forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3757 lines
		
	
	
		
			138 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3757 lines
		
	
	
		
			138 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This contains code dealing with generation of the layout of virtual tables.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/AST/VTableBuilder.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/ASTDiagnostic.h"
 | |
| #include "clang/AST/CXXInheritance.h"
 | |
| #include "clang/AST/RecordLayout.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "llvm/ADT/SetOperations.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/Support/Format.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cstdio>
 | |
| 
 | |
| using namespace clang;
 | |
| 
 | |
| #define DUMP_OVERRIDERS 0
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// BaseOffset - Represents an offset from a derived class to a direct or
 | |
| /// indirect base class.
 | |
| struct BaseOffset {
 | |
|   /// DerivedClass - The derived class.
 | |
|   const CXXRecordDecl *DerivedClass;
 | |
| 
 | |
|   /// VirtualBase - If the path from the derived class to the base class
 | |
|   /// involves virtual base classes, this holds the declaration of the last
 | |
|   /// virtual base in this path (i.e. closest to the base class).
 | |
|   const CXXRecordDecl *VirtualBase;
 | |
| 
 | |
|   /// NonVirtualOffset - The offset from the derived class to the base class.
 | |
|   /// (Or the offset from the virtual base class to the base class, if the
 | |
|   /// path from the derived class to the base class involves a virtual base
 | |
|   /// class.
 | |
|   CharUnits NonVirtualOffset;
 | |
| 
 | |
|   BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr),
 | |
|                  NonVirtualOffset(CharUnits::Zero()) { }
 | |
|   BaseOffset(const CXXRecordDecl *DerivedClass,
 | |
|              const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
 | |
|     : DerivedClass(DerivedClass), VirtualBase(VirtualBase),
 | |
|     NonVirtualOffset(NonVirtualOffset) { }
 | |
| 
 | |
|   bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
 | |
| };
 | |
| 
 | |
| /// FinalOverriders - Contains the final overrider member functions for all
 | |
| /// member functions in the base subobjects of a class.
 | |
| class FinalOverriders {
 | |
| public:
 | |
|   /// OverriderInfo - Information about a final overrider.
 | |
|   struct OverriderInfo {
 | |
|     /// Method - The method decl of the overrider.
 | |
|     const CXXMethodDecl *Method;
 | |
| 
 | |
|     /// VirtualBase - The virtual base class subobject of this overrider.
 | |
|     /// Note that this records the closest derived virtual base class subobject.
 | |
|     const CXXRecordDecl *VirtualBase;
 | |
| 
 | |
|     /// Offset - the base offset of the overrider's parent in the layout class.
 | |
|     CharUnits Offset;
 | |
| 
 | |
|     OverriderInfo() : Method(nullptr), VirtualBase(nullptr),
 | |
|                       Offset(CharUnits::Zero()) { }
 | |
|   };
 | |
| 
 | |
| private:
 | |
|   /// MostDerivedClass - The most derived class for which the final overriders
 | |
|   /// are stored.
 | |
|   const CXXRecordDecl *MostDerivedClass;
 | |
| 
 | |
|   /// MostDerivedClassOffset - If we're building final overriders for a
 | |
|   /// construction vtable, this holds the offset from the layout class to the
 | |
|   /// most derived class.
 | |
|   const CharUnits MostDerivedClassOffset;
 | |
| 
 | |
|   /// LayoutClass - The class we're using for layout information. Will be
 | |
|   /// different than the most derived class if the final overriders are for a
 | |
|   /// construction vtable.
 | |
|   const CXXRecordDecl *LayoutClass;
 | |
| 
 | |
|   ASTContext &Context;
 | |
| 
 | |
|   /// MostDerivedClassLayout - the AST record layout of the most derived class.
 | |
|   const ASTRecordLayout &MostDerivedClassLayout;
 | |
| 
 | |
|   /// MethodBaseOffsetPairTy - Uniquely identifies a member function
 | |
|   /// in a base subobject.
 | |
|   typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
 | |
| 
 | |
|   typedef llvm::DenseMap<MethodBaseOffsetPairTy,
 | |
|                          OverriderInfo> OverridersMapTy;
 | |
| 
 | |
|   /// OverridersMap - The final overriders for all virtual member functions of
 | |
|   /// all the base subobjects of the most derived class.
 | |
|   OverridersMapTy OverridersMap;
 | |
| 
 | |
|   /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
 | |
|   /// as a record decl and a subobject number) and its offsets in the most
 | |
|   /// derived class as well as the layout class.
 | |
|   typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
 | |
|                          CharUnits> SubobjectOffsetMapTy;
 | |
| 
 | |
|   typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
 | |
| 
 | |
|   /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
 | |
|   /// given base.
 | |
|   void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
 | |
|                           CharUnits OffsetInLayoutClass,
 | |
|                           SubobjectOffsetMapTy &SubobjectOffsets,
 | |
|                           SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
 | |
|                           SubobjectCountMapTy &SubobjectCounts);
 | |
| 
 | |
|   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
 | |
| 
 | |
|   /// dump - dump the final overriders for a base subobject, and all its direct
 | |
|   /// and indirect base subobjects.
 | |
|   void dump(raw_ostream &Out, BaseSubobject Base,
 | |
|             VisitedVirtualBasesSetTy& VisitedVirtualBases);
 | |
| 
 | |
| public:
 | |
|   FinalOverriders(const CXXRecordDecl *MostDerivedClass,
 | |
|                   CharUnits MostDerivedClassOffset,
 | |
|                   const CXXRecordDecl *LayoutClass);
 | |
| 
 | |
|   /// getOverrider - Get the final overrider for the given method declaration in
 | |
|   /// the subobject with the given base offset.
 | |
|   OverriderInfo getOverrider(const CXXMethodDecl *MD,
 | |
|                              CharUnits BaseOffset) const {
 | |
|     assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
 | |
|            "Did not find overrider!");
 | |
| 
 | |
|     return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
 | |
|   }
 | |
| 
 | |
|   /// dump - dump the final overriders.
 | |
|   void dump() {
 | |
|     VisitedVirtualBasesSetTy VisitedVirtualBases;
 | |
|     dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
 | |
|          VisitedVirtualBases);
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
 | |
|                                  CharUnits MostDerivedClassOffset,
 | |
|                                  const CXXRecordDecl *LayoutClass)
 | |
|   : MostDerivedClass(MostDerivedClass),
 | |
|   MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
 | |
|   Context(MostDerivedClass->getASTContext()),
 | |
|   MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
 | |
| 
 | |
|   // Compute base offsets.
 | |
|   SubobjectOffsetMapTy SubobjectOffsets;
 | |
|   SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
 | |
|   SubobjectCountMapTy SubobjectCounts;
 | |
|   ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
 | |
|                      /*IsVirtual=*/false,
 | |
|                      MostDerivedClassOffset,
 | |
|                      SubobjectOffsets, SubobjectLayoutClassOffsets,
 | |
|                      SubobjectCounts);
 | |
| 
 | |
|   // Get the final overriders.
 | |
|   CXXFinalOverriderMap FinalOverriders;
 | |
|   MostDerivedClass->getFinalOverriders(FinalOverriders);
 | |
| 
 | |
|   for (const auto &Overrider : FinalOverriders) {
 | |
|     const CXXMethodDecl *MD = Overrider.first;
 | |
|     const OverridingMethods &Methods = Overrider.second;
 | |
| 
 | |
|     for (const auto &M : Methods) {
 | |
|       unsigned SubobjectNumber = M.first;
 | |
|       assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
 | |
|                                                    SubobjectNumber)) &&
 | |
|              "Did not find subobject offset!");
 | |
| 
 | |
|       CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
 | |
|                                                             SubobjectNumber)];
 | |
| 
 | |
|       assert(M.second.size() == 1 && "Final overrider is not unique!");
 | |
|       const UniqueVirtualMethod &Method = M.second.front();
 | |
| 
 | |
|       const CXXRecordDecl *OverriderRD = Method.Method->getParent();
 | |
|       assert(SubobjectLayoutClassOffsets.count(
 | |
|              std::make_pair(OverriderRD, Method.Subobject))
 | |
|              && "Did not find subobject offset!");
 | |
|       CharUnits OverriderOffset =
 | |
|         SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
 | |
|                                                    Method.Subobject)];
 | |
| 
 | |
|       OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
 | |
|       assert(!Overrider.Method && "Overrider should not exist yet!");
 | |
| 
 | |
|       Overrider.Offset = OverriderOffset;
 | |
|       Overrider.Method = Method.Method;
 | |
|       Overrider.VirtualBase = Method.InVirtualSubobject;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #if DUMP_OVERRIDERS
 | |
|   // And dump them (for now).
 | |
|   dump();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static BaseOffset ComputeBaseOffset(const ASTContext &Context,
 | |
|                                     const CXXRecordDecl *DerivedRD,
 | |
|                                     const CXXBasePath &Path) {
 | |
|   CharUnits NonVirtualOffset = CharUnits::Zero();
 | |
| 
 | |
|   unsigned NonVirtualStart = 0;
 | |
|   const CXXRecordDecl *VirtualBase = nullptr;
 | |
| 
 | |
|   // First, look for the virtual base class.
 | |
|   for (int I = Path.size(), E = 0; I != E; --I) {
 | |
|     const CXXBasePathElement &Element = Path[I - 1];
 | |
| 
 | |
|     if (Element.Base->isVirtual()) {
 | |
|       NonVirtualStart = I;
 | |
|       QualType VBaseType = Element.Base->getType();
 | |
|       VirtualBase = VBaseType->getAsCXXRecordDecl();
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now compute the non-virtual offset.
 | |
|   for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
 | |
|     const CXXBasePathElement &Element = Path[I];
 | |
| 
 | |
|     // Check the base class offset.
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
 | |
| 
 | |
|     const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|     NonVirtualOffset += Layout.getBaseClassOffset(Base);
 | |
|   }
 | |
| 
 | |
|   // FIXME: This should probably use CharUnits or something. Maybe we should
 | |
|   // even change the base offsets in ASTRecordLayout to be specified in
 | |
|   // CharUnits.
 | |
|   return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
 | |
| 
 | |
| }
 | |
| 
 | |
| static BaseOffset ComputeBaseOffset(const ASTContext &Context,
 | |
|                                     const CXXRecordDecl *BaseRD,
 | |
|                                     const CXXRecordDecl *DerivedRD) {
 | |
|   CXXBasePaths Paths(/*FindAmbiguities=*/false,
 | |
|                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
 | |
| 
 | |
|   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
 | |
|     llvm_unreachable("Class must be derived from the passed in base class!");
 | |
| 
 | |
|   return ComputeBaseOffset(Context, DerivedRD, Paths.front());
 | |
| }
 | |
| 
 | |
| static BaseOffset
 | |
| ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
 | |
|                                   const CXXMethodDecl *DerivedMD,
 | |
|                                   const CXXMethodDecl *BaseMD) {
 | |
|   const auto *BaseFT = BaseMD->getType()->castAs<FunctionType>();
 | |
|   const auto *DerivedFT = DerivedMD->getType()->castAs<FunctionType>();
 | |
| 
 | |
|   // Canonicalize the return types.
 | |
|   CanQualType CanDerivedReturnType =
 | |
|       Context.getCanonicalType(DerivedFT->getReturnType());
 | |
|   CanQualType CanBaseReturnType =
 | |
|       Context.getCanonicalType(BaseFT->getReturnType());
 | |
| 
 | |
|   assert(CanDerivedReturnType->getTypeClass() ==
 | |
|          CanBaseReturnType->getTypeClass() &&
 | |
|          "Types must have same type class!");
 | |
| 
 | |
|   if (CanDerivedReturnType == CanBaseReturnType) {
 | |
|     // No adjustment needed.
 | |
|     return BaseOffset();
 | |
|   }
 | |
| 
 | |
|   if (isa<ReferenceType>(CanDerivedReturnType)) {
 | |
|     CanDerivedReturnType =
 | |
|       CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
 | |
|     CanBaseReturnType =
 | |
|       CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
 | |
|   } else if (isa<PointerType>(CanDerivedReturnType)) {
 | |
|     CanDerivedReturnType =
 | |
|       CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
 | |
|     CanBaseReturnType =
 | |
|       CanBaseReturnType->getAs<PointerType>()->getPointeeType();
 | |
|   } else {
 | |
|     llvm_unreachable("Unexpected return type!");
 | |
|   }
 | |
| 
 | |
|   // We need to compare unqualified types here; consider
 | |
|   //   const T *Base::foo();
 | |
|   //   T *Derived::foo();
 | |
|   if (CanDerivedReturnType.getUnqualifiedType() ==
 | |
|       CanBaseReturnType.getUnqualifiedType()) {
 | |
|     // No adjustment needed.
 | |
|     return BaseOffset();
 | |
|   }
 | |
| 
 | |
|   const CXXRecordDecl *DerivedRD =
 | |
|     cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());
 | |
| 
 | |
|   const CXXRecordDecl *BaseRD =
 | |
|     cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());
 | |
| 
 | |
|   return ComputeBaseOffset(Context, BaseRD, DerivedRD);
 | |
| }
 | |
| 
 | |
| void
 | |
| FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
 | |
|                               CharUnits OffsetInLayoutClass,
 | |
|                               SubobjectOffsetMapTy &SubobjectOffsets,
 | |
|                               SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
 | |
|                               SubobjectCountMapTy &SubobjectCounts) {
 | |
|   const CXXRecordDecl *RD = Base.getBase();
 | |
| 
 | |
|   unsigned SubobjectNumber = 0;
 | |
|   if (!IsVirtual)
 | |
|     SubobjectNumber = ++SubobjectCounts[RD];
 | |
| 
 | |
|   // Set up the subobject to offset mapping.
 | |
|   assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
 | |
|          && "Subobject offset already exists!");
 | |
|   assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
 | |
|          && "Subobject offset already exists!");
 | |
| 
 | |
|   SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
 | |
|   SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
 | |
|     OffsetInLayoutClass;
 | |
| 
 | |
|   // Traverse our bases.
 | |
|   for (const auto &B : RD->bases()) {
 | |
|     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|     CharUnits BaseOffset;
 | |
|     CharUnits BaseOffsetInLayoutClass;
 | |
|     if (B.isVirtual()) {
 | |
|       // Check if we've visited this virtual base before.
 | |
|       if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
 | |
|         continue;
 | |
| 
 | |
|       const ASTRecordLayout &LayoutClassLayout =
 | |
|         Context.getASTRecordLayout(LayoutClass);
 | |
| 
 | |
|       BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
 | |
|       BaseOffsetInLayoutClass =
 | |
|         LayoutClassLayout.getVBaseClassOffset(BaseDecl);
 | |
|     } else {
 | |
|       const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
|       CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);
 | |
| 
 | |
|       BaseOffset = Base.getBaseOffset() + Offset;
 | |
|       BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
 | |
|     }
 | |
| 
 | |
|     ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
 | |
|                        B.isVirtual(), BaseOffsetInLayoutClass,
 | |
|                        SubobjectOffsets, SubobjectLayoutClassOffsets,
 | |
|                        SubobjectCounts);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
 | |
|                            VisitedVirtualBasesSetTy &VisitedVirtualBases) {
 | |
|   const CXXRecordDecl *RD = Base.getBase();
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
| 
 | |
|   for (const auto &B : RD->bases()) {
 | |
|     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|     // Ignore bases that don't have any virtual member functions.
 | |
|     if (!BaseDecl->isPolymorphic())
 | |
|       continue;
 | |
| 
 | |
|     CharUnits BaseOffset;
 | |
|     if (B.isVirtual()) {
 | |
|       if (!VisitedVirtualBases.insert(BaseDecl).second) {
 | |
|         // We've visited this base before.
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
 | |
|     } else {
 | |
|       BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
 | |
|     }
 | |
| 
 | |
|     dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
 | |
|   }
 | |
| 
 | |
|   Out << "Final overriders for (";
 | |
|   RD->printQualifiedName(Out);
 | |
|   Out << ", ";
 | |
|   Out << Base.getBaseOffset().getQuantity() << ")\n";
 | |
| 
 | |
|   // Now dump the overriders for this base subobject.
 | |
|   for (const auto *MD : RD->methods()) {
 | |
|     if (!MD->isVirtual())
 | |
|       continue;
 | |
|     MD = MD->getCanonicalDecl();
 | |
| 
 | |
|     OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());
 | |
| 
 | |
|     Out << "  ";
 | |
|     MD->printQualifiedName(Out);
 | |
|     Out << " - (";
 | |
|     Overrider.Method->printQualifiedName(Out);
 | |
|     Out << ", " << Overrider.Offset.getQuantity() << ')';
 | |
| 
 | |
|     BaseOffset Offset;
 | |
|     if (!Overrider.Method->isPure())
 | |
|       Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
 | |
| 
 | |
|     if (!Offset.isEmpty()) {
 | |
|       Out << " [ret-adj: ";
 | |
|       if (Offset.VirtualBase) {
 | |
|         Offset.VirtualBase->printQualifiedName(Out);
 | |
|         Out << " vbase, ";
 | |
|       }
 | |
| 
 | |
|       Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
 | |
|     }
 | |
| 
 | |
|     Out << "\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
 | |
| struct VCallOffsetMap {
 | |
| 
 | |
|   typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
 | |
| 
 | |
|   /// Offsets - Keeps track of methods and their offsets.
 | |
|   // FIXME: This should be a real map and not a vector.
 | |
|   SmallVector<MethodAndOffsetPairTy, 16> Offsets;
 | |
| 
 | |
|   /// MethodsCanShareVCallOffset - Returns whether two virtual member functions
 | |
|   /// can share the same vcall offset.
 | |
|   static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
 | |
|                                          const CXXMethodDecl *RHS);
 | |
| 
 | |
| public:
 | |
|   /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
 | |
|   /// add was successful, or false if there was already a member function with
 | |
|   /// the same signature in the map.
 | |
|   bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
 | |
| 
 | |
|   /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
 | |
|   /// vtable address point) for the given virtual member function.
 | |
|   CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
 | |
| 
 | |
|   // empty - Return whether the offset map is empty or not.
 | |
|   bool empty() const { return Offsets.empty(); }
 | |
| };
 | |
| 
 | |
| static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
 | |
|                                     const CXXMethodDecl *RHS) {
 | |
|   const FunctionProtoType *LT =
 | |
|     cast<FunctionProtoType>(LHS->getType().getCanonicalType());
 | |
|   const FunctionProtoType *RT =
 | |
|     cast<FunctionProtoType>(RHS->getType().getCanonicalType());
 | |
| 
 | |
|   // Fast-path matches in the canonical types.
 | |
|   if (LT == RT) return true;
 | |
| 
 | |
|   // Force the signatures to match.  We can't rely on the overrides
 | |
|   // list here because there isn't necessarily an inheritance
 | |
|   // relationship between the two methods.
 | |
|   if (LT->getMethodQuals() != RT->getMethodQuals())
 | |
|     return false;
 | |
|   return LT->getParamTypes() == RT->getParamTypes();
 | |
| }
 | |
| 
 | |
| bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
 | |
|                                                 const CXXMethodDecl *RHS) {
 | |
|   assert(LHS->isVirtual() && "LHS must be virtual!");
 | |
|   assert(RHS->isVirtual() && "LHS must be virtual!");
 | |
| 
 | |
|   // A destructor can share a vcall offset with another destructor.
 | |
|   if (isa<CXXDestructorDecl>(LHS))
 | |
|     return isa<CXXDestructorDecl>(RHS);
 | |
| 
 | |
|   // FIXME: We need to check more things here.
 | |
| 
 | |
|   // The methods must have the same name.
 | |
|   DeclarationName LHSName = LHS->getDeclName();
 | |
|   DeclarationName RHSName = RHS->getDeclName();
 | |
|   if (LHSName != RHSName)
 | |
|     return false;
 | |
| 
 | |
|   // And the same signatures.
 | |
|   return HasSameVirtualSignature(LHS, RHS);
 | |
| }
 | |
| 
 | |
| bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
 | |
|                                     CharUnits OffsetOffset) {
 | |
|   // Check if we can reuse an offset.
 | |
|   for (const auto &OffsetPair : Offsets) {
 | |
|     if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Add the offset.
 | |
|   Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
 | |
|   // Look for an offset.
 | |
|   for (const auto &OffsetPair : Offsets) {
 | |
|     if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
 | |
|       return OffsetPair.second;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Should always find a vcall offset offset!");
 | |
| }
 | |
| 
 | |
| /// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
 | |
| class VCallAndVBaseOffsetBuilder {
 | |
| public:
 | |
|   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
 | |
|     VBaseOffsetOffsetsMapTy;
 | |
| 
 | |
| private:
 | |
|   /// MostDerivedClass - The most derived class for which we're building vcall
 | |
|   /// and vbase offsets.
 | |
|   const CXXRecordDecl *MostDerivedClass;
 | |
| 
 | |
|   /// LayoutClass - The class we're using for layout information. Will be
 | |
|   /// different than the most derived class if we're building a construction
 | |
|   /// vtable.
 | |
|   const CXXRecordDecl *LayoutClass;
 | |
| 
 | |
|   /// Context - The ASTContext which we will use for layout information.
 | |
|   ASTContext &Context;
 | |
| 
 | |
|   /// Components - vcall and vbase offset components
 | |
|   typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
 | |
|   VTableComponentVectorTy Components;
 | |
| 
 | |
|   /// VisitedVirtualBases - Visited virtual bases.
 | |
|   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
 | |
| 
 | |
|   /// VCallOffsets - Keeps track of vcall offsets.
 | |
|   VCallOffsetMap VCallOffsets;
 | |
| 
 | |
| 
 | |
|   /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
 | |
|   /// relative to the address point.
 | |
|   VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
 | |
| 
 | |
|   /// FinalOverriders - The final overriders of the most derived class.
 | |
|   /// (Can be null when we're not building a vtable of the most derived class).
 | |
|   const FinalOverriders *Overriders;
 | |
| 
 | |
|   /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
 | |
|   /// given base subobject.
 | |
|   void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
 | |
|                                CharUnits RealBaseOffset);
 | |
| 
 | |
|   /// AddVCallOffsets - Add vcall offsets for the given base subobject.
 | |
|   void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
 | |
| 
 | |
|   /// AddVBaseOffsets - Add vbase offsets for the given class.
 | |
|   void AddVBaseOffsets(const CXXRecordDecl *Base,
 | |
|                        CharUnits OffsetInLayoutClass);
 | |
| 
 | |
|   /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
 | |
|   /// chars, relative to the vtable address point.
 | |
|   CharUnits getCurrentOffsetOffset() const;
 | |
| 
 | |
| public:
 | |
|   VCallAndVBaseOffsetBuilder(const CXXRecordDecl *MostDerivedClass,
 | |
|                              const CXXRecordDecl *LayoutClass,
 | |
|                              const FinalOverriders *Overriders,
 | |
|                              BaseSubobject Base, bool BaseIsVirtual,
 | |
|                              CharUnits OffsetInLayoutClass)
 | |
|     : MostDerivedClass(MostDerivedClass), LayoutClass(LayoutClass),
 | |
|     Context(MostDerivedClass->getASTContext()), Overriders(Overriders) {
 | |
| 
 | |
|     // Add vcall and vbase offsets.
 | |
|     AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
 | |
|   }
 | |
| 
 | |
|   /// Methods for iterating over the components.
 | |
|   typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
 | |
|   const_iterator components_begin() const { return Components.rbegin(); }
 | |
|   const_iterator components_end() const { return Components.rend(); }
 | |
| 
 | |
|   const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
 | |
|   const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
 | |
|     return VBaseOffsetOffsets;
 | |
|   }
 | |
| };
 | |
| 
 | |
| void
 | |
| VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
 | |
|                                                     bool BaseIsVirtual,
 | |
|                                                     CharUnits RealBaseOffset) {
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
 | |
| 
 | |
|   // Itanium C++ ABI 2.5.2:
 | |
|   //   ..in classes sharing a virtual table with a primary base class, the vcall
 | |
|   //   and vbase offsets added by the derived class all come before the vcall
 | |
|   //   and vbase offsets required by the base class, so that the latter may be
 | |
|   //   laid out as required by the base class without regard to additions from
 | |
|   //   the derived class(es).
 | |
| 
 | |
|   // (Since we're emitting the vcall and vbase offsets in reverse order, we'll
 | |
|   // emit them for the primary base first).
 | |
|   if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
 | |
|     bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
 | |
| 
 | |
|     CharUnits PrimaryBaseOffset;
 | |
| 
 | |
|     // Get the base offset of the primary base.
 | |
|     if (PrimaryBaseIsVirtual) {
 | |
|       assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
 | |
|              "Primary vbase should have a zero offset!");
 | |
| 
 | |
|       const ASTRecordLayout &MostDerivedClassLayout =
 | |
|         Context.getASTRecordLayout(MostDerivedClass);
 | |
| 
 | |
|       PrimaryBaseOffset =
 | |
|         MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
 | |
|     } else {
 | |
|       assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
 | |
|              "Primary base should have a zero offset!");
 | |
| 
 | |
|       PrimaryBaseOffset = Base.getBaseOffset();
 | |
|     }
 | |
| 
 | |
|     AddVCallAndVBaseOffsets(
 | |
|       BaseSubobject(PrimaryBase,PrimaryBaseOffset),
 | |
|       PrimaryBaseIsVirtual, RealBaseOffset);
 | |
|   }
 | |
| 
 | |
|   AddVBaseOffsets(Base.getBase(), RealBaseOffset);
 | |
| 
 | |
|   // We only want to add vcall offsets for virtual bases.
 | |
|   if (BaseIsVirtual)
 | |
|     AddVCallOffsets(Base, RealBaseOffset);
 | |
| }
 | |
| 
 | |
| CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
 | |
|   // OffsetIndex is the index of this vcall or vbase offset, relative to the
 | |
|   // vtable address point. (We subtract 3 to account for the information just
 | |
|   // above the address point, the RTTI info, the offset to top, and the
 | |
|   // vcall offset itself).
 | |
|   int64_t OffsetIndex = -(int64_t)(3 + Components.size());
 | |
| 
 | |
|   CharUnits PointerWidth =
 | |
|     Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
 | |
|   CharUnits OffsetOffset = PointerWidth * OffsetIndex;
 | |
|   return OffsetOffset;
 | |
| }
 | |
| 
 | |
| void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
 | |
|                                                  CharUnits VBaseOffset) {
 | |
|   const CXXRecordDecl *RD = Base.getBase();
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
| 
 | |
|   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
 | |
| 
 | |
|   // Handle the primary base first.
 | |
|   // We only want to add vcall offsets if the base is non-virtual; a virtual
 | |
|   // primary base will have its vcall and vbase offsets emitted already.
 | |
|   if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
 | |
|     // Get the base offset of the primary base.
 | |
|     assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
 | |
|            "Primary base should have a zero offset!");
 | |
| 
 | |
|     AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
 | |
|                     VBaseOffset);
 | |
|   }
 | |
| 
 | |
|   // Add the vcall offsets.
 | |
|   for (const auto *MD : RD->methods()) {
 | |
|     if (!MD->isVirtual())
 | |
|       continue;
 | |
|     MD = MD->getCanonicalDecl();
 | |
| 
 | |
|     CharUnits OffsetOffset = getCurrentOffsetOffset();
 | |
| 
 | |
|     // Don't add a vcall offset if we already have one for this member function
 | |
|     // signature.
 | |
|     if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
 | |
|       continue;
 | |
| 
 | |
|     CharUnits Offset = CharUnits::Zero();
 | |
| 
 | |
|     if (Overriders) {
 | |
|       // Get the final overrider.
 | |
|       FinalOverriders::OverriderInfo Overrider =
 | |
|         Overriders->getOverrider(MD, Base.getBaseOffset());
 | |
| 
 | |
|       /// The vcall offset is the offset from the virtual base to the object
 | |
|       /// where the function was overridden.
 | |
|       Offset = Overrider.Offset - VBaseOffset;
 | |
|     }
 | |
| 
 | |
|     Components.push_back(
 | |
|       VTableComponent::MakeVCallOffset(Offset));
 | |
|   }
 | |
| 
 | |
|   // And iterate over all non-virtual bases (ignoring the primary base).
 | |
|   for (const auto &B : RD->bases()) {
 | |
|     if (B.isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
 | |
|     if (BaseDecl == PrimaryBase)
 | |
|       continue;
 | |
| 
 | |
|     // Get the base offset of this base.
 | |
|     CharUnits BaseOffset = Base.getBaseOffset() +
 | |
|       Layout.getBaseClassOffset(BaseDecl);
 | |
| 
 | |
|     AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
 | |
|                     VBaseOffset);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
 | |
|                                             CharUnits OffsetInLayoutClass) {
 | |
|   const ASTRecordLayout &LayoutClassLayout =
 | |
|     Context.getASTRecordLayout(LayoutClass);
 | |
| 
 | |
|   // Add vbase offsets.
 | |
|   for (const auto &B : RD->bases()) {
 | |
|     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|     // Check if this is a virtual base that we haven't visited before.
 | |
|     if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) {
 | |
|       CharUnits Offset =
 | |
|         LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;
 | |
| 
 | |
|       // Add the vbase offset offset.
 | |
|       assert(!VBaseOffsetOffsets.count(BaseDecl) &&
 | |
|              "vbase offset offset already exists!");
 | |
| 
 | |
|       CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
 | |
|       VBaseOffsetOffsets.insert(
 | |
|           std::make_pair(BaseDecl, VBaseOffsetOffset));
 | |
| 
 | |
|       Components.push_back(
 | |
|           VTableComponent::MakeVBaseOffset(Offset));
 | |
|     }
 | |
| 
 | |
|     // Check the base class looking for more vbase offsets.
 | |
|     AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ItaniumVTableBuilder - Class for building vtable layout information.
 | |
| class ItaniumVTableBuilder {
 | |
| public:
 | |
|   /// PrimaryBasesSetVectorTy - A set vector of direct and indirect
 | |
|   /// primary bases.
 | |
|   typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
 | |
|     PrimaryBasesSetVectorTy;
 | |
| 
 | |
|   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
 | |
|     VBaseOffsetOffsetsMapTy;
 | |
| 
 | |
|   typedef VTableLayout::AddressPointsMapTy AddressPointsMapTy;
 | |
| 
 | |
|   typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
 | |
| 
 | |
| private:
 | |
|   /// VTables - Global vtable information.
 | |
|   ItaniumVTableContext &VTables;
 | |
| 
 | |
|   /// MostDerivedClass - The most derived class for which we're building this
 | |
|   /// vtable.
 | |
|   const CXXRecordDecl *MostDerivedClass;
 | |
| 
 | |
|   /// MostDerivedClassOffset - If we're building a construction vtable, this
 | |
|   /// holds the offset from the layout class to the most derived class.
 | |
|   const CharUnits MostDerivedClassOffset;
 | |
| 
 | |
|   /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
 | |
|   /// base. (This only makes sense when building a construction vtable).
 | |
|   bool MostDerivedClassIsVirtual;
 | |
| 
 | |
|   /// LayoutClass - The class we're using for layout information. Will be
 | |
|   /// different than the most derived class if we're building a construction
 | |
|   /// vtable.
 | |
|   const CXXRecordDecl *LayoutClass;
 | |
| 
 | |
|   /// Context - The ASTContext which we will use for layout information.
 | |
|   ASTContext &Context;
 | |
| 
 | |
|   /// FinalOverriders - The final overriders of the most derived class.
 | |
|   const FinalOverriders Overriders;
 | |
| 
 | |
|   /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
 | |
|   /// bases in this vtable.
 | |
|   llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
 | |
| 
 | |
|   /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
 | |
|   /// the most derived class.
 | |
|   VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
 | |
| 
 | |
|   /// Components - The components of the vtable being built.
 | |
|   SmallVector<VTableComponent, 64> Components;
 | |
| 
 | |
|   /// AddressPoints - Address points for the vtable being built.
 | |
|   AddressPointsMapTy AddressPoints;
 | |
| 
 | |
|   /// MethodInfo - Contains information about a method in a vtable.
 | |
|   /// (Used for computing 'this' pointer adjustment thunks.
 | |
|   struct MethodInfo {
 | |
|     /// BaseOffset - The base offset of this method.
 | |
|     const CharUnits BaseOffset;
 | |
| 
 | |
|     /// BaseOffsetInLayoutClass - The base offset in the layout class of this
 | |
|     /// method.
 | |
|     const CharUnits BaseOffsetInLayoutClass;
 | |
| 
 | |
|     /// VTableIndex - The index in the vtable that this method has.
 | |
|     /// (For destructors, this is the index of the complete destructor).
 | |
|     const uint64_t VTableIndex;
 | |
| 
 | |
|     MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
 | |
|                uint64_t VTableIndex)
 | |
|       : BaseOffset(BaseOffset),
 | |
|       BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
 | |
|       VTableIndex(VTableIndex) { }
 | |
| 
 | |
|     MethodInfo()
 | |
|       : BaseOffset(CharUnits::Zero()),
 | |
|       BaseOffsetInLayoutClass(CharUnits::Zero()),
 | |
|       VTableIndex(0) { }
 | |
| 
 | |
|     MethodInfo(MethodInfo const&) = default;
 | |
|   };
 | |
| 
 | |
|   typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
 | |
| 
 | |
|   /// MethodInfoMap - The information for all methods in the vtable we're
 | |
|   /// currently building.
 | |
|   MethodInfoMapTy MethodInfoMap;
 | |
| 
 | |
|   /// MethodVTableIndices - Contains the index (relative to the vtable address
 | |
|   /// point) where the function pointer for a virtual function is stored.
 | |
|   MethodVTableIndicesTy MethodVTableIndices;
 | |
| 
 | |
|   typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
 | |
| 
 | |
|   /// VTableThunks - The thunks by vtable index in the vtable currently being
 | |
|   /// built.
 | |
|   VTableThunksMapTy VTableThunks;
 | |
| 
 | |
|   typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
 | |
|   typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
 | |
| 
 | |
|   /// Thunks - A map that contains all the thunks needed for all methods in the
 | |
|   /// most derived class for which the vtable is currently being built.
 | |
|   ThunksMapTy Thunks;
 | |
| 
 | |
|   /// AddThunk - Add a thunk for the given method.
 | |
|   void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
 | |
| 
 | |
|   /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
 | |
|   /// part of the vtable we're currently building.
 | |
|   void ComputeThisAdjustments();
 | |
| 
 | |
|   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
 | |
| 
 | |
|   /// PrimaryVirtualBases - All known virtual bases who are a primary base of
 | |
|   /// some other base.
 | |
|   VisitedVirtualBasesSetTy PrimaryVirtualBases;
 | |
| 
 | |
|   /// ComputeReturnAdjustment - Compute the return adjustment given a return
 | |
|   /// adjustment base offset.
 | |
|   ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
 | |
| 
 | |
|   /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
 | |
|   /// the 'this' pointer from the base subobject to the derived subobject.
 | |
|   BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
 | |
|                                              BaseSubobject Derived) const;
 | |
| 
 | |
|   /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
 | |
|   /// given virtual member function, its offset in the layout class and its
 | |
|   /// final overrider.
 | |
|   ThisAdjustment
 | |
|   ComputeThisAdjustment(const CXXMethodDecl *MD,
 | |
|                         CharUnits BaseOffsetInLayoutClass,
 | |
|                         FinalOverriders::OverriderInfo Overrider);
 | |
| 
 | |
|   /// AddMethod - Add a single virtual member function to the vtable
 | |
|   /// components vector.
 | |
|   void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
 | |
| 
 | |
|   /// IsOverriderUsed - Returns whether the overrider will ever be used in this
 | |
|   /// part of the vtable.
 | |
|   ///
 | |
|   /// Itanium C++ ABI 2.5.2:
 | |
|   ///
 | |
|   ///   struct A { virtual void f(); };
 | |
|   ///   struct B : virtual public A { int i; };
 | |
|   ///   struct C : virtual public A { int j; };
 | |
|   ///   struct D : public B, public C {};
 | |
|   ///
 | |
|   ///   When B and C are declared, A is a primary base in each case, so although
 | |
|   ///   vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
 | |
|   ///   adjustment is required and no thunk is generated. However, inside D
 | |
|   ///   objects, A is no longer a primary base of C, so if we allowed calls to
 | |
|   ///   C::f() to use the copy of A's vtable in the C subobject, we would need
 | |
|   ///   to adjust this from C* to B::A*, which would require a third-party
 | |
|   ///   thunk. Since we require that a call to C::f() first convert to A*,
 | |
|   ///   C-in-D's copy of A's vtable is never referenced, so this is not
 | |
|   ///   necessary.
 | |
|   bool IsOverriderUsed(const CXXMethodDecl *Overrider,
 | |
|                        CharUnits BaseOffsetInLayoutClass,
 | |
|                        const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
 | |
|                        CharUnits FirstBaseOffsetInLayoutClass) const;
 | |
| 
 | |
| 
 | |
|   /// AddMethods - Add the methods of this base subobject and all its
 | |
|   /// primary bases to the vtable components vector.
 | |
|   void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
 | |
|                   const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
 | |
|                   CharUnits FirstBaseOffsetInLayoutClass,
 | |
|                   PrimaryBasesSetVectorTy &PrimaryBases);
 | |
| 
 | |
|   // LayoutVTable - Layout the vtable for the given base class, including its
 | |
|   // secondary vtables and any vtables for virtual bases.
 | |
|   void LayoutVTable();
 | |
| 
 | |
|   /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
 | |
|   /// given base subobject, as well as all its secondary vtables.
 | |
|   ///
 | |
|   /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
 | |
|   /// or a direct or indirect base of a virtual base.
 | |
|   ///
 | |
|   /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
 | |
|   /// in the layout class.
 | |
|   void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
 | |
|                                         bool BaseIsMorallyVirtual,
 | |
|                                         bool BaseIsVirtualInLayoutClass,
 | |
|                                         CharUnits OffsetInLayoutClass);
 | |
| 
 | |
|   /// LayoutSecondaryVTables - Layout the secondary vtables for the given base
 | |
|   /// subobject.
 | |
|   ///
 | |
|   /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
 | |
|   /// or a direct or indirect base of a virtual base.
 | |
|   void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
 | |
|                               CharUnits OffsetInLayoutClass);
 | |
| 
 | |
|   /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
 | |
|   /// class hierarchy.
 | |
|   void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
 | |
|                                     CharUnits OffsetInLayoutClass,
 | |
|                                     VisitedVirtualBasesSetTy &VBases);
 | |
| 
 | |
|   /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
 | |
|   /// given base (excluding any primary bases).
 | |
|   void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
 | |
|                                     VisitedVirtualBasesSetTy &VBases);
 | |
| 
 | |
|   /// isBuildingConstructionVTable - Return whether this vtable builder is
 | |
|   /// building a construction vtable.
 | |
|   bool isBuildingConstructorVTable() const {
 | |
|     return MostDerivedClass != LayoutClass;
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   /// Component indices of the first component of each of the vtables in the
 | |
|   /// vtable group.
 | |
|   SmallVector<size_t, 4> VTableIndices;
 | |
| 
 | |
|   ItaniumVTableBuilder(ItaniumVTableContext &VTables,
 | |
|                        const CXXRecordDecl *MostDerivedClass,
 | |
|                        CharUnits MostDerivedClassOffset,
 | |
|                        bool MostDerivedClassIsVirtual,
 | |
|                        const CXXRecordDecl *LayoutClass)
 | |
|       : VTables(VTables), MostDerivedClass(MostDerivedClass),
 | |
|         MostDerivedClassOffset(MostDerivedClassOffset),
 | |
|         MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
 | |
|         LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
 | |
|         Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
 | |
|     assert(!Context.getTargetInfo().getCXXABI().isMicrosoft());
 | |
| 
 | |
|     LayoutVTable();
 | |
| 
 | |
|     if (Context.getLangOpts().DumpVTableLayouts)
 | |
|       dumpLayout(llvm::outs());
 | |
|   }
 | |
| 
 | |
|   uint64_t getNumThunks() const {
 | |
|     return Thunks.size();
 | |
|   }
 | |
| 
 | |
|   ThunksMapTy::const_iterator thunks_begin() const {
 | |
|     return Thunks.begin();
 | |
|   }
 | |
| 
 | |
|   ThunksMapTy::const_iterator thunks_end() const {
 | |
|     return Thunks.end();
 | |
|   }
 | |
| 
 | |
|   const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
 | |
|     return VBaseOffsetOffsets;
 | |
|   }
 | |
| 
 | |
|   const AddressPointsMapTy &getAddressPoints() const {
 | |
|     return AddressPoints;
 | |
|   }
 | |
| 
 | |
|   MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
 | |
|     return MethodVTableIndices.begin();
 | |
|   }
 | |
| 
 | |
|   MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
 | |
|     return MethodVTableIndices.end();
 | |
|   }
 | |
| 
 | |
|   ArrayRef<VTableComponent> vtable_components() const { return Components; }
 | |
| 
 | |
|   AddressPointsMapTy::const_iterator address_points_begin() const {
 | |
|     return AddressPoints.begin();
 | |
|   }
 | |
| 
 | |
|   AddressPointsMapTy::const_iterator address_points_end() const {
 | |
|     return AddressPoints.end();
 | |
|   }
 | |
| 
 | |
|   VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
 | |
|     return VTableThunks.begin();
 | |
|   }
 | |
| 
 | |
|   VTableThunksMapTy::const_iterator vtable_thunks_end() const {
 | |
|     return VTableThunks.end();
 | |
|   }
 | |
| 
 | |
|   /// dumpLayout - Dump the vtable layout.
 | |
|   void dumpLayout(raw_ostream&);
 | |
| };
 | |
| 
 | |
| void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD,
 | |
|                                     const ThunkInfo &Thunk) {
 | |
|   assert(!isBuildingConstructorVTable() &&
 | |
|          "Can't add thunks for construction vtable");
 | |
| 
 | |
|   SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];
 | |
| 
 | |
|   // Check if we have this thunk already.
 | |
|   if (llvm::find(ThunksVector, Thunk) != ThunksVector.end())
 | |
|     return;
 | |
| 
 | |
|   ThunksVector.push_back(Thunk);
 | |
| }
 | |
| 
 | |
| typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
 | |
| 
 | |
| /// Visit all the methods overridden by the given method recursively,
 | |
| /// in a depth-first pre-order. The Visitor's visitor method returns a bool
 | |
| /// indicating whether to continue the recursion for the given overridden
 | |
| /// method (i.e. returning false stops the iteration).
 | |
| template <class VisitorTy>
 | |
| static void
 | |
| visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
 | |
|   assert(MD->isVirtual() && "Method is not virtual!");
 | |
| 
 | |
|   for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
 | |
|     if (!Visitor(OverriddenMD))
 | |
|       continue;
 | |
|     visitAllOverriddenMethods(OverriddenMD, Visitor);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
 | |
| /// the overridden methods that the function decl overrides.
 | |
| static void
 | |
| ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
 | |
|                             OverriddenMethodsSetTy& OverriddenMethods) {
 | |
|   auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) {
 | |
|     // Don't recurse on this method if we've already collected it.
 | |
|     return OverriddenMethods.insert(MD).second;
 | |
|   };
 | |
|   visitAllOverriddenMethods(MD, OverriddenMethodsCollector);
 | |
| }
 | |
| 
 | |
| void ItaniumVTableBuilder::ComputeThisAdjustments() {
 | |
|   // Now go through the method info map and see if any of the methods need
 | |
|   // 'this' pointer adjustments.
 | |
|   for (const auto &MI : MethodInfoMap) {
 | |
|     const CXXMethodDecl *MD = MI.first;
 | |
|     const MethodInfo &MethodInfo = MI.second;
 | |
| 
 | |
|     // Ignore adjustments for unused function pointers.
 | |
|     uint64_t VTableIndex = MethodInfo.VTableIndex;
 | |
|     if (Components[VTableIndex].getKind() ==
 | |
|         VTableComponent::CK_UnusedFunctionPointer)
 | |
|       continue;
 | |
| 
 | |
|     // Get the final overrider for this method.
 | |
|     FinalOverriders::OverriderInfo Overrider =
 | |
|       Overriders.getOverrider(MD, MethodInfo.BaseOffset);
 | |
| 
 | |
|     // Check if we need an adjustment at all.
 | |
|     if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
 | |
|       // When a return thunk is needed by a derived class that overrides a
 | |
|       // virtual base, gcc uses a virtual 'this' adjustment as well.
 | |
|       // While the thunk itself might be needed by vtables in subclasses or
 | |
|       // in construction vtables, there doesn't seem to be a reason for using
 | |
|       // the thunk in this vtable. Still, we do so to match gcc.
 | |
|       if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     ThisAdjustment ThisAdjustment =
 | |
|       ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);
 | |
| 
 | |
|     if (ThisAdjustment.isEmpty())
 | |
|       continue;
 | |
| 
 | |
|     // Add it.
 | |
|     VTableThunks[VTableIndex].This = ThisAdjustment;
 | |
| 
 | |
|     if (isa<CXXDestructorDecl>(MD)) {
 | |
|       // Add an adjustment for the deleting destructor as well.
 | |
|       VTableThunks[VTableIndex + 1].This = ThisAdjustment;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Clear the method info map.
 | |
|   MethodInfoMap.clear();
 | |
| 
 | |
|   if (isBuildingConstructorVTable()) {
 | |
|     // We don't need to store thunk information for construction vtables.
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   for (const auto &TI : VTableThunks) {
 | |
|     const VTableComponent &Component = Components[TI.first];
 | |
|     const ThunkInfo &Thunk = TI.second;
 | |
|     const CXXMethodDecl *MD;
 | |
| 
 | |
|     switch (Component.getKind()) {
 | |
|     default:
 | |
|       llvm_unreachable("Unexpected vtable component kind!");
 | |
|     case VTableComponent::CK_FunctionPointer:
 | |
|       MD = Component.getFunctionDecl();
 | |
|       break;
 | |
|     case VTableComponent::CK_CompleteDtorPointer:
 | |
|       MD = Component.getDestructorDecl();
 | |
|       break;
 | |
|     case VTableComponent::CK_DeletingDtorPointer:
 | |
|       // We've already added the thunk when we saw the complete dtor pointer.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (MD->getParent() == MostDerivedClass)
 | |
|       AddThunk(MD, Thunk);
 | |
|   }
 | |
| }
 | |
| 
 | |
| ReturnAdjustment
 | |
| ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
 | |
|   ReturnAdjustment Adjustment;
 | |
| 
 | |
|   if (!Offset.isEmpty()) {
 | |
|     if (Offset.VirtualBase) {
 | |
|       // Get the virtual base offset offset.
 | |
|       if (Offset.DerivedClass == MostDerivedClass) {
 | |
|         // We can get the offset offset directly from our map.
 | |
|         Adjustment.Virtual.Itanium.VBaseOffsetOffset =
 | |
|           VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
 | |
|       } else {
 | |
|         Adjustment.Virtual.Itanium.VBaseOffsetOffset =
 | |
|           VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
 | |
|                                              Offset.VirtualBase).getQuantity();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
 | |
|   }
 | |
| 
 | |
|   return Adjustment;
 | |
| }
 | |
| 
 | |
| BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset(
 | |
|     BaseSubobject Base, BaseSubobject Derived) const {
 | |
|   const CXXRecordDecl *BaseRD = Base.getBase();
 | |
|   const CXXRecordDecl *DerivedRD = Derived.getBase();
 | |
| 
 | |
|   CXXBasePaths Paths(/*FindAmbiguities=*/true,
 | |
|                      /*RecordPaths=*/true, /*DetectVirtual=*/true);
 | |
| 
 | |
|   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
 | |
|     llvm_unreachable("Class must be derived from the passed in base class!");
 | |
| 
 | |
|   // We have to go through all the paths, and see which one leads us to the
 | |
|   // right base subobject.
 | |
|   for (const CXXBasePath &Path : Paths) {
 | |
|     BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path);
 | |
| 
 | |
|     CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
 | |
| 
 | |
|     if (Offset.VirtualBase) {
 | |
|       // If we have a virtual base class, the non-virtual offset is relative
 | |
|       // to the virtual base class offset.
 | |
|       const ASTRecordLayout &LayoutClassLayout =
 | |
|         Context.getASTRecordLayout(LayoutClass);
 | |
| 
 | |
|       /// Get the virtual base offset, relative to the most derived class
 | |
|       /// layout.
 | |
|       OffsetToBaseSubobject +=
 | |
|         LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
 | |
|     } else {
 | |
|       // Otherwise, the non-virtual offset is relative to the derived class
 | |
|       // offset.
 | |
|       OffsetToBaseSubobject += Derived.getBaseOffset();
 | |
|     }
 | |
| 
 | |
|     // Check if this path gives us the right base subobject.
 | |
|     if (OffsetToBaseSubobject == Base.getBaseOffset()) {
 | |
|       // Since we're going from the base class _to_ the derived class, we'll
 | |
|       // invert the non-virtual offset here.
 | |
|       Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
 | |
|       return Offset;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return BaseOffset();
 | |
| }
 | |
| 
 | |
| ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment(
 | |
|     const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass,
 | |
|     FinalOverriders::OverriderInfo Overrider) {
 | |
|   // Ignore adjustments for pure virtual member functions.
 | |
|   if (Overrider.Method->isPure())
 | |
|     return ThisAdjustment();
 | |
| 
 | |
|   BaseSubobject OverriddenBaseSubobject(MD->getParent(),
 | |
|                                         BaseOffsetInLayoutClass);
 | |
| 
 | |
|   BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
 | |
|                                        Overrider.Offset);
 | |
| 
 | |
|   // Compute the adjustment offset.
 | |
|   BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
 | |
|                                                       OverriderBaseSubobject);
 | |
|   if (Offset.isEmpty())
 | |
|     return ThisAdjustment();
 | |
| 
 | |
|   ThisAdjustment Adjustment;
 | |
| 
 | |
|   if (Offset.VirtualBase) {
 | |
|     // Get the vcall offset map for this virtual base.
 | |
|     VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
 | |
| 
 | |
|     if (VCallOffsets.empty()) {
 | |
|       // We don't have vcall offsets for this virtual base, go ahead and
 | |
|       // build them.
 | |
|       VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, MostDerivedClass,
 | |
|                                          /*Overriders=*/nullptr,
 | |
|                                          BaseSubobject(Offset.VirtualBase,
 | |
|                                                        CharUnits::Zero()),
 | |
|                                          /*BaseIsVirtual=*/true,
 | |
|                                          /*OffsetInLayoutClass=*/
 | |
|                                              CharUnits::Zero());
 | |
| 
 | |
|       VCallOffsets = Builder.getVCallOffsets();
 | |
|     }
 | |
| 
 | |
|     Adjustment.Virtual.Itanium.VCallOffsetOffset =
 | |
|       VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
 | |
|   }
 | |
| 
 | |
|   // Set the non-virtual part of the adjustment.
 | |
|   Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
 | |
| 
 | |
|   return Adjustment;
 | |
| }
 | |
| 
 | |
| void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD,
 | |
|                                      ReturnAdjustment ReturnAdjustment) {
 | |
|   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
 | |
|     assert(ReturnAdjustment.isEmpty() &&
 | |
|            "Destructor can't have return adjustment!");
 | |
| 
 | |
|     // Add both the complete destructor and the deleting destructor.
 | |
|     Components.push_back(VTableComponent::MakeCompleteDtor(DD));
 | |
|     Components.push_back(VTableComponent::MakeDeletingDtor(DD));
 | |
|   } else {
 | |
|     // Add the return adjustment if necessary.
 | |
|     if (!ReturnAdjustment.isEmpty())
 | |
|       VTableThunks[Components.size()].Return = ReturnAdjustment;
 | |
| 
 | |
|     // Add the function.
 | |
|     Components.push_back(VTableComponent::MakeFunction(MD));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// OverridesIndirectMethodInBase - Return whether the given member function
 | |
| /// overrides any methods in the set of given bases.
 | |
| /// Unlike OverridesMethodInBase, this checks "overriders of overriders".
 | |
| /// For example, if we have:
 | |
| ///
 | |
| /// struct A { virtual void f(); }
 | |
| /// struct B : A { virtual void f(); }
 | |
| /// struct C : B { virtual void f(); }
 | |
| ///
 | |
| /// OverridesIndirectMethodInBase will return true if given C::f as the method
 | |
| /// and { A } as the set of bases.
 | |
| static bool OverridesIndirectMethodInBases(
 | |
|     const CXXMethodDecl *MD,
 | |
|     ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) {
 | |
|   if (Bases.count(MD->getParent()))
 | |
|     return true;
 | |
| 
 | |
|   for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
 | |
|     // Check "indirect overriders".
 | |
|     if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ItaniumVTableBuilder::IsOverriderUsed(
 | |
|     const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass,
 | |
|     const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
 | |
|     CharUnits FirstBaseOffsetInLayoutClass) const {
 | |
|   // If the base and the first base in the primary base chain have the same
 | |
|   // offsets, then this overrider will be used.
 | |
|   if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
 | |
|    return true;
 | |
| 
 | |
|   // We know now that Base (or a direct or indirect base of it) is a primary
 | |
|   // base in part of the class hierarchy, but not a primary base in the most
 | |
|   // derived class.
 | |
| 
 | |
|   // If the overrider is the first base in the primary base chain, we know
 | |
|   // that the overrider will be used.
 | |
|   if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
 | |
|     return true;
 | |
| 
 | |
|   ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
 | |
| 
 | |
|   const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
 | |
|   PrimaryBases.insert(RD);
 | |
| 
 | |
|   // Now traverse the base chain, starting with the first base, until we find
 | |
|   // the base that is no longer a primary base.
 | |
|   while (true) {
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
|     const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
 | |
| 
 | |
|     if (!PrimaryBase)
 | |
|       break;
 | |
| 
 | |
|     if (Layout.isPrimaryBaseVirtual()) {
 | |
|       assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
 | |
|              "Primary base should always be at offset 0!");
 | |
| 
 | |
|       const ASTRecordLayout &LayoutClassLayout =
 | |
|         Context.getASTRecordLayout(LayoutClass);
 | |
| 
 | |
|       // Now check if this is the primary base that is not a primary base in the
 | |
|       // most derived class.
 | |
|       if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
 | |
|           FirstBaseOffsetInLayoutClass) {
 | |
|         // We found it, stop walking the chain.
 | |
|         break;
 | |
|       }
 | |
|     } else {
 | |
|       assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
 | |
|              "Primary base should always be at offset 0!");
 | |
|     }
 | |
| 
 | |
|     if (!PrimaryBases.insert(PrimaryBase))
 | |
|       llvm_unreachable("Found a duplicate primary base!");
 | |
| 
 | |
|     RD = PrimaryBase;
 | |
|   }
 | |
| 
 | |
|   // If the final overrider is an override of one of the primary bases,
 | |
|   // then we know that it will be used.
 | |
|   return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
 | |
| }
 | |
| 
 | |
| typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;
 | |
| 
 | |
| /// FindNearestOverriddenMethod - Given a method, returns the overridden method
 | |
| /// from the nearest base. Returns null if no method was found.
 | |
| /// The Bases are expected to be sorted in a base-to-derived order.
 | |
| static const CXXMethodDecl *
 | |
| FindNearestOverriddenMethod(const CXXMethodDecl *MD,
 | |
|                             BasesSetVectorTy &Bases) {
 | |
|   OverriddenMethodsSetTy OverriddenMethods;
 | |
|   ComputeAllOverriddenMethods(MD, OverriddenMethods);
 | |
| 
 | |
|   for (const CXXRecordDecl *PrimaryBase :
 | |
|        llvm::make_range(Bases.rbegin(), Bases.rend())) {
 | |
|     // Now check the overridden methods.
 | |
|     for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) {
 | |
|       // We found our overridden method.
 | |
|       if (OverriddenMD->getParent() == PrimaryBase)
 | |
|         return OverriddenMD;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void ItaniumVTableBuilder::AddMethods(
 | |
|     BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
 | |
|     const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
 | |
|     CharUnits FirstBaseOffsetInLayoutClass,
 | |
|     PrimaryBasesSetVectorTy &PrimaryBases) {
 | |
|   // Itanium C++ ABI 2.5.2:
 | |
|   //   The order of the virtual function pointers in a virtual table is the
 | |
|   //   order of declaration of the corresponding member functions in the class.
 | |
|   //
 | |
|   //   There is an entry for any virtual function declared in a class,
 | |
|   //   whether it is a new function or overrides a base class function,
 | |
|   //   unless it overrides a function from the primary base, and conversion
 | |
|   //   between their return types does not require an adjustment.
 | |
| 
 | |
|   const CXXRecordDecl *RD = Base.getBase();
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
| 
 | |
|   if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
 | |
|     CharUnits PrimaryBaseOffset;
 | |
|     CharUnits PrimaryBaseOffsetInLayoutClass;
 | |
|     if (Layout.isPrimaryBaseVirtual()) {
 | |
|       assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
 | |
|              "Primary vbase should have a zero offset!");
 | |
| 
 | |
|       const ASTRecordLayout &MostDerivedClassLayout =
 | |
|         Context.getASTRecordLayout(MostDerivedClass);
 | |
| 
 | |
|       PrimaryBaseOffset =
 | |
|         MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
 | |
| 
 | |
|       const ASTRecordLayout &LayoutClassLayout =
 | |
|         Context.getASTRecordLayout(LayoutClass);
 | |
| 
 | |
|       PrimaryBaseOffsetInLayoutClass =
 | |
|         LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
 | |
|     } else {
 | |
|       assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
 | |
|              "Primary base should have a zero offset!");
 | |
| 
 | |
|       PrimaryBaseOffset = Base.getBaseOffset();
 | |
|       PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
 | |
|     }
 | |
| 
 | |
|     AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
 | |
|                PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
 | |
|                FirstBaseOffsetInLayoutClass, PrimaryBases);
 | |
| 
 | |
|     if (!PrimaryBases.insert(PrimaryBase))
 | |
|       llvm_unreachable("Found a duplicate primary base!");
 | |
|   }
 | |
| 
 | |
|   typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
 | |
|   NewVirtualFunctionsTy NewVirtualFunctions;
 | |
| 
 | |
|   llvm::SmallVector<const CXXMethodDecl*, 4> NewImplicitVirtualFunctions;
 | |
| 
 | |
|   // Now go through all virtual member functions and add them.
 | |
|   for (const auto *MD : RD->methods()) {
 | |
|     if (!MD->isVirtual())
 | |
|       continue;
 | |
|     MD = MD->getCanonicalDecl();
 | |
| 
 | |
|     // Get the final overrider.
 | |
|     FinalOverriders::OverriderInfo Overrider =
 | |
|       Overriders.getOverrider(MD, Base.getBaseOffset());
 | |
| 
 | |
|     // Check if this virtual member function overrides a method in a primary
 | |
|     // base. If this is the case, and the return type doesn't require adjustment
 | |
|     // then we can just use the member function from the primary base.
 | |
|     if (const CXXMethodDecl *OverriddenMD =
 | |
|           FindNearestOverriddenMethod(MD, PrimaryBases)) {
 | |
|       if (ComputeReturnAdjustmentBaseOffset(Context, MD,
 | |
|                                             OverriddenMD).isEmpty()) {
 | |
|         // Replace the method info of the overridden method with our own
 | |
|         // method.
 | |
|         assert(MethodInfoMap.count(OverriddenMD) &&
 | |
|                "Did not find the overridden method!");
 | |
|         MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
 | |
| 
 | |
|         MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
 | |
|                               OverriddenMethodInfo.VTableIndex);
 | |
| 
 | |
|         assert(!MethodInfoMap.count(MD) &&
 | |
|                "Should not have method info for this method yet!");
 | |
| 
 | |
|         MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
 | |
|         MethodInfoMap.erase(OverriddenMD);
 | |
| 
 | |
|         // If the overridden method exists in a virtual base class or a direct
 | |
|         // or indirect base class of a virtual base class, we need to emit a
 | |
|         // thunk if we ever have a class hierarchy where the base class is not
 | |
|         // a primary base in the complete object.
 | |
|         if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
 | |
|           // Compute the this adjustment.
 | |
|           ThisAdjustment ThisAdjustment =
 | |
|             ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
 | |
|                                   Overrider);
 | |
| 
 | |
|           if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset &&
 | |
|               Overrider.Method->getParent() == MostDerivedClass) {
 | |
| 
 | |
|             // There's no return adjustment from OverriddenMD and MD,
 | |
|             // but that doesn't mean there isn't one between MD and
 | |
|             // the final overrider.
 | |
|             BaseOffset ReturnAdjustmentOffset =
 | |
|               ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
 | |
|             ReturnAdjustment ReturnAdjustment =
 | |
|               ComputeReturnAdjustment(ReturnAdjustmentOffset);
 | |
| 
 | |
|             // This is a virtual thunk for the most derived class, add it.
 | |
|             AddThunk(Overrider.Method,
 | |
|                      ThunkInfo(ThisAdjustment, ReturnAdjustment));
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (MD->isImplicit())
 | |
|       NewImplicitVirtualFunctions.push_back(MD);
 | |
|     else
 | |
|       NewVirtualFunctions.push_back(MD);
 | |
|   }
 | |
| 
 | |
|   std::stable_sort(
 | |
|       NewImplicitVirtualFunctions.begin(), NewImplicitVirtualFunctions.end(),
 | |
|       [](const CXXMethodDecl *A, const CXXMethodDecl *B) {
 | |
|         if (A->isCopyAssignmentOperator() != B->isCopyAssignmentOperator())
 | |
|           return A->isCopyAssignmentOperator();
 | |
|         if (A->isMoveAssignmentOperator() != B->isMoveAssignmentOperator())
 | |
|           return A->isMoveAssignmentOperator();
 | |
|         if (isa<CXXDestructorDecl>(A) != isa<CXXDestructorDecl>(B))
 | |
|           return isa<CXXDestructorDecl>(A);
 | |
|         assert(A->getOverloadedOperator() == OO_EqualEqual &&
 | |
|                B->getOverloadedOperator() == OO_EqualEqual &&
 | |
|                "unexpected or duplicate implicit virtual function");
 | |
|         // We rely on Sema to have declared the operator== members in the
 | |
|         // same order as the corresponding operator<=> members.
 | |
|         return false;
 | |
|       });
 | |
|   NewVirtualFunctions.append(NewImplicitVirtualFunctions.begin(),
 | |
|                              NewImplicitVirtualFunctions.end());
 | |
| 
 | |
|   for (const CXXMethodDecl *MD : NewVirtualFunctions) {
 | |
|     // Get the final overrider.
 | |
|     FinalOverriders::OverriderInfo Overrider =
 | |
|       Overriders.getOverrider(MD, Base.getBaseOffset());
 | |
| 
 | |
|     // Insert the method info for this method.
 | |
|     MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
 | |
|                           Components.size());
 | |
| 
 | |
|     assert(!MethodInfoMap.count(MD) &&
 | |
|            "Should not have method info for this method yet!");
 | |
|     MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
 | |
| 
 | |
|     // Check if this overrider is going to be used.
 | |
|     const CXXMethodDecl *OverriderMD = Overrider.Method;
 | |
|     if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
 | |
|                          FirstBaseInPrimaryBaseChain,
 | |
|                          FirstBaseOffsetInLayoutClass)) {
 | |
|       Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Check if this overrider needs a return adjustment.
 | |
|     // We don't want to do this for pure virtual member functions.
 | |
|     BaseOffset ReturnAdjustmentOffset;
 | |
|     if (!OverriderMD->isPure()) {
 | |
|       ReturnAdjustmentOffset =
 | |
|         ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
 | |
|     }
 | |
| 
 | |
|     ReturnAdjustment ReturnAdjustment =
 | |
|       ComputeReturnAdjustment(ReturnAdjustmentOffset);
 | |
| 
 | |
|     AddMethod(Overrider.Method, ReturnAdjustment);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ItaniumVTableBuilder::LayoutVTable() {
 | |
|   LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
 | |
|                                                  CharUnits::Zero()),
 | |
|                                    /*BaseIsMorallyVirtual=*/false,
 | |
|                                    MostDerivedClassIsVirtual,
 | |
|                                    MostDerivedClassOffset);
 | |
| 
 | |
|   VisitedVirtualBasesSetTy VBases;
 | |
| 
 | |
|   // Determine the primary virtual bases.
 | |
|   DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
 | |
|                                VBases);
 | |
|   VBases.clear();
 | |
| 
 | |
|   LayoutVTablesForVirtualBases(MostDerivedClass, VBases);
 | |
| 
 | |
|   // -fapple-kext adds an extra entry at end of vtbl.
 | |
|   bool IsAppleKext = Context.getLangOpts().AppleKext;
 | |
|   if (IsAppleKext)
 | |
|     Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero()));
 | |
| }
 | |
| 
 | |
| void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables(
 | |
|     BaseSubobject Base, bool BaseIsMorallyVirtual,
 | |
|     bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) {
 | |
|   assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
 | |
| 
 | |
|   unsigned VTableIndex = Components.size();
 | |
|   VTableIndices.push_back(VTableIndex);
 | |
| 
 | |
|   // Add vcall and vbase offsets for this vtable.
 | |
|   VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, LayoutClass, &Overriders,
 | |
|                                      Base, BaseIsVirtualInLayoutClass,
 | |
|                                      OffsetInLayoutClass);
 | |
|   Components.append(Builder.components_begin(), Builder.components_end());
 | |
| 
 | |
|   // Check if we need to add these vcall offsets.
 | |
|   if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
 | |
|     VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
 | |
| 
 | |
|     if (VCallOffsets.empty())
 | |
|       VCallOffsets = Builder.getVCallOffsets();
 | |
|   }
 | |
| 
 | |
|   // If we're laying out the most derived class we want to keep track of the
 | |
|   // virtual base class offset offsets.
 | |
|   if (Base.getBase() == MostDerivedClass)
 | |
|     VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
 | |
| 
 | |
|   // Add the offset to top.
 | |
|   CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
 | |
|   Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop));
 | |
| 
 | |
|   // Next, add the RTTI.
 | |
|   Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
 | |
| 
 | |
|   uint64_t AddressPoint = Components.size();
 | |
| 
 | |
|   // Now go through all virtual member functions and add them.
 | |
|   PrimaryBasesSetVectorTy PrimaryBases;
 | |
|   AddMethods(Base, OffsetInLayoutClass,
 | |
|              Base.getBase(), OffsetInLayoutClass,
 | |
|              PrimaryBases);
 | |
| 
 | |
|   const CXXRecordDecl *RD = Base.getBase();
 | |
|   if (RD == MostDerivedClass) {
 | |
|     assert(MethodVTableIndices.empty());
 | |
|     for (const auto &I : MethodInfoMap) {
 | |
|       const CXXMethodDecl *MD = I.first;
 | |
|       const MethodInfo &MI = I.second;
 | |
|       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
 | |
|         MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
 | |
|             = MI.VTableIndex - AddressPoint;
 | |
|         MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
 | |
|             = MI.VTableIndex + 1 - AddressPoint;
 | |
|       } else {
 | |
|         MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Compute 'this' pointer adjustments.
 | |
|   ComputeThisAdjustments();
 | |
| 
 | |
|   // Add all address points.
 | |
|   while (true) {
 | |
|     AddressPoints.insert(
 | |
|         std::make_pair(BaseSubobject(RD, OffsetInLayoutClass),
 | |
|                        VTableLayout::AddressPointLocation{
 | |
|                            unsigned(VTableIndices.size() - 1),
 | |
|                            unsigned(AddressPoint - VTableIndex)}));
 | |
| 
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
|     const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
 | |
| 
 | |
|     if (!PrimaryBase)
 | |
|       break;
 | |
| 
 | |
|     if (Layout.isPrimaryBaseVirtual()) {
 | |
|       // Check if this virtual primary base is a primary base in the layout
 | |
|       // class. If it's not, we don't want to add it.
 | |
|       const ASTRecordLayout &LayoutClassLayout =
 | |
|         Context.getASTRecordLayout(LayoutClass);
 | |
| 
 | |
|       if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
 | |
|           OffsetInLayoutClass) {
 | |
|         // We don't want to add this class (or any of its primary bases).
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     RD = PrimaryBase;
 | |
|   }
 | |
| 
 | |
|   // Layout secondary vtables.
 | |
|   LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
 | |
| }
 | |
| 
 | |
| void
 | |
| ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
 | |
|                                              bool BaseIsMorallyVirtual,
 | |
|                                              CharUnits OffsetInLayoutClass) {
 | |
|   // Itanium C++ ABI 2.5.2:
 | |
|   //   Following the primary virtual table of a derived class are secondary
 | |
|   //   virtual tables for each of its proper base classes, except any primary
 | |
|   //   base(s) with which it shares its primary virtual table.
 | |
| 
 | |
|   const CXXRecordDecl *RD = Base.getBase();
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
|   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
 | |
| 
 | |
|   for (const auto &B : RD->bases()) {
 | |
|     // Ignore virtual bases, we'll emit them later.
 | |
|     if (B.isVirtual())
 | |
|       continue;
 | |
| 
 | |
|     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|     // Ignore bases that don't have a vtable.
 | |
|     if (!BaseDecl->isDynamicClass())
 | |
|       continue;
 | |
| 
 | |
|     if (isBuildingConstructorVTable()) {
 | |
|       // Itanium C++ ABI 2.6.4:
 | |
|       //   Some of the base class subobjects may not need construction virtual
 | |
|       //   tables, which will therefore not be present in the construction
 | |
|       //   virtual table group, even though the subobject virtual tables are
 | |
|       //   present in the main virtual table group for the complete object.
 | |
|       if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     // Get the base offset of this base.
 | |
|     CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
 | |
|     CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
 | |
| 
 | |
|     CharUnits BaseOffsetInLayoutClass =
 | |
|       OffsetInLayoutClass + RelativeBaseOffset;
 | |
| 
 | |
|     // Don't emit a secondary vtable for a primary base. We might however want
 | |
|     // to emit secondary vtables for other bases of this base.
 | |
|     if (BaseDecl == PrimaryBase) {
 | |
|       LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
 | |
|                              BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Layout the primary vtable (and any secondary vtables) for this base.
 | |
|     LayoutPrimaryAndSecondaryVTables(
 | |
|       BaseSubobject(BaseDecl, BaseOffset),
 | |
|       BaseIsMorallyVirtual,
 | |
|       /*BaseIsVirtualInLayoutClass=*/false,
 | |
|       BaseOffsetInLayoutClass);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ItaniumVTableBuilder::DeterminePrimaryVirtualBases(
 | |
|     const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass,
 | |
|     VisitedVirtualBasesSetTy &VBases) {
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
| 
 | |
|   // Check if this base has a primary base.
 | |
|   if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
 | |
| 
 | |
|     // Check if it's virtual.
 | |
|     if (Layout.isPrimaryBaseVirtual()) {
 | |
|       bool IsPrimaryVirtualBase = true;
 | |
| 
 | |
|       if (isBuildingConstructorVTable()) {
 | |
|         // Check if the base is actually a primary base in the class we use for
 | |
|         // layout.
 | |
|         const ASTRecordLayout &LayoutClassLayout =
 | |
|           Context.getASTRecordLayout(LayoutClass);
 | |
| 
 | |
|         CharUnits PrimaryBaseOffsetInLayoutClass =
 | |
|           LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
 | |
| 
 | |
|         // We know that the base is not a primary base in the layout class if
 | |
|         // the base offsets are different.
 | |
|         if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
 | |
|           IsPrimaryVirtualBase = false;
 | |
|       }
 | |
| 
 | |
|       if (IsPrimaryVirtualBase)
 | |
|         PrimaryVirtualBases.insert(PrimaryBase);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Traverse bases, looking for more primary virtual bases.
 | |
|   for (const auto &B : RD->bases()) {
 | |
|     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|     CharUnits BaseOffsetInLayoutClass;
 | |
| 
 | |
|     if (B.isVirtual()) {
 | |
|       if (!VBases.insert(BaseDecl).second)
 | |
|         continue;
 | |
| 
 | |
|       const ASTRecordLayout &LayoutClassLayout =
 | |
|         Context.getASTRecordLayout(LayoutClass);
 | |
| 
 | |
|       BaseOffsetInLayoutClass =
 | |
|         LayoutClassLayout.getVBaseClassOffset(BaseDecl);
 | |
|     } else {
 | |
|       BaseOffsetInLayoutClass =
 | |
|         OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
 | |
|     }
 | |
| 
 | |
|     DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ItaniumVTableBuilder::LayoutVTablesForVirtualBases(
 | |
|     const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) {
 | |
|   // Itanium C++ ABI 2.5.2:
 | |
|   //   Then come the virtual base virtual tables, also in inheritance graph
 | |
|   //   order, and again excluding primary bases (which share virtual tables with
 | |
|   //   the classes for which they are primary).
 | |
|   for (const auto &B : RD->bases()) {
 | |
|     const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|     // Check if this base needs a vtable. (If it's virtual, not a primary base
 | |
|     // of some other class, and we haven't visited it before).
 | |
|     if (B.isVirtual() && BaseDecl->isDynamicClass() &&
 | |
|         !PrimaryVirtualBases.count(BaseDecl) &&
 | |
|         VBases.insert(BaseDecl).second) {
 | |
|       const ASTRecordLayout &MostDerivedClassLayout =
 | |
|         Context.getASTRecordLayout(MostDerivedClass);
 | |
|       CharUnits BaseOffset =
 | |
|         MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
 | |
| 
 | |
|       const ASTRecordLayout &LayoutClassLayout =
 | |
|         Context.getASTRecordLayout(LayoutClass);
 | |
|       CharUnits BaseOffsetInLayoutClass =
 | |
|         LayoutClassLayout.getVBaseClassOffset(BaseDecl);
 | |
| 
 | |
|       LayoutPrimaryAndSecondaryVTables(
 | |
|         BaseSubobject(BaseDecl, BaseOffset),
 | |
|         /*BaseIsMorallyVirtual=*/true,
 | |
|         /*BaseIsVirtualInLayoutClass=*/true,
 | |
|         BaseOffsetInLayoutClass);
 | |
|     }
 | |
| 
 | |
|     // We only need to check the base for virtual base vtables if it actually
 | |
|     // has virtual bases.
 | |
|     if (BaseDecl->getNumVBases())
 | |
|       LayoutVTablesForVirtualBases(BaseDecl, VBases);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// dumpLayout - Dump the vtable layout.
 | |
| void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) {
 | |
|   // FIXME: write more tests that actually use the dumpLayout output to prevent
 | |
|   // ItaniumVTableBuilder regressions.
 | |
| 
 | |
|   if (isBuildingConstructorVTable()) {
 | |
|     Out << "Construction vtable for ('";
 | |
|     MostDerivedClass->printQualifiedName(Out);
 | |
|     Out << "', ";
 | |
|     Out << MostDerivedClassOffset.getQuantity() << ") in '";
 | |
|     LayoutClass->printQualifiedName(Out);
 | |
|   } else {
 | |
|     Out << "Vtable for '";
 | |
|     MostDerivedClass->printQualifiedName(Out);
 | |
|   }
 | |
|   Out << "' (" << Components.size() << " entries).\n";
 | |
| 
 | |
|   // Iterate through the address points and insert them into a new map where
 | |
|   // they are keyed by the index and not the base object.
 | |
|   // Since an address point can be shared by multiple subobjects, we use an
 | |
|   // STL multimap.
 | |
|   std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
 | |
|   for (const auto &AP : AddressPoints) {
 | |
|     const BaseSubobject &Base = AP.first;
 | |
|     uint64_t Index =
 | |
|         VTableIndices[AP.second.VTableIndex] + AP.second.AddressPointIndex;
 | |
| 
 | |
|     AddressPointsByIndex.insert(std::make_pair(Index, Base));
 | |
|   }
 | |
| 
 | |
|   for (unsigned I = 0, E = Components.size(); I != E; ++I) {
 | |
|     uint64_t Index = I;
 | |
| 
 | |
|     Out << llvm::format("%4d | ", I);
 | |
| 
 | |
|     const VTableComponent &Component = Components[I];
 | |
| 
 | |
|     // Dump the component.
 | |
|     switch (Component.getKind()) {
 | |
| 
 | |
|     case VTableComponent::CK_VCallOffset:
 | |
|       Out << "vcall_offset ("
 | |
|           << Component.getVCallOffset().getQuantity()
 | |
|           << ")";
 | |
|       break;
 | |
| 
 | |
|     case VTableComponent::CK_VBaseOffset:
 | |
|       Out << "vbase_offset ("
 | |
|           << Component.getVBaseOffset().getQuantity()
 | |
|           << ")";
 | |
|       break;
 | |
| 
 | |
|     case VTableComponent::CK_OffsetToTop:
 | |
|       Out << "offset_to_top ("
 | |
|           << Component.getOffsetToTop().getQuantity()
 | |
|           << ")";
 | |
|       break;
 | |
| 
 | |
|     case VTableComponent::CK_RTTI:
 | |
|       Component.getRTTIDecl()->printQualifiedName(Out);
 | |
|       Out << " RTTI";
 | |
|       break;
 | |
| 
 | |
|     case VTableComponent::CK_FunctionPointer: {
 | |
|       const CXXMethodDecl *MD = Component.getFunctionDecl();
 | |
| 
 | |
|       std::string Str =
 | |
|         PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
 | |
|                                     MD);
 | |
|       Out << Str;
 | |
|       if (MD->isPure())
 | |
|         Out << " [pure]";
 | |
| 
 | |
|       if (MD->isDeleted())
 | |
|         Out << " [deleted]";
 | |
| 
 | |
|       ThunkInfo Thunk = VTableThunks.lookup(I);
 | |
|       if (!Thunk.isEmpty()) {
 | |
|         // If this function pointer has a return adjustment, dump it.
 | |
|         if (!Thunk.Return.isEmpty()) {
 | |
|           Out << "\n       [return adjustment: ";
 | |
|           Out << Thunk.Return.NonVirtual << " non-virtual";
 | |
| 
 | |
|           if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
 | |
|             Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
 | |
|             Out << " vbase offset offset";
 | |
|           }
 | |
| 
 | |
|           Out << ']';
 | |
|         }
 | |
| 
 | |
|         // If this function pointer has a 'this' pointer adjustment, dump it.
 | |
|         if (!Thunk.This.isEmpty()) {
 | |
|           Out << "\n       [this adjustment: ";
 | |
|           Out << Thunk.This.NonVirtual << " non-virtual";
 | |
| 
 | |
|           if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
 | |
|             Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
 | |
|             Out << " vcall offset offset";
 | |
|           }
 | |
| 
 | |
|           Out << ']';
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case VTableComponent::CK_CompleteDtorPointer:
 | |
|     case VTableComponent::CK_DeletingDtorPointer: {
 | |
|       bool IsComplete =
 | |
|         Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
 | |
| 
 | |
|       const CXXDestructorDecl *DD = Component.getDestructorDecl();
 | |
| 
 | |
|       DD->printQualifiedName(Out);
 | |
|       if (IsComplete)
 | |
|         Out << "() [complete]";
 | |
|       else
 | |
|         Out << "() [deleting]";
 | |
| 
 | |
|       if (DD->isPure())
 | |
|         Out << " [pure]";
 | |
| 
 | |
|       ThunkInfo Thunk = VTableThunks.lookup(I);
 | |
|       if (!Thunk.isEmpty()) {
 | |
|         // If this destructor has a 'this' pointer adjustment, dump it.
 | |
|         if (!Thunk.This.isEmpty()) {
 | |
|           Out << "\n       [this adjustment: ";
 | |
|           Out << Thunk.This.NonVirtual << " non-virtual";
 | |
| 
 | |
|           if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
 | |
|             Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
 | |
|             Out << " vcall offset offset";
 | |
|           }
 | |
| 
 | |
|           Out << ']';
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case VTableComponent::CK_UnusedFunctionPointer: {
 | |
|       const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
 | |
| 
 | |
|       std::string Str =
 | |
|         PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
 | |
|                                     MD);
 | |
|       Out << "[unused] " << Str;
 | |
|       if (MD->isPure())
 | |
|         Out << " [pure]";
 | |
|     }
 | |
| 
 | |
|     }
 | |
| 
 | |
|     Out << '\n';
 | |
| 
 | |
|     // Dump the next address point.
 | |
|     uint64_t NextIndex = Index + 1;
 | |
|     if (AddressPointsByIndex.count(NextIndex)) {
 | |
|       if (AddressPointsByIndex.count(NextIndex) == 1) {
 | |
|         const BaseSubobject &Base =
 | |
|           AddressPointsByIndex.find(NextIndex)->second;
 | |
| 
 | |
|         Out << "       -- (";
 | |
|         Base.getBase()->printQualifiedName(Out);
 | |
|         Out << ", " << Base.getBaseOffset().getQuantity();
 | |
|         Out << ") vtable address --\n";
 | |
|       } else {
 | |
|         CharUnits BaseOffset =
 | |
|           AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();
 | |
| 
 | |
|         // We store the class names in a set to get a stable order.
 | |
|         std::set<std::string> ClassNames;
 | |
|         for (const auto &I :
 | |
|              llvm::make_range(AddressPointsByIndex.equal_range(NextIndex))) {
 | |
|           assert(I.second.getBaseOffset() == BaseOffset &&
 | |
|                  "Invalid base offset!");
 | |
|           const CXXRecordDecl *RD = I.second.getBase();
 | |
|           ClassNames.insert(RD->getQualifiedNameAsString());
 | |
|         }
 | |
| 
 | |
|         for (const std::string &Name : ClassNames) {
 | |
|           Out << "       -- (" << Name;
 | |
|           Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Out << '\n';
 | |
| 
 | |
|   if (isBuildingConstructorVTable())
 | |
|     return;
 | |
| 
 | |
|   if (MostDerivedClass->getNumVBases()) {
 | |
|     // We store the virtual base class names and their offsets in a map to get
 | |
|     // a stable order.
 | |
| 
 | |
|     std::map<std::string, CharUnits> ClassNamesAndOffsets;
 | |
|     for (const auto &I : VBaseOffsetOffsets) {
 | |
|       std::string ClassName = I.first->getQualifiedNameAsString();
 | |
|       CharUnits OffsetOffset = I.second;
 | |
|       ClassNamesAndOffsets.insert(std::make_pair(ClassName, OffsetOffset));
 | |
|     }
 | |
| 
 | |
|     Out << "Virtual base offset offsets for '";
 | |
|     MostDerivedClass->printQualifiedName(Out);
 | |
|     Out << "' (";
 | |
|     Out << ClassNamesAndOffsets.size();
 | |
|     Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";
 | |
| 
 | |
|     for (const auto &I : ClassNamesAndOffsets)
 | |
|       Out << "   " << I.first << " | " << I.second.getQuantity() << '\n';
 | |
| 
 | |
|     Out << "\n";
 | |
|   }
 | |
| 
 | |
|   if (!Thunks.empty()) {
 | |
|     // We store the method names in a map to get a stable order.
 | |
|     std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
 | |
| 
 | |
|     for (const auto &I : Thunks) {
 | |
|       const CXXMethodDecl *MD = I.first;
 | |
|       std::string MethodName =
 | |
|         PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
 | |
|                                     MD);
 | |
| 
 | |
|       MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
 | |
|     }
 | |
| 
 | |
|     for (const auto &I : MethodNamesAndDecls) {
 | |
|       const std::string &MethodName = I.first;
 | |
|       const CXXMethodDecl *MD = I.second;
 | |
| 
 | |
|       ThunkInfoVectorTy ThunksVector = Thunks[MD];
 | |
|       llvm::sort(ThunksVector, [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
 | |
|         assert(LHS.Method == nullptr && RHS.Method == nullptr);
 | |
|         return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
 | |
|       });
 | |
| 
 | |
|       Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
 | |
|       Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
 | |
| 
 | |
|       for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
 | |
|         const ThunkInfo &Thunk = ThunksVector[I];
 | |
| 
 | |
|         Out << llvm::format("%4d | ", I);
 | |
| 
 | |
|         // If this function pointer has a return pointer adjustment, dump it.
 | |
|         if (!Thunk.Return.isEmpty()) {
 | |
|           Out << "return adjustment: " << Thunk.Return.NonVirtual;
 | |
|           Out << " non-virtual";
 | |
|           if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
 | |
|             Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
 | |
|             Out << " vbase offset offset";
 | |
|           }
 | |
| 
 | |
|           if (!Thunk.This.isEmpty())
 | |
|             Out << "\n       ";
 | |
|         }
 | |
| 
 | |
|         // If this function pointer has a 'this' pointer adjustment, dump it.
 | |
|         if (!Thunk.This.isEmpty()) {
 | |
|           Out << "this adjustment: ";
 | |
|           Out << Thunk.This.NonVirtual << " non-virtual";
 | |
| 
 | |
|           if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
 | |
|             Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
 | |
|             Out << " vcall offset offset";
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         Out << '\n';
 | |
|       }
 | |
| 
 | |
|       Out << '\n';
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Compute the vtable indices for all the member functions.
 | |
|   // Store them in a map keyed by the index so we'll get a sorted table.
 | |
|   std::map<uint64_t, std::string> IndicesMap;
 | |
| 
 | |
|   for (const auto *MD : MostDerivedClass->methods()) {
 | |
|     // We only want virtual member functions.
 | |
|     if (!MD->isVirtual())
 | |
|       continue;
 | |
|     MD = MD->getCanonicalDecl();
 | |
| 
 | |
|     std::string MethodName =
 | |
|       PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
 | |
|                                   MD);
 | |
| 
 | |
|     if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
 | |
|       GlobalDecl GD(DD, Dtor_Complete);
 | |
|       assert(MethodVTableIndices.count(GD));
 | |
|       uint64_t VTableIndex = MethodVTableIndices[GD];
 | |
|       IndicesMap[VTableIndex] = MethodName + " [complete]";
 | |
|       IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
 | |
|     } else {
 | |
|       assert(MethodVTableIndices.count(MD));
 | |
|       IndicesMap[MethodVTableIndices[MD]] = MethodName;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Print the vtable indices for all the member functions.
 | |
|   if (!IndicesMap.empty()) {
 | |
|     Out << "VTable indices for '";
 | |
|     MostDerivedClass->printQualifiedName(Out);
 | |
|     Out << "' (" << IndicesMap.size() << " entries).\n";
 | |
| 
 | |
|     for (const auto &I : IndicesMap) {
 | |
|       uint64_t VTableIndex = I.first;
 | |
|       const std::string &MethodName = I.second;
 | |
| 
 | |
|       Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName
 | |
|           << '\n';
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Out << '\n';
 | |
| }
 | |
| }
 | |
| 
 | |
| VTableLayout::VTableLayout(ArrayRef<size_t> VTableIndices,
 | |
|                            ArrayRef<VTableComponent> VTableComponents,
 | |
|                            ArrayRef<VTableThunkTy> VTableThunks,
 | |
|                            const AddressPointsMapTy &AddressPoints)
 | |
|     : VTableComponents(VTableComponents), VTableThunks(VTableThunks),
 | |
|       AddressPoints(AddressPoints) {
 | |
|   if (VTableIndices.size() <= 1)
 | |
|     assert(VTableIndices.size() == 1 && VTableIndices[0] == 0);
 | |
|   else
 | |
|     this->VTableIndices = OwningArrayRef<size_t>(VTableIndices);
 | |
| 
 | |
|   llvm::sort(this->VTableThunks, [](const VTableLayout::VTableThunkTy &LHS,
 | |
|                                     const VTableLayout::VTableThunkTy &RHS) {
 | |
|     assert((LHS.first != RHS.first || LHS.second == RHS.second) &&
 | |
|            "Different thunks should have unique indices!");
 | |
|     return LHS.first < RHS.first;
 | |
|   });
 | |
| }
 | |
| 
 | |
| VTableLayout::~VTableLayout() { }
 | |
| 
 | |
| ItaniumVTableContext::ItaniumVTableContext(ASTContext &Context)
 | |
|     : VTableContextBase(/*MS=*/false) {}
 | |
| 
 | |
| ItaniumVTableContext::~ItaniumVTableContext() {}
 | |
| 
 | |
| uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) {
 | |
|   GD = GD.getCanonicalDecl();
 | |
|   MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
 | |
|   if (I != MethodVTableIndices.end())
 | |
|     return I->second;
 | |
| 
 | |
|   const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
 | |
| 
 | |
|   computeVTableRelatedInformation(RD);
 | |
| 
 | |
|   I = MethodVTableIndices.find(GD);
 | |
|   assert(I != MethodVTableIndices.end() && "Did not find index!");
 | |
|   return I->second;
 | |
| }
 | |
| 
 | |
| CharUnits
 | |
| ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
 | |
|                                                  const CXXRecordDecl *VBase) {
 | |
|   ClassPairTy ClassPair(RD, VBase);
 | |
| 
 | |
|   VirtualBaseClassOffsetOffsetsMapTy::iterator I =
 | |
|     VirtualBaseClassOffsetOffsets.find(ClassPair);
 | |
|   if (I != VirtualBaseClassOffsetOffsets.end())
 | |
|     return I->second;
 | |
| 
 | |
|   VCallAndVBaseOffsetBuilder Builder(RD, RD, /*Overriders=*/nullptr,
 | |
|                                      BaseSubobject(RD, CharUnits::Zero()),
 | |
|                                      /*BaseIsVirtual=*/false,
 | |
|                                      /*OffsetInLayoutClass=*/CharUnits::Zero());
 | |
| 
 | |
|   for (const auto &I : Builder.getVBaseOffsetOffsets()) {
 | |
|     // Insert all types.
 | |
|     ClassPairTy ClassPair(RD, I.first);
 | |
| 
 | |
|     VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
 | |
|   }
 | |
| 
 | |
|   I = VirtualBaseClassOffsetOffsets.find(ClassPair);
 | |
|   assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
 | |
| 
 | |
|   return I->second;
 | |
| }
 | |
| 
 | |
| static std::unique_ptr<VTableLayout>
 | |
| CreateVTableLayout(const ItaniumVTableBuilder &Builder) {
 | |
|   SmallVector<VTableLayout::VTableThunkTy, 1>
 | |
|     VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
 | |
| 
 | |
|   return std::make_unique<VTableLayout>(
 | |
|       Builder.VTableIndices, Builder.vtable_components(), VTableThunks,
 | |
|       Builder.getAddressPoints());
 | |
| }
 | |
| 
 | |
| void
 | |
| ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
 | |
|   std::unique_ptr<const VTableLayout> &Entry = VTableLayouts[RD];
 | |
| 
 | |
|   // Check if we've computed this information before.
 | |
|   if (Entry)
 | |
|     return;
 | |
| 
 | |
|   ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(),
 | |
|                                /*MostDerivedClassIsVirtual=*/0, RD);
 | |
|   Entry = CreateVTableLayout(Builder);
 | |
| 
 | |
|   MethodVTableIndices.insert(Builder.vtable_indices_begin(),
 | |
|                              Builder.vtable_indices_end());
 | |
| 
 | |
|   // Add the known thunks.
 | |
|   Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
 | |
| 
 | |
|   // If we don't have the vbase information for this class, insert it.
 | |
|   // getVirtualBaseOffsetOffset will compute it separately without computing
 | |
|   // the rest of the vtable related information.
 | |
|   if (!RD->getNumVBases())
 | |
|     return;
 | |
| 
 | |
|   const CXXRecordDecl *VBase =
 | |
|     RD->vbases_begin()->getType()->getAsCXXRecordDecl();
 | |
| 
 | |
|   if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
 | |
|     return;
 | |
| 
 | |
|   for (const auto &I : Builder.getVBaseOffsetOffsets()) {
 | |
|     // Insert all types.
 | |
|     ClassPairTy ClassPair(RD, I.first);
 | |
| 
 | |
|     VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::unique_ptr<VTableLayout>
 | |
| ItaniumVTableContext::createConstructionVTableLayout(
 | |
|     const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
 | |
|     bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) {
 | |
|   ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
 | |
|                                MostDerivedClassIsVirtual, LayoutClass);
 | |
|   return CreateVTableLayout(Builder);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Vtables in the Microsoft ABI are different from the Itanium ABI.
 | |
| //
 | |
| // The main differences are:
 | |
| //  1. Separate vftable and vbtable.
 | |
| //
 | |
| //  2. Each subobject with a vfptr gets its own vftable rather than an address
 | |
| //     point in a single vtable shared between all the subobjects.
 | |
| //     Each vftable is represented by a separate section and virtual calls
 | |
| //     must be done using the vftable which has a slot for the function to be
 | |
| //     called.
 | |
| //
 | |
| //  3. Virtual method definitions expect their 'this' parameter to point to the
 | |
| //     first vfptr whose table provides a compatible overridden method.  In many
 | |
| //     cases, this permits the original vf-table entry to directly call
 | |
| //     the method instead of passing through a thunk.
 | |
| //     See example before VFTableBuilder::ComputeThisOffset below.
 | |
| //
 | |
| //     A compatible overridden method is one which does not have a non-trivial
 | |
| //     covariant-return adjustment.
 | |
| //
 | |
| //     The first vfptr is the one with the lowest offset in the complete-object
 | |
| //     layout of the defining class, and the method definition will subtract
 | |
| //     that constant offset from the parameter value to get the real 'this'
 | |
| //     value.  Therefore, if the offset isn't really constant (e.g. if a virtual
 | |
| //     function defined in a virtual base is overridden in a more derived
 | |
| //     virtual base and these bases have a reverse order in the complete
 | |
| //     object), the vf-table may require a this-adjustment thunk.
 | |
| //
 | |
| //  4. vftables do not contain new entries for overrides that merely require
 | |
| //     this-adjustment.  Together with #3, this keeps vf-tables smaller and
 | |
| //     eliminates the need for this-adjustment thunks in many cases, at the cost
 | |
| //     of often requiring redundant work to adjust the "this" pointer.
 | |
| //
 | |
| //  5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
 | |
| //     Vtordisps are emitted into the class layout if a class has
 | |
| //      a) a user-defined ctor/dtor
 | |
| //     and
 | |
| //      b) a method overriding a method in a virtual base.
 | |
| //
 | |
| //  To get a better understanding of this code,
 | |
| //  you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp
 | |
| 
 | |
| class VFTableBuilder {
 | |
| public:
 | |
|   typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
 | |
|     MethodVFTableLocationsTy;
 | |
| 
 | |
|   typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator>
 | |
|     method_locations_range;
 | |
| 
 | |
| private:
 | |
|   /// VTables - Global vtable information.
 | |
|   MicrosoftVTableContext &VTables;
 | |
| 
 | |
|   /// Context - The ASTContext which we will use for layout information.
 | |
|   ASTContext &Context;
 | |
| 
 | |
|   /// MostDerivedClass - The most derived class for which we're building this
 | |
|   /// vtable.
 | |
|   const CXXRecordDecl *MostDerivedClass;
 | |
| 
 | |
|   const ASTRecordLayout &MostDerivedClassLayout;
 | |
| 
 | |
|   const VPtrInfo &WhichVFPtr;
 | |
| 
 | |
|   /// FinalOverriders - The final overriders of the most derived class.
 | |
|   const FinalOverriders Overriders;
 | |
| 
 | |
|   /// Components - The components of the vftable being built.
 | |
|   SmallVector<VTableComponent, 64> Components;
 | |
| 
 | |
|   MethodVFTableLocationsTy MethodVFTableLocations;
 | |
| 
 | |
|   /// Does this class have an RTTI component?
 | |
|   bool HasRTTIComponent = false;
 | |
| 
 | |
|   /// MethodInfo - Contains information about a method in a vtable.
 | |
|   /// (Used for computing 'this' pointer adjustment thunks.
 | |
|   struct MethodInfo {
 | |
|     /// VBTableIndex - The nonzero index in the vbtable that
 | |
|     /// this method's base has, or zero.
 | |
|     const uint64_t VBTableIndex;
 | |
| 
 | |
|     /// VFTableIndex - The index in the vftable that this method has.
 | |
|     const uint64_t VFTableIndex;
 | |
| 
 | |
|     /// Shadowed - Indicates if this vftable slot is shadowed by
 | |
|     /// a slot for a covariant-return override. If so, it shouldn't be printed
 | |
|     /// or used for vcalls in the most derived class.
 | |
|     bool Shadowed;
 | |
| 
 | |
|     /// UsesExtraSlot - Indicates if this vftable slot was created because
 | |
|     /// any of the overridden slots required a return adjusting thunk.
 | |
|     bool UsesExtraSlot;
 | |
| 
 | |
|     MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex,
 | |
|                bool UsesExtraSlot = false)
 | |
|         : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex),
 | |
|           Shadowed(false), UsesExtraSlot(UsesExtraSlot) {}
 | |
| 
 | |
|     MethodInfo()
 | |
|         : VBTableIndex(0), VFTableIndex(0), Shadowed(false),
 | |
|           UsesExtraSlot(false) {}
 | |
|   };
 | |
| 
 | |
|   typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
 | |
| 
 | |
|   /// MethodInfoMap - The information for all methods in the vftable we're
 | |
|   /// currently building.
 | |
|   MethodInfoMapTy MethodInfoMap;
 | |
| 
 | |
|   typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
 | |
| 
 | |
|   /// VTableThunks - The thunks by vftable index in the vftable currently being
 | |
|   /// built.
 | |
|   VTableThunksMapTy VTableThunks;
 | |
| 
 | |
|   typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
 | |
|   typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
 | |
| 
 | |
|   /// Thunks - A map that contains all the thunks needed for all methods in the
 | |
|   /// most derived class for which the vftable is currently being built.
 | |
|   ThunksMapTy Thunks;
 | |
| 
 | |
|   /// AddThunk - Add a thunk for the given method.
 | |
|   void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
 | |
|     SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
 | |
| 
 | |
|     // Check if we have this thunk already.
 | |
|     if (llvm::find(ThunksVector, Thunk) != ThunksVector.end())
 | |
|       return;
 | |
| 
 | |
|     ThunksVector.push_back(Thunk);
 | |
|   }
 | |
| 
 | |
|   /// ComputeThisOffset - Returns the 'this' argument offset for the given
 | |
|   /// method, relative to the beginning of the MostDerivedClass.
 | |
|   CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider);
 | |
| 
 | |
|   void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,
 | |
|                                    CharUnits ThisOffset, ThisAdjustment &TA);
 | |
| 
 | |
|   /// AddMethod - Add a single virtual member function to the vftable
 | |
|   /// components vector.
 | |
|   void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) {
 | |
|     if (!TI.isEmpty()) {
 | |
|       VTableThunks[Components.size()] = TI;
 | |
|       AddThunk(MD, TI);
 | |
|     }
 | |
|     if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
 | |
|       assert(TI.Return.isEmpty() &&
 | |
|              "Destructor can't have return adjustment!");
 | |
|       Components.push_back(VTableComponent::MakeDeletingDtor(DD));
 | |
|     } else {
 | |
|       Components.push_back(VTableComponent::MakeFunction(MD));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// AddMethods - Add the methods of this base subobject and the relevant
 | |
|   /// subbases to the vftable we're currently laying out.
 | |
|   void AddMethods(BaseSubobject Base, unsigned BaseDepth,
 | |
|                   const CXXRecordDecl *LastVBase,
 | |
|                   BasesSetVectorTy &VisitedBases);
 | |
| 
 | |
|   void LayoutVFTable() {
 | |
|     // RTTI data goes before all other entries.
 | |
|     if (HasRTTIComponent)
 | |
|       Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
 | |
| 
 | |
|     BasesSetVectorTy VisitedBases;
 | |
|     AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr,
 | |
|                VisitedBases);
 | |
|     assert((HasRTTIComponent ? Components.size() - 1 : Components.size()) &&
 | |
|            "vftable can't be empty");
 | |
| 
 | |
|     assert(MethodVFTableLocations.empty());
 | |
|     for (const auto &I : MethodInfoMap) {
 | |
|       const CXXMethodDecl *MD = I.first;
 | |
|       const MethodInfo &MI = I.second;
 | |
|       assert(MD == MD->getCanonicalDecl());
 | |
| 
 | |
|       // Skip the methods that the MostDerivedClass didn't override
 | |
|       // and the entries shadowed by return adjusting thunks.
 | |
|       if (MD->getParent() != MostDerivedClass || MI.Shadowed)
 | |
|         continue;
 | |
|       MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(),
 | |
|                                 WhichVFPtr.NonVirtualOffset, MI.VFTableIndex);
 | |
|       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
 | |
|         MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
 | |
|       } else {
 | |
|         MethodVFTableLocations[MD] = Loc;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   VFTableBuilder(MicrosoftVTableContext &VTables,
 | |
|                  const CXXRecordDecl *MostDerivedClass, const VPtrInfo &Which)
 | |
|       : VTables(VTables),
 | |
|         Context(MostDerivedClass->getASTContext()),
 | |
|         MostDerivedClass(MostDerivedClass),
 | |
|         MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
 | |
|         WhichVFPtr(Which),
 | |
|         Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
 | |
|     // Provide the RTTI component if RTTIData is enabled. If the vftable would
 | |
|     // be available externally, we should not provide the RTTI componenent. It
 | |
|     // is currently impossible to get available externally vftables with either
 | |
|     // dllimport or extern template instantiations, but eventually we may add a
 | |
|     // flag to support additional devirtualization that needs this.
 | |
|     if (Context.getLangOpts().RTTIData)
 | |
|       HasRTTIComponent = true;
 | |
| 
 | |
|     LayoutVFTable();
 | |
| 
 | |
|     if (Context.getLangOpts().DumpVTableLayouts)
 | |
|       dumpLayout(llvm::outs());
 | |
|   }
 | |
| 
 | |
|   uint64_t getNumThunks() const { return Thunks.size(); }
 | |
| 
 | |
|   ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }
 | |
| 
 | |
|   ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }
 | |
| 
 | |
|   method_locations_range vtable_locations() const {
 | |
|     return method_locations_range(MethodVFTableLocations.begin(),
 | |
|                                   MethodVFTableLocations.end());
 | |
|   }
 | |
| 
 | |
|   ArrayRef<VTableComponent> vtable_components() const { return Components; }
 | |
| 
 | |
|   VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
 | |
|     return VTableThunks.begin();
 | |
|   }
 | |
| 
 | |
|   VTableThunksMapTy::const_iterator vtable_thunks_end() const {
 | |
|     return VTableThunks.end();
 | |
|   }
 | |
| 
 | |
|   void dumpLayout(raw_ostream &);
 | |
| };
 | |
| 
 | |
| } // end namespace
 | |
| 
 | |
| // Let's study one class hierarchy as an example:
 | |
| //   struct A {
 | |
| //     virtual void f();
 | |
| //     int x;
 | |
| //   };
 | |
| //
 | |
| //   struct B : virtual A {
 | |
| //     virtual void f();
 | |
| //   };
 | |
| //
 | |
| // Record layouts:
 | |
| //   struct A:
 | |
| //   0 |   (A vftable pointer)
 | |
| //   4 |   int x
 | |
| //
 | |
| //   struct B:
 | |
| //   0 |   (B vbtable pointer)
 | |
| //   4 |   struct A (virtual base)
 | |
| //   4 |     (A vftable pointer)
 | |
| //   8 |     int x
 | |
| //
 | |
| // Let's assume we have a pointer to the A part of an object of dynamic type B:
 | |
| //   B b;
 | |
| //   A *a = (A*)&b;
 | |
| //   a->f();
 | |
| //
 | |
| // In this hierarchy, f() belongs to the vftable of A, so B::f() expects
 | |
| // "this" parameter to point at the A subobject, which is B+4.
 | |
| // In the B::f() prologue, it adjusts "this" back to B by subtracting 4,
 | |
| // performed as a *static* adjustment.
 | |
| //
 | |
| // Interesting thing happens when we alter the relative placement of A and B
 | |
| // subobjects in a class:
 | |
| //   struct C : virtual B { };
 | |
| //
 | |
| //   C c;
 | |
| //   A *a = (A*)&c;
 | |
| //   a->f();
 | |
| //
 | |
| // Respective record layout is:
 | |
| //   0 |   (C vbtable pointer)
 | |
| //   4 |   struct A (virtual base)
 | |
| //   4 |     (A vftable pointer)
 | |
| //   8 |     int x
 | |
| //  12 |   struct B (virtual base)
 | |
| //  12 |     (B vbtable pointer)
 | |
| //
 | |
| // The final overrider of f() in class C is still B::f(), so B+4 should be
 | |
| // passed as "this" to that code.  However, "a" points at B-8, so the respective
 | |
| // vftable entry should hold a thunk that adds 12 to the "this" argument before
 | |
| // performing a tail call to B::f().
 | |
| //
 | |
| // With this example in mind, we can now calculate the 'this' argument offset
 | |
| // for the given method, relative to the beginning of the MostDerivedClass.
 | |
| CharUnits
 | |
| VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) {
 | |
|   BasesSetVectorTy Bases;
 | |
| 
 | |
|   {
 | |
|     // Find the set of least derived bases that define the given method.
 | |
|     OverriddenMethodsSetTy VisitedOverriddenMethods;
 | |
|     auto InitialOverriddenDefinitionCollector = [&](
 | |
|         const CXXMethodDecl *OverriddenMD) {
 | |
|       if (OverriddenMD->size_overridden_methods() == 0)
 | |
|         Bases.insert(OverriddenMD->getParent());
 | |
|       // Don't recurse on this method if we've already collected it.
 | |
|       return VisitedOverriddenMethods.insert(OverriddenMD).second;
 | |
|     };
 | |
|     visitAllOverriddenMethods(Overrider.Method,
 | |
|                               InitialOverriddenDefinitionCollector);
 | |
|   }
 | |
| 
 | |
|   // If there are no overrides then 'this' is located
 | |
|   // in the base that defines the method.
 | |
|   if (Bases.size() == 0)
 | |
|     return Overrider.Offset;
 | |
| 
 | |
|   CXXBasePaths Paths;
 | |
|   Overrider.Method->getParent()->lookupInBases(
 | |
|       [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) {
 | |
|         return Bases.count(Specifier->getType()->getAsCXXRecordDecl());
 | |
|       },
 | |
|       Paths);
 | |
| 
 | |
|   // This will hold the smallest this offset among overridees of MD.
 | |
|   // This implies that an offset of a non-virtual base will dominate an offset
 | |
|   // of a virtual base to potentially reduce the number of thunks required
 | |
|   // in the derived classes that inherit this method.
 | |
|   CharUnits Ret;
 | |
|   bool First = true;
 | |
| 
 | |
|   const ASTRecordLayout &OverriderRDLayout =
 | |
|       Context.getASTRecordLayout(Overrider.Method->getParent());
 | |
|   for (const CXXBasePath &Path : Paths) {
 | |
|     CharUnits ThisOffset = Overrider.Offset;
 | |
|     CharUnits LastVBaseOffset;
 | |
| 
 | |
|     // For each path from the overrider to the parents of the overridden
 | |
|     // methods, traverse the path, calculating the this offset in the most
 | |
|     // derived class.
 | |
|     for (const CXXBasePathElement &Element : Path) {
 | |
|       QualType CurTy = Element.Base->getType();
 | |
|       const CXXRecordDecl *PrevRD = Element.Class,
 | |
|                           *CurRD = CurTy->getAsCXXRecordDecl();
 | |
|       const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);
 | |
| 
 | |
|       if (Element.Base->isVirtual()) {
 | |
|         // The interesting things begin when you have virtual inheritance.
 | |
|         // The final overrider will use a static adjustment equal to the offset
 | |
|         // of the vbase in the final overrider class.
 | |
|         // For example, if the final overrider is in a vbase B of the most
 | |
|         // derived class and it overrides a method of the B's own vbase A,
 | |
|         // it uses A* as "this".  In its prologue, it can cast A* to B* with
 | |
|         // a static offset.  This offset is used regardless of the actual
 | |
|         // offset of A from B in the most derived class, requiring an
 | |
|         // this-adjusting thunk in the vftable if A and B are laid out
 | |
|         // differently in the most derived class.
 | |
|         LastVBaseOffset = ThisOffset =
 | |
|             Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD);
 | |
|       } else {
 | |
|         ThisOffset += Layout.getBaseClassOffset(CurRD);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (isa<CXXDestructorDecl>(Overrider.Method)) {
 | |
|       if (LastVBaseOffset.isZero()) {
 | |
|         // If a "Base" class has at least one non-virtual base with a virtual
 | |
|         // destructor, the "Base" virtual destructor will take the address
 | |
|         // of the "Base" subobject as the "this" argument.
 | |
|         ThisOffset = Overrider.Offset;
 | |
|       } else {
 | |
|         // A virtual destructor of a virtual base takes the address of the
 | |
|         // virtual base subobject as the "this" argument.
 | |
|         ThisOffset = LastVBaseOffset;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Ret > ThisOffset || First) {
 | |
|       First = false;
 | |
|       Ret = ThisOffset;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(!First && "Method not found in the given subobject?");
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| // Things are getting even more complex when the "this" adjustment has to
 | |
| // use a dynamic offset instead of a static one, or even two dynamic offsets.
 | |
| // This is sometimes required when a virtual call happens in the middle of
 | |
| // a non-most-derived class construction or destruction.
 | |
| //
 | |
| // Let's take a look at the following example:
 | |
| //   struct A {
 | |
| //     virtual void f();
 | |
| //   };
 | |
| //
 | |
| //   void foo(A *a) { a->f(); }  // Knows nothing about siblings of A.
 | |
| //
 | |
| //   struct B : virtual A {
 | |
| //     virtual void f();
 | |
| //     B() {
 | |
| //       foo(this);
 | |
| //     }
 | |
| //   };
 | |
| //
 | |
| //   struct C : virtual B {
 | |
| //     virtual void f();
 | |
| //   };
 | |
| //
 | |
| // Record layouts for these classes are:
 | |
| //   struct A
 | |
| //   0 |   (A vftable pointer)
 | |
| //
 | |
| //   struct B
 | |
| //   0 |   (B vbtable pointer)
 | |
| //   4 |   (vtordisp for vbase A)
 | |
| //   8 |   struct A (virtual base)
 | |
| //   8 |     (A vftable pointer)
 | |
| //
 | |
| //   struct C
 | |
| //   0 |   (C vbtable pointer)
 | |
| //   4 |   (vtordisp for vbase A)
 | |
| //   8 |   struct A (virtual base)  // A precedes B!
 | |
| //   8 |     (A vftable pointer)
 | |
| //  12 |   struct B (virtual base)
 | |
| //  12 |     (B vbtable pointer)
 | |
| //
 | |
| // When one creates an object of type C, the C constructor:
 | |
| // - initializes all the vbptrs, then
 | |
| // - calls the A subobject constructor
 | |
| //   (initializes A's vfptr with an address of A vftable), then
 | |
| // - calls the B subobject constructor
 | |
| //   (initializes A's vfptr with an address of B vftable and vtordisp for A),
 | |
| //   that in turn calls foo(), then
 | |
| // - initializes A's vfptr with an address of C vftable and zeroes out the
 | |
| //   vtordisp
 | |
| //   FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable
 | |
| //   without vtordisp thunks?
 | |
| //   FIXME: how are vtordisp handled in the presence of nooverride/final?
 | |
| //
 | |
| // When foo() is called, an object with a layout of class C has a vftable
 | |
| // referencing B::f() that assumes a B layout, so the "this" adjustments are
 | |
| // incorrect, unless an extra adjustment is done.  This adjustment is called
 | |
| // "vtordisp adjustment".  Vtordisp basically holds the difference between the
 | |
| // actual location of a vbase in the layout class and the location assumed by
 | |
| // the vftable of the class being constructed/destructed.  Vtordisp is only
 | |
| // needed if "this" escapes a
 | |
| // structor (or we can't prove otherwise).
 | |
| // [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an
 | |
| // estimation of a dynamic adjustment]
 | |
| //
 | |
| // foo() gets a pointer to the A vbase and doesn't know anything about B or C,
 | |
| // so it just passes that pointer as "this" in a virtual call.
 | |
| // If there was no vtordisp, that would just dispatch to B::f().
 | |
| // However, B::f() assumes B+8 is passed as "this",
 | |
| // yet the pointer foo() passes along is B-4 (i.e. C+8).
 | |
| // An extra adjustment is needed, so we emit a thunk into the B vftable.
 | |
| // This vtordisp thunk subtracts the value of vtordisp
 | |
| // from the "this" argument (-12) before making a tailcall to B::f().
 | |
| //
 | |
| // Let's consider an even more complex example:
 | |
| //   struct D : virtual B, virtual C {
 | |
| //     D() {
 | |
| //       foo(this);
 | |
| //     }
 | |
| //   };
 | |
| //
 | |
| //   struct D
 | |
| //   0 |   (D vbtable pointer)
 | |
| //   4 |   (vtordisp for vbase A)
 | |
| //   8 |   struct A (virtual base)  // A precedes both B and C!
 | |
| //   8 |     (A vftable pointer)
 | |
| //  12 |   struct B (virtual base)  // B precedes C!
 | |
| //  12 |     (B vbtable pointer)
 | |
| //  16 |   struct C (virtual base)
 | |
| //  16 |     (C vbtable pointer)
 | |
| //
 | |
| // When D::D() calls foo(), we find ourselves in a thunk that should tailcall
 | |
| // to C::f(), which assumes C+8 as its "this" parameter.  This time, foo()
 | |
| // passes along A, which is C-8.  The A vtordisp holds
 | |
| //   "D.vbptr[index_of_A] - offset_of_A_in_D"
 | |
| // and we statically know offset_of_A_in_D, so can get a pointer to D.
 | |
| // When we know it, we can make an extra vbtable lookup to locate the C vbase
 | |
| // and one extra static adjustment to calculate the expected value of C+8.
 | |
| void VFTableBuilder::CalculateVtordispAdjustment(
 | |
|     FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset,
 | |
|     ThisAdjustment &TA) {
 | |
|   const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap =
 | |
|       MostDerivedClassLayout.getVBaseOffsetsMap();
 | |
|   const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry =
 | |
|       VBaseMap.find(WhichVFPtr.getVBaseWithVPtr());
 | |
|   assert(VBaseMapEntry != VBaseMap.end());
 | |
| 
 | |
|   // If there's no vtordisp or the final overrider is defined in the same vbase
 | |
|   // as the initial declaration, we don't need any vtordisp adjustment.
 | |
|   if (!VBaseMapEntry->second.hasVtorDisp() ||
 | |
|       Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr())
 | |
|     return;
 | |
| 
 | |
|   // OK, now we know we need to use a vtordisp thunk.
 | |
|   // The implicit vtordisp field is located right before the vbase.
 | |
|   CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset;
 | |
|   TA.Virtual.Microsoft.VtordispOffset =
 | |
|       (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4;
 | |
| 
 | |
|   // A simple vtordisp thunk will suffice if the final overrider is defined
 | |
|   // in either the most derived class or its non-virtual base.
 | |
|   if (Overrider.Method->getParent() == MostDerivedClass ||
 | |
|       !Overrider.VirtualBase)
 | |
|     return;
 | |
| 
 | |
|   // Otherwise, we need to do use the dynamic offset of the final overrider
 | |
|   // in order to get "this" adjustment right.
 | |
|   TA.Virtual.Microsoft.VBPtrOffset =
 | |
|       (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset -
 | |
|        MostDerivedClassLayout.getVBPtrOffset()).getQuantity();
 | |
|   TA.Virtual.Microsoft.VBOffsetOffset =
 | |
|       Context.getTypeSizeInChars(Context.IntTy).getQuantity() *
 | |
|       VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase);
 | |
| 
 | |
|   TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity();
 | |
| }
 | |
| 
 | |
| static void GroupNewVirtualOverloads(
 | |
|     const CXXRecordDecl *RD,
 | |
|     SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) {
 | |
|   // Put the virtual methods into VirtualMethods in the proper order:
 | |
|   // 1) Group overloads by declaration name. New groups are added to the
 | |
|   //    vftable in the order of their first declarations in this class
 | |
|   //    (including overrides, non-virtual methods and any other named decl that
 | |
|   //    might be nested within the class).
 | |
|   // 2) In each group, new overloads appear in the reverse order of declaration.
 | |
|   typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup;
 | |
|   SmallVector<MethodGroup, 10> Groups;
 | |
|   typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy;
 | |
|   VisitedGroupIndicesTy VisitedGroupIndices;
 | |
|   for (const auto *D : RD->decls()) {
 | |
|     const auto *ND = dyn_cast<NamedDecl>(D);
 | |
|     if (!ND)
 | |
|       continue;
 | |
|     VisitedGroupIndicesTy::iterator J;
 | |
|     bool Inserted;
 | |
|     std::tie(J, Inserted) = VisitedGroupIndices.insert(
 | |
|         std::make_pair(ND->getDeclName(), Groups.size()));
 | |
|     if (Inserted)
 | |
|       Groups.push_back(MethodGroup());
 | |
|     if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
 | |
|       if (MD->isVirtual())
 | |
|         Groups[J->second].push_back(MD->getCanonicalDecl());
 | |
|   }
 | |
| 
 | |
|   for (const MethodGroup &Group : Groups)
 | |
|     VirtualMethods.append(Group.rbegin(), Group.rend());
 | |
| }
 | |
| 
 | |
| static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) {
 | |
|   for (const auto &B : RD->bases()) {
 | |
|     if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
 | |
|                                 const CXXRecordDecl *LastVBase,
 | |
|                                 BasesSetVectorTy &VisitedBases) {
 | |
|   const CXXRecordDecl *RD = Base.getBase();
 | |
|   if (!RD->isPolymorphic())
 | |
|     return;
 | |
| 
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
| 
 | |
|   // See if this class expands a vftable of the base we look at, which is either
 | |
|   // the one defined by the vfptr base path or the primary base of the current
 | |
|   // class.
 | |
|   const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase;
 | |
|   CharUnits NextBaseOffset;
 | |
|   if (BaseDepth < WhichVFPtr.PathToIntroducingObject.size()) {
 | |
|     NextBase = WhichVFPtr.PathToIntroducingObject[BaseDepth];
 | |
|     if (isDirectVBase(NextBase, RD)) {
 | |
|       NextLastVBase = NextBase;
 | |
|       NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase);
 | |
|     } else {
 | |
|       NextBaseOffset =
 | |
|           Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase);
 | |
|     }
 | |
|   } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
 | |
|     assert(!Layout.isPrimaryBaseVirtual() &&
 | |
|            "No primary virtual bases in this ABI");
 | |
|     NextBase = PrimaryBase;
 | |
|     NextBaseOffset = Base.getBaseOffset();
 | |
|   }
 | |
| 
 | |
|   if (NextBase) {
 | |
|     AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1,
 | |
|                NextLastVBase, VisitedBases);
 | |
|     if (!VisitedBases.insert(NextBase))
 | |
|       llvm_unreachable("Found a duplicate primary base!");
 | |
|   }
 | |
| 
 | |
|   SmallVector<const CXXMethodDecl*, 10> VirtualMethods;
 | |
|   // Put virtual methods in the proper order.
 | |
|   GroupNewVirtualOverloads(RD, VirtualMethods);
 | |
| 
 | |
|   // Now go through all virtual member functions and add them to the current
 | |
|   // vftable. This is done by
 | |
|   //  - replacing overridden methods in their existing slots, as long as they
 | |
|   //    don't require return adjustment; calculating This adjustment if needed.
 | |
|   //  - adding new slots for methods of the current base not present in any
 | |
|   //    sub-bases;
 | |
|   //  - adding new slots for methods that require Return adjustment.
 | |
|   // We keep track of the methods visited in the sub-bases in MethodInfoMap.
 | |
|   for (const CXXMethodDecl *MD : VirtualMethods) {
 | |
|     FinalOverriders::OverriderInfo FinalOverrider =
 | |
|         Overriders.getOverrider(MD, Base.getBaseOffset());
 | |
|     const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method;
 | |
|     const CXXMethodDecl *OverriddenMD =
 | |
|         FindNearestOverriddenMethod(MD, VisitedBases);
 | |
| 
 | |
|     ThisAdjustment ThisAdjustmentOffset;
 | |
|     bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false;
 | |
|     CharUnits ThisOffset = ComputeThisOffset(FinalOverrider);
 | |
|     ThisAdjustmentOffset.NonVirtual =
 | |
|         (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity();
 | |
|     if ((OverriddenMD || FinalOverriderMD != MD) &&
 | |
|         WhichVFPtr.getVBaseWithVPtr())
 | |
|       CalculateVtordispAdjustment(FinalOverrider, ThisOffset,
 | |
|                                   ThisAdjustmentOffset);
 | |
| 
 | |
|     unsigned VBIndex =
 | |
|         LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0;
 | |
| 
 | |
|     if (OverriddenMD) {
 | |
|       // If MD overrides anything in this vftable, we need to update the
 | |
|       // entries.
 | |
|       MethodInfoMapTy::iterator OverriddenMDIterator =
 | |
|           MethodInfoMap.find(OverriddenMD);
 | |
| 
 | |
|       // If the overridden method went to a different vftable, skip it.
 | |
|       if (OverriddenMDIterator == MethodInfoMap.end())
 | |
|         continue;
 | |
| 
 | |
|       MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;
 | |
| 
 | |
|       VBIndex = OverriddenMethodInfo.VBTableIndex;
 | |
| 
 | |
|       // Let's check if the overrider requires any return adjustments.
 | |
|       // We must create a new slot if the MD's return type is not trivially
 | |
|       // convertible to the OverriddenMD's one.
 | |
|       // Once a chain of method overrides adds a return adjusting vftable slot,
 | |
|       // all subsequent overrides will also use an extra method slot.
 | |
|       ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset(
 | |
|                                   Context, MD, OverriddenMD).isEmpty() ||
 | |
|                              OverriddenMethodInfo.UsesExtraSlot;
 | |
| 
 | |
|       if (!ReturnAdjustingThunk) {
 | |
|         // No return adjustment needed - just replace the overridden method info
 | |
|         // with the current info.
 | |
|         MethodInfo MI(VBIndex, OverriddenMethodInfo.VFTableIndex);
 | |
|         MethodInfoMap.erase(OverriddenMDIterator);
 | |
| 
 | |
|         assert(!MethodInfoMap.count(MD) &&
 | |
|                "Should not have method info for this method yet!");
 | |
|         MethodInfoMap.insert(std::make_pair(MD, MI));
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // In case we need a return adjustment, we'll add a new slot for
 | |
|       // the overrider. Mark the overridden method as shadowed by the new slot.
 | |
|       OverriddenMethodInfo.Shadowed = true;
 | |
| 
 | |
|       // Force a special name mangling for a return-adjusting thunk
 | |
|       // unless the method is the final overrider without this adjustment.
 | |
|       ForceReturnAdjustmentMangling =
 | |
|           !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty());
 | |
|     } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC ||
 | |
|                MD->size_overridden_methods()) {
 | |
|       // Skip methods that don't belong to the vftable of the current class,
 | |
|       // e.g. each method that wasn't seen in any of the visited sub-bases
 | |
|       // but overrides multiple methods of other sub-bases.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If we got here, MD is a method not seen in any of the sub-bases or
 | |
|     // it requires return adjustment. Insert the method info for this method.
 | |
|     MethodInfo MI(VBIndex,
 | |
|                   HasRTTIComponent ? Components.size() - 1 : Components.size(),
 | |
|                   ReturnAdjustingThunk);
 | |
| 
 | |
|     assert(!MethodInfoMap.count(MD) &&
 | |
|            "Should not have method info for this method yet!");
 | |
|     MethodInfoMap.insert(std::make_pair(MD, MI));
 | |
| 
 | |
|     // Check if this overrider needs a return adjustment.
 | |
|     // We don't want to do this for pure virtual member functions.
 | |
|     BaseOffset ReturnAdjustmentOffset;
 | |
|     ReturnAdjustment ReturnAdjustment;
 | |
|     if (!FinalOverriderMD->isPure()) {
 | |
|       ReturnAdjustmentOffset =
 | |
|           ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD);
 | |
|     }
 | |
|     if (!ReturnAdjustmentOffset.isEmpty()) {
 | |
|       ForceReturnAdjustmentMangling = true;
 | |
|       ReturnAdjustment.NonVirtual =
 | |
|           ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
 | |
|       if (ReturnAdjustmentOffset.VirtualBase) {
 | |
|         const ASTRecordLayout &DerivedLayout =
 | |
|             Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass);
 | |
|         ReturnAdjustment.Virtual.Microsoft.VBPtrOffset =
 | |
|             DerivedLayout.getVBPtrOffset().getQuantity();
 | |
|         ReturnAdjustment.Virtual.Microsoft.VBIndex =
 | |
|             VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass,
 | |
|                                     ReturnAdjustmentOffset.VirtualBase);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     AddMethod(FinalOverriderMD,
 | |
|               ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment,
 | |
|                         ForceReturnAdjustmentMangling ? MD : nullptr));
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) {
 | |
|   for (const CXXRecordDecl *Elem :
 | |
|        llvm::make_range(Path.rbegin(), Path.rend())) {
 | |
|     Out << "'";
 | |
|     Elem->printQualifiedName(Out);
 | |
|     Out << "' in ";
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out,
 | |
|                                          bool ContinueFirstLine) {
 | |
|   const ReturnAdjustment &R = TI.Return;
 | |
|   bool Multiline = false;
 | |
|   const char *LinePrefix = "\n       ";
 | |
|   if (!R.isEmpty() || TI.Method) {
 | |
|     if (!ContinueFirstLine)
 | |
|       Out << LinePrefix;
 | |
|     Out << "[return adjustment (to type '"
 | |
|         << TI.Method->getReturnType().getCanonicalType().getAsString()
 | |
|         << "'): ";
 | |
|     if (R.Virtual.Microsoft.VBPtrOffset)
 | |
|       Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", ";
 | |
|     if (R.Virtual.Microsoft.VBIndex)
 | |
|       Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", ";
 | |
|     Out << R.NonVirtual << " non-virtual]";
 | |
|     Multiline = true;
 | |
|   }
 | |
| 
 | |
|   const ThisAdjustment &T = TI.This;
 | |
|   if (!T.isEmpty()) {
 | |
|     if (Multiline || !ContinueFirstLine)
 | |
|       Out << LinePrefix;
 | |
|     Out << "[this adjustment: ";
 | |
|     if (!TI.This.Virtual.isEmpty()) {
 | |
|       assert(T.Virtual.Microsoft.VtordispOffset < 0);
 | |
|       Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", ";
 | |
|       if (T.Virtual.Microsoft.VBPtrOffset) {
 | |
|         Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset
 | |
|             << " to the left,";
 | |
|         assert(T.Virtual.Microsoft.VBOffsetOffset > 0);
 | |
|         Out << LinePrefix << " vboffset at "
 | |
|             << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, ";
 | |
|       }
 | |
|     }
 | |
|     Out << T.NonVirtual << " non-virtual]";
 | |
|   }
 | |
| }
 | |
| 
 | |
| void VFTableBuilder::dumpLayout(raw_ostream &Out) {
 | |
|   Out << "VFTable for ";
 | |
|   PrintBasePath(WhichVFPtr.PathToIntroducingObject, Out);
 | |
|   Out << "'";
 | |
|   MostDerivedClass->printQualifiedName(Out);
 | |
|   Out << "' (" << Components.size()
 | |
|       << (Components.size() == 1 ? " entry" : " entries") << ").\n";
 | |
| 
 | |
|   for (unsigned I = 0, E = Components.size(); I != E; ++I) {
 | |
|     Out << llvm::format("%4d | ", I);
 | |
| 
 | |
|     const VTableComponent &Component = Components[I];
 | |
| 
 | |
|     // Dump the component.
 | |
|     switch (Component.getKind()) {
 | |
|     case VTableComponent::CK_RTTI:
 | |
|       Component.getRTTIDecl()->printQualifiedName(Out);
 | |
|       Out << " RTTI";
 | |
|       break;
 | |
| 
 | |
|     case VTableComponent::CK_FunctionPointer: {
 | |
|       const CXXMethodDecl *MD = Component.getFunctionDecl();
 | |
| 
 | |
|       // FIXME: Figure out how to print the real thunk type, since they can
 | |
|       // differ in the return type.
 | |
|       std::string Str = PredefinedExpr::ComputeName(
 | |
|           PredefinedExpr::PrettyFunctionNoVirtual, MD);
 | |
|       Out << Str;
 | |
|       if (MD->isPure())
 | |
|         Out << " [pure]";
 | |
| 
 | |
|       if (MD->isDeleted())
 | |
|         Out << " [deleted]";
 | |
| 
 | |
|       ThunkInfo Thunk = VTableThunks.lookup(I);
 | |
|       if (!Thunk.isEmpty())
 | |
|         dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
 | |
| 
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case VTableComponent::CK_DeletingDtorPointer: {
 | |
|       const CXXDestructorDecl *DD = Component.getDestructorDecl();
 | |
| 
 | |
|       DD->printQualifiedName(Out);
 | |
|       Out << "() [scalar deleting]";
 | |
| 
 | |
|       if (DD->isPure())
 | |
|         Out << " [pure]";
 | |
| 
 | |
|       ThunkInfo Thunk = VTableThunks.lookup(I);
 | |
|       if (!Thunk.isEmpty()) {
 | |
|         assert(Thunk.Return.isEmpty() &&
 | |
|                "No return adjustment needed for destructors!");
 | |
|         dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
 | |
|       }
 | |
| 
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     default:
 | |
|       DiagnosticsEngine &Diags = Context.getDiagnostics();
 | |
|       unsigned DiagID = Diags.getCustomDiagID(
 | |
|           DiagnosticsEngine::Error,
 | |
|           "Unexpected vftable component type %0 for component number %1");
 | |
|       Diags.Report(MostDerivedClass->getLocation(), DiagID)
 | |
|           << I << Component.getKind();
 | |
|     }
 | |
| 
 | |
|     Out << '\n';
 | |
|   }
 | |
| 
 | |
|   Out << '\n';
 | |
| 
 | |
|   if (!Thunks.empty()) {
 | |
|     // We store the method names in a map to get a stable order.
 | |
|     std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
 | |
| 
 | |
|     for (const auto &I : Thunks) {
 | |
|       const CXXMethodDecl *MD = I.first;
 | |
|       std::string MethodName = PredefinedExpr::ComputeName(
 | |
|           PredefinedExpr::PrettyFunctionNoVirtual, MD);
 | |
| 
 | |
|       MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
 | |
|     }
 | |
| 
 | |
|     for (const auto &MethodNameAndDecl : MethodNamesAndDecls) {
 | |
|       const std::string &MethodName = MethodNameAndDecl.first;
 | |
|       const CXXMethodDecl *MD = MethodNameAndDecl.second;
 | |
| 
 | |
|       ThunkInfoVectorTy ThunksVector = Thunks[MD];
 | |
|       llvm::stable_sort(ThunksVector, [](const ThunkInfo &LHS,
 | |
|                                          const ThunkInfo &RHS) {
 | |
|         // Keep different thunks with the same adjustments in the order they
 | |
|         // were put into the vector.
 | |
|         return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
 | |
|       });
 | |
| 
 | |
|       Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
 | |
|       Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
 | |
| 
 | |
|       for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
 | |
|         const ThunkInfo &Thunk = ThunksVector[I];
 | |
| 
 | |
|         Out << llvm::format("%4d | ", I);
 | |
|         dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true);
 | |
|         Out << '\n';
 | |
|       }
 | |
| 
 | |
|       Out << '\n';
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Out.flush();
 | |
| }
 | |
| 
 | |
| static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A,
 | |
|                           ArrayRef<const CXXRecordDecl *> B) {
 | |
|   for (const CXXRecordDecl *Decl : B) {
 | |
|     if (A.count(Decl))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool rebucketPaths(VPtrInfoVector &Paths);
 | |
| 
 | |
| /// Produces MSVC-compatible vbtable data.  The symbols produced by this
 | |
| /// algorithm match those produced by MSVC 2012 and newer, which is different
 | |
| /// from MSVC 2010.
 | |
| ///
 | |
| /// MSVC 2012 appears to minimize the vbtable names using the following
 | |
| /// algorithm.  First, walk the class hierarchy in the usual order, depth first,
 | |
| /// left to right, to find all of the subobjects which contain a vbptr field.
 | |
| /// Visiting each class node yields a list of inheritance paths to vbptrs.  Each
 | |
| /// record with a vbptr creates an initially empty path.
 | |
| ///
 | |
| /// To combine paths from child nodes, the paths are compared to check for
 | |
| /// ambiguity.  Paths are "ambiguous" if multiple paths have the same set of
 | |
| /// components in the same order.  Each group of ambiguous paths is extended by
 | |
| /// appending the class of the base from which it came.  If the current class
 | |
| /// node produced an ambiguous path, its path is extended with the current class.
 | |
| /// After extending paths, MSVC again checks for ambiguity, and extends any
 | |
| /// ambiguous path which wasn't already extended.  Because each node yields an
 | |
| /// unambiguous set of paths, MSVC doesn't need to extend any path more than once
 | |
| /// to produce an unambiguous set of paths.
 | |
| ///
 | |
| /// TODO: Presumably vftables use the same algorithm.
 | |
| void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables,
 | |
|                                                 const CXXRecordDecl *RD,
 | |
|                                                 VPtrInfoVector &Paths) {
 | |
|   assert(Paths.empty());
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
| 
 | |
|   // Base case: this subobject has its own vptr.
 | |
|   if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr())
 | |
|     Paths.push_back(std::make_unique<VPtrInfo>(RD));
 | |
| 
 | |
|   // Recursive case: get all the vbtables from our bases and remove anything
 | |
|   // that shares a virtual base.
 | |
|   llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
 | |
|   for (const auto &B : RD->bases()) {
 | |
|     const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
 | |
|     if (B.isVirtual() && VBasesSeen.count(Base))
 | |
|       continue;
 | |
| 
 | |
|     if (!Base->isDynamicClass())
 | |
|       continue;
 | |
| 
 | |
|     const VPtrInfoVector &BasePaths =
 | |
|         ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base);
 | |
| 
 | |
|     for (const std::unique_ptr<VPtrInfo> &BaseInfo : BasePaths) {
 | |
|       // Don't include the path if it goes through a virtual base that we've
 | |
|       // already included.
 | |
|       if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases))
 | |
|         continue;
 | |
| 
 | |
|       // Copy the path and adjust it as necessary.
 | |
|       auto P = std::make_unique<VPtrInfo>(*BaseInfo);
 | |
| 
 | |
|       // We mangle Base into the path if the path would've been ambiguous and it
 | |
|       // wasn't already extended with Base.
 | |
|       if (P->MangledPath.empty() || P->MangledPath.back() != Base)
 | |
|         P->NextBaseToMangle = Base;
 | |
| 
 | |
|       // Keep track of which vtable the derived class is going to extend with
 | |
|       // new methods or bases.  We append to either the vftable of our primary
 | |
|       // base, or the first non-virtual base that has a vbtable.
 | |
|       if (P->ObjectWithVPtr == Base &&
 | |
|           Base == (ForVBTables ? Layout.getBaseSharingVBPtr()
 | |
|                                : Layout.getPrimaryBase()))
 | |
|         P->ObjectWithVPtr = RD;
 | |
| 
 | |
|       // Keep track of the full adjustment from the MDC to this vtable.  The
 | |
|       // adjustment is captured by an optional vbase and a non-virtual offset.
 | |
|       if (B.isVirtual())
 | |
|         P->ContainingVBases.push_back(Base);
 | |
|       else if (P->ContainingVBases.empty())
 | |
|         P->NonVirtualOffset += Layout.getBaseClassOffset(Base);
 | |
| 
 | |
|       // Update the full offset in the MDC.
 | |
|       P->FullOffsetInMDC = P->NonVirtualOffset;
 | |
|       if (const CXXRecordDecl *VB = P->getVBaseWithVPtr())
 | |
|         P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB);
 | |
| 
 | |
|       Paths.push_back(std::move(P));
 | |
|     }
 | |
| 
 | |
|     if (B.isVirtual())
 | |
|       VBasesSeen.insert(Base);
 | |
| 
 | |
|     // After visiting any direct base, we've transitively visited all of its
 | |
|     // morally virtual bases.
 | |
|     for (const auto &VB : Base->vbases())
 | |
|       VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl());
 | |
|   }
 | |
| 
 | |
|   // Sort the paths into buckets, and if any of them are ambiguous, extend all
 | |
|   // paths in ambiguous buckets.
 | |
|   bool Changed = true;
 | |
|   while (Changed)
 | |
|     Changed = rebucketPaths(Paths);
 | |
| }
 | |
| 
 | |
| static bool extendPath(VPtrInfo &P) {
 | |
|   if (P.NextBaseToMangle) {
 | |
|     P.MangledPath.push_back(P.NextBaseToMangle);
 | |
|     P.NextBaseToMangle = nullptr;// Prevent the path from being extended twice.
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool rebucketPaths(VPtrInfoVector &Paths) {
 | |
|   // What we're essentially doing here is bucketing together ambiguous paths.
 | |
|   // Any bucket with more than one path in it gets extended by NextBase, which
 | |
|   // is usually the direct base of the inherited the vbptr.  This code uses a
 | |
|   // sorted vector to implement a multiset to form the buckets.  Note that the
 | |
|   // ordering is based on pointers, but it doesn't change our output order.  The
 | |
|   // current algorithm is designed to match MSVC 2012's names.
 | |
|   llvm::SmallVector<std::reference_wrapper<VPtrInfo>, 2> PathsSorted;
 | |
|   PathsSorted.reserve(Paths.size());
 | |
|   for (auto& P : Paths)
 | |
|     PathsSorted.push_back(*P);
 | |
|   llvm::sort(PathsSorted, [](const VPtrInfo &LHS, const VPtrInfo &RHS) {
 | |
|     return LHS.MangledPath < RHS.MangledPath;
 | |
|   });
 | |
|   bool Changed = false;
 | |
|   for (size_t I = 0, E = PathsSorted.size(); I != E;) {
 | |
|     // Scan forward to find the end of the bucket.
 | |
|     size_t BucketStart = I;
 | |
|     do {
 | |
|       ++I;
 | |
|     } while (I != E &&
 | |
|              PathsSorted[BucketStart].get().MangledPath ==
 | |
|                  PathsSorted[I].get().MangledPath);
 | |
| 
 | |
|     // If this bucket has multiple paths, extend them all.
 | |
|     if (I - BucketStart > 1) {
 | |
|       for (size_t II = BucketStart; II != I; ++II)
 | |
|         Changed |= extendPath(PathsSorted[II]);
 | |
|       assert(Changed && "no paths were extended to fix ambiguity");
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| MicrosoftVTableContext::~MicrosoftVTableContext() {}
 | |
| 
 | |
| namespace {
 | |
| typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>,
 | |
|                         llvm::DenseSet<BaseSubobject>> FullPathTy;
 | |
| }
 | |
| 
 | |
| // This recursive function finds all paths from a subobject centered at
 | |
| // (RD, Offset) to the subobject located at IntroducingObject.
 | |
| static void findPathsToSubobject(ASTContext &Context,
 | |
|                                  const ASTRecordLayout &MostDerivedLayout,
 | |
|                                  const CXXRecordDecl *RD, CharUnits Offset,
 | |
|                                  BaseSubobject IntroducingObject,
 | |
|                                  FullPathTy &FullPath,
 | |
|                                  std::list<FullPathTy> &Paths) {
 | |
|   if (BaseSubobject(RD, Offset) == IntroducingObject) {
 | |
|     Paths.push_back(FullPath);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
| 
 | |
|   for (const CXXBaseSpecifier &BS : RD->bases()) {
 | |
|     const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl();
 | |
|     CharUnits NewOffset = BS.isVirtual()
 | |
|                               ? MostDerivedLayout.getVBaseClassOffset(Base)
 | |
|                               : Offset + Layout.getBaseClassOffset(Base);
 | |
|     FullPath.insert(BaseSubobject(Base, NewOffset));
 | |
|     findPathsToSubobject(Context, MostDerivedLayout, Base, NewOffset,
 | |
|                          IntroducingObject, FullPath, Paths);
 | |
|     FullPath.pop_back();
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Return the paths which are not subsets of other paths.
 | |
| static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) {
 | |
|   FullPaths.remove_if([&](const FullPathTy &SpecificPath) {
 | |
|     for (const FullPathTy &OtherPath : FullPaths) {
 | |
|       if (&SpecificPath == &OtherPath)
 | |
|         continue;
 | |
|       if (llvm::all_of(SpecificPath, [&](const BaseSubobject &BSO) {
 | |
|             return OtherPath.count(BSO) != 0;
 | |
|           })) {
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
|   });
 | |
| }
 | |
| 
 | |
| static CharUnits getOffsetOfFullPath(ASTContext &Context,
 | |
|                                      const CXXRecordDecl *RD,
 | |
|                                      const FullPathTy &FullPath) {
 | |
|   const ASTRecordLayout &MostDerivedLayout =
 | |
|       Context.getASTRecordLayout(RD);
 | |
|   CharUnits Offset = CharUnits::fromQuantity(-1);
 | |
|   for (const BaseSubobject &BSO : FullPath) {
 | |
|     const CXXRecordDecl *Base = BSO.getBase();
 | |
|     // The first entry in the path is always the most derived record, skip it.
 | |
|     if (Base == RD) {
 | |
|       assert(Offset.getQuantity() == -1);
 | |
|       Offset = CharUnits::Zero();
 | |
|       continue;
 | |
|     }
 | |
|     assert(Offset.getQuantity() != -1);
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
|     // While we know which base has to be traversed, we don't know if that base
 | |
|     // was a virtual base.
 | |
|     const CXXBaseSpecifier *BaseBS = std::find_if(
 | |
|         RD->bases_begin(), RD->bases_end(), [&](const CXXBaseSpecifier &BS) {
 | |
|           return BS.getType()->getAsCXXRecordDecl() == Base;
 | |
|         });
 | |
|     Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(Base)
 | |
|                                  : Offset + Layout.getBaseClassOffset(Base);
 | |
|     RD = Base;
 | |
|   }
 | |
|   return Offset;
 | |
| }
 | |
| 
 | |
| // We want to select the path which introduces the most covariant overrides.  If
 | |
| // two paths introduce overrides which the other path doesn't contain, issue a
 | |
| // diagnostic.
 | |
| static const FullPathTy *selectBestPath(ASTContext &Context,
 | |
|                                         const CXXRecordDecl *RD,
 | |
|                                         const VPtrInfo &Info,
 | |
|                                         std::list<FullPathTy> &FullPaths) {
 | |
|   // Handle some easy cases first.
 | |
|   if (FullPaths.empty())
 | |
|     return nullptr;
 | |
|   if (FullPaths.size() == 1)
 | |
|     return &FullPaths.front();
 | |
| 
 | |
|   const FullPathTy *BestPath = nullptr;
 | |
|   typedef std::set<const CXXMethodDecl *> OverriderSetTy;
 | |
|   OverriderSetTy LastOverrides;
 | |
|   for (const FullPathTy &SpecificPath : FullPaths) {
 | |
|     assert(!SpecificPath.empty());
 | |
|     OverriderSetTy CurrentOverrides;
 | |
|     const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase();
 | |
|     // Find the distance from the start of the path to the subobject with the
 | |
|     // VPtr.
 | |
|     CharUnits BaseOffset =
 | |
|         getOffsetOfFullPath(Context, TopLevelRD, SpecificPath);
 | |
|     FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD);
 | |
|     for (const CXXMethodDecl *MD : Info.IntroducingObject->methods()) {
 | |
|       if (!MD->isVirtual())
 | |
|         continue;
 | |
|       FinalOverriders::OverriderInfo OI =
 | |
|           Overriders.getOverrider(MD->getCanonicalDecl(), BaseOffset);
 | |
|       const CXXMethodDecl *OverridingMethod = OI.Method;
 | |
|       // Only overriders which have a return adjustment introduce problematic
 | |
|       // thunks.
 | |
|       if (ComputeReturnAdjustmentBaseOffset(Context, OverridingMethod, MD)
 | |
|               .isEmpty())
 | |
|         continue;
 | |
|       // It's possible that the overrider isn't in this path.  If so, skip it
 | |
|       // because this path didn't introduce it.
 | |
|       const CXXRecordDecl *OverridingParent = OverridingMethod->getParent();
 | |
|       if (llvm::none_of(SpecificPath, [&](const BaseSubobject &BSO) {
 | |
|             return BSO.getBase() == OverridingParent;
 | |
|           }))
 | |
|         continue;
 | |
|       CurrentOverrides.insert(OverridingMethod);
 | |
|     }
 | |
|     OverriderSetTy NewOverrides =
 | |
|         llvm::set_difference(CurrentOverrides, LastOverrides);
 | |
|     if (NewOverrides.empty())
 | |
|       continue;
 | |
|     OverriderSetTy MissingOverrides =
 | |
|         llvm::set_difference(LastOverrides, CurrentOverrides);
 | |
|     if (MissingOverrides.empty()) {
 | |
|       // This path is a strict improvement over the last path, let's use it.
 | |
|       BestPath = &SpecificPath;
 | |
|       std::swap(CurrentOverrides, LastOverrides);
 | |
|     } else {
 | |
|       // This path introduces an overrider with a conflicting covariant thunk.
 | |
|       DiagnosticsEngine &Diags = Context.getDiagnostics();
 | |
|       const CXXMethodDecl *CovariantMD = *NewOverrides.begin();
 | |
|       const CXXMethodDecl *ConflictMD = *MissingOverrides.begin();
 | |
|       Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component)
 | |
|           << RD;
 | |
|       Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk)
 | |
|           << CovariantMD;
 | |
|       Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk)
 | |
|           << ConflictMD;
 | |
|     }
 | |
|   }
 | |
|   // Go with the path that introduced the most covariant overrides.  If there is
 | |
|   // no such path, pick the first path.
 | |
|   return BestPath ? BestPath : &FullPaths.front();
 | |
| }
 | |
| 
 | |
| static void computeFullPathsForVFTables(ASTContext &Context,
 | |
|                                         const CXXRecordDecl *RD,
 | |
|                                         VPtrInfoVector &Paths) {
 | |
|   const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD);
 | |
|   FullPathTy FullPath;
 | |
|   std::list<FullPathTy> FullPaths;
 | |
|   for (const std::unique_ptr<VPtrInfo>& Info : Paths) {
 | |
|     findPathsToSubobject(
 | |
|         Context, MostDerivedLayout, RD, CharUnits::Zero(),
 | |
|         BaseSubobject(Info->IntroducingObject, Info->FullOffsetInMDC), FullPath,
 | |
|         FullPaths);
 | |
|     FullPath.clear();
 | |
|     removeRedundantPaths(FullPaths);
 | |
|     Info->PathToIntroducingObject.clear();
 | |
|     if (const FullPathTy *BestPath =
 | |
|             selectBestPath(Context, RD, *Info, FullPaths))
 | |
|       for (const BaseSubobject &BSO : *BestPath)
 | |
|         Info->PathToIntroducingObject.push_back(BSO.getBase());
 | |
|     FullPaths.clear();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool vfptrIsEarlierInMDC(const ASTRecordLayout &Layout,
 | |
|                                 const MethodVFTableLocation &LHS,
 | |
|                                 const MethodVFTableLocation &RHS) {
 | |
|   CharUnits L = LHS.VFPtrOffset;
 | |
|   CharUnits R = RHS.VFPtrOffset;
 | |
|   if (LHS.VBase)
 | |
|     L += Layout.getVBaseClassOffset(LHS.VBase);
 | |
|   if (RHS.VBase)
 | |
|     R += Layout.getVBaseClassOffset(RHS.VBase);
 | |
|   return L < R;
 | |
| }
 | |
| 
 | |
| void MicrosoftVTableContext::computeVTableRelatedInformation(
 | |
|     const CXXRecordDecl *RD) {
 | |
|   assert(RD->isDynamicClass());
 | |
| 
 | |
|   // Check if we've computed this information before.
 | |
|   if (VFPtrLocations.count(RD))
 | |
|     return;
 | |
| 
 | |
|   const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;
 | |
| 
 | |
|   {
 | |
|     auto VFPtrs = std::make_unique<VPtrInfoVector>();
 | |
|     computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs);
 | |
|     computeFullPathsForVFTables(Context, RD, *VFPtrs);
 | |
|     VFPtrLocations[RD] = std::move(VFPtrs);
 | |
|   }
 | |
| 
 | |
|   MethodVFTableLocationsTy NewMethodLocations;
 | |
|   for (const std::unique_ptr<VPtrInfo> &VFPtr : *VFPtrLocations[RD]) {
 | |
|     VFTableBuilder Builder(*this, RD, *VFPtr);
 | |
| 
 | |
|     VFTableIdTy id(RD, VFPtr->FullOffsetInMDC);
 | |
|     assert(VFTableLayouts.count(id) == 0);
 | |
|     SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
 | |
|         Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
 | |
|     VFTableLayouts[id] = std::make_unique<VTableLayout>(
 | |
|         ArrayRef<size_t>{0}, Builder.vtable_components(), VTableThunks,
 | |
|         EmptyAddressPointsMap);
 | |
|     Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
 | |
| 
 | |
|     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
|     for (const auto &Loc : Builder.vtable_locations()) {
 | |
|       auto Insert = NewMethodLocations.insert(Loc);
 | |
|       if (!Insert.second) {
 | |
|         const MethodVFTableLocation &NewLoc = Loc.second;
 | |
|         MethodVFTableLocation &OldLoc = Insert.first->second;
 | |
|         if (vfptrIsEarlierInMDC(Layout, NewLoc, OldLoc))
 | |
|           OldLoc = NewLoc;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MethodVFTableLocations.insert(NewMethodLocations.begin(),
 | |
|                                 NewMethodLocations.end());
 | |
|   if (Context.getLangOpts().DumpVTableLayouts)
 | |
|     dumpMethodLocations(RD, NewMethodLocations, llvm::outs());
 | |
| }
 | |
| 
 | |
| void MicrosoftVTableContext::dumpMethodLocations(
 | |
|     const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
 | |
|     raw_ostream &Out) {
 | |
|   // Compute the vtable indices for all the member functions.
 | |
|   // Store them in a map keyed by the location so we'll get a sorted table.
 | |
|   std::map<MethodVFTableLocation, std::string> IndicesMap;
 | |
|   bool HasNonzeroOffset = false;
 | |
| 
 | |
|   for (const auto &I : NewMethods) {
 | |
|     const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I.first.getDecl());
 | |
|     assert(MD->isVirtual());
 | |
| 
 | |
|     std::string MethodName = PredefinedExpr::ComputeName(
 | |
|         PredefinedExpr::PrettyFunctionNoVirtual, MD);
 | |
| 
 | |
|     if (isa<CXXDestructorDecl>(MD)) {
 | |
|       IndicesMap[I.second] = MethodName + " [scalar deleting]";
 | |
|     } else {
 | |
|       IndicesMap[I.second] = MethodName;
 | |
|     }
 | |
| 
 | |
|     if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0)
 | |
|       HasNonzeroOffset = true;
 | |
|   }
 | |
| 
 | |
|   // Print the vtable indices for all the member functions.
 | |
|   if (!IndicesMap.empty()) {
 | |
|     Out << "VFTable indices for ";
 | |
|     Out << "'";
 | |
|     RD->printQualifiedName(Out);
 | |
|     Out << "' (" << IndicesMap.size()
 | |
|         << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n";
 | |
| 
 | |
|     CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1);
 | |
|     uint64_t LastVBIndex = 0;
 | |
|     for (const auto &I : IndicesMap) {
 | |
|       CharUnits VFPtrOffset = I.first.VFPtrOffset;
 | |
|       uint64_t VBIndex = I.first.VBTableIndex;
 | |
|       if (HasNonzeroOffset &&
 | |
|           (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) {
 | |
|         assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
 | |
|         Out << " -- accessible via ";
 | |
|         if (VBIndex)
 | |
|           Out << "vbtable index " << VBIndex << ", ";
 | |
|         Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
 | |
|         LastVFPtrOffset = VFPtrOffset;
 | |
|         LastVBIndex = VBIndex;
 | |
|       }
 | |
| 
 | |
|       uint64_t VTableIndex = I.first.Index;
 | |
|       const std::string &MethodName = I.second;
 | |
|       Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n';
 | |
|     }
 | |
|     Out << '\n';
 | |
|   }
 | |
| 
 | |
|   Out.flush();
 | |
| }
 | |
| 
 | |
| const VirtualBaseInfo &MicrosoftVTableContext::computeVBTableRelatedInformation(
 | |
|     const CXXRecordDecl *RD) {
 | |
|   VirtualBaseInfo *VBI;
 | |
| 
 | |
|   {
 | |
|     // Get or create a VBI for RD.  Don't hold a reference to the DenseMap cell,
 | |
|     // as it may be modified and rehashed under us.
 | |
|     std::unique_ptr<VirtualBaseInfo> &Entry = VBaseInfo[RD];
 | |
|     if (Entry)
 | |
|       return *Entry;
 | |
|     Entry = std::make_unique<VirtualBaseInfo>();
 | |
|     VBI = Entry.get();
 | |
|   }
 | |
| 
 | |
|   computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths);
 | |
| 
 | |
|   // First, see if the Derived class shared the vbptr with a non-virtual base.
 | |
|   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
 | |
|   if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) {
 | |
|     // If the Derived class shares the vbptr with a non-virtual base, the shared
 | |
|     // virtual bases come first so that the layout is the same.
 | |
|     const VirtualBaseInfo &BaseInfo =
 | |
|         computeVBTableRelatedInformation(VBPtrBase);
 | |
|     VBI->VBTableIndices.insert(BaseInfo.VBTableIndices.begin(),
 | |
|                                BaseInfo.VBTableIndices.end());
 | |
|   }
 | |
| 
 | |
|   // New vbases are added to the end of the vbtable.
 | |
|   // Skip the self entry and vbases visited in the non-virtual base, if any.
 | |
|   unsigned VBTableIndex = 1 + VBI->VBTableIndices.size();
 | |
|   for (const auto &VB : RD->vbases()) {
 | |
|     const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl();
 | |
|     if (!VBI->VBTableIndices.count(CurVBase))
 | |
|       VBI->VBTableIndices[CurVBase] = VBTableIndex++;
 | |
|   }
 | |
| 
 | |
|   return *VBI;
 | |
| }
 | |
| 
 | |
| unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived,
 | |
|                                                  const CXXRecordDecl *VBase) {
 | |
|   const VirtualBaseInfo &VBInfo = computeVBTableRelatedInformation(Derived);
 | |
|   assert(VBInfo.VBTableIndices.count(VBase));
 | |
|   return VBInfo.VBTableIndices.find(VBase)->second;
 | |
| }
 | |
| 
 | |
| const VPtrInfoVector &
 | |
| MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) {
 | |
|   return computeVBTableRelatedInformation(RD).VBPtrPaths;
 | |
| }
 | |
| 
 | |
| const VPtrInfoVector &
 | |
| MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
 | |
|   computeVTableRelatedInformation(RD);
 | |
| 
 | |
|   assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
 | |
|   return *VFPtrLocations[RD];
 | |
| }
 | |
| 
 | |
| const VTableLayout &
 | |
| MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD,
 | |
|                                          CharUnits VFPtrOffset) {
 | |
|   computeVTableRelatedInformation(RD);
 | |
| 
 | |
|   VFTableIdTy id(RD, VFPtrOffset);
 | |
|   assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
 | |
|   return *VFTableLayouts[id];
 | |
| }
 | |
| 
 | |
| MethodVFTableLocation
 | |
| MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) {
 | |
|   assert(cast<CXXMethodDecl>(GD.getDecl())->isVirtual() &&
 | |
|          "Only use this method for virtual methods or dtors");
 | |
|   if (isa<CXXDestructorDecl>(GD.getDecl()))
 | |
|     assert(GD.getDtorType() == Dtor_Deleting);
 | |
| 
 | |
|   GD = GD.getCanonicalDecl();
 | |
| 
 | |
|   MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD);
 | |
|   if (I != MethodVFTableLocations.end())
 | |
|     return I->second;
 | |
| 
 | |
|   const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
 | |
| 
 | |
|   computeVTableRelatedInformation(RD);
 | |
| 
 | |
|   I = MethodVFTableLocations.find(GD);
 | |
|   assert(I != MethodVFTableLocations.end() && "Did not find index!");
 | |
|   return I->second;
 | |
| }
 |