 | |
|                                             const LValue &LV) {
 | |
|   // A null pointer can be viewed as being "past the end" but we don't
 | |
|   // choose to look at it that way here.
 | |
|   if (!LV.getLValueBase())
 | |
|     return false;
 | |
| 
 | |
|   // If the designator is valid and refers to a subobject, we're not pointing
 | |
|   // past the end.
 | |
|   if (!LV.getLValueDesignator().Invalid &&
 | |
|       !LV.getLValueDesignator().isOnePastTheEnd())
 | |
|     return false;
 | |
| 
 | |
|   // A pointer to an incomplete type might be past-the-end if the type's size is
 | |
|   // zero.  We cannot tell because the type is incomplete.
 | |
|   QualType Ty = getType(LV.getLValueBase());
 | |
|   if (Ty->isIncompleteType())
 | |
|     return true;
 | |
| 
 | |
|   // We're a past-the-end pointer if we point to the byte after the object,
 | |
|   // no matter what our type or path is.
 | |
|   auto Size = Ctx.getTypeSizeInChars(Ty);
 | |
|   return LV.getLValueOffset() == Size;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Data recursive integer evaluator of certain binary operators.
 | |
| ///
 | |
| /// We use a data recursive algorithm for binary operators so that we are able
 | |
| /// to handle extreme cases of chained binary operators without causing stack
 | |
| /// overflow.
 | |
| class DataRecursiveIntBinOpEvaluator {
 | |
|   struct EvalResult {
 | |
|     APValue Val;
 | |
|     bool Failed;
 | |
| 
 | |
|     EvalResult() : Failed(false) { }
 | |
| 
 | |
|     void swap(EvalResult &RHS) {
 | |
|       Val.swap(RHS.Val);
 | |
|       Failed = RHS.Failed;
 | |
|       RHS.Failed = false;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   struct Job {
 | |
|     const Expr *E;
 | |
|     EvalResult LHSResult; // meaningful only for binary operator expression.
 | |
|     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
 | |
| 
 | |
|     Job() = default;
 | |
|     Job(Job &&) = default;
 | |
| 
 | |
|     void startSpeculativeEval(EvalInfo &Info) {
 | |
|       SpecEvalRAII = SpeculativeEvaluationRAII(Info);
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     SpeculativeEvaluationRAII SpecEvalRAII;
 | |
|   };
 | |
| 
 | |
|   SmallVector<Job, 16> Queue;
 | |
| 
 | |
|   IntExprEvaluator &IntEval;
 | |
|   EvalInfo &Info;
 | |
|   APValue &FinalResult;
 | |
| 
 | |
| public:
 | |
|   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
 | |
|     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
 | |
| 
 | |
|   /// True if \param E is a binary operator that we are going to handle
 | |
|   /// data recursively.
 | |
|   /// We handle binary operators that are comma, logical, or that have operands
 | |
|   /// with integral or enumeration type.
 | |
|   static bool shouldEnqueue(const BinaryOperator *E) {
 | |
|     return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
 | |
|            (E->isRValue() && E->getType()->isIntegralOrEnumerationType() &&
 | |
|             E->getLHS()->getType()->isIntegralOrEnumerationType() &&
 | |
|             E->getRHS()->getType()->isIntegralOrEnumerationType());
 | |
|   }
 | |
| 
 | |
|   bool Traverse(const BinaryOperator *E) {
 | |
|     enqueue(E);
 | |
|     EvalResult PrevResult;
 | |
|     while (!Queue.empty())
 | |
|       process(PrevResult);
 | |
| 
 | |
|     if (PrevResult.Failed) return false;
 | |
| 
 | |
|     FinalResult.swap(PrevResult.Val);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
 | |
|     return IntEval.Success(Value, E, Result);
 | |
|   }
 | |
|   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
 | |
|     return IntEval.Success(Value, E, Result);
 | |
|   }
 | |
|   bool Error(const Expr *E) {
 | |
|     return IntEval.Error(E);
 | |
|   }
 | |
|   bool Error(const Expr *E, diag::kind D) {
 | |
|     return IntEval.Error(E, D);
 | |
|   }
 | |
| 
 | |
|   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
 | |
|     return Info.CCEDiag(E, D);
 | |
|   }
 | |
| 
 | |
|   // Returns true if visiting the RHS is necessary, false otherwise.
 | |
|   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
 | |
|                          bool &SuppressRHSDiags);
 | |
| 
 | |
|   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
 | |
|                   const BinaryOperator *E, APValue &Result);
 | |
| 
 | |
|   void EvaluateExpr(const Expr *E, EvalResult &Result) {
 | |
|     Result.Failed = !Evaluate(Result.Val, Info, E);
 | |
|     if (Result.Failed)
 | |
|       Result.Val = APValue();
 | |
|   }
 | |
| 
 | |
|   void process(EvalResult &Result);
 | |
| 
 | |
|   void enqueue(const Expr *E) {
 | |
|     E = E->IgnoreParens();
 | |
|     Queue.resize(Queue.size()+1);
 | |
|     Queue.back().E = E;
 | |
|     Queue.back().Kind = Job::AnyExprKind;
 | |
|   }
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| bool DataRecursiveIntBinOpEvaluator::
 | |
|        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
 | |
|                          bool &SuppressRHSDiags) {
 | |
|   if (E->getOpcode() == BO_Comma) {
 | |
|     // Ignore LHS but note if we could not evaluate it.
 | |
|     if (LHSResult.Failed)
 | |
|       return Info.noteSideEffect();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (E->isLogicalOp()) {
 | |
|     bool LHSAsBool;
 | |
|     if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
 | |
|       // We were able to evaluate the LHS, see if we can get away with not
 | |
|       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
 | |
|       if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
 | |
|         Success(LHSAsBool, E, LHSResult.Val);
 | |
|         return false; // Ignore RHS
 | |
|       }
 | |
|     } else {
 | |
|       LHSResult.Failed = true;
 | |
| 
 | |
|       // Since we weren't able to evaluate the left hand side, it
 | |
|       // might have had side effects.
 | |
|       if (!Info.noteSideEffect())
 | |
|         return false;
 | |
| 
 | |
|       // We can't evaluate the LHS; however, sometimes the result
 | |
|       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
 | |
|       // Don't ignore RHS and suppress diagnostics from this arm.
 | |
|       SuppressRHSDiags = true;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
 | |
|          E->getRHS()->getType()->isIntegralOrEnumerationType());
 | |
| 
 | |
|   if (LHSResult.Failed && !Info.noteFailure())
 | |
|     return false; // Ignore RHS;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
 | |
|                                     bool IsSub) {
 | |
|   // Compute the new offset in the appropriate width, wrapping at 64 bits.
 | |
|   // FIXME: When compiling for a 32-bit target, we should use 32-bit
 | |
|   // offsets.
 | |
|   assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
 | |
|   CharUnits &Offset = LVal.getLValueOffset();
 | |
|   uint64_t Offset64 = Offset.getQuantity();
 | |
|   uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
 | |
|   Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
 | |
|                                          : Offset64 + Index64);
 | |
| }
 | |
| 
 | |
| bool DataRecursiveIntBinOpEvaluator::
 | |
|        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
 | |
|                   const BinaryOperator *E, APValue &Result) {
 | |
|   if (E->getOpcode() == BO_Comma) {
 | |
|     if (RHSResult.Failed)
 | |
|       return false;
 | |
|     Result = RHSResult.Val;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (E->isLogicalOp()) {
 | |
|     bool lhsResult, rhsResult;
 | |
|     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
 | |
|     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
 | |
| 
 | |
|     if (LHSIsOK) {
 | |
|       if (RHSIsOK) {
 | |
|         if (E->getOpcode() == BO_LOr)
 | |
|           return Success(lhsResult || rhsResult, E, Result);
 | |
|         else
 | |
|           return Success(lhsResult && rhsResult, E, Result);
 | |
|       }
 | |
|     } else {
 | |
|       if (RHSIsOK) {
 | |
|         // We can't evaluate the LHS; however, sometimes the result
 | |
|         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
 | |
|         if (rhsResult == (E->getOpcode() == BO_LOr))
 | |
|           return Success(rhsResult, E, Result);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
 | |
|          E->getRHS()->getType()->isIntegralOrEnumerationType());
 | |
| 
 | |
|   if (LHSResult.Failed || RHSResult.Failed)
 | |
|     return false;
 | |
| 
 | |
|   const APValue &LHSVal = LHSResult.Val;
 | |
|   const APValue &RHSVal = RHSResult.Val;
 | |
| 
 | |
|   // Handle cases like (unsigned long)&a + 4.
 | |
|   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
 | |
|     Result = LHSVal;
 | |
|     addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Handle cases like 4 + (unsigned long)&a
 | |
|   if (E->getOpcode() == BO_Add &&
 | |
|       RHSVal.isLValue() && LHSVal.isInt()) {
 | |
|     Result = RHSVal;
 | |
|     addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
 | |
|     // Handle (intptr_t)&&A - (intptr_t)&&B.
 | |
|     if (!LHSVal.getLValueOffset().isZero() ||
 | |
|         !RHSVal.getLValueOffset().isZero())
 | |
|       return false;
 | |
|     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
 | |
|     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
 | |
|     if (!LHSExpr || !RHSExpr)
 | |
|       return false;
 | |
|     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
 | |
|     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
 | |
|     if (!LHSAddrExpr || !RHSAddrExpr)
 | |
|       return false;
 | |
|     // Make sure both labels come from the same function.
 | |
|     if (LHSAddrExpr->getLabel()->getDeclContext() !=
 | |
|         RHSAddrExpr->getLabel()->getDeclContext())
 | |
|       return false;
 | |
|     Result = APValue(LHSAddrExpr, RHSAddrExpr);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // All the remaining cases expect both operands to be an integer
 | |
|   if (!LHSVal.isInt() || !RHSVal.isInt())
 | |
|     return Error(E);
 | |
| 
 | |
|   // Set up the width and signedness manually, in case it can't be deduced
 | |
|   // from the operation we're performing.
 | |
|   // FIXME: Don't do this in the cases where we can deduce it.
 | |
|   APSInt Value(Info.Ctx.getIntWidth(E->getType()),
 | |
|                E->getType()->isUnsignedIntegerOrEnumerationType());
 | |
|   if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
 | |
|                          RHSVal.getInt(), Value))
 | |
|     return false;
 | |
|   return Success(Value, E, Result);
 | |
| }
 | |
| 
 | |
| void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
 | |
|   Job &job = Queue.back();
 | |
| 
 | |
|   switch (job.Kind) {
 | |
|     case Job::AnyExprKind: {
 | |
|       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
 | |
|         if (shouldEnqueue(Bop)) {
 | |
|           job.Kind = Job::BinOpKind;
 | |
|           enqueue(Bop->getLHS());
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       EvaluateExpr(job.E, Result);
 | |
|       Queue.pop_back();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     case Job::BinOpKind: {
 | |
|       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
 | |
|       bool SuppressRHSDiags = false;
 | |
|       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
 | |
|         Queue.pop_back();
 | |
|         return;
 | |
|       }
 | |
|       if (SuppressRHSDiags)
 | |
|         job.startSpeculativeEval(Info);
 | |
|       job.LHSResult.swap(Result);
 | |
|       job.Kind = Job::BinOpVisitedLHSKind;
 | |
|       enqueue(Bop->getRHS());
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     case Job::BinOpVisitedLHSKind: {
 | |
|       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
 | |
|       EvalResult RHS;
 | |
|       RHS.swap(Result);
 | |
|       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
 | |
|       Queue.pop_back();
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid Job::Kind!");
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// Used when we determine that we should fail, but can keep evaluating prior to
 | |
| /// noting that we had a failure.
 | |
| class DelayedNoteFailureRAII {
 | |
|   EvalInfo &Info;
 | |
|   bool NoteFailure;
 | |
| 
 | |
| public:
 | |
|   DelayedNoteFailureRAII(EvalInfo &Info, bool NoteFailure = true)
 | |
|       : Info(Info), NoteFailure(NoteFailure) {}
 | |
|   ~DelayedNoteFailureRAII() {
 | |
|     if (NoteFailure) {
 | |
|       bool ContinueAfterFailure = Info.noteFailure();
 | |
|       (void)ContinueAfterFailure;
 | |
|       assert(ContinueAfterFailure &&
 | |
|              "Shouldn't have kept evaluating on failure.");
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| enum class CmpResult {
 | |
|   Unequal,
 | |
|   Less,
 | |
|   Equal,
 | |
|   Greater,
 | |
|   Unordered,
 | |
| };
 | |
| }
 | |
| 
 | |
| template <class SuccessCB, class AfterCB>
 | |
| static bool
 | |
| EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
 | |
|                                  SuccessCB &&Success, AfterCB &&DoAfter) {
 | |
|   assert(E->isComparisonOp() && "expected comparison operator");
 | |
|   assert((E->getOpcode() == BO_Cmp ||
 | |
|           E->getType()->isIntegralOrEnumerationType()) &&
 | |
|          "unsupported binary expression evaluation");
 | |
|   auto Error = [&](const Expr *E) {
 | |
|     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp;
 | |
|   bool IsEquality = E->isEqualityOp();
 | |
| 
 | |
|   QualType LHSTy = E->getLHS()->getType();
 | |
|   QualType RHSTy = E->getRHS()->getType();
 | |
| 
 | |
|   if (LHSTy->isIntegralOrEnumerationType() &&
 | |
|       RHSTy->isIntegralOrEnumerationType()) {
 | |
|     APSInt LHS, RHS;
 | |
|     bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info);
 | |
|     if (!LHSOK && !Info.noteFailure())
 | |
|       return false;
 | |
|     if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK)
 | |
|       return false;
 | |
|     if (LHS < RHS)
 | |
|       return Success(CmpResult::Less, E);
 | |
|     if (LHS > RHS)
 | |
|       return Success(CmpResult::Greater, E);
 | |
|     return Success(CmpResult::Equal, E);
 | |
|   }
 | |
| 
 | |
|   if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
 | |
|     APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy));
 | |
|     APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy));
 | |
| 
 | |
|     bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info);
 | |
|     if (!LHSOK && !Info.noteFailure())
 | |
|       return false;
 | |
|     if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK)
 | |
|       return false;
 | |
|     if (LHSFX < RHSFX)
 | |
|       return Success(CmpResult::Less, E);
 | |
|     if (LHSFX > RHSFX)
 | |
|       return Success(CmpResult::Greater, E);
 | |
|     return Success(CmpResult::Equal, E);
 | |
|   }
 | |
| 
 | |
|   if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
 | |
|     ComplexValue LHS, RHS;
 | |
|     bool LHSOK;
 | |
|     if (E->isAssignmentOp()) {
 | |
|       LValue LV;
 | |
|       EvaluateLValue(E->getLHS(), LV, Info);
 | |
|       LHSOK = false;
 | |
|     } else if (LHSTy->isRealFloatingType()) {
 | |
|       LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
 | |
|       if (LHSOK) {
 | |
|         LHS.makeComplexFloat();
 | |
|         LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
 | |
|       }
 | |
|     } else {
 | |
|       LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
 | |
|     }
 | |
|     if (!LHSOK && !Info.noteFailure())
 | |
|       return false;
 | |
| 
 | |
|     if (E->getRHS()->getType()->isRealFloatingType()) {
 | |
|       if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
 | |
|         return false;
 | |
|       RHS.makeComplexFloat();
 | |
|       RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
 | |
|     } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
 | |
|       return false;
 | |
| 
 | |
|     if (LHS.isComplexFloat()) {
 | |
|       APFloat::cmpResult CR_r =
 | |
|         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
 | |
|       APFloat::cmpResult CR_i =
 | |
|         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
 | |
|       bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
 | |
|       return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
 | |
|     } else {
 | |
|       assert(IsEquality && "invalid complex comparison");
 | |
|       bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
 | |
|                      LHS.getComplexIntImag() == RHS.getComplexIntImag();
 | |
|       return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (LHSTy->isRealFloatingType() &&
 | |
|       RHSTy->isRealFloatingType()) {
 | |
|     APFloat RHS(0.0), LHS(0.0);
 | |
| 
 | |
|     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
 | |
|     if (!LHSOK && !Info.noteFailure())
 | |
|       return false;
 | |
| 
 | |
|     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
 | |
|       return false;
 | |
| 
 | |
|     assert(E->isComparisonOp() && "Invalid binary operator!");
 | |
|     auto GetCmpRes = [&]() {
 | |
|       switch (LHS.compare(RHS)) {
 | |
|       case APFloat::cmpEqual:
 | |
|         return CmpResult::Equal;
 | |
|       case APFloat::cmpLessThan:
 | |
|         return CmpResult::Less;
 | |
|       case APFloat::cmpGreaterThan:
 | |
|         return CmpResult::Greater;
 | |
|       case APFloat::cmpUnordered:
 | |
|         return CmpResult::Unordered;
 | |
|       }
 | |
|       llvm_unreachable("Unrecognised APFloat::cmpResult enum");
 | |
|     };
 | |
|     return Success(GetCmpRes(), E);
 | |
|   }
 | |
| 
 | |
|   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
 | |
|     LValue LHSValue, RHSValue;
 | |
| 
 | |
|     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
 | |
|     if (!LHSOK && !Info.noteFailure())
 | |
|       return false;
 | |
| 
 | |
|     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
 | |
|       return false;
 | |
| 
 | |
|     // Reject differing bases from the normal codepath; we special-case
 | |
|     // comparisons to null.
 | |
|     if (!HasSameBase(LHSValue, RHSValue)) {
 | |
|       // Inequalities and subtractions between unrelated pointers have
 | |
|       // unspecified or undefined behavior.
 | |
|       if (!IsEquality) {
 | |
|         Info.FFDiag(E, diag::note_constexpr_pointer_comparison_unspecified);
 | |
|         return false;
 | |
|       }
 | |
|       // A constant address may compare equal to the address of a symbol.
 | |
|       // The one exception is that address of an object cannot compare equal
 | |
|       // to a null pointer constant.
 | |
|       if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
 | |
|           (!RHSValue.Base && !RHSValue.Offset.isZero()))
 | |
|         return Error(E);
 | |
|       // It's implementation-defined whether distinct literals will have
 | |
|       // distinct addresses. In clang, the result of such a comparison is
 | |
|       // unspecified, so it is not a constant expression. However, we do know
 | |
|       // that the address of a literal will be non-null.
 | |
|       if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
 | |
|           LHSValue.Base && RHSValue.Base)
 | |
|         return Error(E);
 | |
|       // We can't tell whether weak symbols will end up pointing to the same
 | |
|       // object.
 | |
|       if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
 | |
|         return Error(E);
 | |
|       // We can't compare the address of the start of one object with the
 | |
|       // past-the-end address of another object, per C++ DR1652.
 | |
|       if ((LHSValue.Base && LHSValue.Offset.isZero() &&
 | |
|            isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
 | |
|           (RHSValue.Base && RHSValue.Offset.isZero() &&
 | |
|            isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
 | |
|         return Error(E);
 | |
|       // We can't tell whether an object is at the same address as another
 | |
|       // zero sized object.
 | |
|       if ((RHSValue.Base && isZeroSized(LHSValue)) ||
 | |
|           (LHSValue.Base && isZeroSized(RHSValue)))
 | |
|         return Error(E);
 | |
|       return Success(CmpResult::Unequal, E);
 | |
|     }
 | |
| 
 | |
|     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
 | |
|     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
 | |
| 
 | |
|     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
 | |
|     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
 | |
| 
 | |
|     // C++11 [expr.rel]p3:
 | |
|     //   Pointers to void (after pointer conversions) can be compared, with a
 | |
|     //   result defined as follows: If both pointers represent the same
 | |
|     //   address or are both the null pointer value, the result is true if the
 | |
|     //   operator is <= or >= and false otherwise; otherwise the result is
 | |
|     //   unspecified.
 | |
|     // We interpret this as applying to pointers to *cv* void.
 | |
|     if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
 | |
|       Info.CCEDiag(E, diag::note_constexpr_void_comparison);
 | |
| 
 | |
|     // C++11 [expr.rel]p2:
 | |
|     // - If two pointers point to non-static data members of the same object,
 | |
|     //   or to subobjects or array elements fo such members, recursively, the
 | |
|     //   pointer to the later declared member compares greater provided the
 | |
|     //   two members have the same access control and provided their class is
 | |
|     //   not a union.
 | |
|     //   [...]
 | |
|     // - Otherwise pointer comparisons are unspecified.
 | |
|     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
 | |
|       bool WasArrayIndex;
 | |
|       unsigned Mismatch = FindDesignatorMismatch(
 | |
|           getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex);
 | |
|       // At the point where the designators diverge, the comparison has a
 | |
|       // specified value if:
 | |
|       //  - we are comparing array indices
 | |
|       //  - we are comparing fields of a union, or fields with the same access
 | |
|       // Otherwise, the result is unspecified and thus the comparison is not a
 | |
|       // constant expression.
 | |
|       if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
 | |
|           Mismatch < RHSDesignator.Entries.size()) {
 | |
|         const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
 | |
|         const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
 | |
|         if (!LF && !RF)
 | |
|           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
 | |
|         else if (!LF)
 | |
|           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
 | |
|               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
 | |
|               << RF->getParent() << RF;
 | |
|         else if (!RF)
 | |
|           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
 | |
|               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
 | |
|               << LF->getParent() << LF;
 | |
|         else if (!LF->getParent()->isUnion() &&
 | |
|                  LF->getAccess() != RF->getAccess())
 | |
|           Info.CCEDiag(E,
 | |
|                        diag::note_constexpr_pointer_comparison_differing_access)
 | |
|               << LF << LF->getAccess() << RF << RF->getAccess()
 | |
|               << LF->getParent();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // The comparison here must be unsigned, and performed with the same
 | |
|     // width as the pointer.
 | |
|     unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
 | |
|     uint64_t CompareLHS = LHSOffset.getQuantity();
 | |
|     uint64_t CompareRHS = RHSOffset.getQuantity();
 | |
|     assert(PtrSize <= 64 && "Unexpected pointer width");
 | |
|     uint64_t Mask = ~0ULL >> (64 - PtrSize);
 | |
|     CompareLHS &= Mask;
 | |
|     CompareRHS &= Mask;
 | |
| 
 | |
|     // If there is a base and this is a relational operator, we can only
 | |
|     // compare pointers within the object in question; otherwise, the result
 | |
|     // depends on where the object is located in memory.
 | |
|     if (!LHSValue.Base.isNull() && IsRelational) {
 | |
|       QualType BaseTy = getType(LHSValue.Base);
 | |
|       if (BaseTy->isIncompleteType())
 | |
|         return Error(E);
 | |
|       CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
 | |
|       uint64_t OffsetLimit = Size.getQuantity();
 | |
|       if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
 | |
|         return Error(E);
 | |
|     }
 | |
| 
 | |
|     if (CompareLHS < CompareRHS)
 | |
|       return Success(CmpResult::Less, E);
 | |
|     if (CompareLHS > CompareRHS)
 | |
|       return Success(CmpResult::Greater, E);
 | |
|     return Success(CmpResult::Equal, E);
 | |
|   }
 | |
| 
 | |
|   if (LHSTy->isMemberPointerType()) {
 | |
|     assert(IsEquality && "unexpected member pointer operation");
 | |
|     assert(RHSTy->isMemberPointerType() && "invalid comparison");
 | |
| 
 | |
|     MemberPtr LHSValue, RHSValue;
 | |
| 
 | |
|     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
 | |
|     if (!LHSOK && !Info.noteFailure())
 | |
|       return false;
 | |
| 
 | |
|     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
 | |
|       return false;
 | |
| 
 | |
|     // C++11 [expr.eq]p2:
 | |
|     //   If both operands are null, they compare equal. Otherwise if only one is
 | |
|     //   null, they compare unequal.
 | |
|     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
 | |
|       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
 | |
|       return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
 | |
|     }
 | |
| 
 | |
|     //   Otherwise if either is a pointer to a virtual member function, the
 | |
|     //   result is unspecified.
 | |
|     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
 | |
|       if (MD->isVirtual())
 | |
|         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
 | |
|     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
 | |
|       if (MD->isVirtual())
 | |
|         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
 | |
| 
 | |
|     //   Otherwise they compare equal if and only if they would refer to the
 | |
|     //   same member of the same most derived object or the same subobject if
 | |
|     //   they were dereferenced with a hypothetical object of the associated
 | |
|     //   class type.
 | |
|     bool Equal = LHSValue == RHSValue;
 | |
|     return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
 | |
|   }
 | |
| 
 | |
|   if (LHSTy->isNullPtrType()) {
 | |
|     assert(E->isComparisonOp() && "unexpected nullptr operation");
 | |
|     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
 | |
|     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
 | |
|     // are compared, the result is true of the operator is <=, >= or ==, and
 | |
|     // false otherwise.
 | |
|     return Success(CmpResult::Equal, E);
 | |
|   }
 | |
| 
 | |
|   return DoAfter();
 | |
| }
 | |
| 
 | |
| bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
 | |
|   if (!CheckLiteralType(Info, E))
 | |
|     return false;
 | |
| 
 | |
|   auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
 | |
|     ComparisonCategoryResult CCR;
 | |
|     switch (CR) {
 | |
|     case CmpResult::Unequal:
 | |
|       llvm_unreachable("should never produce Unequal for three-way comparison");
 | |
|     case CmpResult::Less:
 | |
|       CCR = ComparisonCategoryResult::Less;
 | |
|       break;
 | |
|     case CmpResult::Equal:
 | |
|       CCR = ComparisonCategoryResult::Equal;
 | |
|       break;
 | |
|     case CmpResult::Greater:
 | |
|       CCR = ComparisonCategoryResult::Greater;
 | |
|       break;
 | |
|     case CmpResult::Unordered:
 | |
|       CCR = ComparisonCategoryResult::Unordered;
 | |
|       break;
 | |
|     }
 | |
|     // Evaluation succeeded. Lookup the information for the comparison category
 | |
|     // type and fetch the VarDecl for the result.
 | |
|     const ComparisonCategoryInfo &CmpInfo =
 | |
|         Info.Ctx.CompCategories.getInfoForType(E->getType());
 | |
|     const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD;
 | |
|     // Check and evaluate the result as a constant expression.
 | |
|     LValue LV;
 | |
|     LV.set(VD);
 | |
|     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
 | |
|       return false;
 | |
|     return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
 | |
|   };
 | |
|   return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
 | |
|     return ExprEvaluatorBaseTy::VisitBinCmp(E);
 | |
|   });
 | |
| }
 | |
| 
 | |
| bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
 | |
|   // We don't call noteFailure immediately because the assignment happens after
 | |
|   // we evaluate LHS and RHS.
 | |
|   if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp())
 | |
|     return Error(E);
 | |
| 
 | |
|   DelayedNoteFailureRAII MaybeNoteFailureLater(Info, E->isAssignmentOp());
 | |
|   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
 | |
|     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
 | |
| 
 | |
|   assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
 | |
|           !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
 | |
|          "DataRecursiveIntBinOpEvaluator should have handled integral types");
 | |
| 
 | |
|   if (E->isComparisonOp()) {
 | |
|     // Evaluate builtin binary comparisons by evaluating them as three-way
 | |
|     // comparisons and then translating the result.
 | |
|     auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
 | |
|       assert((CR != CmpResult::Unequal || E->isEqualityOp()) &&
 | |
|              "should only produce Unequal for equality comparisons");
 | |
|       bool IsEqual   = CR == CmpResult::Equal,
 | |
|            IsLess    = CR == CmpResult::Less,
 | |
|            IsGreater = CR == CmpResult::Greater;
 | |
|       auto Op = E->getOpcode();
 | |
|       switch (Op) {
 | |
|       default:
 | |
|         llvm_unreachable("unsupported binary operator");
 | |
|       case BO_EQ:
 | |
|       case BO_NE:
 | |
|         return Success(IsEqual == (Op == BO_EQ), E);
 | |
|       case BO_LT:
 | |
|         return Success(IsLess, E);
 | |
|       case BO_GT:
 | |
|         return Success(IsGreater, E);
 | |
|       case BO_LE:
 | |
|         return Success(IsEqual || IsLess, E);
 | |
|       case BO_GE:
 | |
|         return Success(IsEqual || IsGreater, E);
 | |
|       }
 | |
|     };
 | |
|     return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
 | |
|       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   QualType LHSTy = E->getLHS()->getType();
 | |
|   QualType RHSTy = E->getRHS()->getType();
 | |
| 
 | |
|   if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
 | |
|       E->getOpcode() == BO_Sub) {
 | |
|     LValue LHSValue, RHSValue;
 | |
| 
 | |
|     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
 | |
|     if (!LHSOK && !Info.noteFailure())
 | |
|       return false;
 | |
| 
 | |
|     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
 | |
|       return false;
 | |
| 
 | |
|     // Reject differing bases from the normal codepath; we special-case
 | |
|     // comparisons to null.
 | |
|     if (!HasSameBase(LHSValue, RHSValue)) {
 | |
|       // Handle &&A - &&B.
 | |
|       if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
 | |
|         return Error(E);
 | |
|       const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
 | |
|       const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
 | |
|       if (!LHSExpr || !RHSExpr)
 | |
|         return Error(E);
 | |
|       const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
 | |
|       const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
 | |
|       if (!LHSAddrExpr || !RHSAddrExpr)
 | |
|         return Error(E);
 | |
|       // Make sure both labels come from the same function.
 | |
|       if (LHSAddrExpr->getLabel()->getDeclContext() !=
 | |
|           RHSAddrExpr->getLabel()->getDeclContext())
 | |
|         return Error(E);
 | |
|       return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
 | |
|     }
 | |
|     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
 | |
|     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
 | |
| 
 | |
|     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
 | |
|     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
 | |
| 
 | |
|     // C++11 [expr.add]p6:
 | |
|     //   Unless both pointers point to elements of the same array object, or
 | |
|     //   one past the last element of the array object, the behavior is
 | |
|     //   undefined.
 | |
|     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
 | |
|         !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
 | |
|                                 RHSDesignator))
 | |
|       Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
 | |
| 
 | |
|     QualType Type = E->getLHS()->getType();
 | |
|     QualType ElementType = Type->castAs<PointerType>()->getPointeeType();
 | |
| 
 | |
|     CharUnits ElementSize;
 | |
|     if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
 | |
|       return false;
 | |
| 
 | |
|     // As an extension, a type may have zero size (empty struct or union in
 | |
|     // C, array of zero length). Pointer subtraction in such cases has
 | |
|     // undefined behavior, so is not constant.
 | |
|     if (ElementSize.isZero()) {
 | |
|       Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
 | |
|           << ElementType;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
 | |
|     // and produce incorrect results when it overflows. Such behavior
 | |
|     // appears to be non-conforming, but is common, so perhaps we should
 | |
|     // assume the standard intended for such cases to be undefined behavior
 | |
|     // and check for them.
 | |
| 
 | |
|     // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
 | |
|     // overflow in the final conversion to ptrdiff_t.
 | |
|     APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
 | |
|     APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
 | |
|     APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
 | |
|                     false);
 | |
|     APSInt TrueResult = (LHS - RHS) / ElemSize;
 | |
|     APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
 | |
| 
 | |
|     if (Result.extend(65) != TrueResult &&
 | |
|         !HandleOverflow(Info, E, TrueResult, E->getType()))
 | |
|       return false;
 | |
|     return Success(Result, E);
 | |
|   }
 | |
| 
 | |
|   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
 | |
| }
 | |
| 
 | |
| /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
 | |
| /// a result as the expression's type.
 | |
| bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
 | |
|                                     const UnaryExprOrTypeTraitExpr *E) {
 | |
|   switch(E->getKind()) {
 | |
|   case UETT_PreferredAlignOf:
 | |
|   case UETT_AlignOf: {
 | |
|     if (E->isArgumentType())
 | |
|       return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()),
 | |
|                      E);
 | |
|     else
 | |
|       return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()),
 | |
|                      E);
 | |
|   }
 | |
| 
 | |
|   case UETT_VecStep: {
 | |
|     QualType Ty = E->getTypeOfArgument();
 | |
| 
 | |
|     if (Ty->isVectorType()) {
 | |
|       unsigned n = Ty->castAs<VectorType>()->getNumElements();
 | |
| 
 | |
|       // The vec_step built-in functions that take a 3-component
 | |
|       // vector return 4. (OpenCL 1.1 spec 6.11.12)
 | |
|       if (n == 3)
 | |
|         n = 4;
 | |
| 
 | |
|       return Success(n, E);
 | |
|     } else
 | |
|       return Success(1, E);
 | |
|   }
 | |
| 
 | |
|   case UETT_SizeOf: {
 | |
|     QualType SrcTy = E->getTypeOfArgument();
 | |
|     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
 | |
|     //   the result is the size of the referenced type."
 | |
|     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
 | |
|       SrcTy = Ref->getPointeeType();
 | |
| 
 | |
|     CharUnits Sizeof;
 | |
|     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
 | |
|       return false;
 | |
|     return Success(Sizeof, E);
 | |
|   }
 | |
|   case UETT_OpenMPRequiredSimdAlign:
 | |
|     assert(E->isArgumentType());
 | |
|     return Success(
 | |
|         Info.Ctx.toCharUnitsFromBits(
 | |
|                     Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
 | |
|             .getQuantity(),
 | |
|         E);
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unknown expr/type trait");
 | |
| }
 | |
| 
 | |
| bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
 | |
|   CharUnits Result;
 | |
|   unsigned n = OOE->getNumComponents();
 | |
|   if (n == 0)
 | |
|     return Error(OOE);
 | |
|   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
 | |
|   for (unsigned i = 0; i != n; ++i) {
 | |
|     OffsetOfNode ON = OOE->getComponent(i);
 | |
|     switch (ON.getKind()) {
 | |
|     case OffsetOfNode::Array: {
 | |
|       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
 | |
|       APSInt IdxResult;
 | |
|       if (!EvaluateInteger(Idx, IdxResult, Info))
 | |
|         return false;
 | |
|       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
 | |
|       if (!AT)
 | |
|         return Error(OOE);
 | |
|       CurrentType = AT->getElementType();
 | |
|       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
 | |
|       Result += IdxResult.getSExtValue() * ElementSize;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case OffsetOfNode::Field: {
 | |
|       FieldDecl *MemberDecl = ON.getField();
 | |
|       const RecordType *RT = CurrentType->getAs<RecordType>();
 | |
|       if (!RT)
 | |
|         return Error(OOE);
 | |
|       RecordDecl *RD = RT->getDecl();
 | |
|       if (RD->isInvalidDecl()) return false;
 | |
|       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
 | |
|       unsigned i = MemberDecl->getFieldIndex();
 | |
|       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
 | |
|       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
 | |
|       CurrentType = MemberDecl->getType().getNonReferenceType();
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case OffsetOfNode::Identifier:
 | |
|       llvm_unreachable("dependent __builtin_offsetof");
 | |
| 
 | |
|     case OffsetOfNode::Base: {
 | |
|       CXXBaseSpecifier *BaseSpec = ON.getBase();
 | |
|       if (BaseSpec->isVirtual())
 | |
|         return Error(OOE);
 | |
| 
 | |
|       // Find the layout of the class whose base we are looking into.
 | |
|       const RecordType *RT = CurrentType->getAs<RecordType>();
 | |
|       if (!RT)
 | |
|         return Error(OOE);
 | |
|       RecordDecl *RD = RT->getDecl();
 | |
|       if (RD->isInvalidDecl()) return false;
 | |
|       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
 | |
| 
 | |
|       // Find the base class itself.
 | |
|       CurrentType = BaseSpec->getType();
 | |
|       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
 | |
|       if (!BaseRT)
 | |
|         return Error(OOE);
 | |
| 
 | |
|       // Add the offset to the base.
 | |
|       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
|   return Success(Result, OOE);
 | |
| }
 | |
| 
 | |
| bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
 | |
|   switch (E->getOpcode()) {
 | |
|   default:
 | |
|     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
 | |
|     // See C99 6.6p3.
 | |
|     return Error(E);
 | |
|   case UO_Extension:
 | |
|     // FIXME: Should extension allow i-c-e extension expressions in its scope?
 | |
|     // If so, we could clear the diagnostic ID.
 | |
|     return Visit(E->getSubExpr());
 | |
|   case UO_Plus:
 | |
|     // The result is just the value.
 | |
|     return Visit(E->getSubExpr());
 | |
|   case UO_Minus: {
 | |
|     if (!Visit(E->getSubExpr()))
 | |
|       return false;
 | |
|     if (!Result.isInt()) return Error(E);
 | |
|     const APSInt &Value = Result.getInt();
 | |
|     if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() &&
 | |
|         !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
 | |
|                         E->getType()))
 | |
|       return false;
 | |
|     return Success(-Value, E);
 | |
|   }
 | |
|   case UO_Not: {
 | |
|     if (!Visit(E->getSubExpr()))
 | |
|       return false;
 | |
|     if (!Result.isInt()) return Error(E);
 | |
|     return Success(~Result.getInt(), E);
 | |
|   }
 | |
|   case UO_LNot: {
 | |
|     bool bres;
 | |
|     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
 | |
|       return false;
 | |
|     return Success(!bres, E);
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// HandleCast - This is used to evaluate implicit or explicit casts where the
 | |
| /// result type is integer.
 | |
| bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
 | |
|   const Expr *SubExpr = E->getSubExpr();
 | |
|   QualType DestType = E->getType();
 | |
|   QualType SrcType = SubExpr->getType();
 | |
| 
 | |
|   switch (E->getCastKind()) {
 | |
|   case CK_BaseToDerived:
 | |
|   case CK_DerivedToBase:
 | |
|   case CK_UncheckedDerivedToBase:
 | |
|   case CK_Dynamic:
 | |
|   case CK_ToUnion:
 | |
|   case CK_ArrayToPointerDecay:
 | |
|   case CK_FunctionToPointerDecay:
 | |
|   case CK_NullToPointer:
 | |
|   case CK_NullToMemberPointer:
 | |
|   case CK_BaseToDerivedMemberPointer:
 | |
|   case CK_DerivedToBaseMemberPointer:
 | |
|   case CK_ReinterpretMemberPointer:
 | |
|   case CK_ConstructorConversion:
 | |
|   case CK_IntegralToPointer:
 | |
|   case CK_ToVoid:
 | |
|   case CK_VectorSplat:
 | |
|   case CK_IntegralToFloating:
 | |
|   case CK_FloatingCast:
 | |
|   case CK_CPointerToObjCPointerCast:
 | |
|   case CK_BlockPointerToObjCPointerCast:
 | |
|   case CK_AnyPointerToBlockPointerCast:
 | |
|   case CK_ObjCObjectLValueCast:
 | |
|   case CK_FloatingRealToComplex:
 | |
|   case CK_FloatingComplexToReal:
 | |
|   case CK_FloatingComplexCast:
 | |
|   case CK_FloatingComplexToIntegralComplex:
 | |
|   case CK_IntegralRealToComplex:
 | |
|   case CK_IntegralComplexCast:
 | |
|   case CK_IntegralComplexToFloatingComplex:
 | |
|   case CK_BuiltinFnToFnPtr:
 | |
|   case CK_ZeroToOCLOpaqueType:
 | |
|   case CK_NonAtomicToAtomic:
 | |
|   case CK_AddressSpaceConversion:
 | |
|   case CK_IntToOCLSampler:
 | |
|   case CK_FixedPointCast:
 | |
|   case CK_IntegralToFixedPoint:
 | |
|     llvm_unreachable("invalid cast kind for integral value");
 | |
| 
 | |
|   case CK_BitCast:
 | |
|   case CK_Dependent:
 | |
|   case CK_LValueBitCast:
 | |
|   case CK_ARCProduceObject:
 | |
|   case CK_ARCConsumeObject:
 | |
|   case CK_ARCReclaimReturnedObject:
 | |
|   case CK_ARCExtendBlockObject:
 | |
|   case CK_CopyAndAutoreleaseBlockObject:
 | |
|     return Error(E);
 | |
| 
 | |
|   case CK_UserDefinedConversion:
 | |
|   case CK_LValueToRValue:
 | |
|   case CK_AtomicToNonAtomic:
 | |
|   case CK_NoOp:
 | |
|   case CK_LValueToRValueBitCast:
 | |
|     return ExprEvaluatorBaseTy::VisitCastExpr(E);
 | |
| 
 | |
|   case CK_MemberPointerToBoolean:
 | |
|   case CK_PointerToBoolean:
 | |
|   case CK_IntegralToBoolean:
 | |
|   case CK_FloatingToBoolean:
 | |
|   case CK_BooleanToSignedIntegral:
 | |
|   case CK_FloatingComplexToBoolean:
 | |
|   case CK_IntegralComplexToBoolean: {
 | |
|     bool BoolResult;
 | |
|     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
 | |
|       return false;
 | |
|     uint64_t IntResult = BoolResult;
 | |
|     if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
 | |
|       IntResult = (uint64_t)-1;
 | |
|     return Success(IntResult, E);
 | |
|   }
 | |
| 
 | |
|   case CK_FixedPointToIntegral: {
 | |
|     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType));
 | |
|     if (!EvaluateFixedPoint(SubExpr, Src, Info))
 | |
|       return false;
 | |
|     bool Overflowed;
 | |
|     llvm::APSInt Result = Src.convertToInt(
 | |
|         Info.Ctx.getIntWidth(DestType),
 | |
|         DestType->isSignedIntegerOrEnumerationType(), &Overflowed);
 | |
|     if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
 | |
|       return false;
 | |
|     return Success(Result, E);
 | |
|   }
 | |
| 
 | |
|   case CK_FixedPointToBoolean: {
 | |
|     // Unsigned padding does not affect this.
 | |
|     APValue Val;
 | |
|     if (!Evaluate(Val, Info, SubExpr))
 | |
|       return false;
 | |
|     return Success(Val.getFixedPoint().getBoolValue(), E);
 | |
|   }
 | |
| 
 | |
|   case CK_IntegralCast: {
 | |
|     if (!Visit(SubExpr))
 | |
|       return false;
 | |
| 
 | |
|     if (!Result.isInt()) {
 | |
|       // Allow casts of address-of-label differences if they are no-ops
 | |
|       // or narrowing.  (The narrowing case isn't actually guaranteed to
 | |
|       // be constant-evaluatable except in some narrow cases which are hard
 | |
|       // to detect here.  We let it through on the assumption the user knows
 | |
|       // what they are doing.)
 | |
|       if (Result.isAddrLabelDiff())
 | |
|         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
 | |
|       // Only allow casts of lvalues if they are lossless.
 | |
|       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
 | |
|     }
 | |
| 
 | |
|     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
 | |
|                                       Result.getInt()), E);
 | |
|   }
 | |
| 
 | |
|   case CK_PointerToIntegral: {
 | |
|     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
 | |
| 
 | |
|     LValue LV;
 | |
|     if (!EvaluatePointer(SubExpr, LV, Info))
 | |
|       return false;
 | |
| 
 | |
|     if (LV.getLValueBase()) {
 | |
|       // Only allow based lvalue casts if they are lossless.
 | |
|       // FIXME: Allow a larger integer size than the pointer size, and allow
 | |
|       // narrowing back down to pointer width in subsequent integral casts.
 | |
|       // FIXME: Check integer type's active bits, not its type size.
 | |
|       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
 | |
|         return Error(E);
 | |
| 
 | |
|       LV.Designator.setInvalid();
 | |
|       LV.moveInto(Result);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     APSInt AsInt;
 | |
|     APValue V;
 | |
|     LV.moveInto(V);
 | |
|     if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx))
 | |
|       llvm_unreachable("Can't cast this!");
 | |
| 
 | |
|     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
 | |
|   }
 | |
| 
 | |
|   case CK_IntegralComplexToReal: {
 | |
|     ComplexValue C;
 | |
|     if (!EvaluateComplex(SubExpr, C, Info))
 | |
|       return false;
 | |
|     return Success(C.getComplexIntReal(), E);
 | |
|   }
 | |
| 
 | |
|   case CK_FloatingToIntegral: {
 | |
|     APFloat F(0.0);
 | |
|     if (!EvaluateFloat(SubExpr, F, Info))
 | |
|       return false;
 | |
| 
 | |
|     APSInt Value;
 | |
|     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
 | |
|       return false;
 | |
|     return Success(Value, E);
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unknown cast resulting in integral value");
 | |
| }
 | |
| 
 | |
| bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
 | |
|   if (E->getSubExpr()->getType()->isAnyComplexType()) {
 | |
|     ComplexValue LV;
 | |
|     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
 | |
|       return false;
 | |
|     if (!LV.isComplexInt())
 | |
|       return Error(E);
 | |
|     return Success(LV.getComplexIntReal(), E);
 | |
|   }
 | |
| 
 | |
|   return Visit(E->getSubExpr());
 | |
| }
 | |
| 
 | |
| bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
 | |
|   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
 | |
|     ComplexValue LV;
 | |
|     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
 | |
|       return false;
 | |
|     if (!LV.isComplexInt())
 | |
|       return Error(E);
 | |
|     return Success(LV.getComplexIntImag(), E);
 | |
|   }
 | |
| 
 | |
|   VisitIgnoredValue(E->getSubExpr());
 | |
|   return Success(0, E);
 | |
| }
 | |
| 
 | |
| bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
 | |
|   return Success(E->getPackLength(), E);
 | |
| }
 | |
| 
 | |
| bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
 | |
|   return Success(E->getValue(), E);
 | |
| }
 | |
| 
 | |
| bool IntExprEvaluator::VisitConceptSpecializationExpr(
 | |
|        const ConceptSpecializationExpr *E) {
 | |
|   return Success(E->isSatisfied(), E);
 | |
| }
 | |
| 
 | |
| bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) {
 | |
|   return Success(E->isSatisfied(), E);
 | |
| }
 | |
| 
 | |
| bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
 | |
|   switch (E->getOpcode()) {
 | |
|     default:
 | |
|       // Invalid unary operators
 | |
|       return Error(E);
 | |
|     case UO_Plus:
 | |
|       // The result is just the value.
 | |
|       return Visit(E->getSubExpr());
 | |
|     case UO_Minus: {
 | |
|       if (!Visit(E->getSubExpr())) return false;
 | |
|       if (!Result.isFixedPoint())
 | |
|         return Error(E);
 | |
|       bool Overflowed;
 | |
|       APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed);
 | |
|       if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
 | |
|         return false;
 | |
|       return Success(Negated, E);
 | |
|     }
 | |
|     case UO_LNot: {
 | |
|       bool bres;
 | |
|       if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
 | |
|         return false;
 | |
|       return Success(!bres, E);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
 | |
|   const Expr *SubExpr = E->getSubExpr();
 | |
|   QualType DestType = E->getType();
 | |
|   assert(DestType->isFixedPointType() &&
 | |
|          "Expected destination type to be a fixed point type");
 | |
|   auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType);
 | |
| 
 | |
|   switch (E->getCastKind()) {
 | |
|   case CK_FixedPointCast: {
 | |
|     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
 | |
|     if (!EvaluateFixedPoint(SubExpr, Src, Info))
 | |
|       return false;
 | |
|     bool Overflowed;
 | |
|     APFixedPoint Result = Src.convert(DestFXSema, &Overflowed);
 | |
|     if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
 | |
|       return false;
 | |
|     return Success(Result, E);
 | |
|   }
 | |
|   case CK_IntegralToFixedPoint: {
 | |
|     APSInt Src;
 | |
|     if (!EvaluateInteger(SubExpr, Src, Info))
 | |
|       return false;
 | |
| 
 | |
|     bool Overflowed;
 | |
|     APFixedPoint IntResult = APFixedPoint::getFromIntValue(
 | |
|         Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
 | |
| 
 | |
|     if (Overflowed && !HandleOverflow(Info, E, IntResult, DestType))
 | |
|       return false;
 | |
| 
 | |
|     return Success(IntResult, E);
 | |
|   }
 | |
|   case CK_NoOp:
 | |
|   case CK_LValueToRValue:
 | |
|     return ExprEvaluatorBaseTy::VisitCastExpr(E);
 | |
|   default:
 | |
|     return Error(E);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
 | |
|   const Expr *LHS = E->getLHS();
 | |
|   const Expr *RHS = E->getRHS();
 | |
|   FixedPointSemantics ResultFXSema =
 | |
|       Info.Ctx.getFixedPointSemantics(E->getType());
 | |
| 
 | |
|   APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType()));
 | |
|   if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info))
 | |
|     return false;
 | |
|   APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType()));
 | |
|   if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info))
 | |
|     return false;
 | |
| 
 | |
|   switch (E->getOpcode()) {
 | |
|   case BO_Add: {
 | |
|     bool AddOverflow, ConversionOverflow;
 | |
|     APFixedPoint Result = LHSFX.add(RHSFX, &AddOverflow)
 | |
|                               .convert(ResultFXSema, &ConversionOverflow);
 | |
|     if ((AddOverflow || ConversionOverflow) &&
 | |
|         !HandleOverflow(Info, E, Result, E->getType()))
 | |
|       return false;
 | |
|     return Success(Result, E);
 | |
|   }
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
|   llvm_unreachable("Should've exited before this");
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Float Evaluation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class FloatExprEvaluator
 | |
|   : public ExprEvaluatorBase<FloatExprEvaluator> {
 | |
|   APFloat &Result;
 | |
| public:
 | |
|   FloatExprEvaluator(EvalInfo &info, APFloat &result)
 | |
|     : ExprEvaluatorBaseTy(info), Result(result) {}
 | |
| 
 | |
|   bool Success(const APValue &V, const Expr *e) {
 | |
|     Result = V.getFloat();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool ZeroInitialization(const Expr *E) {
 | |
|     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool VisitCallExpr(const CallExpr *E);
 | |
| 
 | |
|   bool VisitUnaryOperator(const UnaryOperator *E);
 | |
|   bool VisitBinaryOperator(const BinaryOperator *E);
 | |
|   bool VisitFloatingLiteral(const FloatingLiteral *E);
 | |
|   bool VisitCastExpr(const CastExpr *E);
 | |
| 
 | |
|   bool VisitUnaryReal(const UnaryOperator *E);
 | |
|   bool VisitUnaryImag(const UnaryOperator *E);
 | |
| 
 | |
|   // FIXME: Missing: array subscript of vector, member of vector
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
 | |
|   assert(E->isRValue() && E->getType()->isRealFloatingType());
 | |
|   return FloatExprEvaluator(Info, Result).Visit(E);
 | |
| }
 | |
| 
 | |
| static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
 | |
|                                   QualType ResultTy,
 | |
|                                   const Expr *Arg,
 | |
|                                   bool SNaN,
 | |
|                                   llvm::APFloat &Result) {
 | |
|   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
 | |
|   if (!S) return false;
 | |
| 
 | |
|   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
 | |
| 
 | |
|   llvm::APInt fill;
 | |
| 
 | |
|   // Treat empty strings as if they were zero.
 | |
|   if (S->getString().empty())
 | |
|     fill = llvm::APInt(32, 0);
 | |
|   else if (S->getString().getAsInteger(0, fill))
 | |
|     return false;
 | |
| 
 | |
|   if (Context.getTargetInfo().isNan2008()) {
 | |
|     if (SNaN)
 | |
|       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
 | |
|     else
 | |
|       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
 | |
|   } else {
 | |
|     // Prior to IEEE 754-2008, architectures were allowed to choose whether
 | |
|     // the first bit of their significand was set for qNaN or sNaN. MIPS chose
 | |
|     // a different encoding to what became a standard in 2008, and for pre-
 | |
|     // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
 | |
|     // sNaN. This is now known as "legacy NaN" encoding.
 | |
|     if (SNaN)
 | |
|       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
 | |
|     else
 | |
|       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
 | |
|   switch (E->getBuiltinCallee()) {
 | |
|   default:
 | |
|     return ExprEvaluatorBaseTy::VisitCallExpr(E);
 | |
| 
 | |
|   case Builtin::BI__builtin_huge_val:
 | |
|   case Builtin::BI__builtin_huge_valf:
 | |
|   case Builtin::BI__builtin_huge_vall:
 | |
|   case Builtin::BI__builtin_huge_valf128:
 | |
|   case Builtin::BI__builtin_inf:
 | |
|   case Builtin::BI__builtin_inff:
 | |
|   case Builtin::BI__builtin_infl:
 | |
|   case Builtin::BI__builtin_inff128: {
 | |
|     const llvm::fltSemantics &Sem =
 | |
|       Info.Ctx.getFloatTypeSemantics(E->getType());
 | |
|     Result = llvm::APFloat::getInf(Sem);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case Builtin::BI__builtin_nans:
 | |
|   case Builtin::BI__builtin_nansf:
 | |
|   case Builtin::BI__builtin_nansl:
 | |
|   case Builtin::BI__builtin_nansf128:
 | |
|     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
 | |
|                                true, Result))
 | |
|       return Error(E);
 | |
|     return true;
 | |
| 
 | |
|   case Builtin::BI__builtin_nan:
 | |
|   case Builtin::BI__builtin_nanf:
 | |
|   case Builtin::BI__builtin_nanl:
 | |
|   case Builtin::BI__builtin_nanf128:
 | |
|     // If this is __builtin_nan() turn this into a nan, otherwise we
 | |
|     // can't constant fold it.
 | |
|     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
 | |
|                                false, Result))
 | |
|       return Error(E);
 | |
|     return true;
 | |
| 
 | |
|   case Builtin::BI__builtin_fabs:
 | |
|   case Builtin::BI__builtin_fabsf:
 | |
|   case Builtin::BI__builtin_fabsl:
 | |
|   case Builtin::BI__builtin_fabsf128:
 | |
|     if (!EvaluateFloat(E->getArg(0), Result, Info))
 | |
|       return false;
 | |
| 
 | |
|     if (Result.isNegative())
 | |
|       Result.changeSign();
 | |
|     return true;
 | |
| 
 | |
|   // FIXME: Builtin::BI__builtin_powi
 | |
|   // FIXME: Builtin::BI__builtin_powif
 | |
|   // FIXME: Builtin::BI__builtin_powil
 | |
| 
 | |
|   case Builtin::BI__builtin_copysign:
 | |
|   case Builtin::BI__builtin_copysignf:
 | |
|   case Builtin::BI__builtin_copysignl:
 | |
|   case Builtin::BI__builtin_copysignf128: {
 | |
|     APFloat RHS(0.);
 | |
|     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
 | |
|         !EvaluateFloat(E->getArg(1), RHS, Info))
 | |
|       return false;
 | |
|     Result.copySign(RHS);
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
 | |
|   if (E->getSubExpr()->getType()->isAnyComplexType()) {
 | |
|     ComplexValue CV;
 | |
|     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
 | |
|       return false;
 | |
|     Result = CV.FloatReal;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return Visit(E->getSubExpr());
 | |
| }
 | |
| 
 | |
| bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
 | |
|   if (E->getSubExpr()->getType()->isAnyComplexType()) {
 | |
|     ComplexValue CV;
 | |
|     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
 | |
|       return false;
 | |
|     Result = CV.FloatImag;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   VisitIgnoredValue(E->getSubExpr());
 | |
|   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
 | |
|   Result = llvm::APFloat::getZero(Sem);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
 | |
|   switch (E->getOpcode()) {
 | |
|   default: return Error(E);
 | |
|   case UO_Plus:
 | |
|     return EvaluateFloat(E->getSubExpr(), Result, Info);
 | |
|   case UO_Minus:
 | |
|     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
 | |
|       return false;
 | |
|     Result.changeSign();
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
 | |
|   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
 | |
|     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
 | |
| 
 | |
|   APFloat RHS(0.0);
 | |
|   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
 | |
|   if (!LHSOK && !Info.noteFailure())
 | |
|     return false;
 | |
|   return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
 | |
|          handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
 | |
| }
 | |
| 
 | |
| bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
 | |
|   Result = E->getValue();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
 | |
|   const Expr* SubExpr = E->getSubExpr();
 | |
| 
 | |
|   switch (E->getCastKind()) {
 | |
|   default:
 | |
|     return ExprEvaluatorBaseTy::VisitCastExpr(E);
 | |
| 
 | |
|   case CK_IntegralToFloating: {
 | |
|     APSInt IntResult;
 | |
|     return EvaluateInteger(SubExpr, IntResult, Info) &&
 | |
|            HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
 | |
|                                 E->getType(), Result);
 | |
|   }
 | |
| 
 | |
|   case CK_FloatingCast: {
 | |
|     if (!Visit(SubExpr))
 | |
|       return false;
 | |
|     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
 | |
|                                   Result);
 | |
|   }
 | |
| 
 | |
|   case CK_FloatingComplexToReal: {
 | |
|     ComplexValue V;
 | |
|     if (!EvaluateComplex(SubExpr, V, Info))
 | |
|       return false;
 | |
|     Result = V.getComplexFloatReal();
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Complex Evaluation (for float and integer)
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class ComplexExprEvaluator
 | |
|   : public ExprEvaluatorBase<ComplexExprEvaluator> {
 | |
|   ComplexValue &Result;
 | |
| 
 | |
| public:
 | |
|   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
 | |
|     : ExprEvaluatorBaseTy(info), Result(Result) {}
 | |
| 
 | |
|   bool Success(const APValue &V, const Expr *e) {
 | |
|     Result.setFrom(V);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool ZeroInitialization(const Expr *E);
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //                            Visitor Methods
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
 | |
|   bool VisitCastExpr(const CastExpr *E);
 | |
|   bool VisitBinaryOperator(const BinaryOperator *E);
 | |
|   bool VisitUnaryOperator(const UnaryOperator *E);
 | |
|   bool VisitInitListExpr(const InitListExpr *E);
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
 | |
|                             EvalInfo &Info) {
 | |
|   assert(E->isRValue() && E->getType()->isAnyComplexType());
 | |
|   return ComplexExprEvaluator(Info, Result).Visit(E);
 | |
| }
 | |
| 
 | |
| bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
 | |
|   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
 | |
|   if (ElemTy->isRealFloatingType()) {
 | |
|     Result.makeComplexFloat();
 | |
|     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
 | |
|     Result.FloatReal = Zero;
 | |
|     Result.FloatImag = Zero;
 | |
|   } else {
 | |
|     Result.makeComplexInt();
 | |
|     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
 | |
|     Result.IntReal = Zero;
 | |
|     Result.IntImag = Zero;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
 | |
|   const Expr* SubExpr = E->getSubExpr();
 | |
| 
 | |
|   if (SubExpr->getType()->isRealFloatingType()) {
 | |
|     Result.makeComplexFloat();
 | |
|     APFloat &Imag = Result.FloatImag;
 | |
|     if (!EvaluateFloat(SubExpr, Imag, Info))
 | |
|       return false;
 | |
| 
 | |
|     Result.FloatReal = APFloat(Imag.getSemantics());
 | |
|     return true;
 | |
|   } else {
 | |
|     assert(SubExpr->getType()->isIntegerType() &&
 | |
|            "Unexpected imaginary literal.");
 | |
| 
 | |
|     Result.makeComplexInt();
 | |
|     APSInt &Imag = Result.IntImag;
 | |
|     if (!EvaluateInteger(SubExpr, Imag, Info))
 | |
|       return false;
 | |
| 
 | |
|     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
 | |
| 
 | |
|   switch (E->getCastKind()) {
 | |
|   case CK_BitCast:
 | |
|   case CK_BaseToDerived:
 | |
|   case CK_DerivedToBase:
 | |
|   case CK_UncheckedDerivedToBase:
 | |
|   case CK_Dynamic:
 | |
|   case CK_ToUnion:
 | |
|   case CK_ArrayToPointerDecay:
 | |
|   case CK_FunctionToPointerDecay:
 | |
|   case CK_NullToPointer:
 | |
|   case CK_NullToMemberPointer:
 | |
|   case CK_BaseToDerivedMemberPointer:
 | |
|   case CK_DerivedToBaseMemberPointer:
 | |
|   case CK_MemberPointerToBoolean:
 | |
|   case CK_ReinterpretMemberPointer:
 | |
|   case CK_ConstructorConversion:
 | |
|   case CK_IntegralToPointer:
 | |
|   case CK_PointerToIntegral:
 | |
|   case CK_PointerToBoolean:
 | |
|   case CK_ToVoid:
 | |
|   case CK_VectorSplat:
 | |
|   case CK_IntegralCast:
 | |
|   case CK_BooleanToSignedIntegral:
 | |
|   case CK_IntegralToBoolean:
 | |
|   case CK_IntegralToFloating:
 | |
|   case CK_FloatingToIntegral:
 | |
|   case CK_FloatingToBoolean:
 | |
|   case CK_FloatingCast:
 | |
|   case CK_CPointerToObjCPointerCast:
 | |
|   case CK_BlockPointerToObjCPointerCast:
 | |
|   case CK_AnyPointerToBlockPointerCast:
 | |
|   case CK_ObjCObjectLValueCast:
 | |
|   case CK_FloatingComplexToReal:
 | |
|   case CK_FloatingComplexToBoolean:
 | |
|   case CK_IntegralComplexToReal:
 | |
|   case CK_IntegralComplexToBoolean:
 | |
|   case CK_ARCProduceObject:
 | |
|   case CK_ARCConsumeObject:
 | |
|   case CK_ARCReclaimReturnedObject:
 | |
|   case CK_ARCExtendBlockObject:
 | |
|   case CK_CopyAndAutoreleaseBlockObject:
 | |
|   case CK_BuiltinFnToFnPtr:
 | |
|   case CK_ZeroToOCLOpaqueType:
 | |
|   case CK_NonAtomicToAtomic:
 | |
|   case CK_AddressSpaceConversion:
 | |
|   case CK_IntToOCLSampler:
 | |
|   case CK_FixedPointCast:
 | |
|   case CK_FixedPointToBoolean:
 | |
|   case CK_FixedPointToIntegral:
 | |
|   case CK_IntegralToFixedPoint:
 | |
|     llvm_unreachable("invalid cast kind for complex value");
 | |
| 
 | |
|   case CK_LValueToRValue:
 | |
|   case CK_AtomicToNonAtomic:
 | |
|   case CK_NoOp:
 | |
|   case CK_LValueToRValueBitCast:
 | |
|     return ExprEvaluatorBaseTy::VisitCastExpr(E);
 | |
| 
 | |
|   case CK_Dependent:
 | |
|   case CK_LValueBitCast:
 | |
|   case CK_UserDefinedConversion:
 | |
|     return Error(E);
 | |
| 
 | |
|   case CK_FloatingRealToComplex: {
 | |
|     APFloat &Real = Result.FloatReal;
 | |
|     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
 | |
|       return false;
 | |
| 
 | |
|     Result.makeComplexFloat();
 | |
|     Result.FloatImag = APFloat(Real.getSemantics());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case CK_FloatingComplexCast: {
 | |
|     if (!Visit(E->getSubExpr()))
 | |
|       return false;
 | |
| 
 | |
|     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
 | |
|     QualType From
 | |
|       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
 | |
| 
 | |
|     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
 | |
|            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
 | |
|   }
 | |
| 
 | |
|   case CK_FloatingComplexToIntegralComplex: {
 | |
|     if (!Visit(E->getSubExpr()))
 | |
|       return false;
 | |
| 
 | |
|     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
 | |
|     QualType From
 | |
|       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
 | |
|     Result.makeComplexInt();
 | |
|     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
 | |
|                                 To, Result.IntReal) &&
 | |
|            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
 | |
|                                 To, Result.IntImag);
 | |
|   }
 | |
| 
 | |
|   case CK_IntegralRealToComplex: {
 | |
|     APSInt &Real = Result.IntReal;
 | |
|     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
 | |
|       return false;
 | |
| 
 | |
|     Result.makeComplexInt();
 | |
|     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case CK_IntegralComplexCast: {
 | |
|     if (!Visit(E->getSubExpr()))
 | |
|       return false;
 | |
| 
 | |
|     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
 | |
|     QualType From
 | |
|       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
 | |
| 
 | |
|     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
 | |
|     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case CK_IntegralComplexToFloatingComplex: {
 | |
|     if (!Visit(E->getSubExpr()))
 | |
|       return false;
 | |
| 
 | |
|     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
 | |
|     QualType From
 | |
|       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
 | |
|     Result.makeComplexFloat();
 | |
|     return HandleIntToFloatCast(Info, E, From, Result.IntReal,
 | |
|                                 To, Result.FloatReal) &&
 | |
|            HandleIntToFloatCast(Info, E, From, Result.IntImag,
 | |
|                                 To, Result.FloatImag);
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unknown cast resulting in complex value");
 | |
| }
 | |
| 
 | |
| bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
 | |
|   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
 | |
|     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
 | |
| 
 | |
|   // Track whether the LHS or RHS is real at the type system level. When this is
 | |
|   // the case we can simplify our evaluation strategy.
 | |
|   bool LHSReal = false, RHSReal = false;
 | |
| 
 | |
|   bool LHSOK;
 | |
|   if (E->getLHS()->getType()->isRealFloatingType()) {
 | |
|     LHSReal = true;
 | |
|     APFloat &Real = Result.FloatReal;
 | |
|     LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
 | |
|     if (LHSOK) {
 | |
|       Result.makeComplexFloat();
 | |
|       Result.FloatImag = APFloat(Real.getSemantics());
 | |
|     }
 | |
|   } else {
 | |
|     LHSOK = Visit(E->getLHS());
 | |
|   }
 | |
|   if (!LHSOK && !Info.noteFailure())
 | |
|     return false;
 | |
| 
 | |
|   ComplexValue RHS;
 | |
|   if (E->getRHS()->getType()->isRealFloatingType()) {
 | |
|     RHSReal = true;
 | |
|     APFloat &Real = RHS.FloatReal;
 | |
|     if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
 | |
|       return false;
 | |
|     RHS.makeComplexFloat();
 | |
|     RHS.FloatImag = APFloat(Real.getSemantics());
 | |
|   } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
 | |
|     return false;
 | |
| 
 | |
|   assert(!(LHSReal && RHSReal) &&
 | |
|          "Cannot have both operands of a complex operation be real.");
 | |
|   switch (E->getOpcode()) {
 | |
|   default: return Error(E);
 | |
|   case BO_Add:
 | |
|     if (Result.isComplexFloat()) {
 | |
|       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
 | |
|                                        APFloat::rmNearestTiesToEven);
 | |
|       if (LHSReal)
 | |
|         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
 | |
|       else if (!RHSReal)
 | |
|         Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
 | |
|                                          APFloat::rmNearestTiesToEven);
 | |
|     } else {
 | |
|       Result.getComplexIntReal() += RHS.getComplexIntReal();
 | |
|       Result.getComplexIntImag() += RHS.getComplexIntImag();
 | |
|     }
 | |
|     break;
 | |
|   case BO_Sub:
 | |
|     if (Result.isComplexFloat()) {
 | |
|       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
 | |
|                                             APFloat::rmNearestTiesToEven);
 | |
|       if (LHSReal) {
 | |
|         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
 | |
|         Result.getComplexFloatImag().changeSign();
 | |
|       } else if (!RHSReal) {
 | |
|         Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
 | |
|                                               APFloat::rmNearestTiesToEven);
 | |
|       }
 | |
|     } else {
 | |
|       Result.getComplexIntReal() -= RHS.getComplexIntReal();
 | |
|       Result.getComplexIntImag() -= RHS.getComplexIntImag();
 | |
|     }
 | |
|     break;
 | |
|   case BO_Mul:
 | |
|     if (Result.isComplexFloat()) {
 | |
|       // This is an implementation of complex multiplication according to the
 | |
|       // constraints laid out in C11 Annex G. The implementation uses the
 | |
|       // following naming scheme:
 | |
|       //   (a + ib) * (c + id)
 | |
|       ComplexValue LHS = Result;
 | |
|       APFloat &A = LHS.getComplexFloatReal();
 | |
|       APFloat &B = LHS.getComplexFloatImag();
 | |
|       APFloat &C = RHS.getComplexFloatReal();
 | |
|       APFloat &D = RHS.getComplexFloatImag();
 | |
|       APFloat &ResR = Result.getComplexFloatReal();
 | |
|       APFloat &ResI = Result.getComplexFloatImag();
 | |
|       if (LHSReal) {
 | |
|         assert(!RHSReal && "Cannot have two real operands for a complex op!");
 | |
|         ResR = A * C;
 | |
|         ResI = A * D;
 | |
|       } else if (RHSReal) {
 | |
|         ResR = C * A;
 | |
|         ResI = C * B;
 | |
|       } else {
 | |
|         // In the fully general case, we need to handle NaNs and infinities
 | |
|         // robustly.
 | |
|         APFloat AC = A * C;
 | |
|         APFloat BD = B * D;
 | |
|         APFloat AD = A * D;
 | |
|         APFloat BC = B * C;
 | |
|         ResR = AC - BD;
 | |
|         ResI = AD + BC;
 | |
|         if (ResR.isNaN() && ResI.isNaN()) {
 | |
|           bool Recalc = false;
 | |
|           if (A.isInfinity() || B.isInfinity()) {
 | |
|             A = APFloat::copySign(
 | |
|                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
 | |
|             B = APFloat::copySign(
 | |
|                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
 | |
|             if (C.isNaN())
 | |
|               C = APFloat::copySign(APFloat(C.getSemantics()), C);
 | |
|             if (D.isNaN())
 | |
|               D = APFloat::copySign(APFloat(D.getSemantics()), D);
 | |
|             Recalc = true;
 | |
|           }
 | |
|           if (C.isInfinity() || D.isInfinity()) {
 | |
|             C = APFloat::copySign(
 | |
|                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
 | |
|             D = APFloat::copySign(
 | |
|                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
 | |
|             if (A.isNaN())
 | |
|               A = APFloat::copySign(APFloat(A.getSemantics()), A);
 | |
|             if (B.isNaN())
 | |
|               B = APFloat::copySign(APFloat(B.getSemantics()), B);
 | |
|             Recalc = true;
 | |
|           }
 | |
|           if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
 | |
|                           AD.isInfinity() || BC.isInfinity())) {
 | |
|             if (A.isNaN())
 | |
|               A = APFloat::copySign(APFloat(A.getSemantics()), A);
 | |
|             if (B.isNaN())
 | |
|               B = APFloat::copySign(APFloat(B.getSemantics()), B);
 | |
|             if (C.isNaN())
 | |
|               C = APFloat::copySign(APFloat(C.getSemantics()), C);
 | |
|             if (D.isNaN())
 | |
|               D = APFloat::copySign(APFloat(D.getSemantics()), D);
 | |
|             Recalc = true;
 | |
|           }
 | |
|           if (Recalc) {
 | |
|             ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
 | |
|             ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       ComplexValue LHS = Result;
 | |
|       Result.getComplexIntReal() =
 | |
|         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
 | |
|          LHS.getComplexIntImag() * RHS.getComplexIntImag());
 | |
|       Result.getComplexIntImag() =
 | |
|         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
 | |
|          LHS.getComplexIntImag() * RHS.getComplexIntReal());
 | |
|     }
 | |
|     break;
 | |
|   case BO_Div:
 | |
|     if (Result.isComplexFloat()) {
 | |
|       // This is an implementation of complex division according to the
 | |
|       // constraints laid out in C11 Annex G. The implementation uses the
 | |
|       // following naming scheme:
 | |
|       //   (a + ib) / (c + id)
 | |
|       ComplexValue LHS = Result;
 | |
|       APFloat &A = LHS.getComplexFloatReal();
 | |
|       APFloat &B = LHS.getComplexFloatImag();
 | |
|       APFloat &C = RHS.getComplexFloatReal();
 | |
|       APFloat &D = RHS.getComplexFloatImag();
 | |
|       APFloat &ResR = Result.getComplexFloatReal();
 | |
|       APFloat &ResI = Result.getComplexFloatImag();
 | |
|       if (RHSReal) {
 | |
|         ResR = A / C;
 | |
|         ResI = B / C;
 | |
|       } else {
 | |
|         if (LHSReal) {
 | |
|           // No real optimizations we can do here, stub out with zero.
 | |
|           B = APFloat::getZero(A.getSemantics());
 | |
|         }
 | |
|         int DenomLogB = 0;
 | |
|         APFloat MaxCD = maxnum(abs(C), abs(D));
 | |
|         if (MaxCD.isFinite()) {
 | |
|           DenomLogB = ilogb(MaxCD);
 | |
|           C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
 | |
|           D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
 | |
|         }
 | |
|         APFloat Denom = C * C + D * D;
 | |
|         ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
 | |
|                       APFloat::rmNearestTiesToEven);
 | |
|         ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
 | |
|                       APFloat::rmNearestTiesToEven);
 | |
|         if (ResR.isNaN() && ResI.isNaN()) {
 | |
|           if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
 | |
|             ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
 | |
|             ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
 | |
|           } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
 | |
|                      D.isFinite()) {
 | |
|             A = APFloat::copySign(
 | |
|                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
 | |
|             B = APFloat::copySign(
 | |
|                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
 | |
|             ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
 | |
|             ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
 | |
|           } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
 | |
|             C = APFloat::copySign(
 | |
|                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
 | |
|             D = APFloat::copySign(
 | |
|                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
 | |
|             ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
 | |
|             ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
 | |
|         return Error(E, diag::note_expr_divide_by_zero);
 | |
| 
 | |
|       ComplexValue LHS = Result;
 | |
|       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
 | |
|         RHS.getComplexIntImag() * RHS.getComplexIntImag();
 | |
|       Result.getComplexIntReal() =
 | |
|         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
 | |
|          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
 | |
|       Result.getComplexIntImag() =
 | |
|         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
 | |
|          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
 | |
|   // Get the operand value into 'Result'.
 | |
|   if (!Visit(E->getSubExpr()))
 | |
|     return false;
 | |
| 
 | |
|   switch (E->getOpcode()) {
 | |
|   default:
 | |
|     return Error(E);
 | |
|   case UO_Extension:
 | |
|     return true;
 | |
|   case UO_Plus:
 | |
|     // The result is always just the subexpr.
 | |
|     return true;
 | |
|   case UO_Minus:
 | |
|     if (Result.isComplexFloat()) {
 | |
|       Result.getComplexFloatReal().changeSign();
 | |
|       Result.getComplexFloatImag().changeSign();
 | |
|     }
 | |
|     else {
 | |
|       Result.getComplexIntReal() = -Result.getComplexIntReal();
 | |
|       Result.getComplexIntImag() = -Result.getComplexIntImag();
 | |
|     }
 | |
|     return true;
 | |
|   case UO_Not:
 | |
|     if (Result.isComplexFloat())
 | |
|       Result.getComplexFloatImag().changeSign();
 | |
|     else
 | |
|       Result.getComplexIntImag() = -Result.getComplexIntImag();
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
 | |
|   if (E->getNumInits() == 2) {
 | |
|     if (E->getType()->isComplexType()) {
 | |
|       Result.makeComplexFloat();
 | |
|       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
 | |
|         return false;
 | |
|       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
 | |
|         return false;
 | |
|     } else {
 | |
|       Result.makeComplexInt();
 | |
|       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
 | |
|         return false;
 | |
|       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
 | |
| // implicit conversion.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class AtomicExprEvaluator :
 | |
|     public ExprEvaluatorBase<AtomicExprEvaluator> {
 | |
|   const LValue *This;
 | |
|   APValue &Result;
 | |
| public:
 | |
|   AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
 | |
|       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
 | |
| 
 | |
|   bool Success(const APValue &V, const Expr *E) {
 | |
|     Result = V;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool ZeroInitialization(const Expr *E) {
 | |
|     ImplicitValueInitExpr VIE(
 | |
|         E->getType()->castAs<AtomicType>()->getValueType());
 | |
|     // For atomic-qualified class (and array) types in C++, initialize the
 | |
|     // _Atomic-wrapped subobject directly, in-place.
 | |
|     return This ? EvaluateInPlace(Result, Info, *This, &VIE)
 | |
|                 : Evaluate(Result, Info, &VIE);
 | |
|   }
 | |
| 
 | |
|   bool VisitCastExpr(const CastExpr *E) {
 | |
|     switch (E->getCastKind()) {
 | |
|     default:
 | |
|       return ExprEvaluatorBaseTy::VisitCastExpr(E);
 | |
|     case CK_NonAtomicToAtomic:
 | |
|       return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
 | |
|                   : Evaluate(Result, Info, E->getSubExpr());
 | |
|     }
 | |
|   }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
 | |
|                            EvalInfo &Info) {
 | |
|   assert(E->isRValue() && E->getType()->isAtomicType());
 | |
|   return AtomicExprEvaluator(Info, This, Result).Visit(E);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Void expression evaluation, primarily for a cast to void on the LHS of a
 | |
| // comma operator
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class VoidExprEvaluator
 | |
|   : public ExprEvaluatorBase<VoidExprEvaluator> {
 | |
| public:
 | |
|   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
 | |
| 
 | |
|   bool Success(const APValue &V, const Expr *e) { return true; }
 | |
| 
 | |
|   bool ZeroInitialization(const Expr *E) { return true; }
 | |
| 
 | |
|   bool VisitCastExpr(const CastExpr *E) {
 | |
|     switch (E->getCastKind()) {
 | |
|     default:
 | |
|       return ExprEvaluatorBaseTy::VisitCastExpr(E);
 | |
|     case CK_ToVoid:
 | |
|       VisitIgnoredValue(E->getSubExpr());
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool VisitCallExpr(const CallExpr *E) {
 | |
|     switch (E->getBuiltinCallee()) {
 | |
|     case Builtin::BI__assume:
 | |
|     case Builtin::BI__builtin_assume:
 | |
|       // The argument is not evaluated!
 | |
|       return true;
 | |
| 
 | |
|     case Builtin::BI__builtin_operator_delete:
 | |
|       return HandleOperatorDeleteCall(Info, E);
 | |
| 
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     return ExprEvaluatorBaseTy::VisitCallExpr(E);
 | |
|   }
 | |
| 
 | |
|   bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
 | |
|   // We cannot speculatively evaluate a delete expression.
 | |
|   if (Info.SpeculativeEvaluationDepth)
 | |
|     return false;
 | |
| 
 | |
|   FunctionDecl *OperatorDelete = E->getOperatorDelete();
 | |
|   if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
 | |
|     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
 | |
|         << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   const Expr *Arg = E->getArgument();
 | |
| 
 | |
|   LValue Pointer;
 | |
|   if (!EvaluatePointer(Arg, Pointer, Info))
 | |
|     return false;
 | |
|   if (Pointer.Designator.Invalid)
 | |
|     return false;
 | |
| 
 | |
|   // Deleting a null pointer has no effect.
 | |
|   if (Pointer.isNullPointer()) {
 | |
|     // This is the only case where we need to produce an extension warning:
 | |
|     // the only other way we can succeed is if we find a dynamic allocation,
 | |
|     // and we will have warned when we allocated it in that case.
 | |
|     if (!Info.getLangOpts().CPlusPlus2a)
 | |
|       Info.CCEDiag(E, diag::note_constexpr_new);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   Optional<DynAlloc *> Alloc = CheckDeleteKind(
 | |
|       Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
 | |
|   if (!Alloc)
 | |
|     return false;
 | |
|   QualType AllocType = Pointer.Base.getDynamicAllocType();
 | |
| 
 | |
|   // For the non-array case, the designator must be empty if the static type
 | |
|   // does not have a virtual destructor.
 | |
|   if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
 | |
|       !hasVirtualDestructor(Arg->getType()->getPointeeType())) {
 | |
|     Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
 | |
|         << Arg->getType()->getPointeeType() << AllocType;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // For a class type with a virtual destructor, the selected operator delete
 | |
|   // is the one looked up when building the destructor.
 | |
|   if (!E->isArrayForm() && !E->isGlobalDelete()) {
 | |
|     const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType);
 | |
|     if (VirtualDelete &&
 | |
|         !VirtualDelete->isReplaceableGlobalAllocationFunction()) {
 | |
|       Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
 | |
|           << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
 | |
|                          (*Alloc)->Value, AllocType))
 | |
|     return false;
 | |
| 
 | |
|   if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
 | |
|     // The element was already erased. This means the destructor call also
 | |
|     // deleted the object.
 | |
|     // FIXME: This probably results in undefined behavior before we get this
 | |
|     // far, and should be diagnosed elsewhere first.
 | |
|     Info.FFDiag(E, diag::note_constexpr_double_delete);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
 | |
|   assert(E->isRValue() && E->getType()->isVoidType());
 | |
|   return VoidExprEvaluator(Info).Visit(E);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Top level Expr::EvaluateAsRValue method.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
 | |
|   // In C, function designators are not lvalues, but we evaluate them as if they
 | |
|   // are.
 | |
|   QualType T = E->getType();
 | |
|   if (E->isGLValue() || T->isFunctionType()) {
 | |
|     LValue LV;
 | |
|     if (!EvaluateLValue(E, LV, Info))
 | |
|       return false;
 | |
|     LV.moveInto(Result);
 | |
|   } else if (T->isVectorType()) {
 | |
|     if (!EvaluateVector(E, Result, Info))
 | |
|       return false;
 | |
|   } else if (T->isIntegralOrEnumerationType()) {
 | |
|     if (!IntExprEvaluator(Info, Result).Visit(E))
 | |
|       return false;
 | |
|   } else if (T->hasPointerRepresentation()) {
 | |
|     LValue LV;
 | |
|     if (!EvaluatePointer(E, LV, Info))
 | |
|       return false;
 | |
|     LV.moveInto(Result);
 | |
|   } else if (T->isRealFloatingType()) {
 | |
|     llvm::APFloat F(0.0);
 | |
|     if (!EvaluateFloat(E, F, Info))
 | |
|       return false;
 | |
|     Result = APValue(F);
 | |
|   } else if (T->isAnyComplexType()) {
 | |
|     ComplexValue C;
 | |
|     if (!EvaluateComplex(E, C, Info))
 | |
|       return false;
 | |
|     C.moveInto(Result);
 | |
|   } else if (T->isFixedPointType()) {
 | |
|     if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
 | |
|   } else if (T->isMemberPointerType()) {
 | |
|     MemberPtr P;
 | |
|     if (!EvaluateMemberPointer(E, P, Info))
 | |
|       return false;
 | |
|     P.moveInto(Result);
 | |
|     return true;
 | |
|   } else if (T->isArrayType()) {
 | |
|     LValue LV;
 | |
|     APValue &Value =
 | |
|         Info.CurrentCall->createTemporary(E, T, false, LV);
 | |
|     if (!EvaluateArray(E, LV, Value, Info))
 | |
|       return false;
 | |
|     Result = Value;
 | |
|   } else if (T->isRecordType()) {
 | |
|     LValue LV;
 | |
|     APValue &Value = Info.CurrentCall->createTemporary(E, T, false, LV);
 | |
|     if (!EvaluateRecord(E, LV, Value, Info))
 | |
|       return false;
 | |
|     Result = Value;
 | |
|   } else if (T->isVoidType()) {
 | |
|     if (!Info.getLangOpts().CPlusPlus11)
 | |
|       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
 | |
|         << E->getType();
 | |
|     if (!EvaluateVoid(E, Info))
 | |
|       return false;
 | |
|   } else if (T->isAtomicType()) {
 | |
|     QualType Unqual = T.getAtomicUnqualifiedType();
 | |
|     if (Unqual->isArrayType() || Unqual->isRecordType()) {
 | |
|       LValue LV;
 | |
|       APValue &Value = Info.CurrentCall->createTemporary(E, Unqual, false, LV);
 | |
|       if (!EvaluateAtomic(E, &LV, Value, Info))
 | |
|         return false;
 | |
|     } else {
 | |
|       if (!EvaluateAtomic(E, nullptr, Result, Info))
 | |
|         return false;
 | |
|     }
 | |
|   } else if (Info.getLangOpts().CPlusPlus11) {
 | |
|     Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
 | |
|     return false;
 | |
|   } else {
 | |
|     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
 | |
| /// cases, the in-place evaluation is essential, since later initializers for
 | |
| /// an object can indirectly refer to subobjects which were initialized earlier.
 | |
| static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
 | |
|                             const Expr *E, bool AllowNonLiteralTypes) {
 | |
|   assert(!E->isValueDependent());
 | |
| 
 | |
|   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
 | |
|     return false;
 | |
| 
 | |
|   if (E->isRValue()) {
 | |
|     // Evaluate arrays and record types in-place, so that later initializers can
 | |
|     // refer to earlier-initialized members of the object.
 | |
|     QualType T = E->getType();
 | |
|     if (T->isArrayType())
 | |
|       return EvaluateArray(E, This, Result, Info);
 | |
|     else if (T->isRecordType())
 | |
|       return EvaluateRecord(E, This, Result, Info);
 | |
|     else if (T->isAtomicType()) {
 | |
|       QualType Unqual = T.getAtomicUnqualifiedType();
 | |
|       if (Unqual->isArrayType() || Unqual->isRecordType())
 | |
|         return EvaluateAtomic(E, &This, Result, Info);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // For any other type, in-place evaluation is unimportant.
 | |
|   return Evaluate(Result, Info, E);
 | |
| }
 | |
| 
 | |
| /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
 | |
| /// lvalue-to-rvalue cast if it is an lvalue.
 | |
| static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
 | |
|   if (Info.EnableNewConstInterp) {
 | |
|     if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result))
 | |
|       return false;
 | |
|   } else {
 | |
|     if (E->getType().isNull())
 | |
|       return false;
 | |
| 
 | |
|     if (!CheckLiteralType(Info, E))
 | |
|       return false;
 | |
| 
 | |
|     if (!::Evaluate(Result, Info, E))
 | |
|       return false;
 | |
| 
 | |
|     if (E->isGLValue()) {
 | |
|       LValue LV;
 | |
|       LV.setFrom(Info.Ctx, Result);
 | |
|       if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check this core constant expression is a constant expression.
 | |
|   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result) &&
 | |
|          CheckMemoryLeaks(Info);
 | |
| }
 | |
| 
 | |
| static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
 | |
|                                  const ASTContext &Ctx, bool &IsConst) {
 | |
|   // Fast-path evaluations of integer literals, since we sometimes see files
 | |
|   // containing vast quantities of these.
 | |
|   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
 | |
|     Result.Val = APValue(APSInt(L->getValue(),
 | |
|                                 L->getType()->isUnsignedIntegerType()));
 | |
|     IsConst = true;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // This case should be rare, but we need to check it before we check on
 | |
|   // the type below.
 | |
|   if (Exp->getType().isNull()) {
 | |
|     IsConst = false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // FIXME: Evaluating values of large array and record types can cause
 | |
|   // performance problems. Only do so in C++11 for now.
 | |
|   if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
 | |
|                           Exp->getType()->isRecordType()) &&
 | |
|       !Ctx.getLangOpts().CPlusPlus11) {
 | |
|     IsConst = false;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
 | |
|                                       Expr::SideEffectsKind SEK) {
 | |
|   return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
 | |
|          (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
 | |
| }
 | |
| 
 | |
| static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
 | |
|                              const ASTContext &Ctx, EvalInfo &Info) {
 | |
|   bool IsConst;
 | |
|   if (FastEvaluateAsRValue(E, Result, Ctx, IsConst))
 | |
|     return IsConst;
 | |
| 
 | |
|   return EvaluateAsRValue(Info, E, Result.Val);
 | |
| }
 | |
| 
 | |
| static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
 | |
|                           const ASTContext &Ctx,
 | |
|                           Expr::SideEffectsKind AllowSideEffects,
 | |
|                           EvalInfo &Info) {
 | |
|   if (!E->getType()->isIntegralOrEnumerationType())
 | |
|     return false;
 | |
| 
 | |
|   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) ||
 | |
|       !ExprResult.Val.isInt() ||
 | |
|       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
 | |
|                                  const ASTContext &Ctx,
 | |
|                                  Expr::SideEffectsKind AllowSideEffects,
 | |
|                                  EvalInfo &Info) {
 | |
|   if (!E->getType()->isFixedPointType())
 | |
|     return false;
 | |
| 
 | |
|   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info))
 | |
|     return false;
 | |
| 
 | |
|   if (!ExprResult.Val.isFixedPoint() ||
 | |
|       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// EvaluateAsRValue - Return true if this is a constant which we can fold using
 | |
| /// any crazy technique (that has nothing to do with language standards) that
 | |
| /// we want to.  If this function returns true, it returns the folded constant
 | |
| /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
 | |
| /// will be applied to the result.
 | |
| bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
 | |
|                             bool InConstantContext) const {
 | |
|   assert(!isValueDependent() &&
 | |
|          "Expression evaluator can't be called on a dependent expression.");
 | |
|   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
 | |
|   Info.InConstantContext = InConstantContext;
 | |
|   return ::EvaluateAsRValue(this, Result, Ctx, Info);
 | |
| }
 | |
| 
 | |
| bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
 | |
|                                       bool InConstantContext) const {
 | |
|   assert(!isValueDependent() &&
 | |
|          "Expression evaluator can't be called on a dependent expression.");
 | |
|   EvalResult Scratch;
 | |
|   return EvaluateAsRValue(Scratch, Ctx, InConstantContext) &&
 | |
|          HandleConversionToBool(Scratch.Val, Result);
 | |
| }
 | |
| 
 | |
| bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
 | |
|                          SideEffectsKind AllowSideEffects,
 | |
|                          bool InConstantContext) const {
 | |
|   assert(!isValueDependent() &&
 | |
|          "Expression evaluator can't be called on a dependent expression.");
 | |
|   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
 | |
|   Info.InConstantContext = InConstantContext;
 | |
|   return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info);
 | |
| }
 | |
| 
 | |
| bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
 | |
|                                 SideEffectsKind AllowSideEffects,
 | |
|                                 bool InConstantContext) const {
 | |
|   assert(!isValueDependent() &&
 | |
|          "Expression evaluator can't be called on a dependent expression.");
 | |
|   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
 | |
|   Info.InConstantContext = InConstantContext;
 | |
|   return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info);
 | |
| }
 | |
| 
 | |
| bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
 | |
|                            SideEffectsKind AllowSideEffects,
 | |
|                            bool InConstantContext) const {
 | |
|   assert(!isValueDependent() &&
 | |
|          "Expression evaluator can't be called on a dependent expression.");
 | |
| 
 | |
|   if (!getType()->isRealFloatingType())
 | |
|     return false;
 | |
| 
 | |
|   EvalResult ExprResult;
 | |
|   if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) ||
 | |
|       !ExprResult.Val.isFloat() ||
 | |
|       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
 | |
|     return false;
 | |
| 
 | |
|   Result = ExprResult.Val.getFloat();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
 | |
|                             bool InConstantContext) const {
 | |
|   assert(!isValueDependent() &&
 | |
|          "Expression evaluator can't be called on a dependent expression.");
 | |
| 
 | |
|   EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
 | |
|   Info.InConstantContext = InConstantContext;
 | |
|   LValue LV;
 | |
|   CheckedTemporaries CheckedTemps;
 | |
|   if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() ||
 | |
|       Result.HasSideEffects ||
 | |
|       !CheckLValueConstantExpression(Info, getExprLoc(),
 | |
|                                      Ctx.getLValueReferenceType(getType()), LV,
 | |
|                                      Expr::EvaluateForCodeGen, CheckedTemps))
 | |
|     return false;
 | |
| 
 | |
|   LV.moveInto(Result.Val);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Expr::EvaluateAsConstantExpr(EvalResult &Result, ConstExprUsage Usage,
 | |
|                                   const ASTContext &Ctx, bool InPlace) const {
 | |
|   assert(!isValueDependent() &&
 | |
|          "Expression evaluator can't be called on a dependent expression.");
 | |
| 
 | |
|   EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
 | |
|   EvalInfo Info(Ctx, Result, EM);
 | |
|   Info.InConstantContext = true;
 | |
| 
 | |
|   if (InPlace) {
 | |
|     Info.setEvaluatingDecl(this, Result.Val);
 | |
|     LValue LVal;
 | |
|     LVal.set(this);
 | |
|     if (!::EvaluateInPlace(Result.Val, Info, LVal, this) ||
 | |
|         Result.HasSideEffects)
 | |
|       return false;
 | |
|   } else if (!::Evaluate(Result.Val, Info, this) || Result.HasSideEffects)
 | |
|     return false;
 | |
| 
 | |
|   if (!Info.discardCleanups())
 | |
|     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
 | |
| 
 | |
|   return CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this),
 | |
|                                  Result.Val, Usage) &&
 | |
|          CheckMemoryLeaks(Info);
 | |
| }
 | |
| 
 | |
| bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
 | |
|                                  const VarDecl *VD,
 | |
|                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
 | |
|   assert(!isValueDependent() &&
 | |
|          "Expression evaluator can't be called on a dependent expression.");
 | |
| 
 | |
|   // FIXME: Evaluating initializers for large array and record types can cause
 | |
|   // performance problems. Only do so in C++11 for now.
 | |
|   if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
 | |
|       !Ctx.getLangOpts().CPlusPlus11)
 | |
|     return false;
 | |
| 
 | |
|   Expr::EvalStatus EStatus;
 | |
|   EStatus.Diag = &Notes;
 | |
| 
 | |
|   EvalInfo Info(Ctx, EStatus, VD->isConstexpr()
 | |
|                                       ? EvalInfo::EM_ConstantExpression
 | |
|                                       : EvalInfo::EM_ConstantFold);
 | |
|   Info.setEvaluatingDecl(VD, Value);
 | |
|   Info.InConstantContext = true;
 | |
| 
 | |
|   SourceLocation DeclLoc = VD->getLocation();
 | |
|   QualType DeclTy = VD->getType();
 | |
| 
 | |
|   if (Info.EnableNewConstInterp) {
 | |
|     auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
 | |
|     if (!InterpCtx.evaluateAsInitializer(Info, VD, Value))
 | |
|       return false;
 | |
|   } else {
 | |
|     LValue LVal;
 | |
|     LVal.set(VD);
 | |
| 
 | |
|     if (!EvaluateInPlace(Value, Info, LVal, this,
 | |
|                          /*AllowNonLiteralTypes=*/true) ||
 | |
|         EStatus.HasSideEffects)
 | |
|       return false;
 | |
| 
 | |
|     // At this point, any lifetime-extended temporaries are completely
 | |
|     // initialized.
 | |
|     Info.performLifetimeExtension();
 | |
| 
 | |
|     if (!Info.discardCleanups())
 | |
|       llvm_unreachable("Unhandled cleanup; missing full expression marker?");
 | |
|   }
 | |
|   return CheckConstantExpression(Info, DeclLoc, DeclTy, Value) &&
 | |
|          CheckMemoryLeaks(Info);
 | |
| }
 | |
| 
 | |
| bool VarDecl::evaluateDestruction(
 | |
|     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
 | |
|   Expr::EvalStatus EStatus;
 | |
|   EStatus.Diag = &Notes;
 | |
| 
 | |
|   // Make a copy of the value for the destructor to mutate, if we know it.
 | |
|   // Otherwise, treat the value as default-initialized; if the destructor works
 | |
|   // anyway, then the destruction is constant (and must be essentially empty).
 | |
|   APValue DestroyedValue =
 | |
|       (getEvaluatedValue() && !getEvaluatedValue()->isAbsent())
 | |
|           ? *getEvaluatedValue()
 | |
|           : getDefaultInitValue(getType());
 | |
| 
 | |
|   EvalInfo Info(getASTContext(), EStatus, EvalInfo::EM_ConstantExpression);
 | |
|   Info.setEvaluatingDecl(this, DestroyedValue,
 | |
|                          EvalInfo::EvaluatingDeclKind::Dtor);
 | |
|   Info.InConstantContext = true;
 | |
| 
 | |
|   SourceLocation DeclLoc = getLocation();
 | |
|   QualType DeclTy = getType();
 | |
| 
 | |
|   LValue LVal;
 | |
|   LVal.set(this);
 | |
| 
 | |
|   if (!HandleDestruction(Info, DeclLoc, LVal.Base, DestroyedValue, DeclTy) ||
 | |
|       EStatus.HasSideEffects)
 | |
|     return false;
 | |
| 
 | |
|   if (!Info.discardCleanups())
 | |
|     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
 | |
| 
 | |
|   ensureEvaluatedStmt()->HasConstantDestruction = true;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
 | |
| /// constant folded, but discard the result.
 | |
| bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
 | |
|   assert(!isValueDependent() &&
 | |
|          "Expression evaluator can't be called on a dependent expression.");
 | |
| 
 | |
|   EvalResult Result;
 | |
|   return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) &&
 | |
|          !hasUnacceptableSideEffect(Result, SEK);
 | |
| }
 | |
| 
 | |
| APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
 | |
|                     SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
 | |
|   assert(!isValueDependent() &&
 | |
|          "Expression evaluator can't be called on a dependent expression.");
 | |
| 
 | |
|   EvalResult EVResult;
 | |
|   EVResult.Diag = Diag;
 | |
|   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
 | |
|   Info.InConstantContext = true;
 | |
| 
 | |
|   bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info);
 | |
|   (void)Result;
 | |
|   assert(Result && "Could not evaluate expression");
 | |
|   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
 | |
| 
 | |
|   return EVResult.Val.getInt();
 | |
| }
 | |
| 
 | |
| APSInt Expr::EvaluateKnownConstIntCheckOverflow(
 | |
|     const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
 | |
|   assert(!isValueDependent() &&
 | |
|          "Expression evaluator can't be called on a dependent expression.");
 | |
| 
 | |
|   EvalResult EVResult;
 | |
|   EVResult.Diag = Diag;
 | |
|   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
 | |
|   Info.InConstantContext = true;
 | |
|   Info.CheckingForUndefinedBehavior = true;
 | |
| 
 | |
|   bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val);
 | |
|   (void)Result;
 | |
|   assert(Result && "Could not evaluate expression");
 | |
|   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
 | |
| 
 | |
|   return EVResult.Val.getInt();
 | |
| }
 | |
| 
 | |
| void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
 | |
|   assert(!isValueDependent() &&
 | |
|          "Expression evaluator can't be called on a dependent expression.");
 | |
| 
 | |
|   bool IsConst;
 | |
|   EvalResult EVResult;
 | |
|   if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) {
 | |
|     EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
 | |
|     Info.CheckingForUndefinedBehavior = true;
 | |
|     (void)::EvaluateAsRValue(Info, this, EVResult.Val);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Expr::EvalResult::isGlobalLValue() const {
 | |
|   assert(Val.isLValue());
 | |
|   return IsGlobalLValue(Val.getLValueBase());
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isIntegerConstantExpr - this recursive routine will test if an expression is
 | |
| /// an integer constant expression.
 | |
| 
 | |
| /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
 | |
| /// comma, etc
 | |
| 
 | |
| // CheckICE - This function does the fundamental ICE checking: the returned
 | |
| // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
 | |
| // and a (possibly null) SourceLocation indicating the location of the problem.
 | |
| //
 | |
| // Note that to reduce code duplication, this helper does no evaluation
 | |
| // itself; the caller checks whether the expression is evaluatable, and
 | |
| // in the rare cases where CheckICE actually cares about the evaluated
 | |
| // value, it calls into Evaluate.
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| enum ICEKind {
 | |
|   /// This expression is an ICE.
 | |
|   IK_ICE,
 | |
|   /// This expression is not an ICE, but if it isn't evaluated, it's
 | |
|   /// a legal subexpression for an ICE. This return value is used to handle
 | |
|   /// the comma operator in C99 mode, and non-constant subexpressions.
 | |
|   IK_ICEIfUnevaluated,
 | |
|   /// This expression is not an ICE, and is not a legal subexpression for one.
 | |
|   IK_NotICE
 | |
| };
 | |
| 
 | |
| struct ICEDiag {
 | |
|   ICEKind Kind;
 | |
|   SourceLocation Loc;
 | |
| 
 | |
|   ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
 | |
| 
 | |
| static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
 | |
| 
 | |
| static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
 | |
|   Expr::EvalResult EVResult;
 | |
|   Expr::EvalStatus Status;
 | |
|   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
 | |
| 
 | |
|   Info.InConstantContext = true;
 | |
|   if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects ||
 | |
|       !EVResult.Val.isInt())
 | |
|     return ICEDiag(IK_NotICE, E->getBeginLoc());
 | |
| 
 | |
|   return NoDiag();
 | |
| }
 | |
| 
 | |
| static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
 | |
|   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
 | |
|   if (!E->getType()->isIntegralOrEnumerationType())
 | |
|     return ICEDiag(IK_NotICE, E->getBeginLoc());
 | |
| 
 | |
|   switch (E->getStmtClass()) {
 | |
| #define ABSTRACT_STMT(Node)
 | |
| #define STMT(Node, Base) case Expr::Node##Class:
 | |
| #define EXPR(Node, Base)
 | |
| #include "clang/AST/StmtNodes.inc"
 | |
|   case Expr::PredefinedExprClass:
 | |
|   case Expr::FloatingLiteralClass:
 | |
|   case Expr::ImaginaryLiteralClass:
 | |
|   case Expr::StringLiteralClass:
 | |
|   case Expr::ArraySubscriptExprClass:
 | |
|   case Expr::OMPArraySectionExprClass:
 | |
|   case Expr::MemberExprClass:
 | |
|   case Expr::CompoundAssignOperatorClass:
 | |
|   case Expr::CompoundLiteralExprClass:
 | |
|   case Expr::ExtVectorElementExprClass:
 | |
|   case Expr::DesignatedInitExprClass:
 | |
|   case Expr::ArrayInitLoopExprClass:
 | |
|   case Expr::ArrayInitIndexExprClass:
 | |
|   case Expr::NoInitExprClass:
 | |
|   case Expr::DesignatedInitUpdateExprClass:
 | |
|   case Expr::ImplicitValueInitExprClass:
 | |
|   case Expr::ParenListExprClass:
 | |
|   case Expr::VAArgExprClass:
 | |
|   case Expr::AddrLabelExprClass:
 | |
|   case Expr::StmtExprClass:
 | |
|   case Expr::CXXMemberCallExprClass:
 | |
|   case Expr::CUDAKernelCallExprClass:
 | |
|   case Expr::CXXDynamicCastExprClass:
 | |
|   case Expr::CXXTypeidExprClass:
 | |
|   case Expr::CXXUuidofExprClass:
 | |
|   case Expr::MSPropertyRefExprClass:
 | |
|   case Expr::MSPropertySubscriptExprClass:
 | |
|   case Expr::CXXNullPtrLiteralExprClass:
 | |
|   case Expr::UserDefinedLiteralClass:
 | |
|   case Expr::CXXThisExprClass:
 | |
|   case Expr::CXXThrowExprClass:
 | |
|   case Expr::CXXNewExprClass:
 | |
|   case Expr::CXXDeleteExprClass:
 | |
|   case Expr::CXXPseudoDestructorExprClass:
 | |
|   case Expr::UnresolvedLookupExprClass:
 | |
|   case Expr::TypoExprClass:
 | |
|   case Expr::DependentScopeDeclRefExprClass:
 | |
|   case Expr::CXXConstructExprClass:
 | |
|   case Expr::CXXInheritedCtorInitExprClass:
 | |
|   case Expr::CXXStdInitializerListExprClass:
 | |
|   case Expr::CXXBindTemporaryExprClass:
 | |
|   case Expr::ExprWithCleanupsClass:
 | |
|   case Expr::CXXTemporaryObjectExprClass:
 | |
|   case Expr::CXXUnresolvedConstructExprClass:
 | |
|   case Expr::CXXDependentScopeMemberExprClass:
 | |
|   case Expr::UnresolvedMemberExprClass:
 | |
|   case Expr::ObjCStringLiteralClass:
 | |
|   case Expr::ObjCBoxedExprClass:
 | |
|   case Expr::ObjCArrayLiteralClass:
 | |
|   case Expr::ObjCDictionaryLiteralClass:
 | |
|   case Expr::ObjCEncodeExprClass:
 | |
|   case Expr::ObjCMessageExprClass:
 | |
|   case Expr::ObjCSelectorExprClass:
 | |
|   case Expr::ObjCProtocolExprClass:
 | |
|   case Expr::ObjCIvarRefExprClass:
 | |
|   case Expr::ObjCPropertyRefExprClass:
 | |
|   case Expr::ObjCSubscriptRefExprClass:
 | |
|   case Expr::ObjCIsaExprClass:
 | |
|   case Expr::ObjCAvailabilityCheckExprClass:
 | |
|   case Expr::ShuffleVectorExprClass:
 | |
|   case Expr::ConvertVectorExprClass:
 | |
|   case Expr::BlockExprClass:
 | |
|   case Expr::NoStmtClass:
 | |
|   case Expr::OpaqueValueExprClass:
 | |
|   case Expr::PackExpansionExprClass:
 | |
|   case Expr::SubstNonTypeTemplateParmPackExprClass:
 | |
|   case Expr::FunctionParmPackExprClass:
 | |
|   case Expr::AsTypeExprClass:
 | |
|   case Expr::ObjCIndirectCopyRestoreExprClass:
 | |
|   case Expr::MaterializeTemporaryExprClass:
 | |
|   case Expr::PseudoObjectExprClass:
 | |
|   case Expr::AtomicExprClass:
 | |
|   case Expr::LambdaExprClass:
 | |
|   case Expr::CXXFoldExprClass:
 | |
|   case Expr::CoawaitExprClass:
 | |
|   case Expr::DependentCoawaitExprClass:
 | |
|   case Expr::CoyieldExprClass:
 | |
|     return ICEDiag(IK_NotICE, E->getBeginLoc());
 | |
| 
 | |
|   case Expr::InitListExprClass: {
 | |
|     // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
 | |
|     // form "T x = { a };" is equivalent to "T x = a;".
 | |
|     // Unless we're initializing a reference, T is a scalar as it is known to be
 | |
|     // of integral or enumeration type.
 | |
|     if (E->isRValue())
 | |
|       if (cast<InitListExpr>(E)->getNumInits() == 1)
 | |
|         return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
 | |
|     return ICEDiag(IK_NotICE, E->getBeginLoc());
 | |
|   }
 | |
| 
 | |
|   case Expr::SizeOfPackExprClass:
 | |
|   case Expr::GNUNullExprClass:
 | |
|   case Expr::SourceLocExprClass:
 | |
|     return NoDiag();
 | |
| 
 | |
|   case Expr::SubstNonTypeTemplateParmExprClass:
 | |
|     return
 | |
|       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
 | |
| 
 | |
|   case Expr::ConstantExprClass:
 | |
|     return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
 | |
| 
 | |
|   case Expr::ParenExprClass:
 | |
|     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
 | |
|   case Expr::GenericSelectionExprClass:
 | |
|     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
 | |
|   case Expr::IntegerLiteralClass:
 | |
|   case Expr::FixedPointLiteralClass:
 | |
|   case Expr::CharacterLiteralClass:
 | |
|   case Expr::ObjCBoolLiteralExprClass:
 | |
|   case Expr::CXXBoolLiteralExprClass:
 | |
|   case Expr::CXXScalarValueInitExprClass:
 | |
|   case Expr::TypeTraitExprClass:
 | |
|   case Expr::ConceptSpecializationExprClass:
 | |
|   case Expr::RequiresExprClass:
 | |
|   case Expr::ArrayTypeTraitExprClass:
 | |
|   case Expr::ExpressionTraitExprClass:
 | |
|   case Expr::CXXNoexceptExprClass:
 | |
|     return NoDiag();
 | |
|   case Expr::CallExprClass:
 | |
|   case Expr::CXXOperatorCallExprClass: {
 | |
|     // C99 6.6/3 allows function calls within unevaluated subexpressions of
 | |
|     // constant expressions, but they can never be ICEs because an ICE cannot
 | |
|     // contain an operand of (pointer to) function type.
 | |
|     const CallExpr *CE = cast<CallExpr>(E);
 | |
|     if (CE->getBuiltinCallee())
 | |
|       return CheckEvalInICE(E, Ctx);
 | |
|     return ICEDiag(IK_NotICE, E->getBeginLoc());
 | |
|   }
 | |
|   case Expr::CXXRewrittenBinaryOperatorClass:
 | |
|     return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
 | |
|                     Ctx);
 | |
|   case Expr::DeclRefExprClass: {
 | |
|     if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
 | |
|       return NoDiag();
 | |
|     const ValueDecl *D = cast<DeclRefExpr>(E)->getDecl();
 | |
|     if (Ctx.getLangOpts().CPlusPlus &&
 | |
|         D && IsConstNonVolatile(D->getType())) {
 | |
|       // Parameter variables are never constants.  Without this check,
 | |
|       // getAnyInitializer() can find a default argument, which leads
 | |
|       // to chaos.
 | |
|       if (isa<ParmVarDecl>(D))
 | |
|         return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
 | |
| 
 | |
|       // C++ 7.1.5.1p2
 | |
|       //   A variable of non-volatile const-qualified integral or enumeration
 | |
|       //   type initialized by an ICE can be used in ICEs.
 | |
|       if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
 | |
|         if (!Dcl->getType()->isIntegralOrEnumerationType())
 | |
|           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
 | |
| 
 | |
|         const VarDecl *VD;
 | |
|         // Look for a declaration of this variable that has an initializer, and
 | |
|         // check whether it is an ICE.
 | |
|         if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
 | |
|           return NoDiag();
 | |
|         else
 | |
|           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
 | |
|       }
 | |
|     }
 | |
|     return ICEDiag(IK_NotICE, E->getBeginLoc());
 | |
|   }
 | |
|   case Expr::UnaryOperatorClass: {
 | |
|     const UnaryOperator *Exp = cast<UnaryOperator>(E);
 | |
|     switch (Exp->getOpcode()) {
 | |
|     case UO_PostInc:
 | |
|     case UO_PostDec:
 | |
|     case UO_PreInc:
 | |
|     case UO_PreDec:
 | |
|     case UO_AddrOf:
 | |
|     case UO_Deref:
 | |
|     case UO_Coawait:
 | |
|       // C99 6.6/3 allows increment and decrement within unevaluated
 | |
|       // subexpressions of constant expressions, but they can never be ICEs
 | |
|       // because an ICE cannot contain an lvalue operand.
 | |
|       return ICEDiag(IK_NotICE, E->getBeginLoc());
 | |
|     case UO_Extension:
 | |
|     case UO_LNot:
 | |
|     case UO_Plus:
 | |
|     case UO_Minus:
 | |
|     case UO_Not:
 | |
|     case UO_Real:
 | |
|     case UO_Imag:
 | |
|       return CheckICE(Exp->getSubExpr(), Ctx);
 | |
|     }
 | |
|     llvm_unreachable("invalid unary operator class");
 | |
|   }
 | |
|   case Expr::OffsetOfExprClass: {
 | |
|     // Note that per C99, offsetof must be an ICE. And AFAIK, using
 | |
|     // EvaluateAsRValue matches the proposed gcc behavior for cases like
 | |
|     // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
 | |
|     // compliance: we should warn earlier for offsetof expressions with
 | |
|     // array subscripts that aren't ICEs, and if the array subscripts
 | |
|     // are ICEs, the value of the offsetof must be an integer constant.
 | |
|     return CheckEvalInICE(E, Ctx);
 | |
|   }
 | |
|   case Expr::UnaryExprOrTypeTraitExprClass: {
 | |
|     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
 | |
|     if ((Exp->getKind() ==  UETT_SizeOf) &&
 | |
|         Exp->getTypeOfArgument()->isVariableArrayType())
 | |
|       return ICEDiag(IK_NotICE, E->getBeginLoc());
 | |
|     return NoDiag();
 | |
|   }
 | |
|   case Expr::BinaryOperatorClass: {
 | |
|     const BinaryOperator *Exp = cast<BinaryOperator>(E);
 | |
|     switch (Exp->getOpcode()) {
 | |
|     case BO_PtrMemD:
 | |
|     case BO_PtrMemI:
 | |
|     case BO_Assign:
 | |
|     case BO_MulAssign:
 | |
|     case BO_DivAssign:
 | |
|     case BO_RemAssign:
 | |
|     case BO_AddAssign:
 | |
|     case BO_SubAssign:
 | |
|     case BO_ShlAssign:
 | |
|     case BO_ShrAssign:
 | |
|     case BO_AndAssign:
 | |
|     case BO_XorAssign:
 | |
|     case BO_OrAssign:
 | |
|       // C99 6.6/3 allows assignments within unevaluated subexpressions of
 | |
|       // constant expressions, but they can never be ICEs because an ICE cannot
 | |
|       // contain an lvalue operand.
 | |
|       return ICEDiag(IK_NotICE, E->getBeginLoc());
 | |
| 
 | |
|     case BO_Mul:
 | |
|     case BO_Div:
 | |
|     case BO_Rem:
 | |
|     case BO_Add:
 | |
|     case BO_Sub:
 | |
|     case BO_Shl:
 | |
|     case BO_Shr:
 | |
|     case BO_LT:
 | |
|     case BO_GT:
 | |
|     case BO_LE:
 | |
|     case BO_GE:
 | |
|     case BO_EQ:
 | |
|     case BO_NE:
 | |
|     case BO_And:
 | |
|     case BO_Xor:
 | |
|     case BO_Or:
 | |
|     case BO_Comma:
 | |
|     case BO_Cmp: {
 | |
|       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
 | |
|       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
 | |
|       if (Exp->getOpcode() == BO_Div ||
 | |
|           Exp->getOpcode() == BO_Rem) {
 | |
|         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
 | |
|         // we don't evaluate one.
 | |
|         if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
 | |
|           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
 | |
|           if (REval == 0)
 | |
|             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
 | |
|           if (REval.isSigned() && REval.isAllOnesValue()) {
 | |
|             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
 | |
|             if (LEval.isMinSignedValue())
 | |
|               return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       if (Exp->getOpcode() == BO_Comma) {
 | |
|         if (Ctx.getLangOpts().C99) {
 | |
|           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
 | |
|           // if it isn't evaluated.
 | |
|           if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
 | |
|             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
 | |
|         } else {
 | |
|           // In both C89 and C++, commas in ICEs are illegal.
 | |
|           return ICEDiag(IK_NotICE, E->getBeginLoc());
 | |
|         }
 | |
|       }
 | |
|       return Worst(LHSResult, RHSResult);
 | |
|     }
 | |
|     case BO_LAnd:
 | |
|     case BO_LOr: {
 | |
|       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
 | |
|       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
 | |
|       if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
 | |
|         // Rare case where the RHS has a comma "side-effect"; we need
 | |
|         // to actually check the condition to see whether the side
 | |
|         // with the comma is evaluated.
 | |
|         if ((Exp->getOpcode() == BO_LAnd) !=
 | |
|             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
 | |
|           return RHSResult;
 | |
|         return NoDiag();
 | |
|       }
 | |
| 
 | |
|       return Worst(LHSResult, RHSResult);
 | |
|     }
 | |
|     }
 | |
|     llvm_unreachable("invalid binary operator kind");
 | |
|   }
 | |
|   case Expr::ImplicitCastExprClass:
 | |
|   case Expr::CStyleCastExprClass:
 | |
|   case Expr::CXXFunctionalCastExprClass:
 | |
|   case Expr::CXXStaticCastExprClass:
 | |
|   case Expr::CXXReinterpretCastExprClass:
 | |
|   case Expr::CXXConstCastExprClass:
 | |
|   case Expr::ObjCBridgedCastExprClass: {
 | |
|     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
 | |
|     if (isa<ExplicitCastExpr>(E)) {
 | |
|       if (const FloatingLiteral *FL
 | |
|             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
 | |
|         unsigned DestWidth = Ctx.getIntWidth(E->getType());
 | |
|         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
 | |
|         APSInt IgnoredVal(DestWidth, !DestSigned);
 | |
|         bool Ignored;
 | |
|         // If the value does not fit in the destination type, the behavior is
 | |
|         // undefined, so we are not required to treat it as a constant
 | |
|         // expression.
 | |
|         if (FL->getValue().convertToInteger(IgnoredVal,
 | |
|                                             llvm::APFloat::rmTowardZero,
 | |
|                                             &Ignored) & APFloat::opInvalidOp)
 | |
|           return ICEDiag(IK_NotICE, E->getBeginLoc());
 | |
|         return NoDiag();
 | |
|       }
 | |
|     }
 | |
|     switch (cast<CastExpr>(E)->getCastKind()) {
 | |
|     case CK_LValueToRValue:
 | |
|     case CK_AtomicToNonAtomic:
 | |
|     case CK_NonAtomicToAtomic:
 | |
|     case CK_NoOp:
 | |
|     case CK_IntegralToBoolean:
 | |
|     case CK_IntegralCast:
 | |
|       return CheckICE(SubExpr, Ctx);
 | |
|     default:
 | |
|       return ICEDiag(IK_NotICE, E->getBeginLoc());
 | |
|     }
 | |
|   }
 | |
|   case Expr::BinaryConditionalOperatorClass: {
 | |
|     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
 | |
|     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
 | |
|     if (CommonResult.Kind == IK_NotICE) return CommonResult;
 | |
|     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
 | |
|     if (FalseResult.Kind == IK_NotICE) return FalseResult;
 | |
|     if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
 | |
|     if (FalseResult.Kind == IK_ICEIfUnevaluated &&
 | |
|         Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
 | |
|     return FalseResult;
 | |
|   }
 | |
|   case Expr::ConditionalOperatorClass: {
 | |
|     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
 | |
|     // If the condition (ignoring parens) is a __builtin_constant_p call,
 | |
|     // then only the true side is actually considered in an integer constant
 | |
|     // expression, and it is fully evaluated.  This is an important GNU
 | |
|     // extension.  See GCC PR38377 for discussion.
 | |
|     if (const CallExpr *CallCE
 | |
|         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
 | |
|       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
 | |
|         return CheckEvalInICE(E, Ctx);
 | |
|     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
 | |
|     if (CondResult.Kind == IK_NotICE)
 | |
|       return CondResult;
 | |
| 
 | |
|     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
 | |
|     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
 | |
| 
 | |
|     if (TrueResult.Kind == IK_NotICE)
 | |
|       return TrueResult;
 | |
|     if (FalseResult.Kind == IK_NotICE)
 | |
|       return FalseResult;
 | |
|     if (CondResult.Kind == IK_ICEIfUnevaluated)
 | |
|       return CondResult;
 | |
|     if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
 | |
|       return NoDiag();
 | |
|     // Rare case where the diagnostics depend on which side is evaluated
 | |
|     // Note that if we get here, CondResult is 0, and at least one of
 | |
|     // TrueResult and FalseResult is non-zero.
 | |
|     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
 | |
|       return FalseResult;
 | |
|     return TrueResult;
 | |
|   }
 | |
|   case Expr::CXXDefaultArgExprClass:
 | |
|     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
 | |
|   case Expr::CXXDefaultInitExprClass:
 | |
|     return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
 | |
|   case Expr::ChooseExprClass: {
 | |
|     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
 | |
|   }
 | |
|   case Expr::BuiltinBitCastExprClass: {
 | |
|     if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
 | |
|       return ICEDiag(IK_NotICE, E->getBeginLoc());
 | |
|     return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid StmtClass!");
 | |
| }
 | |
| 
 | |
| /// Evaluate an expression as a C++11 integral constant expression.
 | |
| static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
 | |
|                                                     const Expr *E,
 | |
|                                                     llvm::APSInt *Value,
 | |
|                                                     SourceLocation *Loc) {
 | |
|   if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
 | |
|     if (Loc) *Loc = E->getExprLoc();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   APValue Result;
 | |
|   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
 | |
|     return false;
 | |
| 
 | |
|   if (!Result.isInt()) {
 | |
|     if (Loc) *Loc = E->getExprLoc();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (Value) *Value = Result.getInt();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
 | |
|                                  SourceLocation *Loc) const {
 | |
|   assert(!isValueDependent() &&
 | |
|          "Expression evaluator can't be called on a dependent expression.");
 | |
| 
 | |
|   if (Ctx.getLangOpts().CPlusPlus11)
 | |
|     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
 | |
| 
 | |
|   ICEDiag D = CheckICE(this, Ctx);
 | |
|   if (D.Kind != IK_ICE) {
 | |
|     if (Loc) *Loc = D.Loc;
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
 | |
|                                  SourceLocation *Loc, bool isEvaluated) const {
 | |
|   assert(!isValueDependent() &&
 | |
|          "Expression evaluator can't be called on a dependent expression.");
 | |
| 
 | |
|   if (Ctx.getLangOpts().CPlusPlus11)
 | |
|     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
 | |
| 
 | |
|   if (!isIntegerConstantExpr(Ctx, Loc))
 | |
|     return false;
 | |
| 
 | |
|   // The only possible side-effects here are due to UB discovered in the
 | |
|   // evaluation (for instance, INT_MAX + 1). In such a case, we are still
 | |
|   // required to treat the expression as an ICE, so we produce the folded
 | |
|   // value.
 | |
|   EvalResult ExprResult;
 | |
|   Expr::EvalStatus Status;
 | |
|   EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
 | |
|   Info.InConstantContext = true;
 | |
| 
 | |
|   if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info))
 | |
|     llvm_unreachable("ICE cannot be evaluated!");
 | |
| 
 | |
|   Value = ExprResult.Val.getInt();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
 | |
|   assert(!isValueDependent() &&
 | |
|          "Expression evaluator can't be called on a dependent expression.");
 | |
| 
 | |
|   return CheckICE(this, Ctx).Kind == IK_ICE;
 | |
| }
 | |
| 
 | |
| bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
 | |
|                                SourceLocation *Loc) const {
 | |
|   assert(!isValueDependent() &&
 | |
|          "Expression evaluator can't be called on a dependent expression.");
 | |
| 
 | |
|   // We support this checking in C++98 mode in order to diagnose compatibility
 | |
|   // issues.
 | |
|   assert(Ctx.getLangOpts().CPlusPlus);
 | |
| 
 | |
|   // Build evaluation settings.
 | |
|   Expr::EvalStatus Status;
 | |
|   SmallVector<PartialDiagnosticAt, 8> Diags;
 | |
|   Status.Diag = &Diags;
 | |
|   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
 | |
| 
 | |
|   APValue Scratch;
 | |
|   bool IsConstExpr =
 | |
|       ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) &&
 | |
|       // FIXME: We don't produce a diagnostic for this, but the callers that
 | |
|       // call us on arbitrary full-expressions should generally not care.
 | |
|       Info.discardCleanups() && !Status.HasSideEffects;
 | |
| 
 | |
|   if (!Diags.empty()) {
 | |
|     IsConstExpr = false;
 | |
|     if (Loc) *Loc = Diags[0].first;
 | |
|   } else if (!IsConstExpr) {
 | |
|     // FIXME: This shouldn't happen.
 | |
|     if (Loc) *Loc = getExprLoc();
 | |
|   }
 | |
| 
 | |
|   return IsConstExpr;
 | |
| }
 | |
| 
 | |
| bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
 | |
|                                     const FunctionDecl *Callee,
 | |
|                                     ArrayRef<const Expr*> Args,
 | |
|                                     const Expr *This) const {
 | |
|   assert(!isValueDependent() &&
 | |
|          "Expression evaluator can't be called on a dependent expression.");
 | |
| 
 | |
|   Expr::EvalStatus Status;
 | |
|   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
 | |
|   Info.InConstantContext = true;
 | |
| 
 | |
|   LValue ThisVal;
 | |
|   const LValue *ThisPtr = nullptr;
 | |
|   if (This) {
 | |
| #ifndef NDEBUG
 | |
|     auto *MD = dyn_cast<CXXMethodDecl>(Callee);
 | |
|     assert(MD && "Don't provide `this` for non-methods.");
 | |
|     assert(!MD->isStatic() && "Don't provide `this` for static methods.");
 | |
| #endif
 | |
|     if (!This->isValueDependent() &&
 | |
|         EvaluateObjectArgument(Info, This, ThisVal) &&
 | |
|         !Info.EvalStatus.HasSideEffects)
 | |
|       ThisPtr = &ThisVal;
 | |
| 
 | |
|     // Ignore any side-effects from a failed evaluation. This is safe because
 | |
|     // they can't interfere with any other argument evaluation.
 | |
|     Info.EvalStatus.HasSideEffects = false;
 | |
|   }
 | |
| 
 | |
|   ArgVector ArgValues(Args.size());
 | |
|   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
 | |
|        I != E; ++I) {
 | |
|     if ((*I)->isValueDependent() ||
 | |
|         !Evaluate(ArgValues[I - Args.begin()], Info, *I) ||
 | |
|         Info.EvalStatus.HasSideEffects)
 | |
|       // If evaluation fails, throw away the argument entirely.
 | |
|       ArgValues[I - Args.begin()] = APValue();
 | |
| 
 | |
|     // Ignore any side-effects from a failed evaluation. This is safe because
 | |
|     // they can't interfere with any other argument evaluation.
 | |
|     Info.EvalStatus.HasSideEffects = false;
 | |
|   }
 | |
| 
 | |
|   // Parameter cleanups happen in the caller and are not part of this
 | |
|   // evaluation.
 | |
|   Info.discardCleanups();
 | |
|   Info.EvalStatus.HasSideEffects = false;
 | |
| 
 | |
|   // Build fake call to Callee.
 | |
|   CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr,
 | |
|                        ArgValues.data());
 | |
|   // FIXME: Missing ExprWithCleanups in enable_if conditions?
 | |
|   FullExpressionRAII Scope(Info);
 | |
|   return Evaluate(Value, Info, this) && Scope.destroy() &&
 | |
|          !Info.EvalStatus.HasSideEffects;
 | |
| }
 | |
| 
 | |
| bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
 | |
|                                    SmallVectorImpl<
 | |
|                                      PartialDiagnosticAt> &Diags) {
 | |
|   // FIXME: It would be useful to check constexpr function templates, but at the
 | |
|   // moment the constant expression evaluator cannot cope with the non-rigorous
 | |
|   // ASTs which we build for dependent expressions.
 | |
|   if (FD->isDependentContext())
 | |
|     return true;
 | |
| 
 | |
|   Expr::EvalStatus Status;
 | |
|   Status.Diag = &Diags;
 | |
| 
 | |
|   EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
 | |
|   Info.InConstantContext = true;
 | |
|   Info.CheckingPotentialConstantExpression = true;
 | |
| 
 | |
|   // The constexpr VM attempts to compile all methods to bytecode here.
 | |
|   if (Info.EnableNewConstInterp) {
 | |
|     Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD);
 | |
|     return Diags.empty();
 | |
|   }
 | |
| 
 | |
|   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
 | |
|   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
 | |
| 
 | |
|   // Fabricate an arbitrary expression on the stack and pretend that it
 | |
|   // is a temporary being used as the 'this' pointer.
 | |
|   LValue This;
 | |
|   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
 | |
|   This.set({&VIE, Info.CurrentCall->Index});
 | |
| 
 | |
|   ArrayRef<const Expr*> Args;
 | |
| 
 | |
|   APValue Scratch;
 | |
|   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
 | |
|     // Evaluate the call as a constant initializer, to allow the construction
 | |
|     // of objects of non-literal types.
 | |
|     Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
 | |
|     HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
 | |
|   } else {
 | |
|     SourceLocation Loc = FD->getLocation();
 | |
|     HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
 | |
|                        Args, FD->getBody(), Info, Scratch, nullptr);
 | |
|   }
 | |
| 
 | |
|   return Diags.empty();
 | |
| }
 | |
| 
 | |
| bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
 | |
|                                               const FunctionDecl *FD,
 | |
|                                               SmallVectorImpl<
 | |
|                                                 PartialDiagnosticAt> &Diags) {
 | |
|   assert(!E->isValueDependent() &&
 | |
|          "Expression evaluator can't be called on a dependent expression.");
 | |
| 
 | |
|   Expr::EvalStatus Status;
 | |
|   Status.Diag = &Diags;
 | |
| 
 | |
|   EvalInfo Info(FD->getASTContext(), Status,
 | |
|                 EvalInfo::EM_ConstantExpressionUnevaluated);
 | |
|   Info.InConstantContext = true;
 | |
|   Info.CheckingPotentialConstantExpression = true;
 | |
| 
 | |
|   // Fabricate a call stack frame to give the arguments a plausible cover story.
 | |
|   ArrayRef<const Expr*> Args;
 | |
|   ArgVector ArgValues(0);
 | |
|   bool Success = EvaluateArgs(Args, ArgValues, Info, FD);
 | |
|   (void)Success;
 | |
|   assert(Success &&
 | |
|          "Failed to set up arguments for potential constant evaluation");
 | |
|   CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data());
 | |
| 
 | |
|   APValue ResultScratch;
 | |
|   Evaluate(ResultScratch, Info, E);
 | |
|   return Diags.empty();
 | |
| }
 | |
| 
 | |
| bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
 | |
|                                  unsigned Type) const {
 | |
|   if (!getType()->isPointerType())
 | |
|     return false;
 | |
| 
 | |
|   Expr::EvalStatus Status;
 | |
|   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
 | |
|   return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
 | |
| }
 |