forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3459 lines
		
	
	
		
			132 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3459 lines
		
	
	
		
			132 KiB
		
	
	
	
		
			C++
		
	
	
	
| //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/AST/RecordLayout.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/ASTDiagnostic.h"
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/AST/CXXInheritance.h"
 | |
| #include "clang/AST/Decl.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/Support/Format.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| 
 | |
| using namespace clang;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
 | |
| /// For a class hierarchy like
 | |
| ///
 | |
| /// class A { };
 | |
| /// class B : A { };
 | |
| /// class C : A, B { };
 | |
| ///
 | |
| /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
 | |
| /// instances, one for B and two for A.
 | |
| ///
 | |
| /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
 | |
| struct BaseSubobjectInfo {
 | |
|   /// Class - The class for this base info.
 | |
|   const CXXRecordDecl *Class;
 | |
| 
 | |
|   /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
 | |
|   bool IsVirtual;
 | |
| 
 | |
|   /// Bases - Information about the base subobjects.
 | |
|   SmallVector<BaseSubobjectInfo*, 4> Bases;
 | |
| 
 | |
|   /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
 | |
|   /// of this base info (if one exists).
 | |
|   BaseSubobjectInfo *PrimaryVirtualBaseInfo;
 | |
| 
 | |
|   // FIXME: Document.
 | |
|   const BaseSubobjectInfo *Derived;
 | |
| };
 | |
| 
 | |
| /// Externally provided layout. Typically used when the AST source, such
 | |
| /// as DWARF, lacks all the information that was available at compile time, such
 | |
| /// as alignment attributes on fields and pragmas in effect.
 | |
| struct ExternalLayout {
 | |
|   ExternalLayout() : Size(0), Align(0) {}
 | |
| 
 | |
|   /// Overall record size in bits.
 | |
|   uint64_t Size;
 | |
| 
 | |
|   /// Overall record alignment in bits.
 | |
|   uint64_t Align;
 | |
| 
 | |
|   /// Record field offsets in bits.
 | |
|   llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
 | |
| 
 | |
|   /// Direct, non-virtual base offsets.
 | |
|   llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
 | |
| 
 | |
|   /// Virtual base offsets.
 | |
|   llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
 | |
| 
 | |
|   /// Get the offset of the given field. The external source must provide
 | |
|   /// entries for all fields in the record.
 | |
|   uint64_t getExternalFieldOffset(const FieldDecl *FD) {
 | |
|     assert(FieldOffsets.count(FD) &&
 | |
|            "Field does not have an external offset");
 | |
|     return FieldOffsets[FD];
 | |
|   }
 | |
| 
 | |
|   bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
 | |
|     auto Known = BaseOffsets.find(RD);
 | |
|     if (Known == BaseOffsets.end())
 | |
|       return false;
 | |
|     BaseOffset = Known->second;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
 | |
|     auto Known = VirtualBaseOffsets.find(RD);
 | |
|     if (Known == VirtualBaseOffsets.end())
 | |
|       return false;
 | |
|     BaseOffset = Known->second;
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
 | |
| /// offsets while laying out a C++ class.
 | |
| class EmptySubobjectMap {
 | |
|   const ASTContext &Context;
 | |
|   uint64_t CharWidth;
 | |
| 
 | |
|   /// Class - The class whose empty entries we're keeping track of.
 | |
|   const CXXRecordDecl *Class;
 | |
| 
 | |
|   /// EmptyClassOffsets - A map from offsets to empty record decls.
 | |
|   typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
 | |
|   typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
 | |
|   EmptyClassOffsetsMapTy EmptyClassOffsets;
 | |
| 
 | |
|   /// MaxEmptyClassOffset - The highest offset known to contain an empty
 | |
|   /// base subobject.
 | |
|   CharUnits MaxEmptyClassOffset;
 | |
| 
 | |
|   /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
 | |
|   /// member subobject that is empty.
 | |
|   void ComputeEmptySubobjectSizes();
 | |
| 
 | |
|   void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
 | |
| 
 | |
|   void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
 | |
|                                  CharUnits Offset, bool PlacingEmptyBase);
 | |
| 
 | |
|   void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
 | |
|                                   const CXXRecordDecl *Class, CharUnits Offset,
 | |
|                                   bool PlacingOverlappingField);
 | |
|   void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset,
 | |
|                                   bool PlacingOverlappingField);
 | |
| 
 | |
|   /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
 | |
|   /// subobjects beyond the given offset.
 | |
|   bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
 | |
|     return Offset <= MaxEmptyClassOffset;
 | |
|   }
 | |
| 
 | |
|   CharUnits
 | |
|   getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
 | |
|     uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
 | |
|     assert(FieldOffset % CharWidth == 0 &&
 | |
|            "Field offset not at char boundary!");
 | |
| 
 | |
|     return Context.toCharUnitsFromBits(FieldOffset);
 | |
|   }
 | |
| 
 | |
| protected:
 | |
|   bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
 | |
|                                  CharUnits Offset) const;
 | |
| 
 | |
|   bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
 | |
|                                      CharUnits Offset);
 | |
| 
 | |
|   bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
 | |
|                                       const CXXRecordDecl *Class,
 | |
|                                       CharUnits Offset) const;
 | |
|   bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
 | |
|                                       CharUnits Offset) const;
 | |
| 
 | |
| public:
 | |
|   /// This holds the size of the largest empty subobject (either a base
 | |
|   /// or a member). Will be zero if the record being built doesn't contain
 | |
|   /// any empty classes.
 | |
|   CharUnits SizeOfLargestEmptySubobject;
 | |
| 
 | |
|   EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
 | |
|   : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
 | |
|       ComputeEmptySubobjectSizes();
 | |
|   }
 | |
| 
 | |
|   /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
 | |
|   /// at the given offset.
 | |
|   /// Returns false if placing the record will result in two components
 | |
|   /// (direct or indirect) of the same type having the same offset.
 | |
|   bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
 | |
|                             CharUnits Offset);
 | |
| 
 | |
|   /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
 | |
|   /// offset.
 | |
|   bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
 | |
| };
 | |
| 
 | |
| void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
 | |
|   // Check the bases.
 | |
|   for (const CXXBaseSpecifier &Base : Class->bases()) {
 | |
|     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|     CharUnits EmptySize;
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
 | |
|     if (BaseDecl->isEmpty()) {
 | |
|       // If the class decl is empty, get its size.
 | |
|       EmptySize = Layout.getSize();
 | |
|     } else {
 | |
|       // Otherwise, we get the largest empty subobject for the decl.
 | |
|       EmptySize = Layout.getSizeOfLargestEmptySubobject();
 | |
|     }
 | |
| 
 | |
|     if (EmptySize > SizeOfLargestEmptySubobject)
 | |
|       SizeOfLargestEmptySubobject = EmptySize;
 | |
|   }
 | |
| 
 | |
|   // Check the fields.
 | |
|   for (const FieldDecl *FD : Class->fields()) {
 | |
|     const RecordType *RT =
 | |
|         Context.getBaseElementType(FD->getType())->getAs<RecordType>();
 | |
| 
 | |
|     // We only care about record types.
 | |
|     if (!RT)
 | |
|       continue;
 | |
| 
 | |
|     CharUnits EmptySize;
 | |
|     const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
 | |
|     if (MemberDecl->isEmpty()) {
 | |
|       // If the class decl is empty, get its size.
 | |
|       EmptySize = Layout.getSize();
 | |
|     } else {
 | |
|       // Otherwise, we get the largest empty subobject for the decl.
 | |
|       EmptySize = Layout.getSizeOfLargestEmptySubobject();
 | |
|     }
 | |
| 
 | |
|     if (EmptySize > SizeOfLargestEmptySubobject)
 | |
|       SizeOfLargestEmptySubobject = EmptySize;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool
 | |
| EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
 | |
|                                              CharUnits Offset) const {
 | |
|   // We only need to check empty bases.
 | |
|   if (!RD->isEmpty())
 | |
|     return true;
 | |
| 
 | |
|   EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
 | |
|   if (I == EmptyClassOffsets.end())
 | |
|     return true;
 | |
| 
 | |
|   const ClassVectorTy &Classes = I->second;
 | |
|   if (llvm::find(Classes, RD) == Classes.end())
 | |
|     return true;
 | |
| 
 | |
|   // There is already an empty class of the same type at this offset.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
 | |
|                                              CharUnits Offset) {
 | |
|   // We only care about empty bases.
 | |
|   if (!RD->isEmpty())
 | |
|     return;
 | |
| 
 | |
|   // If we have empty structures inside a union, we can assign both
 | |
|   // the same offset. Just avoid pushing them twice in the list.
 | |
|   ClassVectorTy &Classes = EmptyClassOffsets[Offset];
 | |
|   if (llvm::is_contained(Classes, RD))
 | |
|     return;
 | |
| 
 | |
|   Classes.push_back(RD);
 | |
| 
 | |
|   // Update the empty class offset.
 | |
|   if (Offset > MaxEmptyClassOffset)
 | |
|     MaxEmptyClassOffset = Offset;
 | |
| }
 | |
| 
 | |
| bool
 | |
| EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
 | |
|                                                  CharUnits Offset) {
 | |
|   // We don't have to keep looking past the maximum offset that's known to
 | |
|   // contain an empty class.
 | |
|   if (!AnyEmptySubobjectsBeyondOffset(Offset))
 | |
|     return true;
 | |
| 
 | |
|   if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
 | |
|     return false;
 | |
| 
 | |
|   // Traverse all non-virtual bases.
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
 | |
|   for (const BaseSubobjectInfo *Base : Info->Bases) {
 | |
|     if (Base->IsVirtual)
 | |
|       continue;
 | |
| 
 | |
|     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
 | |
| 
 | |
|     if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (Info->PrimaryVirtualBaseInfo) {
 | |
|     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
 | |
| 
 | |
|     if (Info == PrimaryVirtualBaseInfo->Derived) {
 | |
|       if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Traverse all member variables.
 | |
|   unsigned FieldNo = 0;
 | |
|   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
 | |
|        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
 | |
|     if (I->isBitField())
 | |
|       continue;
 | |
| 
 | |
|     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
 | |
|     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
 | |
|                                                   CharUnits Offset,
 | |
|                                                   bool PlacingEmptyBase) {
 | |
|   if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
 | |
|     // We know that the only empty subobjects that can conflict with empty
 | |
|     // subobject of non-empty bases, are empty bases that can be placed at
 | |
|     // offset zero. Because of this, we only need to keep track of empty base
 | |
|     // subobjects with offsets less than the size of the largest empty
 | |
|     // subobject for our class.
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   AddSubobjectAtOffset(Info->Class, Offset);
 | |
| 
 | |
|   // Traverse all non-virtual bases.
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
 | |
|   for (const BaseSubobjectInfo *Base : Info->Bases) {
 | |
|     if (Base->IsVirtual)
 | |
|       continue;
 | |
| 
 | |
|     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
 | |
|     UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
 | |
|   }
 | |
| 
 | |
|   if (Info->PrimaryVirtualBaseInfo) {
 | |
|     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
 | |
| 
 | |
|     if (Info == PrimaryVirtualBaseInfo->Derived)
 | |
|       UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
 | |
|                                 PlacingEmptyBase);
 | |
|   }
 | |
| 
 | |
|   // Traverse all member variables.
 | |
|   unsigned FieldNo = 0;
 | |
|   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
 | |
|        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
 | |
|     if (I->isBitField())
 | |
|       continue;
 | |
| 
 | |
|     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
 | |
|     UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingEmptyBase);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
 | |
|                                              CharUnits Offset) {
 | |
|   // If we know this class doesn't have any empty subobjects we don't need to
 | |
|   // bother checking.
 | |
|   if (SizeOfLargestEmptySubobject.isZero())
 | |
|     return true;
 | |
| 
 | |
|   if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
 | |
|     return false;
 | |
| 
 | |
|   // We are able to place the base at this offset. Make sure to update the
 | |
|   // empty base subobject map.
 | |
|   UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
 | |
|                                                   const CXXRecordDecl *Class,
 | |
|                                                   CharUnits Offset) const {
 | |
|   // We don't have to keep looking past the maximum offset that's known to
 | |
|   // contain an empty class.
 | |
|   if (!AnyEmptySubobjectsBeyondOffset(Offset))
 | |
|     return true;
 | |
| 
 | |
|   if (!CanPlaceSubobjectAtOffset(RD, Offset))
 | |
|     return false;
 | |
| 
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
| 
 | |
|   // Traverse all non-virtual bases.
 | |
|   for (const CXXBaseSpecifier &Base : RD->bases()) {
 | |
|     if (Base.isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
 | |
|     if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (RD == Class) {
 | |
|     // This is the most derived class, traverse virtual bases as well.
 | |
|     for (const CXXBaseSpecifier &Base : RD->vbases()) {
 | |
|       const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
 | |
|       if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Traverse all member variables.
 | |
|   unsigned FieldNo = 0;
 | |
|   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
 | |
|        I != E; ++I, ++FieldNo) {
 | |
|     if (I->isBitField())
 | |
|       continue;
 | |
| 
 | |
|     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
 | |
| 
 | |
|     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
 | |
|                                                   CharUnits Offset) const {
 | |
|   // We don't have to keep looking past the maximum offset that's known to
 | |
|   // contain an empty class.
 | |
|   if (!AnyEmptySubobjectsBeyondOffset(Offset))
 | |
|     return true;
 | |
| 
 | |
|   QualType T = FD->getType();
 | |
|   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
 | |
|     return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
 | |
| 
 | |
|   // If we have an array type we need to look at every element.
 | |
|   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
 | |
|     QualType ElemTy = Context.getBaseElementType(AT);
 | |
|     const RecordType *RT = ElemTy->getAs<RecordType>();
 | |
|     if (!RT)
 | |
|       return true;
 | |
| 
 | |
|     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
| 
 | |
|     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
 | |
|     CharUnits ElementOffset = Offset;
 | |
|     for (uint64_t I = 0; I != NumElements; ++I) {
 | |
|       // We don't have to keep looking past the maximum offset that's known to
 | |
|       // contain an empty class.
 | |
|       if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
 | |
|         return true;
 | |
| 
 | |
|       if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
 | |
|         return false;
 | |
| 
 | |
|       ElementOffset += Layout.getSize();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
 | |
|                                          CharUnits Offset) {
 | |
|   if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
 | |
|     return false;
 | |
| 
 | |
|   // We are able to place the member variable at this offset.
 | |
|   // Make sure to update the empty field subobject map.
 | |
|   UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
 | |
|     const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset,
 | |
|     bool PlacingOverlappingField) {
 | |
|   // We know that the only empty subobjects that can conflict with empty
 | |
|   // field subobjects are subobjects of empty bases and potentially-overlapping
 | |
|   // fields that can be placed at offset zero. Because of this, we only need to
 | |
|   // keep track of empty field subobjects with offsets less than the size of
 | |
|   // the largest empty subobject for our class.
 | |
|   //
 | |
|   // (Proof: we will only consider placing a subobject at offset zero or at
 | |
|   // >= the current dsize. The only cases where the earlier subobject can be
 | |
|   // placed beyond the end of dsize is if it's an empty base or a
 | |
|   // potentially-overlapping field.)
 | |
|   if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject)
 | |
|     return;
 | |
| 
 | |
|   AddSubobjectAtOffset(RD, Offset);
 | |
| 
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
| 
 | |
|   // Traverse all non-virtual bases.
 | |
|   for (const CXXBaseSpecifier &Base : RD->bases()) {
 | |
|     if (Base.isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
 | |
|     UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset,
 | |
|                                PlacingOverlappingField);
 | |
|   }
 | |
| 
 | |
|   if (RD == Class) {
 | |
|     // This is the most derived class, traverse virtual bases as well.
 | |
|     for (const CXXBaseSpecifier &Base : RD->vbases()) {
 | |
|       const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
 | |
|       UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset,
 | |
|                                  PlacingOverlappingField);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Traverse all member variables.
 | |
|   unsigned FieldNo = 0;
 | |
|   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
 | |
|        I != E; ++I, ++FieldNo) {
 | |
|     if (I->isBitField())
 | |
|       continue;
 | |
| 
 | |
|     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
 | |
| 
 | |
|     UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingOverlappingField);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
 | |
|     const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) {
 | |
|   QualType T = FD->getType();
 | |
|   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
 | |
|     UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If we have an array type we need to update every element.
 | |
|   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
 | |
|     QualType ElemTy = Context.getBaseElementType(AT);
 | |
|     const RecordType *RT = ElemTy->getAs<RecordType>();
 | |
|     if (!RT)
 | |
|       return;
 | |
| 
 | |
|     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
| 
 | |
|     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
 | |
|     CharUnits ElementOffset = Offset;
 | |
| 
 | |
|     for (uint64_t I = 0; I != NumElements; ++I) {
 | |
|       // We know that the only empty subobjects that can conflict with empty
 | |
|       // field subobjects are subobjects of empty bases that can be placed at
 | |
|       // offset zero. Because of this, we only need to keep track of empty field
 | |
|       // subobjects with offsets less than the size of the largest empty
 | |
|       // subobject for our class.
 | |
|       if (!PlacingOverlappingField &&
 | |
|           ElementOffset >= SizeOfLargestEmptySubobject)
 | |
|         return;
 | |
| 
 | |
|       UpdateEmptyFieldSubobjects(RD, RD, ElementOffset,
 | |
|                                  PlacingOverlappingField);
 | |
|       ElementOffset += Layout.getSize();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
 | |
| 
 | |
| class ItaniumRecordLayoutBuilder {
 | |
| protected:
 | |
|   // FIXME: Remove this and make the appropriate fields public.
 | |
|   friend class clang::ASTContext;
 | |
| 
 | |
|   const ASTContext &Context;
 | |
| 
 | |
|   EmptySubobjectMap *EmptySubobjects;
 | |
| 
 | |
|   /// Size - The current size of the record layout.
 | |
|   uint64_t Size;
 | |
| 
 | |
|   /// Alignment - The current alignment of the record layout.
 | |
|   CharUnits Alignment;
 | |
| 
 | |
|   /// The alignment if attribute packed is not used.
 | |
|   CharUnits UnpackedAlignment;
 | |
| 
 | |
|   /// \brief The maximum of the alignments of top-level members.
 | |
|   CharUnits UnadjustedAlignment;
 | |
| 
 | |
|   SmallVector<uint64_t, 16> FieldOffsets;
 | |
| 
 | |
|   /// Whether the external AST source has provided a layout for this
 | |
|   /// record.
 | |
|   unsigned UseExternalLayout : 1;
 | |
| 
 | |
|   /// Whether we need to infer alignment, even when we have an
 | |
|   /// externally-provided layout.
 | |
|   unsigned InferAlignment : 1;
 | |
| 
 | |
|   /// Packed - Whether the record is packed or not.
 | |
|   unsigned Packed : 1;
 | |
| 
 | |
|   unsigned IsUnion : 1;
 | |
| 
 | |
|   unsigned IsMac68kAlign : 1;
 | |
| 
 | |
|   unsigned IsMsStruct : 1;
 | |
| 
 | |
|   /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
 | |
|   /// this contains the number of bits in the last unit that can be used for
 | |
|   /// an adjacent bitfield if necessary.  The unit in question is usually
 | |
|   /// a byte, but larger units are used if IsMsStruct.
 | |
|   unsigned char UnfilledBitsInLastUnit;
 | |
|   /// LastBitfieldTypeSize - If IsMsStruct, represents the size of the type
 | |
|   /// of the previous field if it was a bitfield.
 | |
|   unsigned char LastBitfieldTypeSize;
 | |
| 
 | |
|   /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
 | |
|   /// #pragma pack.
 | |
|   CharUnits MaxFieldAlignment;
 | |
| 
 | |
|   /// DataSize - The data size of the record being laid out.
 | |
|   uint64_t DataSize;
 | |
| 
 | |
|   CharUnits NonVirtualSize;
 | |
|   CharUnits NonVirtualAlignment;
 | |
| 
 | |
|   /// If we've laid out a field but not included its tail padding in Size yet,
 | |
|   /// this is the size up to the end of that field.
 | |
|   CharUnits PaddedFieldSize;
 | |
| 
 | |
|   /// PrimaryBase - the primary base class (if one exists) of the class
 | |
|   /// we're laying out.
 | |
|   const CXXRecordDecl *PrimaryBase;
 | |
| 
 | |
|   /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
 | |
|   /// out is virtual.
 | |
|   bool PrimaryBaseIsVirtual;
 | |
| 
 | |
|   /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
 | |
|   /// pointer, as opposed to inheriting one from a primary base class.
 | |
|   bool HasOwnVFPtr;
 | |
| 
 | |
|   /// the flag of field offset changing due to packed attribute.
 | |
|   bool HasPackedField;
 | |
| 
 | |
|   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
 | |
| 
 | |
|   /// Bases - base classes and their offsets in the record.
 | |
|   BaseOffsetsMapTy Bases;
 | |
| 
 | |
|   // VBases - virtual base classes and their offsets in the record.
 | |
|   ASTRecordLayout::VBaseOffsetsMapTy VBases;
 | |
| 
 | |
|   /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
 | |
|   /// primary base classes for some other direct or indirect base class.
 | |
|   CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
 | |
| 
 | |
|   /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
 | |
|   /// inheritance graph order. Used for determining the primary base class.
 | |
|   const CXXRecordDecl *FirstNearlyEmptyVBase;
 | |
| 
 | |
|   /// VisitedVirtualBases - A set of all the visited virtual bases, used to
 | |
|   /// avoid visiting virtual bases more than once.
 | |
|   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
 | |
| 
 | |
|   /// Valid if UseExternalLayout is true.
 | |
|   ExternalLayout External;
 | |
| 
 | |
|   ItaniumRecordLayoutBuilder(const ASTContext &Context,
 | |
|                              EmptySubobjectMap *EmptySubobjects)
 | |
|       : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
 | |
|         Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
 | |
|         UnadjustedAlignment(CharUnits::One()),
 | |
|         UseExternalLayout(false), InferAlignment(false), Packed(false),
 | |
|         IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
 | |
|         UnfilledBitsInLastUnit(0), LastBitfieldTypeSize(0),
 | |
|         MaxFieldAlignment(CharUnits::Zero()), DataSize(0),
 | |
|         NonVirtualSize(CharUnits::Zero()),
 | |
|         NonVirtualAlignment(CharUnits::One()),
 | |
|         PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr),
 | |
|         PrimaryBaseIsVirtual(false), HasOwnVFPtr(false),
 | |
|         HasPackedField(false), FirstNearlyEmptyVBase(nullptr) {}
 | |
| 
 | |
|   void Layout(const RecordDecl *D);
 | |
|   void Layout(const CXXRecordDecl *D);
 | |
|   void Layout(const ObjCInterfaceDecl *D);
 | |
| 
 | |
|   void LayoutFields(const RecordDecl *D);
 | |
|   void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
 | |
|   void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
 | |
|                           bool FieldPacked, const FieldDecl *D);
 | |
|   void LayoutBitField(const FieldDecl *D);
 | |
| 
 | |
|   TargetCXXABI getCXXABI() const {
 | |
|     return Context.getTargetInfo().getCXXABI();
 | |
|   }
 | |
| 
 | |
|   /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
 | |
|   llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
 | |
| 
 | |
|   typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
 | |
|     BaseSubobjectInfoMapTy;
 | |
| 
 | |
|   /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
 | |
|   /// of the class we're laying out to their base subobject info.
 | |
|   BaseSubobjectInfoMapTy VirtualBaseInfo;
 | |
| 
 | |
|   /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
 | |
|   /// class we're laying out to their base subobject info.
 | |
|   BaseSubobjectInfoMapTy NonVirtualBaseInfo;
 | |
| 
 | |
|   /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
 | |
|   /// bases of the given class.
 | |
|   void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
 | |
| 
 | |
|   /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
 | |
|   /// single class and all of its base classes.
 | |
|   BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
 | |
|                                               bool IsVirtual,
 | |
|                                               BaseSubobjectInfo *Derived);
 | |
| 
 | |
|   /// DeterminePrimaryBase - Determine the primary base of the given class.
 | |
|   void DeterminePrimaryBase(const CXXRecordDecl *RD);
 | |
| 
 | |
|   void SelectPrimaryVBase(const CXXRecordDecl *RD);
 | |
| 
 | |
|   void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
 | |
| 
 | |
|   /// LayoutNonVirtualBases - Determines the primary base class (if any) and
 | |
|   /// lays it out. Will then proceed to lay out all non-virtual base clasess.
 | |
|   void LayoutNonVirtualBases(const CXXRecordDecl *RD);
 | |
| 
 | |
|   /// LayoutNonVirtualBase - Lays out a single non-virtual base.
 | |
|   void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
 | |
| 
 | |
|   void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
 | |
|                                     CharUnits Offset);
 | |
| 
 | |
|   /// LayoutVirtualBases - Lays out all the virtual bases.
 | |
|   void LayoutVirtualBases(const CXXRecordDecl *RD,
 | |
|                           const CXXRecordDecl *MostDerivedClass);
 | |
| 
 | |
|   /// LayoutVirtualBase - Lays out a single virtual base.
 | |
|   void LayoutVirtualBase(const BaseSubobjectInfo *Base);
 | |
| 
 | |
|   /// LayoutBase - Will lay out a base and return the offset where it was
 | |
|   /// placed, in chars.
 | |
|   CharUnits LayoutBase(const BaseSubobjectInfo *Base);
 | |
| 
 | |
|   /// InitializeLayout - Initialize record layout for the given record decl.
 | |
|   void InitializeLayout(const Decl *D);
 | |
| 
 | |
|   /// FinishLayout - Finalize record layout. Adjust record size based on the
 | |
|   /// alignment.
 | |
|   void FinishLayout(const NamedDecl *D);
 | |
| 
 | |
|   void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
 | |
|   void UpdateAlignment(CharUnits NewAlignment) {
 | |
|     UpdateAlignment(NewAlignment, NewAlignment);
 | |
|   }
 | |
| 
 | |
|   /// Retrieve the externally-supplied field offset for the given
 | |
|   /// field.
 | |
|   ///
 | |
|   /// \param Field The field whose offset is being queried.
 | |
|   /// \param ComputedOffset The offset that we've computed for this field.
 | |
|   uint64_t updateExternalFieldOffset(const FieldDecl *Field,
 | |
|                                      uint64_t ComputedOffset);
 | |
| 
 | |
|   void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
 | |
|                           uint64_t UnpackedOffset, unsigned UnpackedAlign,
 | |
|                           bool isPacked, const FieldDecl *D);
 | |
| 
 | |
|   DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
 | |
| 
 | |
|   CharUnits getSize() const {
 | |
|     assert(Size % Context.getCharWidth() == 0);
 | |
|     return Context.toCharUnitsFromBits(Size);
 | |
|   }
 | |
|   uint64_t getSizeInBits() const { return Size; }
 | |
| 
 | |
|   void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
 | |
|   void setSize(uint64_t NewSize) { Size = NewSize; }
 | |
| 
 | |
|   CharUnits getAligment() const { return Alignment; }
 | |
| 
 | |
|   CharUnits getDataSize() const {
 | |
|     assert(DataSize % Context.getCharWidth() == 0);
 | |
|     return Context.toCharUnitsFromBits(DataSize);
 | |
|   }
 | |
|   uint64_t getDataSizeInBits() const { return DataSize; }
 | |
| 
 | |
|   void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
 | |
|   void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
 | |
| 
 | |
|   ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete;
 | |
|   void operator=(const ItaniumRecordLayoutBuilder &) = delete;
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
 | |
|   for (const auto &I : RD->bases()) {
 | |
|     assert(!I.getType()->isDependentType() &&
 | |
|            "Cannot layout class with dependent bases.");
 | |
| 
 | |
|     const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|     // Check if this is a nearly empty virtual base.
 | |
|     if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
 | |
|       // If it's not an indirect primary base, then we've found our primary
 | |
|       // base.
 | |
|       if (!IndirectPrimaryBases.count(Base)) {
 | |
|         PrimaryBase = Base;
 | |
|         PrimaryBaseIsVirtual = true;
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // Is this the first nearly empty virtual base?
 | |
|       if (!FirstNearlyEmptyVBase)
 | |
|         FirstNearlyEmptyVBase = Base;
 | |
|     }
 | |
| 
 | |
|     SelectPrimaryVBase(Base);
 | |
|     if (PrimaryBase)
 | |
|       return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// DeterminePrimaryBase - Determine the primary base of the given class.
 | |
| void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
 | |
|   // If the class isn't dynamic, it won't have a primary base.
 | |
|   if (!RD->isDynamicClass())
 | |
|     return;
 | |
| 
 | |
|   // Compute all the primary virtual bases for all of our direct and
 | |
|   // indirect bases, and record all their primary virtual base classes.
 | |
|   RD->getIndirectPrimaryBases(IndirectPrimaryBases);
 | |
| 
 | |
|   // If the record has a dynamic base class, attempt to choose a primary base
 | |
|   // class. It is the first (in direct base class order) non-virtual dynamic
 | |
|   // base class, if one exists.
 | |
|   for (const auto &I : RD->bases()) {
 | |
|     // Ignore virtual bases.
 | |
|     if (I.isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|     if (Base->isDynamicClass()) {
 | |
|       // We found it.
 | |
|       PrimaryBase = Base;
 | |
|       PrimaryBaseIsVirtual = false;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Under the Itanium ABI, if there is no non-virtual primary base class,
 | |
|   // try to compute the primary virtual base.  The primary virtual base is
 | |
|   // the first nearly empty virtual base that is not an indirect primary
 | |
|   // virtual base class, if one exists.
 | |
|   if (RD->getNumVBases() != 0) {
 | |
|     SelectPrimaryVBase(RD);
 | |
|     if (PrimaryBase)
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, it is the first indirect primary base class, if one exists.
 | |
|   if (FirstNearlyEmptyVBase) {
 | |
|     PrimaryBase = FirstNearlyEmptyVBase;
 | |
|     PrimaryBaseIsVirtual = true;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(!PrimaryBase && "Should not get here with a primary base!");
 | |
| }
 | |
| 
 | |
| BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
 | |
|     const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) {
 | |
|   BaseSubobjectInfo *Info;
 | |
| 
 | |
|   if (IsVirtual) {
 | |
|     // Check if we already have info about this virtual base.
 | |
|     BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
 | |
|     if (InfoSlot) {
 | |
|       assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
 | |
|       return InfoSlot;
 | |
|     }
 | |
| 
 | |
|     // We don't, create it.
 | |
|     InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
 | |
|     Info = InfoSlot;
 | |
|   } else {
 | |
|     Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
 | |
|   }
 | |
| 
 | |
|   Info->Class = RD;
 | |
|   Info->IsVirtual = IsVirtual;
 | |
|   Info->Derived = nullptr;
 | |
|   Info->PrimaryVirtualBaseInfo = nullptr;
 | |
| 
 | |
|   const CXXRecordDecl *PrimaryVirtualBase = nullptr;
 | |
|   BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
 | |
| 
 | |
|   // Check if this base has a primary virtual base.
 | |
|   if (RD->getNumVBases()) {
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
|     if (Layout.isPrimaryBaseVirtual()) {
 | |
|       // This base does have a primary virtual base.
 | |
|       PrimaryVirtualBase = Layout.getPrimaryBase();
 | |
|       assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
 | |
| 
 | |
|       // Now check if we have base subobject info about this primary base.
 | |
|       PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
 | |
| 
 | |
|       if (PrimaryVirtualBaseInfo) {
 | |
|         if (PrimaryVirtualBaseInfo->Derived) {
 | |
|           // We did have info about this primary base, and it turns out that it
 | |
|           // has already been claimed as a primary virtual base for another
 | |
|           // base.
 | |
|           PrimaryVirtualBase = nullptr;
 | |
|         } else {
 | |
|           // We can claim this base as our primary base.
 | |
|           Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
 | |
|           PrimaryVirtualBaseInfo->Derived = Info;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now go through all direct bases.
 | |
|   for (const auto &I : RD->bases()) {
 | |
|     bool IsVirtual = I.isVirtual();
 | |
| 
 | |
|     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|     Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
 | |
|   }
 | |
| 
 | |
|   if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
 | |
|     // Traversing the bases must have created the base info for our primary
 | |
|     // virtual base.
 | |
|     PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
 | |
|     assert(PrimaryVirtualBaseInfo &&
 | |
|            "Did not create a primary virtual base!");
 | |
| 
 | |
|     // Claim the primary virtual base as our primary virtual base.
 | |
|     Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
 | |
|     PrimaryVirtualBaseInfo->Derived = Info;
 | |
|   }
 | |
| 
 | |
|   return Info;
 | |
| }
 | |
| 
 | |
| void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
 | |
|     const CXXRecordDecl *RD) {
 | |
|   for (const auto &I : RD->bases()) {
 | |
|     bool IsVirtual = I.isVirtual();
 | |
| 
 | |
|     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|     // Compute the base subobject info for this base.
 | |
|     BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
 | |
|                                                        nullptr);
 | |
| 
 | |
|     if (IsVirtual) {
 | |
|       // ComputeBaseInfo has already added this base for us.
 | |
|       assert(VirtualBaseInfo.count(BaseDecl) &&
 | |
|              "Did not add virtual base!");
 | |
|     } else {
 | |
|       // Add the base info to the map of non-virtual bases.
 | |
|       assert(!NonVirtualBaseInfo.count(BaseDecl) &&
 | |
|              "Non-virtual base already exists!");
 | |
|       NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
 | |
|     CharUnits UnpackedBaseAlign) {
 | |
|   CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign;
 | |
| 
 | |
|   // The maximum field alignment overrides base align.
 | |
|   if (!MaxFieldAlignment.isZero()) {
 | |
|     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
 | |
|     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
 | |
|   }
 | |
| 
 | |
|   // Round up the current record size to pointer alignment.
 | |
|   setSize(getSize().alignTo(BaseAlign));
 | |
| 
 | |
|   // Update the alignment.
 | |
|   UpdateAlignment(BaseAlign, UnpackedBaseAlign);
 | |
| }
 | |
| 
 | |
| void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
 | |
|     const CXXRecordDecl *RD) {
 | |
|   // Then, determine the primary base class.
 | |
|   DeterminePrimaryBase(RD);
 | |
| 
 | |
|   // Compute base subobject info.
 | |
|   ComputeBaseSubobjectInfo(RD);
 | |
| 
 | |
|   // If we have a primary base class, lay it out.
 | |
|   if (PrimaryBase) {
 | |
|     if (PrimaryBaseIsVirtual) {
 | |
|       // If the primary virtual base was a primary virtual base of some other
 | |
|       // base class we'll have to steal it.
 | |
|       BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
 | |
|       PrimaryBaseInfo->Derived = nullptr;
 | |
| 
 | |
|       // We have a virtual primary base, insert it as an indirect primary base.
 | |
|       IndirectPrimaryBases.insert(PrimaryBase);
 | |
| 
 | |
|       assert(!VisitedVirtualBases.count(PrimaryBase) &&
 | |
|              "vbase already visited!");
 | |
|       VisitedVirtualBases.insert(PrimaryBase);
 | |
| 
 | |
|       LayoutVirtualBase(PrimaryBaseInfo);
 | |
|     } else {
 | |
|       BaseSubobjectInfo *PrimaryBaseInfo =
 | |
|         NonVirtualBaseInfo.lookup(PrimaryBase);
 | |
|       assert(PrimaryBaseInfo &&
 | |
|              "Did not find base info for non-virtual primary base!");
 | |
| 
 | |
|       LayoutNonVirtualBase(PrimaryBaseInfo);
 | |
|     }
 | |
| 
 | |
|   // If this class needs a vtable/vf-table and didn't get one from a
 | |
|   // primary base, add it in now.
 | |
|   } else if (RD->isDynamicClass()) {
 | |
|     assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
 | |
|     CharUnits PtrWidth =
 | |
|       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
 | |
|     CharUnits PtrAlign =
 | |
|       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
 | |
|     EnsureVTablePointerAlignment(PtrAlign);
 | |
|     HasOwnVFPtr = true;
 | |
|     setSize(getSize() + PtrWidth);
 | |
|     setDataSize(getSize());
 | |
|   }
 | |
| 
 | |
|   // Now lay out the non-virtual bases.
 | |
|   for (const auto &I : RD->bases()) {
 | |
| 
 | |
|     // Ignore virtual bases.
 | |
|     if (I.isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|     // Skip the primary base, because we've already laid it out.  The
 | |
|     // !PrimaryBaseIsVirtual check is required because we might have a
 | |
|     // non-virtual base of the same type as a primary virtual base.
 | |
|     if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
 | |
|       continue;
 | |
| 
 | |
|     // Lay out the base.
 | |
|     BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
 | |
|     assert(BaseInfo && "Did not find base info for non-virtual base!");
 | |
| 
 | |
|     LayoutNonVirtualBase(BaseInfo);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
 | |
|     const BaseSubobjectInfo *Base) {
 | |
|   // Layout the base.
 | |
|   CharUnits Offset = LayoutBase(Base);
 | |
| 
 | |
|   // Add its base class offset.
 | |
|   assert(!Bases.count(Base->Class) && "base offset already exists!");
 | |
|   Bases.insert(std::make_pair(Base->Class, Offset));
 | |
| 
 | |
|   AddPrimaryVirtualBaseOffsets(Base, Offset);
 | |
| }
 | |
| 
 | |
| void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
 | |
|     const BaseSubobjectInfo *Info, CharUnits Offset) {
 | |
|   // This base isn't interesting, it has no virtual bases.
 | |
|   if (!Info->Class->getNumVBases())
 | |
|     return;
 | |
| 
 | |
|   // First, check if we have a virtual primary base to add offsets for.
 | |
|   if (Info->PrimaryVirtualBaseInfo) {
 | |
|     assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
 | |
|            "Primary virtual base is not virtual!");
 | |
|     if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
 | |
|       // Add the offset.
 | |
|       assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
 | |
|              "primary vbase offset already exists!");
 | |
|       VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
 | |
|                                    ASTRecordLayout::VBaseInfo(Offset, false)));
 | |
| 
 | |
|       // Traverse the primary virtual base.
 | |
|       AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now go through all direct non-virtual bases.
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
 | |
|   for (const BaseSubobjectInfo *Base : Info->Bases) {
 | |
|     if (Base->IsVirtual)
 | |
|       continue;
 | |
| 
 | |
|     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
 | |
|     AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
 | |
|     const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) {
 | |
|   const CXXRecordDecl *PrimaryBase;
 | |
|   bool PrimaryBaseIsVirtual;
 | |
| 
 | |
|   if (MostDerivedClass == RD) {
 | |
|     PrimaryBase = this->PrimaryBase;
 | |
|     PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
 | |
|   } else {
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
|     PrimaryBase = Layout.getPrimaryBase();
 | |
|     PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
 | |
|   }
 | |
| 
 | |
|   for (const CXXBaseSpecifier &Base : RD->bases()) {
 | |
|     assert(!Base.getType()->isDependentType() &&
 | |
|            "Cannot layout class with dependent bases.");
 | |
| 
 | |
|     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|     if (Base.isVirtual()) {
 | |
|       if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
 | |
|         bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
 | |
| 
 | |
|         // Only lay out the virtual base if it's not an indirect primary base.
 | |
|         if (!IndirectPrimaryBase) {
 | |
|           // Only visit virtual bases once.
 | |
|           if (!VisitedVirtualBases.insert(BaseDecl).second)
 | |
|             continue;
 | |
| 
 | |
|           const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
 | |
|           assert(BaseInfo && "Did not find virtual base info!");
 | |
|           LayoutVirtualBase(BaseInfo);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!BaseDecl->getNumVBases()) {
 | |
|       // This base isn't interesting since it doesn't have any virtual bases.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     LayoutVirtualBases(BaseDecl, MostDerivedClass);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
 | |
|     const BaseSubobjectInfo *Base) {
 | |
|   assert(!Base->Derived && "Trying to lay out a primary virtual base!");
 | |
| 
 | |
|   // Layout the base.
 | |
|   CharUnits Offset = LayoutBase(Base);
 | |
| 
 | |
|   // Add its base class offset.
 | |
|   assert(!VBases.count(Base->Class) && "vbase offset already exists!");
 | |
|   VBases.insert(std::make_pair(Base->Class,
 | |
|                        ASTRecordLayout::VBaseInfo(Offset, false)));
 | |
| 
 | |
|   AddPrimaryVirtualBaseOffsets(Base, Offset);
 | |
| }
 | |
| 
 | |
| CharUnits
 | |
| ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
 | |
| 
 | |
| 
 | |
|   CharUnits Offset;
 | |
| 
 | |
|   // Query the external layout to see if it provides an offset.
 | |
|   bool HasExternalLayout = false;
 | |
|   if (UseExternalLayout) {
 | |
|     // FIXME: This appears to be reversed.
 | |
|     if (Base->IsVirtual)
 | |
|       HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
 | |
|     else
 | |
|       HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
 | |
|   }
 | |
| 
 | |
|   // Clang <= 6 incorrectly applied the 'packed' attribute to base classes.
 | |
|   // Per GCC's documentation, it only applies to non-static data members.
 | |
|   CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
 | |
|   CharUnits BaseAlign =
 | |
|       (Packed && ((Context.getLangOpts().getClangABICompat() <=
 | |
|                    LangOptions::ClangABI::Ver6) ||
 | |
|                   Context.getTargetInfo().getTriple().isPS4()))
 | |
|           ? CharUnits::One()
 | |
|           : UnpackedBaseAlign;
 | |
| 
 | |
|   // If we have an empty base class, try to place it at offset 0.
 | |
|   if (Base->Class->isEmpty() &&
 | |
|       (!HasExternalLayout || Offset == CharUnits::Zero()) &&
 | |
|       EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
 | |
|     setSize(std::max(getSize(), Layout.getSize()));
 | |
|     UpdateAlignment(BaseAlign, UnpackedBaseAlign);
 | |
| 
 | |
|     return CharUnits::Zero();
 | |
|   }
 | |
| 
 | |
|   // The maximum field alignment overrides base align.
 | |
|   if (!MaxFieldAlignment.isZero()) {
 | |
|     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
 | |
|     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
 | |
|   }
 | |
| 
 | |
|   if (!HasExternalLayout) {
 | |
|     // Round up the current record size to the base's alignment boundary.
 | |
|     Offset = getDataSize().alignTo(BaseAlign);
 | |
| 
 | |
|     // Try to place the base.
 | |
|     while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
 | |
|       Offset += BaseAlign;
 | |
|   } else {
 | |
|     bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
 | |
|     (void)Allowed;
 | |
|     assert(Allowed && "Base subobject externally placed at overlapping offset");
 | |
| 
 | |
|     if (InferAlignment && Offset < getDataSize().alignTo(BaseAlign)) {
 | |
|       // The externally-supplied base offset is before the base offset we
 | |
|       // computed. Assume that the structure is packed.
 | |
|       Alignment = CharUnits::One();
 | |
|       InferAlignment = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Base->Class->isEmpty()) {
 | |
|     // Update the data size.
 | |
|     setDataSize(Offset + Layout.getNonVirtualSize());
 | |
| 
 | |
|     setSize(std::max(getSize(), getDataSize()));
 | |
|   } else
 | |
|     setSize(std::max(getSize(), Offset + Layout.getSize()));
 | |
| 
 | |
|   // Remember max struct/class alignment.
 | |
|   UpdateAlignment(BaseAlign, UnpackedBaseAlign);
 | |
| 
 | |
|   return Offset;
 | |
| }
 | |
| 
 | |
| void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) {
 | |
|   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
 | |
|     IsUnion = RD->isUnion();
 | |
|     IsMsStruct = RD->isMsStruct(Context);
 | |
|   }
 | |
| 
 | |
|   Packed = D->hasAttr<PackedAttr>();
 | |
| 
 | |
|   // Honor the default struct packing maximum alignment flag.
 | |
|   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
 | |
|     MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
 | |
|   }
 | |
| 
 | |
|   // mac68k alignment supersedes maximum field alignment and attribute aligned,
 | |
|   // and forces all structures to have 2-byte alignment. The IBM docs on it
 | |
|   // allude to additional (more complicated) semantics, especially with regard
 | |
|   // to bit-fields, but gcc appears not to follow that.
 | |
|   if (D->hasAttr<AlignMac68kAttr>()) {
 | |
|     IsMac68kAlign = true;
 | |
|     MaxFieldAlignment = CharUnits::fromQuantity(2);
 | |
|     Alignment = CharUnits::fromQuantity(2);
 | |
|   } else {
 | |
|     if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
 | |
|       MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
 | |
| 
 | |
|     if (unsigned MaxAlign = D->getMaxAlignment())
 | |
|       UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
 | |
|   }
 | |
| 
 | |
|   // If there is an external AST source, ask it for the various offsets.
 | |
|   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
 | |
|     if (ExternalASTSource *Source = Context.getExternalSource()) {
 | |
|       UseExternalLayout = Source->layoutRecordType(
 | |
|           RD, External.Size, External.Align, External.FieldOffsets,
 | |
|           External.BaseOffsets, External.VirtualBaseOffsets);
 | |
| 
 | |
|       // Update based on external alignment.
 | |
|       if (UseExternalLayout) {
 | |
|         if (External.Align > 0) {
 | |
|           Alignment = Context.toCharUnitsFromBits(External.Align);
 | |
|         } else {
 | |
|           // The external source didn't have alignment information; infer it.
 | |
|           InferAlignment = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) {
 | |
|   InitializeLayout(D);
 | |
|   LayoutFields(D);
 | |
| 
 | |
|   // Finally, round the size of the total struct up to the alignment of the
 | |
|   // struct itself.
 | |
|   FinishLayout(D);
 | |
| }
 | |
| 
 | |
| void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
 | |
|   InitializeLayout(RD);
 | |
| 
 | |
|   // Lay out the vtable and the non-virtual bases.
 | |
|   LayoutNonVirtualBases(RD);
 | |
| 
 | |
|   LayoutFields(RD);
 | |
| 
 | |
|   NonVirtualSize = Context.toCharUnitsFromBits(
 | |
|       llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign()));
 | |
|   NonVirtualAlignment = Alignment;
 | |
| 
 | |
|   // Lay out the virtual bases and add the primary virtual base offsets.
 | |
|   LayoutVirtualBases(RD, RD);
 | |
| 
 | |
|   // Finally, round the size of the total struct up to the alignment
 | |
|   // of the struct itself.
 | |
|   FinishLayout(RD);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Check that we have base offsets for all bases.
 | |
|   for (const CXXBaseSpecifier &Base : RD->bases()) {
 | |
|     if (Base.isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|     assert(Bases.count(BaseDecl) && "Did not find base offset!");
 | |
|   }
 | |
| 
 | |
|   // And all virtual bases.
 | |
|   for (const CXXBaseSpecifier &Base : RD->vbases()) {
 | |
|     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|     assert(VBases.count(BaseDecl) && "Did not find base offset!");
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
 | |
|   if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
 | |
|     const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
 | |
| 
 | |
|     UpdateAlignment(SL.getAlignment());
 | |
| 
 | |
|     // We start laying out ivars not at the end of the superclass
 | |
|     // structure, but at the next byte following the last field.
 | |
|     setDataSize(SL.getDataSize());
 | |
|     setSize(getDataSize());
 | |
|   }
 | |
| 
 | |
|   InitializeLayout(D);
 | |
|   // Layout each ivar sequentially.
 | |
|   for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
 | |
|        IVD = IVD->getNextIvar())
 | |
|     LayoutField(IVD, false);
 | |
| 
 | |
|   // Finally, round the size of the total struct up to the alignment of the
 | |
|   // struct itself.
 | |
|   FinishLayout(D);
 | |
| }
 | |
| 
 | |
| void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
 | |
|   // Layout each field, for now, just sequentially, respecting alignment.  In
 | |
|   // the future, this will need to be tweakable by targets.
 | |
|   bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
 | |
|   bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
 | |
|   for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
 | |
|     auto Next(I);
 | |
|     ++Next;
 | |
|     LayoutField(*I,
 | |
|                 InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Rounds the specified size to have it a multiple of the char size.
 | |
| static uint64_t
 | |
| roundUpSizeToCharAlignment(uint64_t Size,
 | |
|                            const ASTContext &Context) {
 | |
|   uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
 | |
|   return llvm::alignTo(Size, CharAlignment);
 | |
| }
 | |
| 
 | |
| void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
 | |
|                                                     uint64_t TypeSize,
 | |
|                                                     bool FieldPacked,
 | |
|                                                     const FieldDecl *D) {
 | |
|   assert(Context.getLangOpts().CPlusPlus &&
 | |
|          "Can only have wide bit-fields in C++!");
 | |
| 
 | |
|   // Itanium C++ ABI 2.4:
 | |
|   //   If sizeof(T)*8 < n, let T' be the largest integral POD type with
 | |
|   //   sizeof(T')*8 <= n.
 | |
| 
 | |
|   QualType IntegralPODTypes[] = {
 | |
|     Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
 | |
|     Context.UnsignedLongTy, Context.UnsignedLongLongTy
 | |
|   };
 | |
| 
 | |
|   QualType Type;
 | |
|   for (const QualType &QT : IntegralPODTypes) {
 | |
|     uint64_t Size = Context.getTypeSize(QT);
 | |
| 
 | |
|     if (Size > FieldSize)
 | |
|       break;
 | |
| 
 | |
|     Type = QT;
 | |
|   }
 | |
|   assert(!Type.isNull() && "Did not find a type!");
 | |
| 
 | |
|   CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
 | |
| 
 | |
|   // We're not going to use any of the unfilled bits in the last byte.
 | |
|   UnfilledBitsInLastUnit = 0;
 | |
|   LastBitfieldTypeSize = 0;
 | |
| 
 | |
|   uint64_t FieldOffset;
 | |
|   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
 | |
| 
 | |
|   if (IsUnion) {
 | |
|     uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
 | |
|                                                            Context);
 | |
|     setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
 | |
|     FieldOffset = 0;
 | |
|   } else {
 | |
|     // The bitfield is allocated starting at the next offset aligned
 | |
|     // appropriately for T', with length n bits.
 | |
|     FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign));
 | |
| 
 | |
|     uint64_t NewSizeInBits = FieldOffset + FieldSize;
 | |
| 
 | |
|     setDataSize(
 | |
|         llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign()));
 | |
|     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
 | |
|   }
 | |
| 
 | |
|   // Place this field at the current location.
 | |
|   FieldOffsets.push_back(FieldOffset);
 | |
| 
 | |
|   CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
 | |
|                     Context.toBits(TypeAlign), FieldPacked, D);
 | |
| 
 | |
|   // Update the size.
 | |
|   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
 | |
| 
 | |
|   // Remember max struct/class alignment.
 | |
|   UpdateAlignment(TypeAlign);
 | |
| }
 | |
| 
 | |
| void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
 | |
|   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
 | |
|   uint64_t FieldSize = D->getBitWidthValue(Context);
 | |
|   TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
 | |
|   uint64_t TypeSize = FieldInfo.Width;
 | |
|   unsigned FieldAlign = FieldInfo.Align;
 | |
| 
 | |
|   // UnfilledBitsInLastUnit is the difference between the end of the
 | |
|   // last allocated bitfield (i.e. the first bit offset available for
 | |
|   // bitfields) and the end of the current data size in bits (i.e. the
 | |
|   // first bit offset available for non-bitfields).  The current data
 | |
|   // size in bits is always a multiple of the char size; additionally,
 | |
|   // for ms_struct records it's also a multiple of the
 | |
|   // LastBitfieldTypeSize (if set).
 | |
| 
 | |
|   // The struct-layout algorithm is dictated by the platform ABI,
 | |
|   // which in principle could use almost any rules it likes.  In
 | |
|   // practice, UNIXy targets tend to inherit the algorithm described
 | |
|   // in the System V generic ABI.  The basic bitfield layout rule in
 | |
|   // System V is to place bitfields at the next available bit offset
 | |
|   // where the entire bitfield would fit in an aligned storage unit of
 | |
|   // the declared type; it's okay if an earlier or later non-bitfield
 | |
|   // is allocated in the same storage unit.  However, some targets
 | |
|   // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
 | |
|   // require this storage unit to be aligned, and therefore always put
 | |
|   // the bitfield at the next available bit offset.
 | |
| 
 | |
|   // ms_struct basically requests a complete replacement of the
 | |
|   // platform ABI's struct-layout algorithm, with the high-level goal
 | |
|   // of duplicating MSVC's layout.  For non-bitfields, this follows
 | |
|   // the standard algorithm.  The basic bitfield layout rule is to
 | |
|   // allocate an entire unit of the bitfield's declared type
 | |
|   // (e.g. 'unsigned long'), then parcel it up among successive
 | |
|   // bitfields whose declared types have the same size, making a new
 | |
|   // unit as soon as the last can no longer store the whole value.
 | |
|   // Since it completely replaces the platform ABI's algorithm,
 | |
|   // settings like !useBitFieldTypeAlignment() do not apply.
 | |
| 
 | |
|   // A zero-width bitfield forces the use of a new storage unit for
 | |
|   // later bitfields.  In general, this occurs by rounding up the
 | |
|   // current size of the struct as if the algorithm were about to
 | |
|   // place a non-bitfield of the field's formal type.  Usually this
 | |
|   // does not change the alignment of the struct itself, but it does
 | |
|   // on some targets (those that useZeroLengthBitfieldAlignment(),
 | |
|   // e.g. ARM).  In ms_struct layout, zero-width bitfields are
 | |
|   // ignored unless they follow a non-zero-width bitfield.
 | |
| 
 | |
|   // A field alignment restriction (e.g. from #pragma pack) or
 | |
|   // specification (e.g. from __attribute__((aligned))) changes the
 | |
|   // formal alignment of the field.  For System V, this alters the
 | |
|   // required alignment of the notional storage unit that must contain
 | |
|   // the bitfield.  For ms_struct, this only affects the placement of
 | |
|   // new storage units.  In both cases, the effect of #pragma pack is
 | |
|   // ignored on zero-width bitfields.
 | |
| 
 | |
|   // On System V, a packed field (e.g. from #pragma pack or
 | |
|   // __attribute__((packed))) always uses the next available bit
 | |
|   // offset.
 | |
| 
 | |
|   // In an ms_struct struct, the alignment of a fundamental type is
 | |
|   // always equal to its size.  This is necessary in order to mimic
 | |
|   // the i386 alignment rules on targets which might not fully align
 | |
|   // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
 | |
| 
 | |
|   // First, some simple bookkeeping to perform for ms_struct structs.
 | |
|   if (IsMsStruct) {
 | |
|     // The field alignment for integer types is always the size.
 | |
|     FieldAlign = TypeSize;
 | |
| 
 | |
|     // If the previous field was not a bitfield, or was a bitfield
 | |
|     // with a different storage unit size, or if this field doesn't fit into
 | |
|     // the current storage unit, we're done with that storage unit.
 | |
|     if (LastBitfieldTypeSize != TypeSize ||
 | |
|         UnfilledBitsInLastUnit < FieldSize) {
 | |
|       // Also, ignore zero-length bitfields after non-bitfields.
 | |
|       if (!LastBitfieldTypeSize && !FieldSize)
 | |
|         FieldAlign = 1;
 | |
| 
 | |
|       UnfilledBitsInLastUnit = 0;
 | |
|       LastBitfieldTypeSize = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the field is wider than its declared type, it follows
 | |
|   // different rules in all cases.
 | |
|   if (FieldSize > TypeSize) {
 | |
|     LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Compute the next available bit offset.
 | |
|   uint64_t FieldOffset =
 | |
|     IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
 | |
| 
 | |
|   // Handle targets that don't honor bitfield type alignment.
 | |
|   if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
 | |
|     // Some such targets do honor it on zero-width bitfields.
 | |
|     if (FieldSize == 0 &&
 | |
|         Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
 | |
|       // The alignment to round up to is the max of the field's natural
 | |
|       // alignment and a target-specific fixed value (sometimes zero).
 | |
|       unsigned ZeroLengthBitfieldBoundary =
 | |
|         Context.getTargetInfo().getZeroLengthBitfieldBoundary();
 | |
|       FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
 | |
| 
 | |
|     // If that doesn't apply, just ignore the field alignment.
 | |
|     } else {
 | |
|       FieldAlign = 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Remember the alignment we would have used if the field were not packed.
 | |
|   unsigned UnpackedFieldAlign = FieldAlign;
 | |
| 
 | |
|   // Ignore the field alignment if the field is packed unless it has zero-size.
 | |
|   if (!IsMsStruct && FieldPacked && FieldSize != 0)
 | |
|     FieldAlign = 1;
 | |
| 
 | |
|   // But, if there's an 'aligned' attribute on the field, honor that.
 | |
|   unsigned ExplicitFieldAlign = D->getMaxAlignment();
 | |
|   if (ExplicitFieldAlign) {
 | |
|     FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
 | |
|     UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
 | |
|   }
 | |
| 
 | |
|   // But, if there's a #pragma pack in play, that takes precedent over
 | |
|   // even the 'aligned' attribute, for non-zero-width bitfields.
 | |
|   unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
 | |
|   if (!MaxFieldAlignment.isZero() && FieldSize) {
 | |
|     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
 | |
|     if (FieldPacked)
 | |
|       FieldAlign = UnpackedFieldAlign;
 | |
|     else
 | |
|       FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
 | |
|   }
 | |
| 
 | |
|   // But, ms_struct just ignores all of that in unions, even explicit
 | |
|   // alignment attributes.
 | |
|   if (IsMsStruct && IsUnion) {
 | |
|     FieldAlign = UnpackedFieldAlign = 1;
 | |
|   }
 | |
| 
 | |
|   // For purposes of diagnostics, we're going to simultaneously
 | |
|   // compute the field offsets that we would have used if we weren't
 | |
|   // adding any alignment padding or if the field weren't packed.
 | |
|   uint64_t UnpaddedFieldOffset = FieldOffset;
 | |
|   uint64_t UnpackedFieldOffset = FieldOffset;
 | |
| 
 | |
|   // Check if we need to add padding to fit the bitfield within an
 | |
|   // allocation unit with the right size and alignment.  The rules are
 | |
|   // somewhat different here for ms_struct structs.
 | |
|   if (IsMsStruct) {
 | |
|     // If it's not a zero-width bitfield, and we can fit the bitfield
 | |
|     // into the active storage unit (and we haven't already decided to
 | |
|     // start a new storage unit), just do so, regardless of any other
 | |
|     // other consideration.  Otherwise, round up to the right alignment.
 | |
|     if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
 | |
|       FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
 | |
|       UnpackedFieldOffset =
 | |
|           llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
 | |
|       UnfilledBitsInLastUnit = 0;
 | |
|     }
 | |
| 
 | |
|   } else {
 | |
|     // #pragma pack, with any value, suppresses the insertion of padding.
 | |
|     bool AllowPadding = MaxFieldAlignment.isZero();
 | |
| 
 | |
|     // Compute the real offset.
 | |
|     if (FieldSize == 0 ||
 | |
|         (AllowPadding &&
 | |
|          (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)) {
 | |
|       FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
 | |
|     } else if (ExplicitFieldAlign &&
 | |
|                (MaxFieldAlignmentInBits == 0 ||
 | |
|                 ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
 | |
|                Context.getTargetInfo().useExplicitBitFieldAlignment()) {
 | |
|       // TODO: figure it out what needs to be done on targets that don't honor
 | |
|       // bit-field type alignment like ARM APCS ABI.
 | |
|       FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign);
 | |
|     }
 | |
| 
 | |
|     // Repeat the computation for diagnostic purposes.
 | |
|     if (FieldSize == 0 ||
 | |
|         (AllowPadding &&
 | |
|          (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
 | |
|       UnpackedFieldOffset =
 | |
|           llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
 | |
|     else if (ExplicitFieldAlign &&
 | |
|              (MaxFieldAlignmentInBits == 0 ||
 | |
|               ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
 | |
|              Context.getTargetInfo().useExplicitBitFieldAlignment())
 | |
|       UnpackedFieldOffset =
 | |
|           llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign);
 | |
|   }
 | |
| 
 | |
|   // If we're using external layout, give the external layout a chance
 | |
|   // to override this information.
 | |
|   if (UseExternalLayout)
 | |
|     FieldOffset = updateExternalFieldOffset(D, FieldOffset);
 | |
| 
 | |
|   // Okay, place the bitfield at the calculated offset.
 | |
|   FieldOffsets.push_back(FieldOffset);
 | |
| 
 | |
|   // Bookkeeping:
 | |
| 
 | |
|   // Anonymous members don't affect the overall record alignment,
 | |
|   // except on targets where they do.
 | |
|   if (!IsMsStruct &&
 | |
|       !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
 | |
|       !D->getIdentifier())
 | |
|     FieldAlign = UnpackedFieldAlign = 1;
 | |
| 
 | |
|   // Diagnose differences in layout due to padding or packing.
 | |
|   if (!UseExternalLayout)
 | |
|     CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
 | |
|                       UnpackedFieldAlign, FieldPacked, D);
 | |
| 
 | |
|   // Update DataSize to include the last byte containing (part of) the bitfield.
 | |
| 
 | |
|   // For unions, this is just a max operation, as usual.
 | |
|   if (IsUnion) {
 | |
|     // For ms_struct, allocate the entire storage unit --- unless this
 | |
|     // is a zero-width bitfield, in which case just use a size of 1.
 | |
|     uint64_t RoundedFieldSize;
 | |
|     if (IsMsStruct) {
 | |
|       RoundedFieldSize =
 | |
|         (FieldSize ? TypeSize : Context.getTargetInfo().getCharWidth());
 | |
| 
 | |
|     // Otherwise, allocate just the number of bytes required to store
 | |
|     // the bitfield.
 | |
|     } else {
 | |
|       RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context);
 | |
|     }
 | |
|     setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
 | |
| 
 | |
|   // For non-zero-width bitfields in ms_struct structs, allocate a new
 | |
|   // storage unit if necessary.
 | |
|   } else if (IsMsStruct && FieldSize) {
 | |
|     // We should have cleared UnfilledBitsInLastUnit in every case
 | |
|     // where we changed storage units.
 | |
|     if (!UnfilledBitsInLastUnit) {
 | |
|       setDataSize(FieldOffset + TypeSize);
 | |
|       UnfilledBitsInLastUnit = TypeSize;
 | |
|     }
 | |
|     UnfilledBitsInLastUnit -= FieldSize;
 | |
|     LastBitfieldTypeSize = TypeSize;
 | |
| 
 | |
|   // Otherwise, bump the data size up to include the bitfield,
 | |
|   // including padding up to char alignment, and then remember how
 | |
|   // bits we didn't use.
 | |
|   } else {
 | |
|     uint64_t NewSizeInBits = FieldOffset + FieldSize;
 | |
|     uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
 | |
|     setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment));
 | |
|     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
 | |
| 
 | |
|     // The only time we can get here for an ms_struct is if this is a
 | |
|     // zero-width bitfield, which doesn't count as anything for the
 | |
|     // purposes of unfilled bits.
 | |
|     LastBitfieldTypeSize = 0;
 | |
|   }
 | |
| 
 | |
|   // Update the size.
 | |
|   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
 | |
| 
 | |
|   // Remember max struct/class alignment.
 | |
|   UnadjustedAlignment =
 | |
|       std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign));
 | |
|   UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
 | |
|                   Context.toCharUnitsFromBits(UnpackedFieldAlign));
 | |
| }
 | |
| 
 | |
| void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
 | |
|                                              bool InsertExtraPadding) {
 | |
|   if (D->isBitField()) {
 | |
|     LayoutBitField(D);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
 | |
| 
 | |
|   // Reset the unfilled bits.
 | |
|   UnfilledBitsInLastUnit = 0;
 | |
|   LastBitfieldTypeSize = 0;
 | |
| 
 | |
|   auto *FieldClass = D->getType()->getAsCXXRecordDecl();
 | |
|   bool PotentiallyOverlapping = D->hasAttr<NoUniqueAddressAttr>() && FieldClass;
 | |
|   bool IsOverlappingEmptyField = PotentiallyOverlapping && FieldClass->isEmpty();
 | |
|   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
 | |
| 
 | |
|   CharUnits FieldOffset = (IsUnion || IsOverlappingEmptyField)
 | |
|                               ? CharUnits::Zero()
 | |
|                               : getDataSize();
 | |
|   CharUnits FieldSize;
 | |
|   CharUnits FieldAlign;
 | |
|   // The amount of this class's dsize occupied by the field.
 | |
|   // This is equal to FieldSize unless we're permitted to pack
 | |
|   // into the field's tail padding.
 | |
|   CharUnits EffectiveFieldSize;
 | |
| 
 | |
|   if (D->getType()->isIncompleteArrayType()) {
 | |
|     // This is a flexible array member; we can't directly
 | |
|     // query getTypeInfo about these, so we figure it out here.
 | |
|     // Flexible array members don't have any size, but they
 | |
|     // have to be aligned appropriately for their element type.
 | |
|     EffectiveFieldSize = FieldSize = CharUnits::Zero();
 | |
|     const ArrayType* ATy = Context.getAsArrayType(D->getType());
 | |
|     FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
 | |
|   } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
 | |
|     unsigned AS = Context.getTargetAddressSpace(RT->getPointeeType());
 | |
|     EffectiveFieldSize = FieldSize =
 | |
|       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS));
 | |
|     FieldAlign =
 | |
|       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS));
 | |
|   } else {
 | |
|     std::pair<CharUnits, CharUnits> FieldInfo =
 | |
|       Context.getTypeInfoInChars(D->getType());
 | |
|     EffectiveFieldSize = FieldSize = FieldInfo.first;
 | |
|     FieldAlign = FieldInfo.second;
 | |
| 
 | |
|     // A potentially-overlapping field occupies its dsize or nvsize, whichever
 | |
|     // is larger.
 | |
|     if (PotentiallyOverlapping) {
 | |
|       const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass);
 | |
|       EffectiveFieldSize =
 | |
|           std::max(Layout.getNonVirtualSize(), Layout.getDataSize());
 | |
|     }
 | |
| 
 | |
|     if (IsMsStruct) {
 | |
|       // If MS bitfield layout is required, figure out what type is being
 | |
|       // laid out and align the field to the width of that type.
 | |
| 
 | |
|       // Resolve all typedefs down to their base type and round up the field
 | |
|       // alignment if necessary.
 | |
|       QualType T = Context.getBaseElementType(D->getType());
 | |
|       if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
 | |
|         CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
 | |
| 
 | |
|         if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) {
 | |
|           assert(
 | |
|               !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() &&
 | |
|               "Non PowerOf2 size in MSVC mode");
 | |
|           // Base types with sizes that aren't a power of two don't work
 | |
|           // with the layout rules for MS structs. This isn't an issue in
 | |
|           // MSVC itself since there are no such base data types there.
 | |
|           // On e.g. x86_32 mingw and linux, long double is 12 bytes though.
 | |
|           // Any structs involving that data type obviously can't be ABI
 | |
|           // compatible with MSVC regardless of how it is laid out.
 | |
| 
 | |
|           // Since ms_struct can be mass enabled (via a pragma or via the
 | |
|           // -mms-bitfields command line parameter), this can trigger for
 | |
|           // structs that don't actually need MSVC compatibility, so we
 | |
|           // need to be able to sidestep the ms_struct layout for these types.
 | |
| 
 | |
|           // Since the combination of -mms-bitfields together with structs
 | |
|           // like max_align_t (which contains a long double) for mingw is
 | |
|           // quite comon (and GCC handles it silently), just handle it
 | |
|           // silently there. For other targets that have ms_struct enabled
 | |
|           // (most probably via a pragma or attribute), trigger a diagnostic
 | |
|           // that defaults to an error.
 | |
|           if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
 | |
|             Diag(D->getLocation(), diag::warn_npot_ms_struct);
 | |
|         }
 | |
|         if (TypeSize > FieldAlign &&
 | |
|             llvm::isPowerOf2_64(TypeSize.getQuantity()))
 | |
|           FieldAlign = TypeSize;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The align if the field is not packed. This is to check if the attribute
 | |
|   // was unnecessary (-Wpacked).
 | |
|   CharUnits UnpackedFieldAlign = FieldAlign;
 | |
|   CharUnits UnpackedFieldOffset = FieldOffset;
 | |
| 
 | |
|   if (FieldPacked)
 | |
|     FieldAlign = CharUnits::One();
 | |
|   CharUnits MaxAlignmentInChars =
 | |
|     Context.toCharUnitsFromBits(D->getMaxAlignment());
 | |
|   FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
 | |
|   UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
 | |
| 
 | |
|   // The maximum field alignment overrides the aligned attribute.
 | |
|   if (!MaxFieldAlignment.isZero()) {
 | |
|     FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
 | |
|     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
 | |
|   }
 | |
| 
 | |
|   // Round up the current record size to the field's alignment boundary.
 | |
|   FieldOffset = FieldOffset.alignTo(FieldAlign);
 | |
|   UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign);
 | |
| 
 | |
|   if (UseExternalLayout) {
 | |
|     FieldOffset = Context.toCharUnitsFromBits(
 | |
|                     updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
 | |
| 
 | |
|     if (!IsUnion && EmptySubobjects) {
 | |
|       // Record the fact that we're placing a field at this offset.
 | |
|       bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
 | |
|       (void)Allowed;
 | |
|       assert(Allowed && "Externally-placed field cannot be placed here");
 | |
|     }
 | |
|   } else {
 | |
|     if (!IsUnion && EmptySubobjects) {
 | |
|       // Check if we can place the field at this offset.
 | |
|       while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
 | |
|         // We couldn't place the field at the offset. Try again at a new offset.
 | |
|         // We try offset 0 (for an empty field) and then dsize(C) onwards.
 | |
|         if (FieldOffset == CharUnits::Zero() &&
 | |
|             getDataSize() != CharUnits::Zero())
 | |
|           FieldOffset = getDataSize().alignTo(FieldAlign);
 | |
|         else
 | |
|           FieldOffset += FieldAlign;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Place this field at the current location.
 | |
|   FieldOffsets.push_back(Context.toBits(FieldOffset));
 | |
| 
 | |
|   if (!UseExternalLayout)
 | |
|     CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
 | |
|                       Context.toBits(UnpackedFieldOffset),
 | |
|                       Context.toBits(UnpackedFieldAlign), FieldPacked, D);
 | |
| 
 | |
|   if (InsertExtraPadding) {
 | |
|     CharUnits ASanAlignment = CharUnits::fromQuantity(8);
 | |
|     CharUnits ExtraSizeForAsan = ASanAlignment;
 | |
|     if (FieldSize % ASanAlignment)
 | |
|       ExtraSizeForAsan +=
 | |
|           ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
 | |
|     EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan;
 | |
|   }
 | |
| 
 | |
|   // Reserve space for this field.
 | |
|   if (!IsOverlappingEmptyField) {
 | |
|     uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize);
 | |
|     if (IsUnion)
 | |
|       setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits));
 | |
|     else
 | |
|       setDataSize(FieldOffset + EffectiveFieldSize);
 | |
| 
 | |
|     PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize);
 | |
|     setSize(std::max(getSizeInBits(), getDataSizeInBits()));
 | |
|   } else {
 | |
|     setSize(std::max(getSizeInBits(),
 | |
|                      (uint64_t)Context.toBits(FieldOffset + FieldSize)));
 | |
|   }
 | |
| 
 | |
|   // Remember max struct/class alignment.
 | |
|   UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign);
 | |
|   UpdateAlignment(FieldAlign, UnpackedFieldAlign);
 | |
| }
 | |
| 
 | |
| void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
 | |
|   // In C++, records cannot be of size 0.
 | |
|   if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
 | |
|     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
 | |
|       // Compatibility with gcc requires a class (pod or non-pod)
 | |
|       // which is not empty but of size 0; such as having fields of
 | |
|       // array of zero-length, remains of Size 0
 | |
|       if (RD->isEmpty())
 | |
|         setSize(CharUnits::One());
 | |
|     }
 | |
|     else
 | |
|       setSize(CharUnits::One());
 | |
|   }
 | |
| 
 | |
|   // If we have any remaining field tail padding, include that in the overall
 | |
|   // size.
 | |
|   setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize)));
 | |
| 
 | |
|   // Finally, round the size of the record up to the alignment of the
 | |
|   // record itself.
 | |
|   uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
 | |
|   uint64_t UnpackedSizeInBits =
 | |
|       llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment));
 | |
|   uint64_t RoundedSize =
 | |
|       llvm::alignTo(getSizeInBits(), Context.toBits(Alignment));
 | |
| 
 | |
|   if (UseExternalLayout) {
 | |
|     // If we're inferring alignment, and the external size is smaller than
 | |
|     // our size after we've rounded up to alignment, conservatively set the
 | |
|     // alignment to 1.
 | |
|     if (InferAlignment && External.Size < RoundedSize) {
 | |
|       Alignment = CharUnits::One();
 | |
|       InferAlignment = false;
 | |
|     }
 | |
|     setSize(External.Size);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Set the size to the final size.
 | |
|   setSize(RoundedSize);
 | |
| 
 | |
|   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
 | |
|   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
 | |
|     // Warn if padding was introduced to the struct/class/union.
 | |
|     if (getSizeInBits() > UnpaddedSize) {
 | |
|       unsigned PadSize = getSizeInBits() - UnpaddedSize;
 | |
|       bool InBits = true;
 | |
|       if (PadSize % CharBitNum == 0) {
 | |
|         PadSize = PadSize / CharBitNum;
 | |
|         InBits = false;
 | |
|       }
 | |
|       Diag(RD->getLocation(), diag::warn_padded_struct_size)
 | |
|           << Context.getTypeDeclType(RD)
 | |
|           << PadSize
 | |
|           << (InBits ? 1 : 0); // (byte|bit)
 | |
|     }
 | |
| 
 | |
|     // Warn if we packed it unnecessarily, when the unpacked alignment is not
 | |
|     // greater than the one after packing, the size in bits doesn't change and
 | |
|     // the offset of each field is identical.
 | |
|     if (Packed && UnpackedAlignment <= Alignment &&
 | |
|         UnpackedSizeInBits == getSizeInBits() && !HasPackedField)
 | |
|       Diag(D->getLocation(), diag::warn_unnecessary_packed)
 | |
|           << Context.getTypeDeclType(RD);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ItaniumRecordLayoutBuilder::UpdateAlignment(
 | |
|     CharUnits NewAlignment, CharUnits UnpackedNewAlignment) {
 | |
|   // The alignment is not modified when using 'mac68k' alignment or when
 | |
|   // we have an externally-supplied layout that also provides overall alignment.
 | |
|   if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
 | |
|     return;
 | |
| 
 | |
|   if (NewAlignment > Alignment) {
 | |
|     assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
 | |
|            "Alignment not a power of 2");
 | |
|     Alignment = NewAlignment;
 | |
|   }
 | |
| 
 | |
|   if (UnpackedNewAlignment > UnpackedAlignment) {
 | |
|     assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
 | |
|            "Alignment not a power of 2");
 | |
|     UnpackedAlignment = UnpackedNewAlignment;
 | |
|   }
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
 | |
|                                                       uint64_t ComputedOffset) {
 | |
|   uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
 | |
| 
 | |
|   if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
 | |
|     // The externally-supplied field offset is before the field offset we
 | |
|     // computed. Assume that the structure is packed.
 | |
|     Alignment = CharUnits::One();
 | |
|     InferAlignment = false;
 | |
|   }
 | |
| 
 | |
|   // Use the externally-supplied field offset.
 | |
|   return ExternalFieldOffset;
 | |
| }
 | |
| 
 | |
| /// Get diagnostic %select index for tag kind for
 | |
| /// field padding diagnostic message.
 | |
| /// WARNING: Indexes apply to particular diagnostics only!
 | |
| ///
 | |
| /// \returns diagnostic %select index.
 | |
| static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
 | |
|   switch (Tag) {
 | |
|   case TTK_Struct: return 0;
 | |
|   case TTK_Interface: return 1;
 | |
|   case TTK_Class: return 2;
 | |
|   default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ItaniumRecordLayoutBuilder::CheckFieldPadding(
 | |
|     uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset,
 | |
|     unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) {
 | |
|   // We let objc ivars without warning, objc interfaces generally are not used
 | |
|   // for padding tricks.
 | |
|   if (isa<ObjCIvarDecl>(D))
 | |
|     return;
 | |
| 
 | |
|   // Don't warn about structs created without a SourceLocation.  This can
 | |
|   // be done by clients of the AST, such as codegen.
 | |
|   if (D->getLocation().isInvalid())
 | |
|     return;
 | |
| 
 | |
|   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
 | |
| 
 | |
|   // Warn if padding was introduced to the struct/class.
 | |
|   if (!IsUnion && Offset > UnpaddedOffset) {
 | |
|     unsigned PadSize = Offset - UnpaddedOffset;
 | |
|     bool InBits = true;
 | |
|     if (PadSize % CharBitNum == 0) {
 | |
|       PadSize = PadSize / CharBitNum;
 | |
|       InBits = false;
 | |
|     }
 | |
|     if (D->getIdentifier())
 | |
|       Diag(D->getLocation(), diag::warn_padded_struct_field)
 | |
|           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
 | |
|           << Context.getTypeDeclType(D->getParent())
 | |
|           << PadSize
 | |
|           << (InBits ? 1 : 0) // (byte|bit)
 | |
|           << D->getIdentifier();
 | |
|     else
 | |
|       Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
 | |
|           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
 | |
|           << Context.getTypeDeclType(D->getParent())
 | |
|           << PadSize
 | |
|           << (InBits ? 1 : 0); // (byte|bit)
 | |
|  }
 | |
|  if (isPacked && Offset != UnpackedOffset) {
 | |
|    HasPackedField = true;
 | |
|  }
 | |
| }
 | |
| 
 | |
| static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
 | |
|                                                const CXXRecordDecl *RD) {
 | |
|   // If a class isn't polymorphic it doesn't have a key function.
 | |
|   if (!RD->isPolymorphic())
 | |
|     return nullptr;
 | |
| 
 | |
|   // A class that is not externally visible doesn't have a key function. (Or
 | |
|   // at least, there's no point to assigning a key function to such a class;
 | |
|   // this doesn't affect the ABI.)
 | |
|   if (!RD->isExternallyVisible())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
 | |
|   // Same behavior as GCC.
 | |
|   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
 | |
|   if (TSK == TSK_ImplicitInstantiation ||
 | |
|       TSK == TSK_ExplicitInstantiationDeclaration ||
 | |
|       TSK == TSK_ExplicitInstantiationDefinition)
 | |
|     return nullptr;
 | |
| 
 | |
|   bool allowInlineFunctions =
 | |
|     Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
 | |
| 
 | |
|   for (const CXXMethodDecl *MD : RD->methods()) {
 | |
|     if (!MD->isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     if (MD->isPure())
 | |
|       continue;
 | |
| 
 | |
|     // Ignore implicit member functions, they are always marked as inline, but
 | |
|     // they don't have a body until they're defined.
 | |
|     if (MD->isImplicit())
 | |
|       continue;
 | |
| 
 | |
|     if (MD->isInlineSpecified())
 | |
|       continue;
 | |
| 
 | |
|     if (MD->hasInlineBody())
 | |
|       continue;
 | |
| 
 | |
|     // Ignore inline deleted or defaulted functions.
 | |
|     if (!MD->isUserProvided())
 | |
|       continue;
 | |
| 
 | |
|     // In certain ABIs, ignore functions with out-of-line inline definitions.
 | |
|     if (!allowInlineFunctions) {
 | |
|       const FunctionDecl *Def;
 | |
|       if (MD->hasBody(Def) && Def->isInlineSpecified())
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     if (Context.getLangOpts().CUDA) {
 | |
|       // While compiler may see key method in this TU, during CUDA
 | |
|       // compilation we should ignore methods that are not accessible
 | |
|       // on this side of compilation.
 | |
|       if (Context.getLangOpts().CUDAIsDevice) {
 | |
|         // In device mode ignore methods without __device__ attribute.
 | |
|         if (!MD->hasAttr<CUDADeviceAttr>())
 | |
|           continue;
 | |
|       } else {
 | |
|         // In host mode ignore __device__-only methods.
 | |
|         if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>())
 | |
|           continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the key function is dllimport but the class isn't, then the class has
 | |
|     // no key function. The DLL that exports the key function won't export the
 | |
|     // vtable in this case.
 | |
|     if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>())
 | |
|       return nullptr;
 | |
| 
 | |
|     // We found it.
 | |
|     return MD;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc,
 | |
|                                                    unsigned DiagID) {
 | |
|   return Context.getDiagnostics().Report(Loc, DiagID);
 | |
| }
 | |
| 
 | |
| /// Does the target C++ ABI require us to skip over the tail-padding
 | |
| /// of the given class (considering it as a base class) when allocating
 | |
| /// objects?
 | |
| static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
 | |
|   switch (ABI.getTailPaddingUseRules()) {
 | |
|   case TargetCXXABI::AlwaysUseTailPadding:
 | |
|     return false;
 | |
| 
 | |
|   case TargetCXXABI::UseTailPaddingUnlessPOD03:
 | |
|     // FIXME: To the extent that this is meant to cover the Itanium ABI
 | |
|     // rules, we should implement the restrictions about over-sized
 | |
|     // bitfields:
 | |
|     //
 | |
|     // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD :
 | |
|     //   In general, a type is considered a POD for the purposes of
 | |
|     //   layout if it is a POD type (in the sense of ISO C++
 | |
|     //   [basic.types]). However, a POD-struct or POD-union (in the
 | |
|     //   sense of ISO C++ [class]) with a bitfield member whose
 | |
|     //   declared width is wider than the declared type of the
 | |
|     //   bitfield is not a POD for the purpose of layout.  Similarly,
 | |
|     //   an array type is not a POD for the purpose of layout if the
 | |
|     //   element type of the array is not a POD for the purpose of
 | |
|     //   layout.
 | |
|     //
 | |
|     //   Where references to the ISO C++ are made in this paragraph,
 | |
|     //   the Technical Corrigendum 1 version of the standard is
 | |
|     //   intended.
 | |
|     return RD->isPOD();
 | |
| 
 | |
|   case TargetCXXABI::UseTailPaddingUnlessPOD11:
 | |
|     // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
 | |
|     // but with a lot of abstraction penalty stripped off.  This does
 | |
|     // assume that these properties are set correctly even in C++98
 | |
|     // mode; fortunately, that is true because we want to assign
 | |
|     // consistently semantics to the type-traits intrinsics (or at
 | |
|     // least as many of them as possible).
 | |
|     return RD->isTrivial() && RD->isCXX11StandardLayout();
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("bad tail-padding use kind");
 | |
| }
 | |
| 
 | |
| static bool isMsLayout(const ASTContext &Context) {
 | |
|   return Context.getTargetInfo().getCXXABI().isMicrosoft();
 | |
| }
 | |
| 
 | |
| // This section contains an implementation of struct layout that is, up to the
 | |
| // included tests, compatible with cl.exe (2013).  The layout produced is
 | |
| // significantly different than those produced by the Itanium ABI.  Here we note
 | |
| // the most important differences.
 | |
| //
 | |
| // * The alignment of bitfields in unions is ignored when computing the
 | |
| //   alignment of the union.
 | |
| // * The existence of zero-width bitfield that occurs after anything other than
 | |
| //   a non-zero length bitfield is ignored.
 | |
| // * There is no explicit primary base for the purposes of layout.  All bases
 | |
| //   with vfptrs are laid out first, followed by all bases without vfptrs.
 | |
| // * The Itanium equivalent vtable pointers are split into a vfptr (virtual
 | |
| //   function pointer) and a vbptr (virtual base pointer).  They can each be
 | |
| //   shared with a, non-virtual bases. These bases need not be the same.  vfptrs
 | |
| //   always occur at offset 0.  vbptrs can occur at an arbitrary offset and are
 | |
| //   placed after the lexicographically last non-virtual base.  This placement
 | |
| //   is always before fields but can be in the middle of the non-virtual bases
 | |
| //   due to the two-pass layout scheme for non-virtual-bases.
 | |
| // * Virtual bases sometimes require a 'vtordisp' field that is laid out before
 | |
| //   the virtual base and is used in conjunction with virtual overrides during
 | |
| //   construction and destruction.  This is always a 4 byte value and is used as
 | |
| //   an alternative to constructor vtables.
 | |
| // * vtordisps are allocated in a block of memory with size and alignment equal
 | |
| //   to the alignment of the completed structure (before applying __declspec(
 | |
| //   align())).  The vtordisp always occur at the end of the allocation block,
 | |
| //   immediately prior to the virtual base.
 | |
| // * vfptrs are injected after all bases and fields have been laid out.  In
 | |
| //   order to guarantee proper alignment of all fields, the vfptr injection
 | |
| //   pushes all bases and fields back by the alignment imposed by those bases
 | |
| //   and fields.  This can potentially add a significant amount of padding.
 | |
| //   vfptrs are always injected at offset 0.
 | |
| // * vbptrs are injected after all bases and fields have been laid out.  In
 | |
| //   order to guarantee proper alignment of all fields, the vfptr injection
 | |
| //   pushes all bases and fields back by the alignment imposed by those bases
 | |
| //   and fields.  This can potentially add a significant amount of padding.
 | |
| //   vbptrs are injected immediately after the last non-virtual base as
 | |
| //   lexicographically ordered in the code.  If this site isn't pointer aligned
 | |
| //   the vbptr is placed at the next properly aligned location.  Enough padding
 | |
| //   is added to guarantee a fit.
 | |
| // * The last zero sized non-virtual base can be placed at the end of the
 | |
| //   struct (potentially aliasing another object), or may alias with the first
 | |
| //   field, even if they are of the same type.
 | |
| // * The last zero size virtual base may be placed at the end of the struct
 | |
| //   potentially aliasing another object.
 | |
| // * The ABI attempts to avoid aliasing of zero sized bases by adding padding
 | |
| //   between bases or vbases with specific properties.  The criteria for
 | |
| //   additional padding between two bases is that the first base is zero sized
 | |
| //   or ends with a zero sized subobject and the second base is zero sized or
 | |
| //   trails with a zero sized base or field (sharing of vfptrs can reorder the
 | |
| //   layout of the so the leading base is not always the first one declared).
 | |
| //   This rule does take into account fields that are not records, so padding
 | |
| //   will occur even if the last field is, e.g. an int. The padding added for
 | |
| //   bases is 1 byte.  The padding added between vbases depends on the alignment
 | |
| //   of the object but is at least 4 bytes (in both 32 and 64 bit modes).
 | |
| // * There is no concept of non-virtual alignment, non-virtual alignment and
 | |
| //   alignment are always identical.
 | |
| // * There is a distinction between alignment and required alignment.
 | |
| //   __declspec(align) changes the required alignment of a struct.  This
 | |
| //   alignment is _always_ obeyed, even in the presence of #pragma pack. A
 | |
| //   record inherits required alignment from all of its fields and bases.
 | |
| // * __declspec(align) on bitfields has the effect of changing the bitfield's
 | |
| //   alignment instead of its required alignment.  This is the only known way
 | |
| //   to make the alignment of a struct bigger than 8.  Interestingly enough
 | |
| //   this alignment is also immune to the effects of #pragma pack and can be
 | |
| //   used to create structures with large alignment under #pragma pack.
 | |
| //   However, because it does not impact required alignment, such a structure,
 | |
| //   when used as a field or base, will not be aligned if #pragma pack is
 | |
| //   still active at the time of use.
 | |
| //
 | |
| // Known incompatibilities:
 | |
| // * all: #pragma pack between fields in a record
 | |
| // * 2010 and back: If the last field in a record is a bitfield, every object
 | |
| //   laid out after the record will have extra padding inserted before it.  The
 | |
| //   extra padding will have size equal to the size of the storage class of the
 | |
| //   bitfield.  0 sized bitfields don't exhibit this behavior and the extra
 | |
| //   padding can be avoided by adding a 0 sized bitfield after the non-zero-
 | |
| //   sized bitfield.
 | |
| // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
 | |
| //   greater due to __declspec(align()) then a second layout phase occurs after
 | |
| //   The locations of the vf and vb pointers are known.  This layout phase
 | |
| //   suffers from the "last field is a bitfield" bug in 2010 and results in
 | |
| //   _every_ field getting padding put in front of it, potentially including the
 | |
| //   vfptr, leaving the vfprt at a non-zero location which results in a fault if
 | |
| //   anything tries to read the vftbl.  The second layout phase also treats
 | |
| //   bitfields as separate entities and gives them each storage rather than
 | |
| //   packing them.  Additionally, because this phase appears to perform a
 | |
| //   (an unstable) sort on the members before laying them out and because merged
 | |
| //   bitfields have the same address, the bitfields end up in whatever order
 | |
| //   the sort left them in, a behavior we could never hope to replicate.
 | |
| 
 | |
| namespace {
 | |
| struct MicrosoftRecordLayoutBuilder {
 | |
|   struct ElementInfo {
 | |
|     CharUnits Size;
 | |
|     CharUnits Alignment;
 | |
|   };
 | |
|   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
 | |
|   MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
 | |
| private:
 | |
|   MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
 | |
|   void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
 | |
| public:
 | |
|   void layout(const RecordDecl *RD);
 | |
|   void cxxLayout(const CXXRecordDecl *RD);
 | |
|   /// Initializes size and alignment and honors some flags.
 | |
|   void initializeLayout(const RecordDecl *RD);
 | |
|   /// Initialized C++ layout, compute alignment and virtual alignment and
 | |
|   /// existence of vfptrs and vbptrs.  Alignment is needed before the vfptr is
 | |
|   /// laid out.
 | |
|   void initializeCXXLayout(const CXXRecordDecl *RD);
 | |
|   void layoutNonVirtualBases(const CXXRecordDecl *RD);
 | |
|   void layoutNonVirtualBase(const CXXRecordDecl *RD,
 | |
|                             const CXXRecordDecl *BaseDecl,
 | |
|                             const ASTRecordLayout &BaseLayout,
 | |
|                             const ASTRecordLayout *&PreviousBaseLayout);
 | |
|   void injectVFPtr(const CXXRecordDecl *RD);
 | |
|   void injectVBPtr(const CXXRecordDecl *RD);
 | |
|   /// Lays out the fields of the record.  Also rounds size up to
 | |
|   /// alignment.
 | |
|   void layoutFields(const RecordDecl *RD);
 | |
|   void layoutField(const FieldDecl *FD);
 | |
|   void layoutBitField(const FieldDecl *FD);
 | |
|   /// Lays out a single zero-width bit-field in the record and handles
 | |
|   /// special cases associated with zero-width bit-fields.
 | |
|   void layoutZeroWidthBitField(const FieldDecl *FD);
 | |
|   void layoutVirtualBases(const CXXRecordDecl *RD);
 | |
|   void finalizeLayout(const RecordDecl *RD);
 | |
|   /// Gets the size and alignment of a base taking pragma pack and
 | |
|   /// __declspec(align) into account.
 | |
|   ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
 | |
|   /// Gets the size and alignment of a field taking pragma  pack and
 | |
|   /// __declspec(align) into account.  It also updates RequiredAlignment as a
 | |
|   /// side effect because it is most convenient to do so here.
 | |
|   ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
 | |
|   /// Places a field at an offset in CharUnits.
 | |
|   void placeFieldAtOffset(CharUnits FieldOffset) {
 | |
|     FieldOffsets.push_back(Context.toBits(FieldOffset));
 | |
|   }
 | |
|   /// Places a bitfield at a bit offset.
 | |
|   void placeFieldAtBitOffset(uint64_t FieldOffset) {
 | |
|     FieldOffsets.push_back(FieldOffset);
 | |
|   }
 | |
|   /// Compute the set of virtual bases for which vtordisps are required.
 | |
|   void computeVtorDispSet(
 | |
|       llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
 | |
|       const CXXRecordDecl *RD) const;
 | |
|   const ASTContext &Context;
 | |
|   /// The size of the record being laid out.
 | |
|   CharUnits Size;
 | |
|   /// The non-virtual size of the record layout.
 | |
|   CharUnits NonVirtualSize;
 | |
|   /// The data size of the record layout.
 | |
|   CharUnits DataSize;
 | |
|   /// The current alignment of the record layout.
 | |
|   CharUnits Alignment;
 | |
|   /// The maximum allowed field alignment. This is set by #pragma pack.
 | |
|   CharUnits MaxFieldAlignment;
 | |
|   /// The alignment that this record must obey.  This is imposed by
 | |
|   /// __declspec(align()) on the record itself or one of its fields or bases.
 | |
|   CharUnits RequiredAlignment;
 | |
|   /// The size of the allocation of the currently active bitfield.
 | |
|   /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
 | |
|   /// is true.
 | |
|   CharUnits CurrentBitfieldSize;
 | |
|   /// Offset to the virtual base table pointer (if one exists).
 | |
|   CharUnits VBPtrOffset;
 | |
|   /// Minimum record size possible.
 | |
|   CharUnits MinEmptyStructSize;
 | |
|   /// The size and alignment info of a pointer.
 | |
|   ElementInfo PointerInfo;
 | |
|   /// The primary base class (if one exists).
 | |
|   const CXXRecordDecl *PrimaryBase;
 | |
|   /// The class we share our vb-pointer with.
 | |
|   const CXXRecordDecl *SharedVBPtrBase;
 | |
|   /// The collection of field offsets.
 | |
|   SmallVector<uint64_t, 16> FieldOffsets;
 | |
|   /// Base classes and their offsets in the record.
 | |
|   BaseOffsetsMapTy Bases;
 | |
|   /// virtual base classes and their offsets in the record.
 | |
|   ASTRecordLayout::VBaseOffsetsMapTy VBases;
 | |
|   /// The number of remaining bits in our last bitfield allocation.
 | |
|   /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
 | |
|   /// true.
 | |
|   unsigned RemainingBitsInField;
 | |
|   bool IsUnion : 1;
 | |
|   /// True if the last field laid out was a bitfield and was not 0
 | |
|   /// width.
 | |
|   bool LastFieldIsNonZeroWidthBitfield : 1;
 | |
|   /// True if the class has its own vftable pointer.
 | |
|   bool HasOwnVFPtr : 1;
 | |
|   /// True if the class has a vbtable pointer.
 | |
|   bool HasVBPtr : 1;
 | |
|   /// True if the last sub-object within the type is zero sized or the
 | |
|   /// object itself is zero sized.  This *does not* count members that are not
 | |
|   /// records.  Only used for MS-ABI.
 | |
|   bool EndsWithZeroSizedObject : 1;
 | |
|   /// True if this class is zero sized or first base is zero sized or
 | |
|   /// has this property.  Only used for MS-ABI.
 | |
|   bool LeadsWithZeroSizedBase : 1;
 | |
| 
 | |
|   /// True if the external AST source provided a layout for this record.
 | |
|   bool UseExternalLayout : 1;
 | |
| 
 | |
|   /// The layout provided by the external AST source. Only active if
 | |
|   /// UseExternalLayout is true.
 | |
|   ExternalLayout External;
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| MicrosoftRecordLayoutBuilder::ElementInfo
 | |
| MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
 | |
|     const ASTRecordLayout &Layout) {
 | |
|   ElementInfo Info;
 | |
|   Info.Alignment = Layout.getAlignment();
 | |
|   // Respect pragma pack.
 | |
|   if (!MaxFieldAlignment.isZero())
 | |
|     Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
 | |
|   // Track zero-sized subobjects here where it's already available.
 | |
|   EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
 | |
|   // Respect required alignment, this is necessary because we may have adjusted
 | |
|   // the alignment in the case of pragam pack.  Note that the required alignment
 | |
|   // doesn't actually apply to the struct alignment at this point.
 | |
|   Alignment = std::max(Alignment, Info.Alignment);
 | |
|   RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
 | |
|   Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
 | |
|   Info.Size = Layout.getNonVirtualSize();
 | |
|   return Info;
 | |
| }
 | |
| 
 | |
| MicrosoftRecordLayoutBuilder::ElementInfo
 | |
| MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
 | |
|     const FieldDecl *FD) {
 | |
|   // Get the alignment of the field type's natural alignment, ignore any
 | |
|   // alignment attributes.
 | |
|   ElementInfo Info;
 | |
|   std::tie(Info.Size, Info.Alignment) =
 | |
|       Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
 | |
|   // Respect align attributes on the field.
 | |
|   CharUnits FieldRequiredAlignment =
 | |
|       Context.toCharUnitsFromBits(FD->getMaxAlignment());
 | |
|   // Respect align attributes on the type.
 | |
|   if (Context.isAlignmentRequired(FD->getType()))
 | |
|     FieldRequiredAlignment = std::max(
 | |
|         Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
 | |
|   // Respect attributes applied to subobjects of the field.
 | |
|   if (FD->isBitField())
 | |
|     // For some reason __declspec align impacts alignment rather than required
 | |
|     // alignment when it is applied to bitfields.
 | |
|     Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
 | |
|   else {
 | |
|     if (auto RT =
 | |
|             FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
 | |
|       auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
 | |
|       EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
 | |
|       FieldRequiredAlignment = std::max(FieldRequiredAlignment,
 | |
|                                         Layout.getRequiredAlignment());
 | |
|     }
 | |
|     // Capture required alignment as a side-effect.
 | |
|     RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
 | |
|   }
 | |
|   // Respect pragma pack, attribute pack and declspec align
 | |
|   if (!MaxFieldAlignment.isZero())
 | |
|     Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
 | |
|   if (FD->hasAttr<PackedAttr>())
 | |
|     Info.Alignment = CharUnits::One();
 | |
|   Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
 | |
|   return Info;
 | |
| }
 | |
| 
 | |
| void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
 | |
|   // For C record layout, zero-sized records always have size 4.
 | |
|   MinEmptyStructSize = CharUnits::fromQuantity(4);
 | |
|   initializeLayout(RD);
 | |
|   layoutFields(RD);
 | |
|   DataSize = Size = Size.alignTo(Alignment);
 | |
|   RequiredAlignment = std::max(
 | |
|       RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
 | |
|   finalizeLayout(RD);
 | |
| }
 | |
| 
 | |
| void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
 | |
|   // The C++ standard says that empty structs have size 1.
 | |
|   MinEmptyStructSize = CharUnits::One();
 | |
|   initializeLayout(RD);
 | |
|   initializeCXXLayout(RD);
 | |
|   layoutNonVirtualBases(RD);
 | |
|   layoutFields(RD);
 | |
|   injectVBPtr(RD);
 | |
|   injectVFPtr(RD);
 | |
|   if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
 | |
|     Alignment = std::max(Alignment, PointerInfo.Alignment);
 | |
|   auto RoundingAlignment = Alignment;
 | |
|   if (!MaxFieldAlignment.isZero())
 | |
|     RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
 | |
|   if (!UseExternalLayout)
 | |
|     Size = Size.alignTo(RoundingAlignment);
 | |
|   NonVirtualSize = Size;
 | |
|   RequiredAlignment = std::max(
 | |
|       RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
 | |
|   layoutVirtualBases(RD);
 | |
|   finalizeLayout(RD);
 | |
| }
 | |
| 
 | |
| void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
 | |
|   IsUnion = RD->isUnion();
 | |
|   Size = CharUnits::Zero();
 | |
|   Alignment = CharUnits::One();
 | |
|   // In 64-bit mode we always perform an alignment step after laying out vbases.
 | |
|   // In 32-bit mode we do not.  The check to see if we need to perform alignment
 | |
|   // checks the RequiredAlignment field and performs alignment if it isn't 0.
 | |
|   RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
 | |
|                           ? CharUnits::One()
 | |
|                           : CharUnits::Zero();
 | |
|   // Compute the maximum field alignment.
 | |
|   MaxFieldAlignment = CharUnits::Zero();
 | |
|   // Honor the default struct packing maximum alignment flag.
 | |
|   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
 | |
|       MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
 | |
|   // Honor the packing attribute.  The MS-ABI ignores pragma pack if its larger
 | |
|   // than the pointer size.
 | |
|   if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
 | |
|     unsigned PackedAlignment = MFAA->getAlignment();
 | |
|     if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
 | |
|       MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
 | |
|   }
 | |
|   // Packed attribute forces max field alignment to be 1.
 | |
|   if (RD->hasAttr<PackedAttr>())
 | |
|     MaxFieldAlignment = CharUnits::One();
 | |
| 
 | |
|   // Try to respect the external layout if present.
 | |
|   UseExternalLayout = false;
 | |
|   if (ExternalASTSource *Source = Context.getExternalSource())
 | |
|     UseExternalLayout = Source->layoutRecordType(
 | |
|         RD, External.Size, External.Align, External.FieldOffsets,
 | |
|         External.BaseOffsets, External.VirtualBaseOffsets);
 | |
| }
 | |
| 
 | |
| void
 | |
| MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
 | |
|   EndsWithZeroSizedObject = false;
 | |
|   LeadsWithZeroSizedBase = false;
 | |
|   HasOwnVFPtr = false;
 | |
|   HasVBPtr = false;
 | |
|   PrimaryBase = nullptr;
 | |
|   SharedVBPtrBase = nullptr;
 | |
|   // Calculate pointer size and alignment.  These are used for vfptr and vbprt
 | |
|   // injection.
 | |
|   PointerInfo.Size =
 | |
|       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
 | |
|   PointerInfo.Alignment =
 | |
|       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
 | |
|   // Respect pragma pack.
 | |
|   if (!MaxFieldAlignment.isZero())
 | |
|     PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
 | |
| }
 | |
| 
 | |
| void
 | |
| MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
 | |
|   // The MS-ABI lays out all bases that contain leading vfptrs before it lays
 | |
|   // out any bases that do not contain vfptrs.  We implement this as two passes
 | |
|   // over the bases.  This approach guarantees that the primary base is laid out
 | |
|   // first.  We use these passes to calculate some additional aggregated
 | |
|   // information about the bases, such as required alignment and the presence of
 | |
|   // zero sized members.
 | |
|   const ASTRecordLayout *PreviousBaseLayout = nullptr;
 | |
|   // Iterate through the bases and lay out the non-virtual ones.
 | |
|   for (const CXXBaseSpecifier &Base : RD->bases()) {
 | |
|     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
 | |
|     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
 | |
|     // Mark and skip virtual bases.
 | |
|     if (Base.isVirtual()) {
 | |
|       HasVBPtr = true;
 | |
|       continue;
 | |
|     }
 | |
|     // Check for a base to share a VBPtr with.
 | |
|     if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
 | |
|       SharedVBPtrBase = BaseDecl;
 | |
|       HasVBPtr = true;
 | |
|     }
 | |
|     // Only lay out bases with extendable VFPtrs on the first pass.
 | |
|     if (!BaseLayout.hasExtendableVFPtr())
 | |
|       continue;
 | |
|     // If we don't have a primary base, this one qualifies.
 | |
|     if (!PrimaryBase) {
 | |
|       PrimaryBase = BaseDecl;
 | |
|       LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
 | |
|     }
 | |
|     // Lay out the base.
 | |
|     layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
 | |
|   }
 | |
|   // Figure out if we need a fresh VFPtr for this class.
 | |
|   if (!PrimaryBase && RD->isDynamicClass())
 | |
|     for (CXXRecordDecl::method_iterator i = RD->method_begin(),
 | |
|                                         e = RD->method_end();
 | |
|          !HasOwnVFPtr && i != e; ++i)
 | |
|       HasOwnVFPtr = i->isVirtual() && i->size_overridden_methods() == 0;
 | |
|   // If we don't have a primary base then we have a leading object that could
 | |
|   // itself lead with a zero-sized object, something we track.
 | |
|   bool CheckLeadingLayout = !PrimaryBase;
 | |
|   // Iterate through the bases and lay out the non-virtual ones.
 | |
|   for (const CXXBaseSpecifier &Base : RD->bases()) {
 | |
|     if (Base.isVirtual())
 | |
|       continue;
 | |
|     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
 | |
|     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
 | |
|     // Only lay out bases without extendable VFPtrs on the second pass.
 | |
|     if (BaseLayout.hasExtendableVFPtr()) {
 | |
|       VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
 | |
|       continue;
 | |
|     }
 | |
|     // If this is the first layout, check to see if it leads with a zero sized
 | |
|     // object.  If it does, so do we.
 | |
|     if (CheckLeadingLayout) {
 | |
|       CheckLeadingLayout = false;
 | |
|       LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
 | |
|     }
 | |
|     // Lay out the base.
 | |
|     layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
 | |
|     VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
 | |
|   }
 | |
|   // Set our VBPtroffset if we know it at this point.
 | |
|   if (!HasVBPtr)
 | |
|     VBPtrOffset = CharUnits::fromQuantity(-1);
 | |
|   else if (SharedVBPtrBase) {
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
 | |
|     VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool recordUsesEBO(const RecordDecl *RD) {
 | |
|   if (!isa<CXXRecordDecl>(RD))
 | |
|     return false;
 | |
|   if (RD->hasAttr<EmptyBasesAttr>())
 | |
|     return true;
 | |
|   if (auto *LVA = RD->getAttr<LayoutVersionAttr>())
 | |
|     // TODO: Double check with the next version of MSVC.
 | |
|     if (LVA->getVersion() <= LangOptions::MSVC2015)
 | |
|       return false;
 | |
|   // TODO: Some later version of MSVC will change the default behavior of the
 | |
|   // compiler to enable EBO by default.  When this happens, we will need an
 | |
|   // additional isCompatibleWithMSVC check.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
 | |
|     const CXXRecordDecl *RD,
 | |
|     const CXXRecordDecl *BaseDecl,
 | |
|     const ASTRecordLayout &BaseLayout,
 | |
|     const ASTRecordLayout *&PreviousBaseLayout) {
 | |
|   // Insert padding between two bases if the left first one is zero sized or
 | |
|   // contains a zero sized subobject and the right is zero sized or one leads
 | |
|   // with a zero sized base.
 | |
|   bool MDCUsesEBO = recordUsesEBO(RD);
 | |
|   if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
 | |
|       BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO)
 | |
|     Size++;
 | |
|   ElementInfo Info = getAdjustedElementInfo(BaseLayout);
 | |
|   CharUnits BaseOffset;
 | |
| 
 | |
|   // Respect the external AST source base offset, if present.
 | |
|   bool FoundBase = false;
 | |
|   if (UseExternalLayout) {
 | |
|     FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
 | |
|     if (FoundBase) {
 | |
|       assert(BaseOffset >= Size && "base offset already allocated");
 | |
|       Size = BaseOffset;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!FoundBase) {
 | |
|     if (MDCUsesEBO && BaseDecl->isEmpty()) {
 | |
|       assert(BaseLayout.getNonVirtualSize() == CharUnits::Zero());
 | |
|       BaseOffset = CharUnits::Zero();
 | |
|     } else {
 | |
|       // Otherwise, lay the base out at the end of the MDC.
 | |
|       BaseOffset = Size = Size.alignTo(Info.Alignment);
 | |
|     }
 | |
|   }
 | |
|   Bases.insert(std::make_pair(BaseDecl, BaseOffset));
 | |
|   Size += BaseLayout.getNonVirtualSize();
 | |
|   PreviousBaseLayout = &BaseLayout;
 | |
| }
 | |
| 
 | |
| void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
 | |
|   LastFieldIsNonZeroWidthBitfield = false;
 | |
|   for (const FieldDecl *Field : RD->fields())
 | |
|     layoutField(Field);
 | |
| }
 | |
| 
 | |
| void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
 | |
|   if (FD->isBitField()) {
 | |
|     layoutBitField(FD);
 | |
|     return;
 | |
|   }
 | |
|   LastFieldIsNonZeroWidthBitfield = false;
 | |
|   ElementInfo Info = getAdjustedElementInfo(FD);
 | |
|   Alignment = std::max(Alignment, Info.Alignment);
 | |
|   CharUnits FieldOffset;
 | |
|   if (UseExternalLayout)
 | |
|     FieldOffset =
 | |
|         Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
 | |
|   else if (IsUnion)
 | |
|     FieldOffset = CharUnits::Zero();
 | |
|   else
 | |
|     FieldOffset = Size.alignTo(Info.Alignment);
 | |
|   placeFieldAtOffset(FieldOffset);
 | |
|   Size = std::max(Size, FieldOffset + Info.Size);
 | |
| }
 | |
| 
 | |
| void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
 | |
|   unsigned Width = FD->getBitWidthValue(Context);
 | |
|   if (Width == 0) {
 | |
|     layoutZeroWidthBitField(FD);
 | |
|     return;
 | |
|   }
 | |
|   ElementInfo Info = getAdjustedElementInfo(FD);
 | |
|   // Clamp the bitfield to a containable size for the sake of being able
 | |
|   // to lay them out.  Sema will throw an error.
 | |
|   if (Width > Context.toBits(Info.Size))
 | |
|     Width = Context.toBits(Info.Size);
 | |
|   // Check to see if this bitfield fits into an existing allocation.  Note:
 | |
|   // MSVC refuses to pack bitfields of formal types with different sizes
 | |
|   // into the same allocation.
 | |
|   if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield &&
 | |
|       CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
 | |
|     placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
 | |
|     RemainingBitsInField -= Width;
 | |
|     return;
 | |
|   }
 | |
|   LastFieldIsNonZeroWidthBitfield = true;
 | |
|   CurrentBitfieldSize = Info.Size;
 | |
|   if (UseExternalLayout) {
 | |
|     auto FieldBitOffset = External.getExternalFieldOffset(FD);
 | |
|     placeFieldAtBitOffset(FieldBitOffset);
 | |
|     auto NewSize = Context.toCharUnitsFromBits(
 | |
|         llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) +
 | |
|         Context.toBits(Info.Size));
 | |
|     Size = std::max(Size, NewSize);
 | |
|     Alignment = std::max(Alignment, Info.Alignment);
 | |
|   } else if (IsUnion) {
 | |
|     placeFieldAtOffset(CharUnits::Zero());
 | |
|     Size = std::max(Size, Info.Size);
 | |
|     // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
 | |
|   } else {
 | |
|     // Allocate a new block of memory and place the bitfield in it.
 | |
|     CharUnits FieldOffset = Size.alignTo(Info.Alignment);
 | |
|     placeFieldAtOffset(FieldOffset);
 | |
|     Size = FieldOffset + Info.Size;
 | |
|     Alignment = std::max(Alignment, Info.Alignment);
 | |
|     RemainingBitsInField = Context.toBits(Info.Size) - Width;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
 | |
|   // Zero-width bitfields are ignored unless they follow a non-zero-width
 | |
|   // bitfield.
 | |
|   if (!LastFieldIsNonZeroWidthBitfield) {
 | |
|     placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
 | |
|     // TODO: Add a Sema warning that MS ignores alignment for zero
 | |
|     // sized bitfields that occur after zero-size bitfields or non-bitfields.
 | |
|     return;
 | |
|   }
 | |
|   LastFieldIsNonZeroWidthBitfield = false;
 | |
|   ElementInfo Info = getAdjustedElementInfo(FD);
 | |
|   if (IsUnion) {
 | |
|     placeFieldAtOffset(CharUnits::Zero());
 | |
|     Size = std::max(Size, Info.Size);
 | |
|     // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
 | |
|   } else {
 | |
|     // Round up the current record size to the field's alignment boundary.
 | |
|     CharUnits FieldOffset = Size.alignTo(Info.Alignment);
 | |
|     placeFieldAtOffset(FieldOffset);
 | |
|     Size = FieldOffset;
 | |
|     Alignment = std::max(Alignment, Info.Alignment);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
 | |
|   if (!HasVBPtr || SharedVBPtrBase)
 | |
|     return;
 | |
|   // Inject the VBPointer at the injection site.
 | |
|   CharUnits InjectionSite = VBPtrOffset;
 | |
|   // But before we do, make sure it's properly aligned.
 | |
|   VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment);
 | |
|   // Determine where the first field should be laid out after the vbptr.
 | |
|   CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
 | |
|   // Shift everything after the vbptr down, unless we're using an external
 | |
|   // layout.
 | |
|   if (UseExternalLayout) {
 | |
|     // It is possible that there were no fields or bases located after vbptr,
 | |
|     // so the size was not adjusted before.
 | |
|     if (Size < FieldStart)
 | |
|       Size = FieldStart;
 | |
|     return;
 | |
|   }
 | |
|   // Make sure that the amount we push the fields back by is a multiple of the
 | |
|   // alignment.
 | |
|   CharUnits Offset = (FieldStart - InjectionSite)
 | |
|                          .alignTo(std::max(RequiredAlignment, Alignment));
 | |
|   Size += Offset;
 | |
|   for (uint64_t &FieldOffset : FieldOffsets)
 | |
|     FieldOffset += Context.toBits(Offset);
 | |
|   for (BaseOffsetsMapTy::value_type &Base : Bases)
 | |
|     if (Base.second >= InjectionSite)
 | |
|       Base.second += Offset;
 | |
| }
 | |
| 
 | |
| void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
 | |
|   if (!HasOwnVFPtr)
 | |
|     return;
 | |
|   // Make sure that the amount we push the struct back by is a multiple of the
 | |
|   // alignment.
 | |
|   CharUnits Offset =
 | |
|       PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment));
 | |
|   // Push back the vbptr, but increase the size of the object and push back
 | |
|   // regular fields by the offset only if not using external record layout.
 | |
|   if (HasVBPtr)
 | |
|     VBPtrOffset += Offset;
 | |
| 
 | |
|   if (UseExternalLayout) {
 | |
|     // The class may have no bases or fields, but still have a vfptr
 | |
|     // (e.g. it's an interface class). The size was not correctly set before
 | |
|     // in this case.
 | |
|     if (FieldOffsets.empty() && Bases.empty())
 | |
|       Size += Offset;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Size += Offset;
 | |
| 
 | |
|   // If we're using an external layout, the fields offsets have already
 | |
|   // accounted for this adjustment.
 | |
|   for (uint64_t &FieldOffset : FieldOffsets)
 | |
|     FieldOffset += Context.toBits(Offset);
 | |
|   for (BaseOffsetsMapTy::value_type &Base : Bases)
 | |
|     Base.second += Offset;
 | |
| }
 | |
| 
 | |
| void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
 | |
|   if (!HasVBPtr)
 | |
|     return;
 | |
|   // Vtordisps are always 4 bytes (even in 64-bit mode)
 | |
|   CharUnits VtorDispSize = CharUnits::fromQuantity(4);
 | |
|   CharUnits VtorDispAlignment = VtorDispSize;
 | |
|   // vtordisps respect pragma pack.
 | |
|   if (!MaxFieldAlignment.isZero())
 | |
|     VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
 | |
|   // The alignment of the vtordisp is at least the required alignment of the
 | |
|   // entire record.  This requirement may be present to support vtordisp
 | |
|   // injection.
 | |
|   for (const CXXBaseSpecifier &VBase : RD->vbases()) {
 | |
|     const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
 | |
|     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
 | |
|     RequiredAlignment =
 | |
|         std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
 | |
|   }
 | |
|   VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
 | |
|   // Compute the vtordisp set.
 | |
|   llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
 | |
|   computeVtorDispSet(HasVtorDispSet, RD);
 | |
|   // Iterate through the virtual bases and lay them out.
 | |
|   const ASTRecordLayout *PreviousBaseLayout = nullptr;
 | |
|   for (const CXXBaseSpecifier &VBase : RD->vbases()) {
 | |
|     const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
 | |
|     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
 | |
|     bool HasVtordisp = HasVtorDispSet.count(BaseDecl) > 0;
 | |
|     // Insert padding between two bases if the left first one is zero sized or
 | |
|     // contains a zero sized subobject and the right is zero sized or one leads
 | |
|     // with a zero sized base.  The padding between virtual bases is 4
 | |
|     // bytes (in both 32 and 64 bits modes) and always involves rounding up to
 | |
|     // the required alignment, we don't know why.
 | |
|     if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
 | |
|          BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) ||
 | |
|         HasVtordisp) {
 | |
|       Size = Size.alignTo(VtorDispAlignment) + VtorDispSize;
 | |
|       Alignment = std::max(VtorDispAlignment, Alignment);
 | |
|     }
 | |
|     // Insert the virtual base.
 | |
|     ElementInfo Info = getAdjustedElementInfo(BaseLayout);
 | |
|     CharUnits BaseOffset;
 | |
| 
 | |
|     // Respect the external AST source base offset, if present.
 | |
|     if (UseExternalLayout) {
 | |
|       if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset))
 | |
|         BaseOffset = Size;
 | |
|     } else
 | |
|       BaseOffset = Size.alignTo(Info.Alignment);
 | |
| 
 | |
|     assert(BaseOffset >= Size && "base offset already allocated");
 | |
| 
 | |
|     VBases.insert(std::make_pair(BaseDecl,
 | |
|         ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
 | |
|     Size = BaseOffset + BaseLayout.getNonVirtualSize();
 | |
|     PreviousBaseLayout = &BaseLayout;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
 | |
|   // Respect required alignment.  Note that in 32-bit mode Required alignment
 | |
|   // may be 0 and cause size not to be updated.
 | |
|   DataSize = Size;
 | |
|   if (!RequiredAlignment.isZero()) {
 | |
|     Alignment = std::max(Alignment, RequiredAlignment);
 | |
|     auto RoundingAlignment = Alignment;
 | |
|     if (!MaxFieldAlignment.isZero())
 | |
|       RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
 | |
|     RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
 | |
|     Size = Size.alignTo(RoundingAlignment);
 | |
|   }
 | |
|   if (Size.isZero()) {
 | |
|     if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) {
 | |
|       EndsWithZeroSizedObject = true;
 | |
|       LeadsWithZeroSizedBase = true;
 | |
|     }
 | |
|     // Zero-sized structures have size equal to their alignment if a
 | |
|     // __declspec(align) came into play.
 | |
|     if (RequiredAlignment >= MinEmptyStructSize)
 | |
|       Size = Alignment;
 | |
|     else
 | |
|       Size = MinEmptyStructSize;
 | |
|   }
 | |
| 
 | |
|   if (UseExternalLayout) {
 | |
|     Size = Context.toCharUnitsFromBits(External.Size);
 | |
|     if (External.Align)
 | |
|       Alignment = Context.toCharUnitsFromBits(External.Align);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Recursively walks the non-virtual bases of a class and determines if any of
 | |
| // them are in the bases with overridden methods set.
 | |
| static bool
 | |
| RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
 | |
|                      BasesWithOverriddenMethods,
 | |
|                  const CXXRecordDecl *RD) {
 | |
|   if (BasesWithOverriddenMethods.count(RD))
 | |
|     return true;
 | |
|   // If any of a virtual bases non-virtual bases (recursively) requires a
 | |
|   // vtordisp than so does this virtual base.
 | |
|   for (const CXXBaseSpecifier &Base : RD->bases())
 | |
|     if (!Base.isVirtual() &&
 | |
|         RequiresVtordisp(BasesWithOverriddenMethods,
 | |
|                          Base.getType()->getAsCXXRecordDecl()))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
 | |
|     llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
 | |
|     const CXXRecordDecl *RD) const {
 | |
|   // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
 | |
|   // vftables.
 | |
|   if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) {
 | |
|     for (const CXXBaseSpecifier &Base : RD->vbases()) {
 | |
|       const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
 | |
|       const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
 | |
|       if (Layout.hasExtendableVFPtr())
 | |
|         HasVtordispSet.insert(BaseDecl);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If any of our bases need a vtordisp for this type, so do we.  Check our
 | |
|   // direct bases for vtordisp requirements.
 | |
|   for (const CXXBaseSpecifier &Base : RD->bases()) {
 | |
|     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
 | |
|     for (const auto &bi : Layout.getVBaseOffsetsMap())
 | |
|       if (bi.second.hasVtorDisp())
 | |
|         HasVtordispSet.insert(bi.first);
 | |
|   }
 | |
|   // We don't introduce any additional vtordisps if either:
 | |
|   // * A user declared constructor or destructor aren't declared.
 | |
|   // * #pragma vtordisp(0) or the /vd0 flag are in use.
 | |
|   if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
 | |
|       RD->getMSVtorDispMode() == MSVtorDispMode::Never)
 | |
|     return;
 | |
|   // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
 | |
|   // possible for a partially constructed object with virtual base overrides to
 | |
|   // escape a non-trivial constructor.
 | |
|   assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride);
 | |
|   // Compute a set of base classes which define methods we override.  A virtual
 | |
|   // base in this set will require a vtordisp.  A virtual base that transitively
 | |
|   // contains one of these bases as a non-virtual base will also require a
 | |
|   // vtordisp.
 | |
|   llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
 | |
|   llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
 | |
|   // Seed the working set with our non-destructor, non-pure virtual methods.
 | |
|   for (const CXXMethodDecl *MD : RD->methods())
 | |
|     if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD) && !MD->isPure())
 | |
|       Work.insert(MD);
 | |
|   while (!Work.empty()) {
 | |
|     const CXXMethodDecl *MD = *Work.begin();
 | |
|     auto MethodRange = MD->overridden_methods();
 | |
|     // If a virtual method has no-overrides it lives in its parent's vtable.
 | |
|     if (MethodRange.begin() == MethodRange.end())
 | |
|       BasesWithOverriddenMethods.insert(MD->getParent());
 | |
|     else
 | |
|       Work.insert(MethodRange.begin(), MethodRange.end());
 | |
|     // We've finished processing this element, remove it from the working set.
 | |
|     Work.erase(MD);
 | |
|   }
 | |
|   // For each of our virtual bases, check if it is in the set of overridden
 | |
|   // bases or if it transitively contains a non-virtual base that is.
 | |
|   for (const CXXBaseSpecifier &Base : RD->vbases()) {
 | |
|     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
 | |
|     if (!HasVtordispSet.count(BaseDecl) &&
 | |
|         RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
 | |
|       HasVtordispSet.insert(BaseDecl);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getASTRecordLayout - Get or compute information about the layout of the
 | |
| /// specified record (struct/union/class), which indicates its size and field
 | |
| /// position information.
 | |
| const ASTRecordLayout &
 | |
| ASTContext::getASTRecordLayout(const RecordDecl *D) const {
 | |
|   // These asserts test different things.  A record has a definition
 | |
|   // as soon as we begin to parse the definition.  That definition is
 | |
|   // not a complete definition (which is what isDefinition() tests)
 | |
|   // until we *finish* parsing the definition.
 | |
| 
 | |
|   if (D->hasExternalLexicalStorage() && !D->getDefinition())
 | |
|     getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
 | |
| 
 | |
|   D = D->getDefinition();
 | |
|   assert(D && "Cannot get layout of forward declarations!");
 | |
|   assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
 | |
|   assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
 | |
| 
 | |
|   // Look up this layout, if already laid out, return what we have.
 | |
|   // Note that we can't save a reference to the entry because this function
 | |
|   // is recursive.
 | |
|   const ASTRecordLayout *Entry = ASTRecordLayouts[D];
 | |
|   if (Entry) return *Entry;
 | |
| 
 | |
|   const ASTRecordLayout *NewEntry = nullptr;
 | |
| 
 | |
|   if (isMsLayout(*this)) {
 | |
|     MicrosoftRecordLayoutBuilder Builder(*this);
 | |
|     if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
 | |
|       Builder.cxxLayout(RD);
 | |
|       NewEntry = new (*this) ASTRecordLayout(
 | |
|           *this, Builder.Size, Builder.Alignment, Builder.Alignment,
 | |
|           Builder.RequiredAlignment,
 | |
|           Builder.HasOwnVFPtr, Builder.HasOwnVFPtr || Builder.PrimaryBase,
 | |
|           Builder.VBPtrOffset, Builder.DataSize, Builder.FieldOffsets,
 | |
|           Builder.NonVirtualSize, Builder.Alignment, CharUnits::Zero(),
 | |
|           Builder.PrimaryBase, false, Builder.SharedVBPtrBase,
 | |
|           Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
 | |
|           Builder.Bases, Builder.VBases);
 | |
|     } else {
 | |
|       Builder.layout(D);
 | |
|       NewEntry = new (*this) ASTRecordLayout(
 | |
|           *this, Builder.Size, Builder.Alignment, Builder.Alignment,
 | |
|           Builder.RequiredAlignment,
 | |
|           Builder.Size, Builder.FieldOffsets);
 | |
|     }
 | |
|   } else {
 | |
|     if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
 | |
|       EmptySubobjectMap EmptySubobjects(*this, RD);
 | |
|       ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects);
 | |
|       Builder.Layout(RD);
 | |
| 
 | |
|       // In certain situations, we are allowed to lay out objects in the
 | |
|       // tail-padding of base classes.  This is ABI-dependent.
 | |
|       // FIXME: this should be stored in the record layout.
 | |
|       bool skipTailPadding =
 | |
|           mustSkipTailPadding(getTargetInfo().getCXXABI(), RD);
 | |
| 
 | |
|       // FIXME: This should be done in FinalizeLayout.
 | |
|       CharUnits DataSize =
 | |
|           skipTailPadding ? Builder.getSize() : Builder.getDataSize();
 | |
|       CharUnits NonVirtualSize =
 | |
|           skipTailPadding ? DataSize : Builder.NonVirtualSize;
 | |
|       NewEntry = new (*this) ASTRecordLayout(
 | |
|           *this, Builder.getSize(), Builder.Alignment, Builder.UnadjustedAlignment,
 | |
|           /*RequiredAlignment : used by MS-ABI)*/
 | |
|           Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(),
 | |
|           CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets,
 | |
|           NonVirtualSize, Builder.NonVirtualAlignment,
 | |
|           EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase,
 | |
|           Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases,
 | |
|           Builder.VBases);
 | |
|     } else {
 | |
|       ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
 | |
|       Builder.Layout(D);
 | |
| 
 | |
|       NewEntry = new (*this) ASTRecordLayout(
 | |
|           *this, Builder.getSize(), Builder.Alignment, Builder.UnadjustedAlignment,
 | |
|           /*RequiredAlignment : used by MS-ABI)*/
 | |
|           Builder.Alignment, Builder.getSize(), Builder.FieldOffsets);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ASTRecordLayouts[D] = NewEntry;
 | |
| 
 | |
|   if (getLangOpts().DumpRecordLayouts) {
 | |
|     llvm::outs() << "\n*** Dumping AST Record Layout\n";
 | |
|     DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
 | |
|   }
 | |
| 
 | |
|   return *NewEntry;
 | |
| }
 | |
| 
 | |
| const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
 | |
|   if (!getTargetInfo().getCXXABI().hasKeyFunctions())
 | |
|     return nullptr;
 | |
| 
 | |
|   assert(RD->getDefinition() && "Cannot get key function for forward decl!");
 | |
|   RD = RD->getDefinition();
 | |
| 
 | |
|   // Beware:
 | |
|   //  1) computing the key function might trigger deserialization, which might
 | |
|   //     invalidate iterators into KeyFunctions
 | |
|   //  2) 'get' on the LazyDeclPtr might also trigger deserialization and
 | |
|   //     invalidate the LazyDeclPtr within the map itself
 | |
|   LazyDeclPtr Entry = KeyFunctions[RD];
 | |
|   const Decl *Result =
 | |
|       Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
 | |
| 
 | |
|   // Store it back if it changed.
 | |
|   if (Entry.isOffset() || Entry.isValid() != bool(Result))
 | |
|     KeyFunctions[RD] = const_cast<Decl*>(Result);
 | |
| 
 | |
|   return cast_or_null<CXXMethodDecl>(Result);
 | |
| }
 | |
| 
 | |
| void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
 | |
|   assert(Method == Method->getFirstDecl() &&
 | |
|          "not working with method declaration from class definition");
 | |
| 
 | |
|   // Look up the cache entry.  Since we're working with the first
 | |
|   // declaration, its parent must be the class definition, which is
 | |
|   // the correct key for the KeyFunctions hash.
 | |
|   const auto &Map = KeyFunctions;
 | |
|   auto I = Map.find(Method->getParent());
 | |
| 
 | |
|   // If it's not cached, there's nothing to do.
 | |
|   if (I == Map.end()) return;
 | |
| 
 | |
|   // If it is cached, check whether it's the target method, and if so,
 | |
|   // remove it from the cache. Note, the call to 'get' might invalidate
 | |
|   // the iterator and the LazyDeclPtr object within the map.
 | |
|   LazyDeclPtr Ptr = I->second;
 | |
|   if (Ptr.get(getExternalSource()) == Method) {
 | |
|     // FIXME: remember that we did this for module / chained PCH state?
 | |
|     KeyFunctions.erase(Method->getParent());
 | |
|   }
 | |
| }
 | |
| 
 | |
| static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
 | |
|   const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
 | |
|   return Layout.getFieldOffset(FD->getFieldIndex());
 | |
| }
 | |
| 
 | |
| uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
 | |
|   uint64_t OffsetInBits;
 | |
|   if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
 | |
|     OffsetInBits = ::getFieldOffset(*this, FD);
 | |
|   } else {
 | |
|     const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
 | |
| 
 | |
|     OffsetInBits = 0;
 | |
|     for (const NamedDecl *ND : IFD->chain())
 | |
|       OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
 | |
|   }
 | |
| 
 | |
|   return OffsetInBits;
 | |
| }
 | |
| 
 | |
| uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
 | |
|                                           const ObjCImplementationDecl *ID,
 | |
|                                           const ObjCIvarDecl *Ivar) const {
 | |
|   const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
 | |
| 
 | |
|   // FIXME: We should eliminate the need to have ObjCImplementationDecl passed
 | |
|   // in here; it should never be necessary because that should be the lexical
 | |
|   // decl context for the ivar.
 | |
| 
 | |
|   // If we know have an implementation (and the ivar is in it) then
 | |
|   // look up in the implementation layout.
 | |
|   const ASTRecordLayout *RL;
 | |
|   if (ID && declaresSameEntity(ID->getClassInterface(), Container))
 | |
|     RL = &getASTObjCImplementationLayout(ID);
 | |
|   else
 | |
|     RL = &getASTObjCInterfaceLayout(Container);
 | |
| 
 | |
|   // Compute field index.
 | |
|   //
 | |
|   // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is
 | |
|   // implemented. This should be fixed to get the information from the layout
 | |
|   // directly.
 | |
|   unsigned Index = 0;
 | |
| 
 | |
|   for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin();
 | |
|        IVD; IVD = IVD->getNextIvar()) {
 | |
|     if (Ivar == IVD)
 | |
|       break;
 | |
|     ++Index;
 | |
|   }
 | |
|   assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!");
 | |
| 
 | |
|   return RL->getFieldOffset(Index);
 | |
| }
 | |
| 
 | |
| /// getObjCLayout - Get or compute information about the layout of the
 | |
| /// given interface.
 | |
| ///
 | |
| /// \param Impl - If given, also include the layout of the interface's
 | |
| /// implementation. This may differ by including synthesized ivars.
 | |
| const ASTRecordLayout &
 | |
| ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
 | |
|                           const ObjCImplementationDecl *Impl) const {
 | |
|   // Retrieve the definition
 | |
|   if (D->hasExternalLexicalStorage() && !D->getDefinition())
 | |
|     getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
 | |
|   D = D->getDefinition();
 | |
|   assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!");
 | |
| 
 | |
|   // Look up this layout, if already laid out, return what we have.
 | |
|   const ObjCContainerDecl *Key =
 | |
|     Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
 | |
|   if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
 | |
|     return *Entry;
 | |
| 
 | |
|   // Add in synthesized ivar count if laying out an implementation.
 | |
|   if (Impl) {
 | |
|     unsigned SynthCount = CountNonClassIvars(D);
 | |
|     // If there aren't any synthesized ivars then reuse the interface
 | |
|     // entry. Note we can't cache this because we simply free all
 | |
|     // entries later; however we shouldn't look up implementations
 | |
|     // frequently.
 | |
|     if (SynthCount == 0)
 | |
|       return getObjCLayout(D, nullptr);
 | |
|   }
 | |
| 
 | |
|   ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
 | |
|   Builder.Layout(D);
 | |
| 
 | |
|   const ASTRecordLayout *NewEntry =
 | |
|     new (*this) ASTRecordLayout(*this, Builder.getSize(),
 | |
|                                 Builder.Alignment,
 | |
|                                 Builder.UnadjustedAlignment,
 | |
|                                 /*RequiredAlignment : used by MS-ABI)*/
 | |
|                                 Builder.Alignment,
 | |
|                                 Builder.getDataSize(),
 | |
|                                 Builder.FieldOffsets);
 | |
| 
 | |
|   ObjCLayouts[Key] = NewEntry;
 | |
| 
 | |
|   return *NewEntry;
 | |
| }
 | |
| 
 | |
| static void PrintOffset(raw_ostream &OS,
 | |
|                         CharUnits Offset, unsigned IndentLevel) {
 | |
|   OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity());
 | |
|   OS.indent(IndentLevel * 2);
 | |
| }
 | |
| 
 | |
| static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset,
 | |
|                                 unsigned Begin, unsigned Width,
 | |
|                                 unsigned IndentLevel) {
 | |
|   llvm::SmallString<10> Buffer;
 | |
|   {
 | |
|     llvm::raw_svector_ostream BufferOS(Buffer);
 | |
|     BufferOS << Offset.getQuantity() << ':';
 | |
|     if (Width == 0) {
 | |
|       BufferOS << '-';
 | |
|     } else {
 | |
|       BufferOS << Begin << '-' << (Begin + Width - 1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   OS << llvm::right_justify(Buffer, 10) << " | ";
 | |
|   OS.indent(IndentLevel * 2);
 | |
| }
 | |
| 
 | |
| static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
 | |
|   OS << "           | ";
 | |
|   OS.indent(IndentLevel * 2);
 | |
| }
 | |
| 
 | |
| static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD,
 | |
|                              const ASTContext &C,
 | |
|                              CharUnits Offset,
 | |
|                              unsigned IndentLevel,
 | |
|                              const char* Description,
 | |
|                              bool PrintSizeInfo,
 | |
|                              bool IncludeVirtualBases) {
 | |
|   const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
 | |
|   auto CXXRD = dyn_cast<CXXRecordDecl>(RD);
 | |
| 
 | |
|   PrintOffset(OS, Offset, IndentLevel);
 | |
|   OS << C.getTypeDeclType(const_cast<RecordDecl*>(RD)).getAsString();
 | |
|   if (Description)
 | |
|     OS << ' ' << Description;
 | |
|   if (CXXRD && CXXRD->isEmpty())
 | |
|     OS << " (empty)";
 | |
|   OS << '\n';
 | |
| 
 | |
|   IndentLevel++;
 | |
| 
 | |
|   // Dump bases.
 | |
|   if (CXXRD) {
 | |
|     const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
 | |
|     bool HasOwnVFPtr = Layout.hasOwnVFPtr();
 | |
|     bool HasOwnVBPtr = Layout.hasOwnVBPtr();
 | |
| 
 | |
|     // Vtable pointer.
 | |
|     if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) {
 | |
|       PrintOffset(OS, Offset, IndentLevel);
 | |
|       OS << '(' << *RD << " vtable pointer)\n";
 | |
|     } else if (HasOwnVFPtr) {
 | |
|       PrintOffset(OS, Offset, IndentLevel);
 | |
|       // vfptr (for Microsoft C++ ABI)
 | |
|       OS << '(' << *RD << " vftable pointer)\n";
 | |
|     }
 | |
| 
 | |
|     // Collect nvbases.
 | |
|     SmallVector<const CXXRecordDecl *, 4> Bases;
 | |
|     for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
 | |
|       assert(!Base.getType()->isDependentType() &&
 | |
|              "Cannot layout class with dependent bases.");
 | |
|       if (!Base.isVirtual())
 | |
|         Bases.push_back(Base.getType()->getAsCXXRecordDecl());
 | |
|     }
 | |
| 
 | |
|     // Sort nvbases by offset.
 | |
|     llvm::stable_sort(
 | |
|         Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
 | |
|           return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
 | |
|         });
 | |
| 
 | |
|     // Dump (non-virtual) bases
 | |
|     for (const CXXRecordDecl *Base : Bases) {
 | |
|       CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
 | |
|       DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
 | |
|                        Base == PrimaryBase ? "(primary base)" : "(base)",
 | |
|                        /*PrintSizeInfo=*/false,
 | |
|                        /*IncludeVirtualBases=*/false);
 | |
|     }
 | |
| 
 | |
|     // vbptr (for Microsoft C++ ABI)
 | |
|     if (HasOwnVBPtr) {
 | |
|       PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
 | |
|       OS << '(' << *RD << " vbtable pointer)\n";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Dump fields.
 | |
|   uint64_t FieldNo = 0;
 | |
|   for (RecordDecl::field_iterator I = RD->field_begin(),
 | |
|          E = RD->field_end(); I != E; ++I, ++FieldNo) {
 | |
|     const FieldDecl &Field = **I;
 | |
|     uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo);
 | |
|     CharUnits FieldOffset =
 | |
|       Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits);
 | |
| 
 | |
|     // Recursively dump fields of record type.
 | |
|     if (auto RT = Field.getType()->getAs<RecordType>()) {
 | |
|       DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel,
 | |
|                        Field.getName().data(),
 | |
|                        /*PrintSizeInfo=*/false,
 | |
|                        /*IncludeVirtualBases=*/true);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (Field.isBitField()) {
 | |
|       uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset);
 | |
|       unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits;
 | |
|       unsigned Width = Field.getBitWidthValue(C);
 | |
|       PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel);
 | |
|     } else {
 | |
|       PrintOffset(OS, FieldOffset, IndentLevel);
 | |
|     }
 | |
|     OS << Field.getType().getAsString() << ' ' << Field << '\n';
 | |
|   }
 | |
| 
 | |
|   // Dump virtual bases.
 | |
|   if (CXXRD && IncludeVirtualBases) {
 | |
|     const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps =
 | |
|       Layout.getVBaseOffsetsMap();
 | |
| 
 | |
|     for (const CXXBaseSpecifier &Base : CXXRD->vbases()) {
 | |
|       assert(Base.isVirtual() && "Found non-virtual class!");
 | |
|       const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
 | |
| 
 | |
|       if (VtorDisps.find(VBase)->second.hasVtorDisp()) {
 | |
|         PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
 | |
|         OS << "(vtordisp for vbase " << *VBase << ")\n";
 | |
|       }
 | |
| 
 | |
|       DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
 | |
|                        VBase == Layout.getPrimaryBase() ?
 | |
|                          "(primary virtual base)" : "(virtual base)",
 | |
|                        /*PrintSizeInfo=*/false,
 | |
|                        /*IncludeVirtualBases=*/false);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!PrintSizeInfo) return;
 | |
| 
 | |
|   PrintIndentNoOffset(OS, IndentLevel - 1);
 | |
|   OS << "[sizeof=" << Layout.getSize().getQuantity();
 | |
|   if (CXXRD && !isMsLayout(C))
 | |
|     OS << ", dsize=" << Layout.getDataSize().getQuantity();
 | |
|   OS << ", align=" << Layout.getAlignment().getQuantity();
 | |
| 
 | |
|   if (CXXRD) {
 | |
|     OS << ",\n";
 | |
|     PrintIndentNoOffset(OS, IndentLevel - 1);
 | |
|     OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
 | |
|     OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity();
 | |
|   }
 | |
|   OS << "]\n";
 | |
| }
 | |
| 
 | |
| void ASTContext::DumpRecordLayout(const RecordDecl *RD,
 | |
|                                   raw_ostream &OS,
 | |
|                                   bool Simple) const {
 | |
|   if (!Simple) {
 | |
|     ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr,
 | |
|                        /*PrintSizeInfo*/true,
 | |
|                        /*IncludeVirtualBases=*/true);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // The "simple" format is designed to be parsed by the
 | |
|   // layout-override testing code.  There shouldn't be any external
 | |
|   // uses of this format --- when LLDB overrides a layout, it sets up
 | |
|   // the data structures directly --- so feel free to adjust this as
 | |
|   // you like as long as you also update the rudimentary parser for it
 | |
|   // in libFrontend.
 | |
| 
 | |
|   const ASTRecordLayout &Info = getASTRecordLayout(RD);
 | |
|   OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
 | |
|   OS << "\nLayout: ";
 | |
|   OS << "<ASTRecordLayout\n";
 | |
|   OS << "  Size:" << toBits(Info.getSize()) << "\n";
 | |
|   if (!isMsLayout(*this))
 | |
|     OS << "  DataSize:" << toBits(Info.getDataSize()) << "\n";
 | |
|   OS << "  Alignment:" << toBits(Info.getAlignment()) << "\n";
 | |
|   OS << "  FieldOffsets: [";
 | |
|   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
 | |
|     if (i) OS << ", ";
 | |
|     OS << Info.getFieldOffset(i);
 | |
|   }
 | |
|   OS << "]>\n";
 | |
| }
 |