forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			974 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			974 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- ThreadSafetyCommon.cpp ---------------------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Implementation of the interfaces declared in ThreadSafetyCommon.h
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/AST/Decl.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclGroup.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/OperationKinds.h"
 | |
| #include "clang/AST/Stmt.h"
 | |
| #include "clang/AST/Type.h"
 | |
| #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
 | |
| #include "clang/Analysis/CFG.h"
 | |
| #include "clang/Basic/LLVM.h"
 | |
| #include "clang/Basic/OperatorKinds.h"
 | |
| #include "clang/Basic/Specifiers.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <string>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace threadSafety;
 | |
| 
 | |
| // From ThreadSafetyUtil.h
 | |
| std::string threadSafety::getSourceLiteralString(const Expr *CE) {
 | |
|   switch (CE->getStmtClass()) {
 | |
|     case Stmt::IntegerLiteralClass:
 | |
|       return cast<IntegerLiteral>(CE)->getValue().toString(10, true);
 | |
|     case Stmt::StringLiteralClass: {
 | |
|       std::string ret("\"");
 | |
|       ret += cast<StringLiteral>(CE)->getString();
 | |
|       ret += "\"";
 | |
|       return ret;
 | |
|     }
 | |
|     case Stmt::CharacterLiteralClass:
 | |
|     case Stmt::CXXNullPtrLiteralExprClass:
 | |
|     case Stmt::GNUNullExprClass:
 | |
|     case Stmt::CXXBoolLiteralExprClass:
 | |
|     case Stmt::FloatingLiteralClass:
 | |
|     case Stmt::ImaginaryLiteralClass:
 | |
|     case Stmt::ObjCStringLiteralClass:
 | |
|     default:
 | |
|       return "#lit";
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Return true if E is a variable that points to an incomplete Phi node.
 | |
| static bool isIncompletePhi(const til::SExpr *E) {
 | |
|   if (const auto *Ph = dyn_cast<til::Phi>(E))
 | |
|     return Ph->status() == til::Phi::PH_Incomplete;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| using CallingContext = SExprBuilder::CallingContext;
 | |
| 
 | |
| til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) {
 | |
|   auto It = SMap.find(S);
 | |
|   if (It != SMap.end())
 | |
|     return It->second;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) {
 | |
|   Walker.walk(*this);
 | |
|   return Scfg;
 | |
| }
 | |
| 
 | |
| static bool isCalleeArrow(const Expr *E) {
 | |
|   const auto *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
 | |
|   return ME ? ME->isArrow() : false;
 | |
| }
 | |
| 
 | |
| /// Translate a clang expression in an attribute to a til::SExpr.
 | |
| /// Constructs the context from D, DeclExp, and SelfDecl.
 | |
| ///
 | |
| /// \param AttrExp The expression to translate.
 | |
| /// \param D       The declaration to which the attribute is attached.
 | |
| /// \param DeclExp An expression involving the Decl to which the attribute
 | |
| ///                is attached.  E.g. the call to a function.
 | |
| CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
 | |
|                                                const NamedDecl *D,
 | |
|                                                const Expr *DeclExp,
 | |
|                                                VarDecl *SelfDecl) {
 | |
|   // If we are processing a raw attribute expression, with no substitutions.
 | |
|   if (!DeclExp)
 | |
|     return translateAttrExpr(AttrExp, nullptr);
 | |
| 
 | |
|   CallingContext Ctx(nullptr, D);
 | |
| 
 | |
|   // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
 | |
|   // for formal parameters when we call buildMutexID later.
 | |
|   if (const auto *ME = dyn_cast<MemberExpr>(DeclExp)) {
 | |
|     Ctx.SelfArg   = ME->getBase();
 | |
|     Ctx.SelfArrow = ME->isArrow();
 | |
|   } else if (const auto *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
 | |
|     Ctx.SelfArg   = CE->getImplicitObjectArgument();
 | |
|     Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
 | |
|     Ctx.NumArgs   = CE->getNumArgs();
 | |
|     Ctx.FunArgs   = CE->getArgs();
 | |
|   } else if (const auto *CE = dyn_cast<CallExpr>(DeclExp)) {
 | |
|     Ctx.NumArgs = CE->getNumArgs();
 | |
|     Ctx.FunArgs = CE->getArgs();
 | |
|   } else if (const auto *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
 | |
|     Ctx.SelfArg = nullptr;  // Will be set below
 | |
|     Ctx.NumArgs = CE->getNumArgs();
 | |
|     Ctx.FunArgs = CE->getArgs();
 | |
|   } else if (D && isa<CXXDestructorDecl>(D)) {
 | |
|     // There's no such thing as a "destructor call" in the AST.
 | |
|     Ctx.SelfArg = DeclExp;
 | |
|   }
 | |
| 
 | |
|   // Hack to handle constructors, where self cannot be recovered from
 | |
|   // the expression.
 | |
|   if (SelfDecl && !Ctx.SelfArg) {
 | |
|     DeclRefExpr SelfDRE(SelfDecl->getASTContext(), SelfDecl, false,
 | |
|                         SelfDecl->getType(), VK_LValue,
 | |
|                         SelfDecl->getLocation());
 | |
|     Ctx.SelfArg = &SelfDRE;
 | |
| 
 | |
|     // If the attribute has no arguments, then assume the argument is "this".
 | |
|     if (!AttrExp)
 | |
|       return translateAttrExpr(Ctx.SelfArg, nullptr);
 | |
|     else  // For most attributes.
 | |
|       return translateAttrExpr(AttrExp, &Ctx);
 | |
|   }
 | |
| 
 | |
|   // If the attribute has no arguments, then assume the argument is "this".
 | |
|   if (!AttrExp)
 | |
|     return translateAttrExpr(Ctx.SelfArg, nullptr);
 | |
|   else  // For most attributes.
 | |
|     return translateAttrExpr(AttrExp, &Ctx);
 | |
| }
 | |
| 
 | |
| /// Translate a clang expression in an attribute to a til::SExpr.
 | |
| // This assumes a CallingContext has already been created.
 | |
| CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
 | |
|                                                CallingContext *Ctx) {
 | |
|   if (!AttrExp)
 | |
|     return CapabilityExpr(nullptr, false);
 | |
| 
 | |
|   if (const auto* SLit = dyn_cast<StringLiteral>(AttrExp)) {
 | |
|     if (SLit->getString() == StringRef("*"))
 | |
|       // The "*" expr is a universal lock, which essentially turns off
 | |
|       // checks until it is removed from the lockset.
 | |
|       return CapabilityExpr(new (Arena) til::Wildcard(), false);
 | |
|     else
 | |
|       // Ignore other string literals for now.
 | |
|       return CapabilityExpr(nullptr, false);
 | |
|   }
 | |
| 
 | |
|   bool Neg = false;
 | |
|   if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) {
 | |
|     if (OE->getOperator() == OO_Exclaim) {
 | |
|       Neg = true;
 | |
|       AttrExp = OE->getArg(0);
 | |
|     }
 | |
|   }
 | |
|   else if (const auto *UO = dyn_cast<UnaryOperator>(AttrExp)) {
 | |
|     if (UO->getOpcode() == UO_LNot) {
 | |
|       Neg = true;
 | |
|       AttrExp = UO->getSubExpr();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   til::SExpr *E = translate(AttrExp, Ctx);
 | |
| 
 | |
|   // Trap mutex expressions like nullptr, or 0.
 | |
|   // Any literal value is nonsense.
 | |
|   if (!E || isa<til::Literal>(E))
 | |
|     return CapabilityExpr(nullptr, false);
 | |
| 
 | |
|   // Hack to deal with smart pointers -- strip off top-level pointer casts.
 | |
|   if (const auto *CE = dyn_cast_or_null<til::Cast>(E)) {
 | |
|     if (CE->castOpcode() == til::CAST_objToPtr)
 | |
|       return CapabilityExpr(CE->expr(), Neg);
 | |
|   }
 | |
|   return CapabilityExpr(E, Neg);
 | |
| }
 | |
| 
 | |
| // Translate a clang statement or expression to a TIL expression.
 | |
| // Also performs substitution of variables; Ctx provides the context.
 | |
| // Dispatches on the type of S.
 | |
| til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) {
 | |
|   if (!S)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check if S has already been translated and cached.
 | |
|   // This handles the lookup of SSA names for DeclRefExprs here.
 | |
|   if (til::SExpr *E = lookupStmt(S))
 | |
|     return E;
 | |
| 
 | |
|   switch (S->getStmtClass()) {
 | |
|   case Stmt::DeclRefExprClass:
 | |
|     return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
 | |
|   case Stmt::CXXThisExprClass:
 | |
|     return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
 | |
|   case Stmt::MemberExprClass:
 | |
|     return translateMemberExpr(cast<MemberExpr>(S), Ctx);
 | |
|   case Stmt::ObjCIvarRefExprClass:
 | |
|     return translateObjCIVarRefExpr(cast<ObjCIvarRefExpr>(S), Ctx);
 | |
|   case Stmt::CallExprClass:
 | |
|     return translateCallExpr(cast<CallExpr>(S), Ctx);
 | |
|   case Stmt::CXXMemberCallExprClass:
 | |
|     return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
 | |
|   case Stmt::CXXOperatorCallExprClass:
 | |
|     return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
 | |
|   case Stmt::UnaryOperatorClass:
 | |
|     return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
 | |
|   case Stmt::BinaryOperatorClass:
 | |
|   case Stmt::CompoundAssignOperatorClass:
 | |
|     return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);
 | |
| 
 | |
|   case Stmt::ArraySubscriptExprClass:
 | |
|     return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
 | |
|   case Stmt::ConditionalOperatorClass:
 | |
|     return translateAbstractConditionalOperator(
 | |
|              cast<ConditionalOperator>(S), Ctx);
 | |
|   case Stmt::BinaryConditionalOperatorClass:
 | |
|     return translateAbstractConditionalOperator(
 | |
|              cast<BinaryConditionalOperator>(S), Ctx);
 | |
| 
 | |
|   // We treat these as no-ops
 | |
|   case Stmt::ConstantExprClass:
 | |
|     return translate(cast<ConstantExpr>(S)->getSubExpr(), Ctx);
 | |
|   case Stmt::ParenExprClass:
 | |
|     return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
 | |
|   case Stmt::ExprWithCleanupsClass:
 | |
|     return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
 | |
|   case Stmt::CXXBindTemporaryExprClass:
 | |
|     return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
 | |
|   case Stmt::MaterializeTemporaryExprClass:
 | |
|     return translate(cast<MaterializeTemporaryExpr>(S)->getSubExpr(), Ctx);
 | |
| 
 | |
|   // Collect all literals
 | |
|   case Stmt::CharacterLiteralClass:
 | |
|   case Stmt::CXXNullPtrLiteralExprClass:
 | |
|   case Stmt::GNUNullExprClass:
 | |
|   case Stmt::CXXBoolLiteralExprClass:
 | |
|   case Stmt::FloatingLiteralClass:
 | |
|   case Stmt::ImaginaryLiteralClass:
 | |
|   case Stmt::IntegerLiteralClass:
 | |
|   case Stmt::StringLiteralClass:
 | |
|   case Stmt::ObjCStringLiteralClass:
 | |
|     return new (Arena) til::Literal(cast<Expr>(S));
 | |
| 
 | |
|   case Stmt::DeclStmtClass:
 | |
|     return translateDeclStmt(cast<DeclStmt>(S), Ctx);
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
|   if (const auto *CE = dyn_cast<CastExpr>(S))
 | |
|     return translateCastExpr(CE, Ctx);
 | |
| 
 | |
|   return new (Arena) til::Undefined(S);
 | |
| }
 | |
| 
 | |
| til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
 | |
|                                                CallingContext *Ctx) {
 | |
|   const auto *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
 | |
| 
 | |
|   // Function parameters require substitution and/or renaming.
 | |
|   if (const auto *PV = dyn_cast_or_null<ParmVarDecl>(VD)) {
 | |
|     unsigned I = PV->getFunctionScopeIndex();
 | |
|     const DeclContext *D = PV->getDeclContext();
 | |
|     if (Ctx && Ctx->FunArgs) {
 | |
|       const Decl *Canonical = Ctx->AttrDecl->getCanonicalDecl();
 | |
|       if (isa<FunctionDecl>(D)
 | |
|               ? (cast<FunctionDecl>(D)->getCanonicalDecl() == Canonical)
 | |
|               : (cast<ObjCMethodDecl>(D)->getCanonicalDecl() == Canonical)) {
 | |
|         // Substitute call arguments for references to function parameters
 | |
|         assert(I < Ctx->NumArgs);
 | |
|         return translate(Ctx->FunArgs[I], Ctx->Prev);
 | |
|       }
 | |
|     }
 | |
|     // Map the param back to the param of the original function declaration
 | |
|     // for consistent comparisons.
 | |
|     VD = isa<FunctionDecl>(D)
 | |
|              ? cast<FunctionDecl>(D)->getCanonicalDecl()->getParamDecl(I)
 | |
|              : cast<ObjCMethodDecl>(D)->getCanonicalDecl()->getParamDecl(I);
 | |
|   }
 | |
| 
 | |
|   // For non-local variables, treat it as a reference to a named object.
 | |
|   return new (Arena) til::LiteralPtr(VD);
 | |
| }
 | |
| 
 | |
| til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
 | |
|                                                CallingContext *Ctx) {
 | |
|   // Substitute for 'this'
 | |
|   if (Ctx && Ctx->SelfArg)
 | |
|     return translate(Ctx->SelfArg, Ctx->Prev);
 | |
|   assert(SelfVar && "We have no variable for 'this'!");
 | |
|   return SelfVar;
 | |
| }
 | |
| 
 | |
| static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
 | |
|   if (const auto *V = dyn_cast<til::Variable>(E))
 | |
|     return V->clangDecl();
 | |
|   if (const auto *Ph = dyn_cast<til::Phi>(E))
 | |
|     return Ph->clangDecl();
 | |
|   if (const auto *P = dyn_cast<til::Project>(E))
 | |
|     return P->clangDecl();
 | |
|   if (const auto *L = dyn_cast<til::LiteralPtr>(E))
 | |
|     return L->clangDecl();
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static bool hasAnyPointerType(const til::SExpr *E) {
 | |
|   auto *VD = getValueDeclFromSExpr(E);
 | |
|   if (VD && VD->getType()->isAnyPointerType())
 | |
|     return true;
 | |
|   if (const auto *C = dyn_cast<til::Cast>(E))
 | |
|     return C->castOpcode() == til::CAST_objToPtr;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Grab the very first declaration of virtual method D
 | |
| static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) {
 | |
|   while (true) {
 | |
|     D = D->getCanonicalDecl();
 | |
|     auto OverriddenMethods = D->overridden_methods();
 | |
|     if (OverriddenMethods.begin() == OverriddenMethods.end())
 | |
|       return D;  // Method does not override anything
 | |
|     // FIXME: this does not work with multiple inheritance.
 | |
|     D = *OverriddenMethods.begin();
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
 | |
|                                               CallingContext *Ctx) {
 | |
|   til::SExpr *BE = translate(ME->getBase(), Ctx);
 | |
|   til::SExpr *E  = new (Arena) til::SApply(BE);
 | |
| 
 | |
|   const auto *D = cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
 | |
|   if (const auto *VD = dyn_cast<CXXMethodDecl>(D))
 | |
|     D = getFirstVirtualDecl(VD);
 | |
| 
 | |
|   til::Project *P = new (Arena) til::Project(E, D);
 | |
|   if (hasAnyPointerType(BE))
 | |
|     P->setArrow(true);
 | |
|   return P;
 | |
| }
 | |
| 
 | |
| til::SExpr *SExprBuilder::translateObjCIVarRefExpr(const ObjCIvarRefExpr *IVRE,
 | |
|                                                    CallingContext *Ctx) {
 | |
|   til::SExpr *BE = translate(IVRE->getBase(), Ctx);
 | |
|   til::SExpr *E = new (Arena) til::SApply(BE);
 | |
| 
 | |
|   const auto *D = cast<ObjCIvarDecl>(IVRE->getDecl()->getCanonicalDecl());
 | |
| 
 | |
|   til::Project *P = new (Arena) til::Project(E, D);
 | |
|   if (hasAnyPointerType(BE))
 | |
|     P->setArrow(true);
 | |
|   return P;
 | |
| }
 | |
| 
 | |
| til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
 | |
|                                             CallingContext *Ctx,
 | |
|                                             const Expr *SelfE) {
 | |
|   if (CapabilityExprMode) {
 | |
|     // Handle LOCK_RETURNED
 | |
|     if (const FunctionDecl *FD = CE->getDirectCallee()) {
 | |
|       FD = FD->getMostRecentDecl();
 | |
|       if (LockReturnedAttr *At = FD->getAttr<LockReturnedAttr>()) {
 | |
|         CallingContext LRCallCtx(Ctx);
 | |
|         LRCallCtx.AttrDecl = CE->getDirectCallee();
 | |
|         LRCallCtx.SelfArg = SelfE;
 | |
|         LRCallCtx.NumArgs = CE->getNumArgs();
 | |
|         LRCallCtx.FunArgs = CE->getArgs();
 | |
|         return const_cast<til::SExpr *>(
 | |
|             translateAttrExpr(At->getArg(), &LRCallCtx).sexpr());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   til::SExpr *E = translate(CE->getCallee(), Ctx);
 | |
|   for (const auto *Arg : CE->arguments()) {
 | |
|     til::SExpr *A = translate(Arg, Ctx);
 | |
|     E = new (Arena) til::Apply(E, A);
 | |
|   }
 | |
|   return new (Arena) til::Call(E, CE);
 | |
| }
 | |
| 
 | |
| til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
 | |
|     const CXXMemberCallExpr *ME, CallingContext *Ctx) {
 | |
|   if (CapabilityExprMode) {
 | |
|     // Ignore calls to get() on smart pointers.
 | |
|     if (ME->getMethodDecl()->getNameAsString() == "get" &&
 | |
|         ME->getNumArgs() == 0) {
 | |
|       auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
 | |
|       return new (Arena) til::Cast(til::CAST_objToPtr, E);
 | |
|       // return E;
 | |
|     }
 | |
|   }
 | |
|   return translateCallExpr(cast<CallExpr>(ME), Ctx,
 | |
|                            ME->getImplicitObjectArgument());
 | |
| }
 | |
| 
 | |
| til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
 | |
|     const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
 | |
|   if (CapabilityExprMode) {
 | |
|     // Ignore operator * and operator -> on smart pointers.
 | |
|     OverloadedOperatorKind k = OCE->getOperator();
 | |
|     if (k == OO_Star || k == OO_Arrow) {
 | |
|       auto *E = translate(OCE->getArg(0), Ctx);
 | |
|       return new (Arena) til::Cast(til::CAST_objToPtr, E);
 | |
|       // return E;
 | |
|     }
 | |
|   }
 | |
|   return translateCallExpr(cast<CallExpr>(OCE), Ctx);
 | |
| }
 | |
| 
 | |
| til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
 | |
|                                                  CallingContext *Ctx) {
 | |
|   switch (UO->getOpcode()) {
 | |
|   case UO_PostInc:
 | |
|   case UO_PostDec:
 | |
|   case UO_PreInc:
 | |
|   case UO_PreDec:
 | |
|     return new (Arena) til::Undefined(UO);
 | |
| 
 | |
|   case UO_AddrOf:
 | |
|     if (CapabilityExprMode) {
 | |
|       // interpret &Graph::mu_ as an existential.
 | |
|       if (const auto *DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
 | |
|         if (DRE->getDecl()->isCXXInstanceMember()) {
 | |
|           // This is a pointer-to-member expression, e.g. &MyClass::mu_.
 | |
|           // We interpret this syntax specially, as a wildcard.
 | |
|           auto *W = new (Arena) til::Wildcard();
 | |
|           return new (Arena) til::Project(W, DRE->getDecl());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     // otherwise, & is a no-op
 | |
|     return translate(UO->getSubExpr(), Ctx);
 | |
| 
 | |
|   // We treat these as no-ops
 | |
|   case UO_Deref:
 | |
|   case UO_Plus:
 | |
|     return translate(UO->getSubExpr(), Ctx);
 | |
| 
 | |
|   case UO_Minus:
 | |
|     return new (Arena)
 | |
|       til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx));
 | |
|   case UO_Not:
 | |
|     return new (Arena)
 | |
|       til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx));
 | |
|   case UO_LNot:
 | |
|     return new (Arena)
 | |
|       til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx));
 | |
| 
 | |
|   // Currently unsupported
 | |
|   case UO_Real:
 | |
|   case UO_Imag:
 | |
|   case UO_Extension:
 | |
|   case UO_Coawait:
 | |
|     return new (Arena) til::Undefined(UO);
 | |
|   }
 | |
|   return new (Arena) til::Undefined(UO);
 | |
| }
 | |
| 
 | |
| til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
 | |
|                                          const BinaryOperator *BO,
 | |
|                                          CallingContext *Ctx, bool Reverse) {
 | |
|    til::SExpr *E0 = translate(BO->getLHS(), Ctx);
 | |
|    til::SExpr *E1 = translate(BO->getRHS(), Ctx);
 | |
|    if (Reverse)
 | |
|      return new (Arena) til::BinaryOp(Op, E1, E0);
 | |
|    else
 | |
|      return new (Arena) til::BinaryOp(Op, E0, E1);
 | |
| }
 | |
| 
 | |
| til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
 | |
|                                              const BinaryOperator *BO,
 | |
|                                              CallingContext *Ctx,
 | |
|                                              bool Assign) {
 | |
|   const Expr *LHS = BO->getLHS();
 | |
|   const Expr *RHS = BO->getRHS();
 | |
|   til::SExpr *E0 = translate(LHS, Ctx);
 | |
|   til::SExpr *E1 = translate(RHS, Ctx);
 | |
| 
 | |
|   const ValueDecl *VD = nullptr;
 | |
|   til::SExpr *CV = nullptr;
 | |
|   if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
 | |
|     VD = DRE->getDecl();
 | |
|     CV = lookupVarDecl(VD);
 | |
|   }
 | |
| 
 | |
|   if (!Assign) {
 | |
|     til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
 | |
|     E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
 | |
|     E1 = addStatement(E1, nullptr, VD);
 | |
|   }
 | |
|   if (VD && CV)
 | |
|     return updateVarDecl(VD, E1);
 | |
|   return new (Arena) til::Store(E0, E1);
 | |
| }
 | |
| 
 | |
| til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
 | |
|                                                   CallingContext *Ctx) {
 | |
|   switch (BO->getOpcode()) {
 | |
|   case BO_PtrMemD:
 | |
|   case BO_PtrMemI:
 | |
|     return new (Arena) til::Undefined(BO);
 | |
| 
 | |
|   case BO_Mul:  return translateBinOp(til::BOP_Mul, BO, Ctx);
 | |
|   case BO_Div:  return translateBinOp(til::BOP_Div, BO, Ctx);
 | |
|   case BO_Rem:  return translateBinOp(til::BOP_Rem, BO, Ctx);
 | |
|   case BO_Add:  return translateBinOp(til::BOP_Add, BO, Ctx);
 | |
|   case BO_Sub:  return translateBinOp(til::BOP_Sub, BO, Ctx);
 | |
|   case BO_Shl:  return translateBinOp(til::BOP_Shl, BO, Ctx);
 | |
|   case BO_Shr:  return translateBinOp(til::BOP_Shr, BO, Ctx);
 | |
|   case BO_LT:   return translateBinOp(til::BOP_Lt,  BO, Ctx);
 | |
|   case BO_GT:   return translateBinOp(til::BOP_Lt,  BO, Ctx, true);
 | |
|   case BO_LE:   return translateBinOp(til::BOP_Leq, BO, Ctx);
 | |
|   case BO_GE:   return translateBinOp(til::BOP_Leq, BO, Ctx, true);
 | |
|   case BO_EQ:   return translateBinOp(til::BOP_Eq,  BO, Ctx);
 | |
|   case BO_NE:   return translateBinOp(til::BOP_Neq, BO, Ctx);
 | |
|   case BO_Cmp:  return translateBinOp(til::BOP_Cmp, BO, Ctx);
 | |
|   case BO_And:  return translateBinOp(til::BOP_BitAnd,   BO, Ctx);
 | |
|   case BO_Xor:  return translateBinOp(til::BOP_BitXor,   BO, Ctx);
 | |
|   case BO_Or:   return translateBinOp(til::BOP_BitOr,    BO, Ctx);
 | |
|   case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
 | |
|   case BO_LOr:  return translateBinOp(til::BOP_LogicOr,  BO, Ctx);
 | |
| 
 | |
|   case BO_Assign:    return translateBinAssign(til::BOP_Eq,  BO, Ctx, true);
 | |
|   case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
 | |
|   case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
 | |
|   case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
 | |
|   case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
 | |
|   case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
 | |
|   case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
 | |
|   case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
 | |
|   case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
 | |
|   case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
 | |
|   case BO_OrAssign:  return translateBinAssign(til::BOP_BitOr,  BO, Ctx);
 | |
| 
 | |
|   case BO_Comma:
 | |
|     // The clang CFG should have already processed both sides.
 | |
|     return translate(BO->getRHS(), Ctx);
 | |
|   }
 | |
|   return new (Arena) til::Undefined(BO);
 | |
| }
 | |
| 
 | |
| til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
 | |
|                                             CallingContext *Ctx) {
 | |
|   CastKind K = CE->getCastKind();
 | |
|   switch (K) {
 | |
|   case CK_LValueToRValue: {
 | |
|     if (const auto *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
 | |
|       til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
 | |
|       if (E0)
 | |
|         return E0;
 | |
|     }
 | |
|     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
 | |
|     return E0;
 | |
|     // FIXME!! -- get Load working properly
 | |
|     // return new (Arena) til::Load(E0);
 | |
|   }
 | |
|   case CK_NoOp:
 | |
|   case CK_DerivedToBase:
 | |
|   case CK_UncheckedDerivedToBase:
 | |
|   case CK_ArrayToPointerDecay:
 | |
|   case CK_FunctionToPointerDecay: {
 | |
|     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
 | |
|     return E0;
 | |
|   }
 | |
|   default: {
 | |
|     // FIXME: handle different kinds of casts.
 | |
|     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
 | |
|     if (CapabilityExprMode)
 | |
|       return E0;
 | |
|     return new (Arena) til::Cast(til::CAST_none, E0);
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| til::SExpr *
 | |
| SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
 | |
|                                           CallingContext *Ctx) {
 | |
|   til::SExpr *E0 = translate(E->getBase(), Ctx);
 | |
|   til::SExpr *E1 = translate(E->getIdx(), Ctx);
 | |
|   return new (Arena) til::ArrayIndex(E0, E1);
 | |
| }
 | |
| 
 | |
| til::SExpr *
 | |
| SExprBuilder::translateAbstractConditionalOperator(
 | |
|     const AbstractConditionalOperator *CO, CallingContext *Ctx) {
 | |
|   auto *C = translate(CO->getCond(), Ctx);
 | |
|   auto *T = translate(CO->getTrueExpr(), Ctx);
 | |
|   auto *E = translate(CO->getFalseExpr(), Ctx);
 | |
|   return new (Arena) til::IfThenElse(C, T, E);
 | |
| }
 | |
| 
 | |
| til::SExpr *
 | |
| SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
 | |
|   DeclGroupRef DGrp = S->getDeclGroup();
 | |
|   for (auto I : DGrp) {
 | |
|     if (auto *VD = dyn_cast_or_null<VarDecl>(I)) {
 | |
|       Expr *E = VD->getInit();
 | |
|       til::SExpr* SE = translate(E, Ctx);
 | |
| 
 | |
|       // Add local variables with trivial type to the variable map
 | |
|       QualType T = VD->getType();
 | |
|       if (T.isTrivialType(VD->getASTContext()))
 | |
|         return addVarDecl(VD, SE);
 | |
|       else {
 | |
|         // TODO: add alloca
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // If (E) is non-trivial, then add it to the current basic block, and
 | |
| // update the statement map so that S refers to E.  Returns a new variable
 | |
| // that refers to E.
 | |
| // If E is trivial returns E.
 | |
| til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
 | |
|                                        const ValueDecl *VD) {
 | |
|   if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
 | |
|     return E;
 | |
|   if (VD)
 | |
|     E = new (Arena) til::Variable(E, VD);
 | |
|   CurrentInstructions.push_back(E);
 | |
|   if (S)
 | |
|     insertStmt(S, E);
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| // Returns the current value of VD, if known, and nullptr otherwise.
 | |
| til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
 | |
|   auto It = LVarIdxMap.find(VD);
 | |
|   if (It != LVarIdxMap.end()) {
 | |
|     assert(CurrentLVarMap[It->second].first == VD);
 | |
|     return CurrentLVarMap[It->second].second;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // if E is a til::Variable, update its clangDecl.
 | |
| static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
 | |
|   if (!E)
 | |
|     return;
 | |
|   if (auto *V = dyn_cast<til::Variable>(E)) {
 | |
|     if (!V->clangDecl())
 | |
|       V->setClangDecl(VD);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Adds a new variable declaration.
 | |
| til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
 | |
|   maybeUpdateVD(E, VD);
 | |
|   LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
 | |
|   CurrentLVarMap.makeWritable();
 | |
|   CurrentLVarMap.push_back(std::make_pair(VD, E));
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| // Updates a current variable declaration.  (E.g. by assignment)
 | |
| til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
 | |
|   maybeUpdateVD(E, VD);
 | |
|   auto It = LVarIdxMap.find(VD);
 | |
|   if (It == LVarIdxMap.end()) {
 | |
|     til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
 | |
|     til::SExpr *St  = new (Arena) til::Store(Ptr, E);
 | |
|     return St;
 | |
|   }
 | |
|   CurrentLVarMap.makeWritable();
 | |
|   CurrentLVarMap.elem(It->second).second = E;
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| // Make a Phi node in the current block for the i^th variable in CurrentVarMap.
 | |
| // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
 | |
| // If E == null, this is a backedge and will be set later.
 | |
| void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
 | |
|   unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
 | |
|   assert(ArgIndex > 0 && ArgIndex < NPreds);
 | |
| 
 | |
|   til::SExpr *CurrE = CurrentLVarMap[i].second;
 | |
|   if (CurrE->block() == CurrentBB) {
 | |
|     // We already have a Phi node in the current block,
 | |
|     // so just add the new variable to the Phi node.
 | |
|     auto *Ph = dyn_cast<til::Phi>(CurrE);
 | |
|     assert(Ph && "Expecting Phi node.");
 | |
|     if (E)
 | |
|       Ph->values()[ArgIndex] = E;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Make a new phi node: phi(..., E)
 | |
|   // All phi args up to the current index are set to the current value.
 | |
|   til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
 | |
|   Ph->values().setValues(NPreds, nullptr);
 | |
|   for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
 | |
|     Ph->values()[PIdx] = CurrE;
 | |
|   if (E)
 | |
|     Ph->values()[ArgIndex] = E;
 | |
|   Ph->setClangDecl(CurrentLVarMap[i].first);
 | |
|   // If E is from a back-edge, or either E or CurrE are incomplete, then
 | |
|   // mark this node as incomplete; we may need to remove it later.
 | |
|   if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE))
 | |
|     Ph->setStatus(til::Phi::PH_Incomplete);
 | |
| 
 | |
|   // Add Phi node to current block, and update CurrentLVarMap[i]
 | |
|   CurrentArguments.push_back(Ph);
 | |
|   if (Ph->status() == til::Phi::PH_Incomplete)
 | |
|     IncompleteArgs.push_back(Ph);
 | |
| 
 | |
|   CurrentLVarMap.makeWritable();
 | |
|   CurrentLVarMap.elem(i).second = Ph;
 | |
| }
 | |
| 
 | |
| // Merge values from Map into the current variable map.
 | |
| // This will construct Phi nodes in the current basic block as necessary.
 | |
| void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
 | |
|   assert(CurrentBlockInfo && "Not processing a block!");
 | |
| 
 | |
|   if (!CurrentLVarMap.valid()) {
 | |
|     // Steal Map, using copy-on-write.
 | |
|     CurrentLVarMap = std::move(Map);
 | |
|     return;
 | |
|   }
 | |
|   if (CurrentLVarMap.sameAs(Map))
 | |
|     return;  // Easy merge: maps from different predecessors are unchanged.
 | |
| 
 | |
|   unsigned NPreds = CurrentBB->numPredecessors();
 | |
|   unsigned ESz = CurrentLVarMap.size();
 | |
|   unsigned MSz = Map.size();
 | |
|   unsigned Sz  = std::min(ESz, MSz);
 | |
| 
 | |
|   for (unsigned i = 0; i < Sz; ++i) {
 | |
|     if (CurrentLVarMap[i].first != Map[i].first) {
 | |
|       // We've reached the end of variables in common.
 | |
|       CurrentLVarMap.makeWritable();
 | |
|       CurrentLVarMap.downsize(i);
 | |
|       break;
 | |
|     }
 | |
|     if (CurrentLVarMap[i].second != Map[i].second)
 | |
|       makePhiNodeVar(i, NPreds, Map[i].second);
 | |
|   }
 | |
|   if (ESz > MSz) {
 | |
|     CurrentLVarMap.makeWritable();
 | |
|     CurrentLVarMap.downsize(Map.size());
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Merge a back edge into the current variable map.
 | |
| // This will create phi nodes for all variables in the variable map.
 | |
| void SExprBuilder::mergeEntryMapBackEdge() {
 | |
|   // We don't have definitions for variables on the backedge, because we
 | |
|   // haven't gotten that far in the CFG.  Thus, when encountering a back edge,
 | |
|   // we conservatively create Phi nodes for all variables.  Unnecessary Phi
 | |
|   // nodes will be marked as incomplete, and stripped out at the end.
 | |
|   //
 | |
|   // An Phi node is unnecessary if it only refers to itself and one other
 | |
|   // variable, e.g. x = Phi(y, y, x)  can be reduced to x = y.
 | |
| 
 | |
|   assert(CurrentBlockInfo && "Not processing a block!");
 | |
| 
 | |
|   if (CurrentBlockInfo->HasBackEdges)
 | |
|     return;
 | |
|   CurrentBlockInfo->HasBackEdges = true;
 | |
| 
 | |
|   CurrentLVarMap.makeWritable();
 | |
|   unsigned Sz = CurrentLVarMap.size();
 | |
|   unsigned NPreds = CurrentBB->numPredecessors();
 | |
| 
 | |
|   for (unsigned i = 0; i < Sz; ++i)
 | |
|     makePhiNodeVar(i, NPreds, nullptr);
 | |
| }
 | |
| 
 | |
| // Update the phi nodes that were initially created for a back edge
 | |
| // once the variable definitions have been computed.
 | |
| // I.e., merge the current variable map into the phi nodes for Blk.
 | |
| void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
 | |
|   til::BasicBlock *BB = lookupBlock(Blk);
 | |
|   unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
 | |
|   assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
 | |
| 
 | |
|   for (til::SExpr *PE : BB->arguments()) {
 | |
|     auto *Ph = dyn_cast_or_null<til::Phi>(PE);
 | |
|     assert(Ph && "Expecting Phi Node.");
 | |
|     assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
 | |
| 
 | |
|     til::SExpr *E = lookupVarDecl(Ph->clangDecl());
 | |
|     assert(E && "Couldn't find local variable for Phi node.");
 | |
|     Ph->values()[ArgIndex] = E;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
 | |
|                             const CFGBlock *First) {
 | |
|   // Perform initial setup operations.
 | |
|   unsigned NBlocks = Cfg->getNumBlockIDs();
 | |
|   Scfg = new (Arena) til::SCFG(Arena, NBlocks);
 | |
| 
 | |
|   // allocate all basic blocks immediately, to handle forward references.
 | |
|   BBInfo.resize(NBlocks);
 | |
|   BlockMap.resize(NBlocks, nullptr);
 | |
|   // create map from clang blockID to til::BasicBlocks
 | |
|   for (auto *B : *Cfg) {
 | |
|     auto *BB = new (Arena) til::BasicBlock(Arena);
 | |
|     BB->reserveInstructions(B->size());
 | |
|     BlockMap[B->getBlockID()] = BB;
 | |
|   }
 | |
| 
 | |
|   CurrentBB = lookupBlock(&Cfg->getEntry());
 | |
|   auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
 | |
|                                       : cast<FunctionDecl>(D)->parameters();
 | |
|   for (auto *Pm : Parms) {
 | |
|     QualType T = Pm->getType();
 | |
|     if (!T.isTrivialType(Pm->getASTContext()))
 | |
|       continue;
 | |
| 
 | |
|     // Add parameters to local variable map.
 | |
|     // FIXME: right now we emulate params with loads; that should be fixed.
 | |
|     til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
 | |
|     til::SExpr *Ld = new (Arena) til::Load(Lp);
 | |
|     til::SExpr *V  = addStatement(Ld, nullptr, Pm);
 | |
|     addVarDecl(Pm, V);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
 | |
|   // Initialize TIL basic block and add it to the CFG.
 | |
|   CurrentBB = lookupBlock(B);
 | |
|   CurrentBB->reservePredecessors(B->pred_size());
 | |
|   Scfg->add(CurrentBB);
 | |
| 
 | |
|   CurrentBlockInfo = &BBInfo[B->getBlockID()];
 | |
| 
 | |
|   // CurrentLVarMap is moved to ExitMap on block exit.
 | |
|   // FIXME: the entry block will hold function parameters.
 | |
|   // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
 | |
| }
 | |
| 
 | |
| void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
 | |
|   // Compute CurrentLVarMap on entry from ExitMaps of predecessors
 | |
| 
 | |
|   CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
 | |
|   BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
 | |
|   assert(PredInfo->UnprocessedSuccessors > 0);
 | |
| 
 | |
|   if (--PredInfo->UnprocessedSuccessors == 0)
 | |
|     mergeEntryMap(std::move(PredInfo->ExitMap));
 | |
|   else
 | |
|     mergeEntryMap(PredInfo->ExitMap.clone());
 | |
| 
 | |
|   ++CurrentBlockInfo->ProcessedPredecessors;
 | |
| }
 | |
| 
 | |
| void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
 | |
|   mergeEntryMapBackEdge();
 | |
| }
 | |
| 
 | |
| void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
 | |
|   // The merge*() methods have created arguments.
 | |
|   // Push those arguments onto the basic block.
 | |
|   CurrentBB->arguments().reserve(
 | |
|     static_cast<unsigned>(CurrentArguments.size()), Arena);
 | |
|   for (auto *A : CurrentArguments)
 | |
|     CurrentBB->addArgument(A);
 | |
| }
 | |
| 
 | |
| void SExprBuilder::handleStatement(const Stmt *S) {
 | |
|   til::SExpr *E = translate(S, nullptr);
 | |
|   addStatement(E, S);
 | |
| }
 | |
| 
 | |
| void SExprBuilder::handleDestructorCall(const VarDecl *VD,
 | |
|                                         const CXXDestructorDecl *DD) {
 | |
|   til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
 | |
|   til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
 | |
|   til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
 | |
|   til::SExpr *E = new (Arena) til::Call(Ap);
 | |
|   addStatement(E, nullptr);
 | |
| }
 | |
| 
 | |
| void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
 | |
|   CurrentBB->instructions().reserve(
 | |
|     static_cast<unsigned>(CurrentInstructions.size()), Arena);
 | |
|   for (auto *V : CurrentInstructions)
 | |
|     CurrentBB->addInstruction(V);
 | |
| 
 | |
|   // Create an appropriate terminator
 | |
|   unsigned N = B->succ_size();
 | |
|   auto It = B->succ_begin();
 | |
|   if (N == 1) {
 | |
|     til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
 | |
|     // TODO: set index
 | |
|     unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
 | |
|     auto *Tm = new (Arena) til::Goto(BB, Idx);
 | |
|     CurrentBB->setTerminator(Tm);
 | |
|   }
 | |
|   else if (N == 2) {
 | |
|     til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
 | |
|     til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
 | |
|     ++It;
 | |
|     til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
 | |
|     // FIXME: make sure these aren't critical edges.
 | |
|     auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
 | |
|     CurrentBB->setTerminator(Tm);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
 | |
|   ++CurrentBlockInfo->UnprocessedSuccessors;
 | |
| }
 | |
| 
 | |
| void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
 | |
|   mergePhiNodesBackEdge(Succ);
 | |
|   ++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
 | |
| }
 | |
| 
 | |
| void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
 | |
|   CurrentArguments.clear();
 | |
|   CurrentInstructions.clear();
 | |
|   CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
 | |
|   CurrentBB = nullptr;
 | |
|   CurrentBlockInfo = nullptr;
 | |
| }
 | |
| 
 | |
| void SExprBuilder::exitCFG(const CFGBlock *Last) {
 | |
|   for (auto *Ph : IncompleteArgs) {
 | |
|     if (Ph->status() == til::Phi::PH_Incomplete)
 | |
|       simplifyIncompleteArg(Ph);
 | |
|   }
 | |
| 
 | |
|   CurrentArguments.clear();
 | |
|   CurrentInstructions.clear();
 | |
|   IncompleteArgs.clear();
 | |
| }
 | |
| 
 | |
| /*
 | |
| namespace {
 | |
| 
 | |
| class TILPrinter :
 | |
|     public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| namespace clang {
 | |
| namespace threadSafety {
 | |
| 
 | |
| void printSCFG(CFGWalker &Walker) {
 | |
|   llvm::BumpPtrAllocator Bpa;
 | |
|   til::MemRegionRef Arena(&Bpa);
 | |
|   SExprBuilder SxBuilder(Arena);
 | |
|   til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
 | |
|   TILPrinter::print(Scfg, llvm::errs());
 | |
| }
 | |
| 
 | |
| } // namespace threadSafety
 | |
| } // namespace clang
 | |
| */
 |