forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			333 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			333 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- ThreadSafetyTIL.cpp ------------------------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
 | |
| #include "clang/Basic/LLVM.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace threadSafety;
 | |
| using namespace til;
 | |
| 
 | |
| StringRef til::getUnaryOpcodeString(TIL_UnaryOpcode Op) {
 | |
|   switch (Op) {
 | |
|     case UOP_Minus:    return "-";
 | |
|     case UOP_BitNot:   return "~";
 | |
|     case UOP_LogicNot: return "!";
 | |
|   }
 | |
|   return {};
 | |
| }
 | |
| 
 | |
| StringRef til::getBinaryOpcodeString(TIL_BinaryOpcode Op) {
 | |
|   switch (Op) {
 | |
|     case BOP_Mul:      return "*";
 | |
|     case BOP_Div:      return "/";
 | |
|     case BOP_Rem:      return "%";
 | |
|     case BOP_Add:      return "+";
 | |
|     case BOP_Sub:      return "-";
 | |
|     case BOP_Shl:      return "<<";
 | |
|     case BOP_Shr:      return ">>";
 | |
|     case BOP_BitAnd:   return "&";
 | |
|     case BOP_BitXor:   return "^";
 | |
|     case BOP_BitOr:    return "|";
 | |
|     case BOP_Eq:       return "==";
 | |
|     case BOP_Neq:      return "!=";
 | |
|     case BOP_Lt:       return "<";
 | |
|     case BOP_Leq:      return "<=";
 | |
|     case BOP_Cmp:      return "<=>";
 | |
|     case BOP_LogicAnd: return "&&";
 | |
|     case BOP_LogicOr:  return "||";
 | |
|   }
 | |
|   return {};
 | |
| }
 | |
| 
 | |
| SExpr* Future::force() {
 | |
|   Status = FS_evaluating;
 | |
|   Result = compute();
 | |
|   Status = FS_done;
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| unsigned BasicBlock::addPredecessor(BasicBlock *Pred) {
 | |
|   unsigned Idx = Predecessors.size();
 | |
|   Predecessors.reserveCheck(1, Arena);
 | |
|   Predecessors.push_back(Pred);
 | |
|   for (auto *E : Args) {
 | |
|     if (auto *Ph = dyn_cast<Phi>(E)) {
 | |
|       Ph->values().reserveCheck(1, Arena);
 | |
|       Ph->values().push_back(nullptr);
 | |
|     }
 | |
|   }
 | |
|   return Idx;
 | |
| }
 | |
| 
 | |
| void BasicBlock::reservePredecessors(unsigned NumPreds) {
 | |
|   Predecessors.reserve(NumPreds, Arena);
 | |
|   for (auto *E : Args) {
 | |
|     if (auto *Ph = dyn_cast<Phi>(E)) {
 | |
|       Ph->values().reserve(NumPreds, Arena);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // If E is a variable, then trace back through any aliases or redundant
 | |
| // Phi nodes to find the canonical definition.
 | |
| const SExpr *til::getCanonicalVal(const SExpr *E) {
 | |
|   while (true) {
 | |
|     if (const auto *V = dyn_cast<Variable>(E)) {
 | |
|       if (V->kind() == Variable::VK_Let) {
 | |
|         E = V->definition();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     if (const auto *Ph = dyn_cast<Phi>(E)) {
 | |
|       if (Ph->status() == Phi::PH_SingleVal) {
 | |
|         E = Ph->values()[0];
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| // If E is a variable, then trace back through any aliases or redundant
 | |
| // Phi nodes to find the canonical definition.
 | |
| // The non-const version will simplify incomplete Phi nodes.
 | |
| SExpr *til::simplifyToCanonicalVal(SExpr *E) {
 | |
|   while (true) {
 | |
|     if (auto *V = dyn_cast<Variable>(E)) {
 | |
|       if (V->kind() != Variable::VK_Let)
 | |
|         return V;
 | |
|       // Eliminate redundant variables, e.g. x = y, or x = 5,
 | |
|       // but keep anything more complicated.
 | |
|       if (til::ThreadSafetyTIL::isTrivial(V->definition())) {
 | |
|         E = V->definition();
 | |
|         continue;
 | |
|       }
 | |
|       return V;
 | |
|     }
 | |
|     if (auto *Ph = dyn_cast<Phi>(E)) {
 | |
|       if (Ph->status() == Phi::PH_Incomplete)
 | |
|         simplifyIncompleteArg(Ph);
 | |
|       // Eliminate redundant Phi nodes.
 | |
|       if (Ph->status() == Phi::PH_SingleVal) {
 | |
|         E = Ph->values()[0];
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     return E;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Trace the arguments of an incomplete Phi node to see if they have the same
 | |
| // canonical definition.  If so, mark the Phi node as redundant.
 | |
| // getCanonicalVal() will recursively call simplifyIncompletePhi().
 | |
| void til::simplifyIncompleteArg(til::Phi *Ph) {
 | |
|   assert(Ph && Ph->status() == Phi::PH_Incomplete);
 | |
| 
 | |
|   // eliminate infinite recursion -- assume that this node is not redundant.
 | |
|   Ph->setStatus(Phi::PH_MultiVal);
 | |
| 
 | |
|   SExpr *E0 = simplifyToCanonicalVal(Ph->values()[0]);
 | |
|   for (unsigned i = 1, n = Ph->values().size(); i < n; ++i) {
 | |
|     SExpr *Ei = simplifyToCanonicalVal(Ph->values()[i]);
 | |
|     if (Ei == Ph)
 | |
|       continue;  // Recursive reference to itself.  Don't count.
 | |
|     if (Ei != E0) {
 | |
|       return;    // Status is already set to MultiVal.
 | |
|     }
 | |
|   }
 | |
|   Ph->setStatus(Phi::PH_SingleVal);
 | |
| }
 | |
| 
 | |
| // Renumbers the arguments and instructions to have unique, sequential IDs.
 | |
| unsigned BasicBlock::renumberInstrs(unsigned ID) {
 | |
|   for (auto *Arg : Args)
 | |
|     Arg->setID(this, ID++);
 | |
|   for (auto *Instr : Instrs)
 | |
|     Instr->setID(this, ID++);
 | |
|   TermInstr->setID(this, ID++);
 | |
|   return ID;
 | |
| }
 | |
| 
 | |
| // Sorts the CFGs blocks using a reverse post-order depth-first traversal.
 | |
| // Each block will be written into the Blocks array in order, and its BlockID
 | |
| // will be set to the index in the array.  Sorting should start from the entry
 | |
| // block, and ID should be the total number of blocks.
 | |
| unsigned BasicBlock::topologicalSort(SimpleArray<BasicBlock *> &Blocks,
 | |
|                                      unsigned ID) {
 | |
|   if (Visited) return ID;
 | |
|   Visited = true;
 | |
|   for (auto *Block : successors())
 | |
|     ID = Block->topologicalSort(Blocks, ID);
 | |
|   // set ID and update block array in place.
 | |
|   // We may lose pointers to unreachable blocks.
 | |
|   assert(ID > 0);
 | |
|   BlockID = --ID;
 | |
|   Blocks[BlockID] = this;
 | |
|   return ID;
 | |
| }
 | |
| 
 | |
| // Performs a reverse topological traversal, starting from the exit block and
 | |
| // following back-edges.  The dominator is serialized before any predecessors,
 | |
| // which guarantees that all blocks are serialized after their dominator and
 | |
| // before their post-dominator (because it's a reverse topological traversal).
 | |
| // ID should be initially set to 0.
 | |
| //
 | |
| // This sort assumes that (1) dominators have been computed, (2) there are no
 | |
| // critical edges, and (3) the entry block is reachable from the exit block
 | |
| // and no blocks are accessible via traversal of back-edges from the exit that
 | |
| // weren't accessible via forward edges from the entry.
 | |
| unsigned BasicBlock::topologicalFinalSort(SimpleArray<BasicBlock *> &Blocks,
 | |
|                                           unsigned ID) {
 | |
|   // Visited is assumed to have been set by the topologicalSort.  This pass
 | |
|   // assumes !Visited means that we've visited this node before.
 | |
|   if (!Visited) return ID;
 | |
|   Visited = false;
 | |
|   if (DominatorNode.Parent)
 | |
|     ID = DominatorNode.Parent->topologicalFinalSort(Blocks, ID);
 | |
|   for (auto *Pred : Predecessors)
 | |
|     ID = Pred->topologicalFinalSort(Blocks, ID);
 | |
|   assert(static_cast<size_t>(ID) < Blocks.size());
 | |
|   BlockID = ID++;
 | |
|   Blocks[BlockID] = this;
 | |
|   return ID;
 | |
| }
 | |
| 
 | |
| // Computes the immediate dominator of the current block.  Assumes that all of
 | |
| // its predecessors have already computed their dominators.  This is achieved
 | |
| // by visiting the nodes in topological order.
 | |
| void BasicBlock::computeDominator() {
 | |
|   BasicBlock *Candidate = nullptr;
 | |
|   // Walk backwards from each predecessor to find the common dominator node.
 | |
|   for (auto *Pred : Predecessors) {
 | |
|     // Skip back-edges
 | |
|     if (Pred->BlockID >= BlockID) continue;
 | |
|     // If we don't yet have a candidate for dominator yet, take this one.
 | |
|     if (Candidate == nullptr) {
 | |
|       Candidate = Pred;
 | |
|       continue;
 | |
|     }
 | |
|     // Walk the alternate and current candidate back to find a common ancestor.
 | |
|     auto *Alternate = Pred;
 | |
|     while (Alternate != Candidate) {
 | |
|       if (Candidate->BlockID > Alternate->BlockID)
 | |
|         Candidate = Candidate->DominatorNode.Parent;
 | |
|       else
 | |
|         Alternate = Alternate->DominatorNode.Parent;
 | |
|     }
 | |
|   }
 | |
|   DominatorNode.Parent = Candidate;
 | |
|   DominatorNode.SizeOfSubTree = 1;
 | |
| }
 | |
| 
 | |
| // Computes the immediate post-dominator of the current block.  Assumes that all
 | |
| // of its successors have already computed their post-dominators.  This is
 | |
| // achieved visiting the nodes in reverse topological order.
 | |
| void BasicBlock::computePostDominator() {
 | |
|   BasicBlock *Candidate = nullptr;
 | |
|   // Walk back from each predecessor to find the common post-dominator node.
 | |
|   for (auto *Succ : successors()) {
 | |
|     // Skip back-edges
 | |
|     if (Succ->BlockID <= BlockID) continue;
 | |
|     // If we don't yet have a candidate for post-dominator yet, take this one.
 | |
|     if (Candidate == nullptr) {
 | |
|       Candidate = Succ;
 | |
|       continue;
 | |
|     }
 | |
|     // Walk the alternate and current candidate back to find a common ancestor.
 | |
|     auto *Alternate = Succ;
 | |
|     while (Alternate != Candidate) {
 | |
|       if (Candidate->BlockID < Alternate->BlockID)
 | |
|         Candidate = Candidate->PostDominatorNode.Parent;
 | |
|       else
 | |
|         Alternate = Alternate->PostDominatorNode.Parent;
 | |
|     }
 | |
|   }
 | |
|   PostDominatorNode.Parent = Candidate;
 | |
|   PostDominatorNode.SizeOfSubTree = 1;
 | |
| }
 | |
| 
 | |
| // Renumber instructions in all blocks
 | |
| void SCFG::renumberInstrs() {
 | |
|   unsigned InstrID = 0;
 | |
|   for (auto *Block : Blocks)
 | |
|     InstrID = Block->renumberInstrs(InstrID);
 | |
| }
 | |
| 
 | |
| static inline void computeNodeSize(BasicBlock *B,
 | |
|                                    BasicBlock::TopologyNode BasicBlock::*TN) {
 | |
|   BasicBlock::TopologyNode *N = &(B->*TN);
 | |
|   if (N->Parent) {
 | |
|     BasicBlock::TopologyNode *P = &(N->Parent->*TN);
 | |
|     // Initially set ID relative to the (as yet uncomputed) parent ID
 | |
|     N->NodeID = P->SizeOfSubTree;
 | |
|     P->SizeOfSubTree += N->SizeOfSubTree;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static inline void computeNodeID(BasicBlock *B,
 | |
|                                  BasicBlock::TopologyNode BasicBlock::*TN) {
 | |
|   BasicBlock::TopologyNode *N = &(B->*TN);
 | |
|   if (N->Parent) {
 | |
|     BasicBlock::TopologyNode *P = &(N->Parent->*TN);
 | |
|     N->NodeID += P->NodeID;    // Fix NodeIDs relative to starting node.
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Normalizes a CFG.  Normalization has a few major components:
 | |
| // 1) Removing unreachable blocks.
 | |
| // 2) Computing dominators and post-dominators
 | |
| // 3) Topologically sorting the blocks into the "Blocks" array.
 | |
| void SCFG::computeNormalForm() {
 | |
|   // Topologically sort the blocks starting from the entry block.
 | |
|   unsigned NumUnreachableBlocks = Entry->topologicalSort(Blocks, Blocks.size());
 | |
|   if (NumUnreachableBlocks > 0) {
 | |
|     // If there were unreachable blocks shift everything down, and delete them.
 | |
|     for (unsigned I = NumUnreachableBlocks, E = Blocks.size(); I < E; ++I) {
 | |
|       unsigned NI = I - NumUnreachableBlocks;
 | |
|       Blocks[NI] = Blocks[I];
 | |
|       Blocks[NI]->BlockID = NI;
 | |
|       // FIXME: clean up predecessor pointers to unreachable blocks?
 | |
|     }
 | |
|     Blocks.drop(NumUnreachableBlocks);
 | |
|   }
 | |
| 
 | |
|   // Compute dominators.
 | |
|   for (auto *Block : Blocks)
 | |
|     Block->computeDominator();
 | |
| 
 | |
|   // Once dominators have been computed, the final sort may be performed.
 | |
|   unsigned NumBlocks = Exit->topologicalFinalSort(Blocks, 0);
 | |
|   assert(static_cast<size_t>(NumBlocks) == Blocks.size());
 | |
|   (void) NumBlocks;
 | |
| 
 | |
|   // Renumber the instructions now that we have a final sort.
 | |
|   renumberInstrs();
 | |
| 
 | |
|   // Compute post-dominators and compute the sizes of each node in the
 | |
|   // dominator tree.
 | |
|   for (auto *Block : Blocks.reverse()) {
 | |
|     Block->computePostDominator();
 | |
|     computeNodeSize(Block, &BasicBlock::DominatorNode);
 | |
|   }
 | |
|   // Compute the sizes of each node in the post-dominator tree and assign IDs in
 | |
|   // the dominator tree.
 | |
|   for (auto *Block : Blocks) {
 | |
|     computeNodeID(Block, &BasicBlock::DominatorNode);
 | |
|     computeNodeSize(Block, &BasicBlock::PostDominatorNode);
 | |
|   }
 | |
|   // Assign IDs in the post-dominator tree.
 | |
|   for (auto *Block : Blocks.reverse()) {
 | |
|     computeNodeID(Block, &BasicBlock::PostDominatorNode);
 | |
|   }
 | |
| }
 |