forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			722 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			722 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- ReachableCode.cpp - Code Reachability Analysis --------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements a flow-sensitive, path-insensitive analysis of
 | |
| // determining reachable blocks within a CFG.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Analysis/Analyses/ReachableCode.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/ExprObjC.h"
 | |
| #include "clang/AST/ParentMap.h"
 | |
| #include "clang/AST/StmtCXX.h"
 | |
| #include "clang/Analysis/AnalysisDeclContext.h"
 | |
| #include "clang/Analysis/CFG.h"
 | |
| #include "clang/Basic/Builtins.h"
 | |
| #include "clang/Basic/SourceManager.h"
 | |
| #include "clang/Lex/Preprocessor.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| 
 | |
| using namespace clang;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Core Reachability Analysis routines.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static bool isEnumConstant(const Expr *Ex) {
 | |
|   const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex);
 | |
|   if (!DR)
 | |
|     return false;
 | |
|   return isa<EnumConstantDecl>(DR->getDecl());
 | |
| }
 | |
| 
 | |
| static bool isTrivialExpression(const Expr *Ex) {
 | |
|   Ex = Ex->IgnoreParenCasts();
 | |
|   return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) ||
 | |
|          isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) ||
 | |
|          isa<CharacterLiteral>(Ex) ||
 | |
|          isEnumConstant(Ex);
 | |
| }
 | |
| 
 | |
| static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) {
 | |
|   // Check if the block ends with a do...while() and see if 'S' is the
 | |
|   // condition.
 | |
|   if (const Stmt *Term = B->getTerminatorStmt()) {
 | |
|     if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) {
 | |
|       const Expr *Cond = DS->getCond()->IgnoreParenCasts();
 | |
|       return Cond == S && isTrivialExpression(Cond);
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isBuiltinUnreachable(const Stmt *S) {
 | |
|   if (const auto *DRE = dyn_cast<DeclRefExpr>(S))
 | |
|     if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()))
 | |
|       return FDecl->getIdentifier() &&
 | |
|              FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S,
 | |
|                                  ASTContext &C) {
 | |
|   if (B->empty())  {
 | |
|     // Happens if S is B's terminator and B contains nothing else
 | |
|     // (e.g. a CFGBlock containing only a goto).
 | |
|     return false;
 | |
|   }
 | |
|   if (Optional<CFGStmt> CS = B->back().getAs<CFGStmt>()) {
 | |
|     if (const auto *CE = dyn_cast<CallExpr>(CS->getStmt())) {
 | |
|       return CE->getCallee()->IgnoreCasts() == S && CE->isBuiltinAssumeFalse(C);
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isDeadReturn(const CFGBlock *B, const Stmt *S) {
 | |
|   // Look to see if the current control flow ends with a 'return', and see if
 | |
|   // 'S' is a substatement. The 'return' may not be the last element in the
 | |
|   // block, or may be in a subsequent block because of destructors.
 | |
|   const CFGBlock *Current = B;
 | |
|   while (true) {
 | |
|     for (CFGBlock::const_reverse_iterator I = Current->rbegin(),
 | |
|                                           E = Current->rend();
 | |
|          I != E; ++I) {
 | |
|       if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
 | |
|         if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) {
 | |
|           if (RS == S)
 | |
|             return true;
 | |
|           if (const Expr *RE = RS->getRetValue()) {
 | |
|             RE = RE->IgnoreParenCasts();
 | |
|             if (RE == S)
 | |
|               return true;
 | |
|             ParentMap PM(const_cast<Expr *>(RE));
 | |
|             // If 'S' is in the ParentMap, it is a subexpression of
 | |
|             // the return statement.
 | |
|             return PM.getParent(S);
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     // Note also that we are restricting the search for the return statement
 | |
|     // to stop at control-flow; only part of a return statement may be dead,
 | |
|     // without the whole return statement being dead.
 | |
|     if (Current->getTerminator().isTemporaryDtorsBranch()) {
 | |
|       // Temporary destructors have a predictable control flow, thus we want to
 | |
|       // look into the next block for the return statement.
 | |
|       // We look into the false branch, as we know the true branch only contains
 | |
|       // the call to the destructor.
 | |
|       assert(Current->succ_size() == 2);
 | |
|       Current = *(Current->succ_begin() + 1);
 | |
|     } else if (!Current->getTerminatorStmt() && Current->succ_size() == 1) {
 | |
|       // If there is only one successor, we're not dealing with outgoing control
 | |
|       // flow. Thus, look into the next block.
 | |
|       Current = *Current->succ_begin();
 | |
|       if (Current->pred_size() > 1) {
 | |
|         // If there is more than one predecessor, we're dealing with incoming
 | |
|         // control flow - if the return statement is in that block, it might
 | |
|         // well be reachable via a different control flow, thus it's not dead.
 | |
|         return false;
 | |
|       }
 | |
|     } else {
 | |
|       // We hit control flow or a dead end. Stop searching.
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   llvm_unreachable("Broke out of infinite loop.");
 | |
| }
 | |
| 
 | |
| static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) {
 | |
|   assert(Loc.isMacroID());
 | |
|   SourceLocation Last;
 | |
|   while (Loc.isMacroID()) {
 | |
|     Last = Loc;
 | |
|     Loc = SM.getImmediateMacroCallerLoc(Loc);
 | |
|   }
 | |
|   return Last;
 | |
| }
 | |
| 
 | |
| /// Returns true if the statement is expanded from a configuration macro.
 | |
| static bool isExpandedFromConfigurationMacro(const Stmt *S,
 | |
|                                              Preprocessor &PP,
 | |
|                                              bool IgnoreYES_NO = false) {
 | |
|   // FIXME: This is not very precise.  Here we just check to see if the
 | |
|   // value comes from a macro, but we can do much better.  This is likely
 | |
|   // to be over conservative.  This logic is factored into a separate function
 | |
|   // so that we can refine it later.
 | |
|   SourceLocation L = S->getBeginLoc();
 | |
|   if (L.isMacroID()) {
 | |
|     SourceManager &SM = PP.getSourceManager();
 | |
|     if (IgnoreYES_NO) {
 | |
|       // The Objective-C constant 'YES' and 'NO'
 | |
|       // are defined as macros.  Do not treat them
 | |
|       // as configuration values.
 | |
|       SourceLocation TopL = getTopMostMacro(L, SM);
 | |
|       StringRef MacroName = PP.getImmediateMacroName(TopL);
 | |
|       if (MacroName == "YES" || MacroName == "NO")
 | |
|         return false;
 | |
|     } else if (!PP.getLangOpts().CPlusPlus) {
 | |
|       // Do not treat C 'false' and 'true' macros as configuration values.
 | |
|       SourceLocation TopL = getTopMostMacro(L, SM);
 | |
|       StringRef MacroName = PP.getImmediateMacroName(TopL);
 | |
|       if (MacroName == "false" || MacroName == "true")
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP);
 | |
| 
 | |
| /// Returns true if the statement represents a configuration value.
 | |
| ///
 | |
| /// A configuration value is something usually determined at compile-time
 | |
| /// to conditionally always execute some branch.  Such guards are for
 | |
| /// "sometimes unreachable" code.  Such code is usually not interesting
 | |
| /// to report as unreachable, and may mask truly unreachable code within
 | |
| /// those blocks.
 | |
| static bool isConfigurationValue(const Stmt *S,
 | |
|                                  Preprocessor &PP,
 | |
|                                  SourceRange *SilenceableCondVal = nullptr,
 | |
|                                  bool IncludeIntegers = true,
 | |
|                                  bool WrappedInParens = false) {
 | |
|   if (!S)
 | |
|     return false;
 | |
| 
 | |
|   if (const auto *Ex = dyn_cast<Expr>(S))
 | |
|     S = Ex->IgnoreImplicit();
 | |
| 
 | |
|   if (const auto *Ex = dyn_cast<Expr>(S))
 | |
|     S = Ex->IgnoreCasts();
 | |
| 
 | |
|   // Special case looking for the sigil '()' around an integer literal.
 | |
|   if (const ParenExpr *PE = dyn_cast<ParenExpr>(S))
 | |
|     if (!PE->getBeginLoc().isMacroID())
 | |
|       return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal,
 | |
|                                   IncludeIntegers, true);
 | |
| 
 | |
|   if (const Expr *Ex = dyn_cast<Expr>(S))
 | |
|     S = Ex->IgnoreCasts();
 | |
| 
 | |
|   bool IgnoreYES_NO = false;
 | |
| 
 | |
|   switch (S->getStmtClass()) {
 | |
|     case Stmt::CallExprClass: {
 | |
|       const FunctionDecl *Callee =
 | |
|         dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl());
 | |
|       return Callee ? Callee->isConstexpr() : false;
 | |
|     }
 | |
|     case Stmt::DeclRefExprClass:
 | |
|       return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP);
 | |
|     case Stmt::ObjCBoolLiteralExprClass:
 | |
|       IgnoreYES_NO = true;
 | |
|       LLVM_FALLTHROUGH;
 | |
|     case Stmt::CXXBoolLiteralExprClass:
 | |
|     case Stmt::IntegerLiteralClass: {
 | |
|       const Expr *E = cast<Expr>(S);
 | |
|       if (IncludeIntegers) {
 | |
|         if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid())
 | |
|           *SilenceableCondVal = E->getSourceRange();
 | |
|         return WrappedInParens || isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO);
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
|     case Stmt::MemberExprClass:
 | |
|       return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP);
 | |
|     case Stmt::UnaryExprOrTypeTraitExprClass:
 | |
|       return true;
 | |
|     case Stmt::BinaryOperatorClass: {
 | |
|       const BinaryOperator *B = cast<BinaryOperator>(S);
 | |
|       // Only include raw integers (not enums) as configuration
 | |
|       // values if they are used in a logical or comparison operator
 | |
|       // (not arithmetic).
 | |
|       IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp());
 | |
|       return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal,
 | |
|                                   IncludeIntegers) ||
 | |
|              isConfigurationValue(B->getRHS(), PP, SilenceableCondVal,
 | |
|                                   IncludeIntegers);
 | |
|     }
 | |
|     case Stmt::UnaryOperatorClass: {
 | |
|       const UnaryOperator *UO = cast<UnaryOperator>(S);
 | |
|       if (UO->getOpcode() != UO_LNot && UO->getOpcode() != UO_Minus)
 | |
|         return false;
 | |
|       bool SilenceableCondValNotSet =
 | |
|           SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid();
 | |
|       bool IsSubExprConfigValue =
 | |
|           isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal,
 | |
|                                IncludeIntegers, WrappedInParens);
 | |
|       // Update the silenceable condition value source range only if the range
 | |
|       // was set directly by the child expression.
 | |
|       if (SilenceableCondValNotSet &&
 | |
|           SilenceableCondVal->getBegin().isValid() &&
 | |
|           *SilenceableCondVal ==
 | |
|               UO->getSubExpr()->IgnoreCasts()->getSourceRange())
 | |
|         *SilenceableCondVal = UO->getSourceRange();
 | |
|       return IsSubExprConfigValue;
 | |
|     }
 | |
|     default:
 | |
|       return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) {
 | |
|   if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D))
 | |
|     return isConfigurationValue(ED->getInitExpr(), PP);
 | |
|   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
 | |
|     // As a heuristic, treat globals as configuration values.  Note
 | |
|     // that we only will get here if Sema evaluated this
 | |
|     // condition to a constant expression, which means the global
 | |
|     // had to be declared in a way to be a truly constant value.
 | |
|     // We could generalize this to local variables, but it isn't
 | |
|     // clear if those truly represent configuration values that
 | |
|     // gate unreachable code.
 | |
|     if (!VD->hasLocalStorage())
 | |
|       return true;
 | |
| 
 | |
|     // As a heuristic, locals that have been marked 'const' explicitly
 | |
|     // can be treated as configuration values as well.
 | |
|     return VD->getType().isLocalConstQualified();
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Returns true if we should always explore all successors of a block.
 | |
| static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B,
 | |
|                                              Preprocessor &PP) {
 | |
|   if (const Stmt *Term = B->getTerminatorStmt()) {
 | |
|     if (isa<SwitchStmt>(Term))
 | |
|       return true;
 | |
|     // Specially handle '||' and '&&'.
 | |
|     if (isa<BinaryOperator>(Term)) {
 | |
|       return isConfigurationValue(Term, PP);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false);
 | |
|   return isConfigurationValue(Cond, PP);
 | |
| }
 | |
| 
 | |
| static unsigned scanFromBlock(const CFGBlock *Start,
 | |
|                               llvm::BitVector &Reachable,
 | |
|                               Preprocessor *PP,
 | |
|                               bool IncludeSometimesUnreachableEdges) {
 | |
|   unsigned count = 0;
 | |
| 
 | |
|   // Prep work queue
 | |
|   SmallVector<const CFGBlock*, 32> WL;
 | |
| 
 | |
|   // The entry block may have already been marked reachable
 | |
|   // by the caller.
 | |
|   if (!Reachable[Start->getBlockID()]) {
 | |
|     ++count;
 | |
|     Reachable[Start->getBlockID()] = true;
 | |
|   }
 | |
| 
 | |
|   WL.push_back(Start);
 | |
| 
 | |
|   // Find the reachable blocks from 'Start'.
 | |
|   while (!WL.empty()) {
 | |
|     const CFGBlock *item = WL.pop_back_val();
 | |
| 
 | |
|     // There are cases where we want to treat all successors as reachable.
 | |
|     // The idea is that some "sometimes unreachable" code is not interesting,
 | |
|     // and that we should forge ahead and explore those branches anyway.
 | |
|     // This allows us to potentially uncover some "always unreachable" code
 | |
|     // within the "sometimes unreachable" code.
 | |
|     // Look at the successors and mark then reachable.
 | |
|     Optional<bool> TreatAllSuccessorsAsReachable;
 | |
|     if (!IncludeSometimesUnreachableEdges)
 | |
|       TreatAllSuccessorsAsReachable = false;
 | |
| 
 | |
|     for (CFGBlock::const_succ_iterator I = item->succ_begin(),
 | |
|          E = item->succ_end(); I != E; ++I) {
 | |
|       const CFGBlock *B = *I;
 | |
|       if (!B) do {
 | |
|         const CFGBlock *UB = I->getPossiblyUnreachableBlock();
 | |
|         if (!UB)
 | |
|           break;
 | |
| 
 | |
|         if (!TreatAllSuccessorsAsReachable.hasValue()) {
 | |
|           assert(PP);
 | |
|           TreatAllSuccessorsAsReachable =
 | |
|             shouldTreatSuccessorsAsReachable(item, *PP);
 | |
|         }
 | |
| 
 | |
|         if (TreatAllSuccessorsAsReachable.getValue()) {
 | |
|           B = UB;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       while (false);
 | |
| 
 | |
|       if (B) {
 | |
|         unsigned blockID = B->getBlockID();
 | |
|         if (!Reachable[blockID]) {
 | |
|           Reachable.set(blockID);
 | |
|           WL.push_back(B);
 | |
|           ++count;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return count;
 | |
| }
 | |
| 
 | |
| static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start,
 | |
|                                             Preprocessor &PP,
 | |
|                                             llvm::BitVector &Reachable) {
 | |
|   return scanFromBlock(Start, Reachable, &PP, true);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Dead Code Scanner.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   class DeadCodeScan {
 | |
|     llvm::BitVector Visited;
 | |
|     llvm::BitVector &Reachable;
 | |
|     SmallVector<const CFGBlock *, 10> WorkList;
 | |
|     Preprocessor &PP;
 | |
|     ASTContext &C;
 | |
| 
 | |
|     typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12>
 | |
|     DeferredLocsTy;
 | |
| 
 | |
|     DeferredLocsTy DeferredLocs;
 | |
| 
 | |
|   public:
 | |
|     DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP, ASTContext &C)
 | |
|     : Visited(reachable.size()),
 | |
|       Reachable(reachable),
 | |
|       PP(PP), C(C) {}
 | |
| 
 | |
|     void enqueue(const CFGBlock *block);
 | |
|     unsigned scanBackwards(const CFGBlock *Start,
 | |
|     clang::reachable_code::Callback &CB);
 | |
| 
 | |
|     bool isDeadCodeRoot(const CFGBlock *Block);
 | |
| 
 | |
|     const Stmt *findDeadCode(const CFGBlock *Block);
 | |
| 
 | |
|     void reportDeadCode(const CFGBlock *B,
 | |
|                         const Stmt *S,
 | |
|                         clang::reachable_code::Callback &CB);
 | |
|   };
 | |
| }
 | |
| 
 | |
| void DeadCodeScan::enqueue(const CFGBlock *block) {
 | |
|   unsigned blockID = block->getBlockID();
 | |
|   if (Reachable[blockID] || Visited[blockID])
 | |
|     return;
 | |
|   Visited[blockID] = true;
 | |
|   WorkList.push_back(block);
 | |
| }
 | |
| 
 | |
| bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) {
 | |
|   bool isDeadRoot = true;
 | |
| 
 | |
|   for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
 | |
|        E = Block->pred_end(); I != E; ++I) {
 | |
|     if (const CFGBlock *PredBlock = *I) {
 | |
|       unsigned blockID = PredBlock->getBlockID();
 | |
|       if (Visited[blockID]) {
 | |
|         isDeadRoot = false;
 | |
|         continue;
 | |
|       }
 | |
|       if (!Reachable[blockID]) {
 | |
|         isDeadRoot = false;
 | |
|         Visited[blockID] = true;
 | |
|         WorkList.push_back(PredBlock);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return isDeadRoot;
 | |
| }
 | |
| 
 | |
| static bool isValidDeadStmt(const Stmt *S) {
 | |
|   if (S->getBeginLoc().isInvalid())
 | |
|     return false;
 | |
|   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S))
 | |
|     return BO->getOpcode() != BO_Comma;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) {
 | |
|   for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I)
 | |
|     if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
 | |
|       const Stmt *S = CS->getStmt();
 | |
|       if (isValidDeadStmt(S))
 | |
|         return S;
 | |
|     }
 | |
| 
 | |
|   CFGTerminator T = Block->getTerminator();
 | |
|   if (T.isStmtBranch()) {
 | |
|     const Stmt *S = T.getStmt();
 | |
|     if (S && isValidDeadStmt(S))
 | |
|       return S;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1,
 | |
|                   const std::pair<const CFGBlock *, const Stmt *> *p2) {
 | |
|   if (p1->second->getBeginLoc() < p2->second->getBeginLoc())
 | |
|     return -1;
 | |
|   if (p2->second->getBeginLoc() < p1->second->getBeginLoc())
 | |
|     return 1;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start,
 | |
|                                      clang::reachable_code::Callback &CB) {
 | |
| 
 | |
|   unsigned count = 0;
 | |
|   enqueue(Start);
 | |
| 
 | |
|   while (!WorkList.empty()) {
 | |
|     const CFGBlock *Block = WorkList.pop_back_val();
 | |
| 
 | |
|     // It is possible that this block has been marked reachable after
 | |
|     // it was enqueued.
 | |
|     if (Reachable[Block->getBlockID()])
 | |
|       continue;
 | |
| 
 | |
|     // Look for any dead code within the block.
 | |
|     const Stmt *S = findDeadCode(Block);
 | |
| 
 | |
|     if (!S) {
 | |
|       // No dead code.  Possibly an empty block.  Look at dead predecessors.
 | |
|       for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
 | |
|            E = Block->pred_end(); I != E; ++I) {
 | |
|         if (const CFGBlock *predBlock = *I)
 | |
|           enqueue(predBlock);
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Specially handle macro-expanded code.
 | |
|     if (S->getBeginLoc().isMacroID()) {
 | |
|       count += scanMaybeReachableFromBlock(Block, PP, Reachable);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (isDeadCodeRoot(Block)) {
 | |
|       reportDeadCode(Block, S, CB);
 | |
|       count += scanMaybeReachableFromBlock(Block, PP, Reachable);
 | |
|     }
 | |
|     else {
 | |
|       // Record this statement as the possibly best location in a
 | |
|       // strongly-connected component of dead code for emitting a
 | |
|       // warning.
 | |
|       DeferredLocs.push_back(std::make_pair(Block, S));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we didn't find a dead root, then report the dead code with the
 | |
|   // earliest location.
 | |
|   if (!DeferredLocs.empty()) {
 | |
|     llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp);
 | |
|     for (DeferredLocsTy::iterator I = DeferredLocs.begin(),
 | |
|          E = DeferredLocs.end(); I != E; ++I) {
 | |
|       const CFGBlock *Block = I->first;
 | |
|       if (Reachable[Block->getBlockID()])
 | |
|         continue;
 | |
|       reportDeadCode(Block, I->second, CB);
 | |
|       count += scanMaybeReachableFromBlock(Block, PP, Reachable);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return count;
 | |
| }
 | |
| 
 | |
| static SourceLocation GetUnreachableLoc(const Stmt *S,
 | |
|                                         SourceRange &R1,
 | |
|                                         SourceRange &R2) {
 | |
|   R1 = R2 = SourceRange();
 | |
| 
 | |
|   if (const Expr *Ex = dyn_cast<Expr>(S))
 | |
|     S = Ex->IgnoreParenImpCasts();
 | |
| 
 | |
|   switch (S->getStmtClass()) {
 | |
|     case Expr::BinaryOperatorClass: {
 | |
|       const BinaryOperator *BO = cast<BinaryOperator>(S);
 | |
|       return BO->getOperatorLoc();
 | |
|     }
 | |
|     case Expr::UnaryOperatorClass: {
 | |
|       const UnaryOperator *UO = cast<UnaryOperator>(S);
 | |
|       R1 = UO->getSubExpr()->getSourceRange();
 | |
|       return UO->getOperatorLoc();
 | |
|     }
 | |
|     case Expr::CompoundAssignOperatorClass: {
 | |
|       const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S);
 | |
|       R1 = CAO->getLHS()->getSourceRange();
 | |
|       R2 = CAO->getRHS()->getSourceRange();
 | |
|       return CAO->getOperatorLoc();
 | |
|     }
 | |
|     case Expr::BinaryConditionalOperatorClass:
 | |
|     case Expr::ConditionalOperatorClass: {
 | |
|       const AbstractConditionalOperator *CO =
 | |
|       cast<AbstractConditionalOperator>(S);
 | |
|       return CO->getQuestionLoc();
 | |
|     }
 | |
|     case Expr::MemberExprClass: {
 | |
|       const MemberExpr *ME = cast<MemberExpr>(S);
 | |
|       R1 = ME->getSourceRange();
 | |
|       return ME->getMemberLoc();
 | |
|     }
 | |
|     case Expr::ArraySubscriptExprClass: {
 | |
|       const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S);
 | |
|       R1 = ASE->getLHS()->getSourceRange();
 | |
|       R2 = ASE->getRHS()->getSourceRange();
 | |
|       return ASE->getRBracketLoc();
 | |
|     }
 | |
|     case Expr::CStyleCastExprClass: {
 | |
|       const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S);
 | |
|       R1 = CSC->getSubExpr()->getSourceRange();
 | |
|       return CSC->getLParenLoc();
 | |
|     }
 | |
|     case Expr::CXXFunctionalCastExprClass: {
 | |
|       const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S);
 | |
|       R1 = CE->getSubExpr()->getSourceRange();
 | |
|       return CE->getBeginLoc();
 | |
|     }
 | |
|     case Stmt::CXXTryStmtClass: {
 | |
|       return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc();
 | |
|     }
 | |
|     case Expr::ObjCBridgedCastExprClass: {
 | |
|       const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S);
 | |
|       R1 = CSC->getSubExpr()->getSourceRange();
 | |
|       return CSC->getLParenLoc();
 | |
|     }
 | |
|     default: ;
 | |
|   }
 | |
|   R1 = S->getSourceRange();
 | |
|   return S->getBeginLoc();
 | |
| }
 | |
| 
 | |
| void DeadCodeScan::reportDeadCode(const CFGBlock *B,
 | |
|                                   const Stmt *S,
 | |
|                                   clang::reachable_code::Callback &CB) {
 | |
|   // Classify the unreachable code found, or suppress it in some cases.
 | |
|   reachable_code::UnreachableKind UK = reachable_code::UK_Other;
 | |
| 
 | |
|   if (isa<BreakStmt>(S)) {
 | |
|     UK = reachable_code::UK_Break;
 | |
|   } else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S) ||
 | |
|              isBuiltinAssumeFalse(B, S, C)) {
 | |
|     return;
 | |
|   }
 | |
|   else if (isDeadReturn(B, S)) {
 | |
|     UK = reachable_code::UK_Return;
 | |
|   }
 | |
| 
 | |
|   SourceRange SilenceableCondVal;
 | |
| 
 | |
|   if (UK == reachable_code::UK_Other) {
 | |
|     // Check if the dead code is part of the "loop target" of
 | |
|     // a for/for-range loop.  This is the block that contains
 | |
|     // the increment code.
 | |
|     if (const Stmt *LoopTarget = B->getLoopTarget()) {
 | |
|       SourceLocation Loc = LoopTarget->getBeginLoc();
 | |
|       SourceRange R1(Loc, Loc), R2;
 | |
| 
 | |
|       if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) {
 | |
|         const Expr *Inc = FS->getInc();
 | |
|         Loc = Inc->getBeginLoc();
 | |
|         R2 = Inc->getSourceRange();
 | |
|       }
 | |
| 
 | |
|       CB.HandleUnreachable(reachable_code::UK_Loop_Increment,
 | |
|                            Loc, SourceRange(), SourceRange(Loc, Loc), R2);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Check if the dead block has a predecessor whose branch has
 | |
|     // a configuration value that *could* be modified to
 | |
|     // silence the warning.
 | |
|     CFGBlock::const_pred_iterator PI = B->pred_begin();
 | |
|     if (PI != B->pred_end()) {
 | |
|       if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) {
 | |
|         const Stmt *TermCond =
 | |
|             PredBlock->getTerminatorCondition(/* strip parens */ false);
 | |
|         isConfigurationValue(TermCond, PP, &SilenceableCondVal);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SourceRange R1, R2;
 | |
|   SourceLocation Loc = GetUnreachableLoc(S, R1, R2);
 | |
|   CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Reachability APIs.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace clang { namespace reachable_code {
 | |
| 
 | |
| void Callback::anchor() { }
 | |
| 
 | |
| unsigned ScanReachableFromBlock(const CFGBlock *Start,
 | |
|                                 llvm::BitVector &Reachable) {
 | |
|   return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false);
 | |
| }
 | |
| 
 | |
| void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP,
 | |
|                          Callback &CB) {
 | |
| 
 | |
|   CFG *cfg = AC.getCFG();
 | |
|   if (!cfg)
 | |
|     return;
 | |
| 
 | |
|   // Scan for reachable blocks from the entrance of the CFG.
 | |
|   // If there are no unreachable blocks, we're done.
 | |
|   llvm::BitVector reachable(cfg->getNumBlockIDs());
 | |
|   unsigned numReachable =
 | |
|     scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable);
 | |
|   if (numReachable == cfg->getNumBlockIDs())
 | |
|     return;
 | |
| 
 | |
|   // If there aren't explicit EH edges, we should include the 'try' dispatch
 | |
|   // blocks as roots.
 | |
|   if (!AC.getCFGBuildOptions().AddEHEdges) {
 | |
|     for (CFG::try_block_iterator I = cfg->try_blocks_begin(),
 | |
|          E = cfg->try_blocks_end() ; I != E; ++I) {
 | |
|       numReachable += scanMaybeReachableFromBlock(*I, PP, reachable);
 | |
|     }
 | |
|     if (numReachable == cfg->getNumBlockIDs())
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // There are some unreachable blocks.  We need to find the root blocks that
 | |
|   // contain code that should be considered unreachable.
 | |
|   for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
 | |
|     const CFGBlock *block = *I;
 | |
|     // A block may have been marked reachable during this loop.
 | |
|     if (reachable[block->getBlockID()])
 | |
|       continue;
 | |
| 
 | |
|     DeadCodeScan DS(reachable, PP, AC.getASTContext());
 | |
|     numReachable += DS.scanBackwards(block, CB);
 | |
| 
 | |
|     if (numReachable == cfg->getNumBlockIDs())
 | |
|       return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| }} // end namespace clang::reachable_code
 |